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Introduction

Given:

• an algebraic domain D

• a map F : D → D

we consider orbits

xn+1 = F (xn) , n = 0,1, . . . ,

starting with some initial point x0 ∈ D.

F(k) = the kth iteration of F

For any n, k ≥ 0

xn+k = F(k) (xn) ,

Traditionally, D is infinite: D = C, ZZ,Qp,Cp . . ..
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Common Knowledge: Number-theoretic transfor-

mations lead to very interesting dynamical sys-

tems:

• continued fractions,

• various numeration systems,

• the 3x + 1 transformation,

• and others . . ..

We mainly concentrate on dynamical systems as-

sociated with transformations generated by

• rational functions (and polynomials in particu-

lar)

• over finite fields and residue rings: D = IFs
q or

D = ZZs
m (s = 1 is of special interest).
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Sequences of elements of IFq and ZZm generated by

xn+1 = F (xn) have been studied for a long time

in parallel

• in the theory of pseudorandom number gener-

ators and cryptography

• in the theory of dynamical systems

... unfortunately without too much interaction.

Basic questions (common for both areas):

• Period length

• Fixed points

• Distribution

• Embedded linear structures

• . . ..
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We hope that this talk will help to establish some

links between these two areas, and two groups of

researchers:

We describe open problems and show some obsta-

cles, of purely algebraic nature, related to some

algebraic properties of iterations of rational maps.

Thus, we hope that the dynamical system commu-

nity may find a scope of new interesting problems

which may succumb to their efforts.
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Notation

General:

IFq = finite field of q elements.

ZZm = {0,1, . . . , m− 1} residue ring modulo m.

p = prime number.

Period:

If D is finite, then any sequence generated by

xn+1 = F (xn) becomes eventually periodic with

least period t ≤ #D.

We always assume that it is purely periodic (which

can be achieved by a shift).
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Uniformity of Distribution

Discrepancy:

For a sequence of N points in [0,1)s

Γ =
(
γ1,n, . . . , γs,n

)N

n=1
∈ [0,1)s

its discrepancy ∆(Γ) is

∆(Γ) = sup
B⊆[0,1)s

∣∣∣∣∣
TΓ(B)

N
− |B|

∣∣∣∣∣ ,

where TΓ(B) is the number of points of Γ which

hit the box

B = [α1, β1)× . . .× [αs, βs) ⊆ [0,1)s

and the supremum is taken over all such boxes.

Informally In the 2D-case the discrepancy shows

how uniformly grey the picture looks like if we plot

the points Γ.
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Modulo m Discrepancy

For a sequence of N points in ZZs
m

U =
(
u1,n, . . . , us,n

)N

n=1
∈ ZZs

m

its modulo m discrepancy Dm(U) is defined as the

ordinary discrepancy ∆(Γ) of the sequence

Γ =
(

u1,n

m
, . . . ,

us,n

m

)N

n=1
.

We also apply this definition to points over IFp.
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Survey of the Results

Linear generator:

f(X) = aX + b, case b = 0 is of special interest:

f(k)(X) = akX

Linear congruential generator has been in use for
decades: Knuth, Korobov, Krawczyk, Niederreiter,
Shparlinski, BC – 2005

Exhibits some major disadvantages:

• Bad Distribution of s-tuples (xn, . . . , xn+s−1).

• It is “too linear”. This can be formalised in
terms of linear complexity which makes it bad
for both

– Monte Carlo

– Cryptography

applications
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Polynomial generator:

xn+1 = f (xn) , n = 0,1, . . . ,

where f(X) ∈ ZZm[X], deg f = d ≥ 2 and x0 ∈ ZZm.

Niederreiter & Shparlinski, 1999: m = p

For any 1 ≤ N ≤ t and s ≥ 1 for the modulo p

discrepancy of set

Xs,N =
(
xn, . . . , xn+s−1

)
, 0 ≤ n ≤ N − 1,

the bound

Dp(Xs,N) = O
(
N−1/2p1/2(log p)−1/2 (log log p)s

)

holds.

Nontriviality range is rather narrow (but not void)

p ≥ t ≥ N À p(log p)−1+ε.
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Question: Find polynomials f with t ≈ p.

Birthday paradox: For “random” f one expects

t ≈ p1/2

. . . bad for us;

. . . good for the Pollard factorisation algorithm.

To achieve t ≈ p special constructions are needed:

e.g. f must be an “almost” permutation polyno-

mial because

t ≤ #f(IFp)

Dickson polynomials are our primary suspects!

. . . not just because they are nice, but because of

some “semirigorous” reasons to believe so.
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Rational generator:

Question: What if we take a rational function
instead of a polynomial?

Additional complications: zero divisors in the de-
nominator.

This case, although theoretically interesting, has
never been worked out in detail, because it does
not seem to give any advantages compared to
the polynomial generator (and is computationally
more expensive).

However (!!!) there is a very special case which
brings many nice surprises:

f(X) =
αX + β

γX + δ

with αδ − βγ 6= 0.

A substitution reduces it to less symmetric but
simpler functions of the form

f(X) = aX−1 + b

(with convention that 0−1 = 0).

This case is known as the inversive generator .
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Inversive generator:

Gutierrez & Niederreiter & Shparlinski, 2000:

m = p

Discrepancy bound:

Dp(Xs,N) = O
(
N−1/2p1/4(log p)s

)

Nontriviality range is much wider range than that

known for the polynomial generator:

t ≥ N À p1/2(log p)2s+ε

Question: Find a and b with t ≈ p.

Not too hard!! t is related to some properties of

X2 − bX − a ∈ IFp[X].

The inner structure is likely to beat the birthday

paradox!

Flahive and Niederreiter, 1993:

It is known how to achieve t = p.
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What else?

Multidimensional case:

xn+r = f
(
xn+r−1, . . . , xn

)
, n = 0,1, . . . ,

Extending previous results results to general poly-

nomials leads to an algebraic problem about linear

independence of iterations f(k), which we will dis-

cuss later.

For some polynomials it works:

Griffin & Niederreiter & Shparlinski, 1999,

Gutierrez & Gomes-Perez, 2001:

Dp(Xs,N) = O
(
N−1/2p1/2(log p)−1/2 (log log p)s

)

(as in the case r = 1).
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Monomial case — Power generator:

In the above we have always assumed that the

degrees of the involved functions are bounded

One of the reason is that otherwise it is hard to

evaluate these functions).

However, high degree monomials f(x) = xe are

easy to evaluate via repeated squaring.

Power generator

xn+1 = xe
n, n = 0,1, . . . .

which has been introduced for some cryptographic

applications.

Special case: m = pl, p and l are primes, RSA

modulus, (we iterate RSA encryption).

Special subcases:

• gcd (e, ϕ(m)) = 1, — RSA generator

• e = 2 — Blum–Blum–Shub generator
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Friedlander & Pomerance & Shparlinski, 2001:

Period t is likely to be close to m

Friedlander & Shparlinski, 1999:

m = pl, RSA modulus

For any integer ν ≥ 1,

Dm(X1,t) = O(t−(2ν+1)/2ν(ν+1)m(3ν+2)/4ν(ν+1)+ε)

Nontriviality range:

m ≥ t ≥ m3/4+ε

t ≥ m1−ε =⇒ Dm(X1,t) = O
(
m−1/8+ε

)
.
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Open Questions

• Distribution of s-tuples (xn, . . . , xn+s−1) ?

No visible approaches . . .

except if e is “small”, say e = 2, then the same
method works for s = o(logm/ log logm).

• Distribution of xn, n = 0, . . . , N−1, where N <

t ?

Could be doable via reduction to complete sums.

Friedlander & Hansen & Shparlinski, 2001:

For m = p the results are stronger

Nontriviality range:

p ≥ t ≥ p1/2+ε

Gomez-Perez & Gutierrez & Shparlinski, 2003

Similar results for iterations of Dickson polynomi-
als.
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Generators on Elliptic Curves

Let E be given by a Weierstraß equation over IFp

y2 = x3 + ax + b,

Main Facts:

• Hasse–Weil: |#E(IFp)− p− 1| ≤ 2p1/2

• E(IFp) is an Abelian group

Fix a point G ∈ E(IFp).

• EC linear congruential generator

Uk = G⊕ Uk−1 = kG⊕ U0, k = 1,2, . . . .

• EC power generator

Wk = eWk−1 = ekG, k = 1,2, . . . ,
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How Does the Method Work?

Generic principle: to study the distribution and

other “statistical” properties of any sequence (xn)∞n=0

in any domain D having an abelian group structure,

one usually considers character sums

S(χ) =
N−1∑

n=0

χ (xn) ,

where χ is a nonprincipal character of the corre-

sponding group.

Step 1. Typically, individual single sums are hard

to study. — Let us to create a double sum W (χ)

which is closely associated with S(χ).

For any integer k ≥ 0:

S(χ) =
N+k−1∑

n=k

χ (xn) + O(k).

Indeed, the sums on the LHS and the RHS “dis-

agree” for at most 2k values of n and since |χ(x)| =
1, we obtain the above identity.
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Sum up these identities for k = 0, . . . , K − 1:

KS(χ) = W (χ) + O(K2),

where

W (χ) =
K−1∑

k=0

N+k−1∑

n=k

χ (xn)

=
K−1∑

k=0

N−1∑

n=0

χ
(
xn+k

)

=
K−1∑

k=0

N−1∑

n=0

χ
(
F(k) (xn)

)

because xn+k = F(k) (xn).

We have a double sum!!

Step 2. Our next step is to reduce W (χ) to a sum
which does not depend on the specific sequence
(xn)∞n=0 at all!!

We write

|W (χ)| ≤
N−1∑

n=0

∣∣∣∣∣∣

K−1∑

k=0

χ
(
F(k) (xn)

)
∣∣∣∣∣∣
,

Cauchy inequality:

|W (χ)|2 ≤ N
N−1∑

n=0

∣∣∣∣∣∣

K−1∑

k=0

χ
(
F(k) (xn)

)
∣∣∣∣∣∣

2

.
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If 1 ≤ N ≤ t then x0, . . . ,xN−1 are pairwise distinct.

We can only add more nonnegative terms to the

last sum if we replace xn with x running through

the wholeD:

|W (χ)|2 ≤ N
∑

x∈D

∣∣∣∣∣∣

K−1∑

k=0

χ
(
F(k) (x)

)
∣∣∣∣∣∣

2

.

xn are gone !!

Step 3. Estimate the last sum.

We have

• |z|2 = zz for any complex z

• χ(u) = χ(−u) for any u ∈ D

After changing the order of summation, we derive

|W (χ)|2 ≤ N
K−1∑

k,l=0

∑

x∈D
χ

(
F(k) (x)−F(l) (x)

)
.

The contribution of the terms with k = l is K#D.
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Time to use something specific about f and D:

To estimate the terms with k 6= l, we need some

additional information about the character sums

with functions of the form F(k) (x)−F(l) (x).

Assume that generally these functions fall into a

class of functions for which nontrivial upper bounds

on character sums are known (e.g. polynomials)

. . . but we still have one more problem to over-

come:

We have to show that χ
(
F(k) (x)−F(l) (x)

)
is not

constant!!
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Easy case/Weak result — Polynomial generator:

if deg(f) = d ≥ 2 then deg f(k) = dk

The degree of f(k) grows very fast:

• good for the proof;

• bad for the result: Using the Weil bound,

which calims that
∑

x∈IFp

exp(2πiG(x)/p) = O
(
degGp1/2

)

for any nonconstant rational function G(X) ∈
IFp(X) we derive

|W (χ)|2 = O
(
KNp + K2dK+s−2Np1/2

)
.
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Harder case/Stronger result — Inversive generator:

The above argument does not apply:

f(k) (X) =
AkX + Bk

CkX + Dk

One needs to study these functions more care-

fully!!

• bad for the proof;

• good for the result: Using the Weil bound:

|W (χ)|2 = O
(
KNp + K2Np1/2

)
.
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Special case/Special result — Power generator:

For f(X) = Xe the degree of

f(k) (X)− f(l) (X) = Xek −Xel

could be very large even for small k and l (e.g. for

k = 1, l = 0).

. . . there is a nice trick related to substitution X →
Xr for some r which helps to reduce the degree!

s-Dimensional Distribution

. . . follows the same pattern with the linear com-

bination

s−1∑

j=0

aj

(
F(k+j) (x)−F(l+j) (x)

)

instead of

F(k) (x)−F(l) (x) .

Additional Difficulty: If F is a polynomial in

several variables then the degree argument is not

working.

. . . generally remains unresolved.
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Questions:

• Polynomial generators in several variables?

— Better understanding of algebraic proper-

ties of iterated multivariate polynomials is needed.

• s-dimensional distribution of the power gener-

ator?

— Some clever trick which will reduce the de-

gree of several terms Xek
, . . . , Xek+s−1

simulta-

neously.

• What are possible grows rates of dk = deg f(k)

for rational functions?

— Is it always either dk = dk or dk = O(1)?

• What about other interesting groups, e.g., groups

of points on elliptic curves?

Hess & Lange & Shparlinski, 2002:

Some partial results have recently been ob-

tained.
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Related Questions

Linear Complexity

Question: Are there any hidden linearity?

This makes PRN vulnerable to the LLL attack

(e.g., the linear congruential generator)

Knuth; Boyar; Frieze & H̊astad & Kannan & La-

garias; Krawczyk; Joux & Stern, 1980–. . .

Linear Complexity of an infinite sequence (sn)

is the length L of the shortest linear recurrence

relation

sn+L = aL−1sn+L−1 + . . . + a0sn,

which is satisfied by this sequence.
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Inversive Generator

Niederreiter, 1992:

Assume that the sequence (ux), given by the in-

versive generator

xn+1 ≡ ax−1
n + b (mod p), 0 ≤ xn ≤ p− 1,

is purely periodic with period t = p. Then for the

linear complexity L of this sequence the bound

L ≥ (p + 3)/2

holds.

Niederreiter & Shparlinski, 1998,

Gutierrez & Shparlinski & Winterhof, 2001:

Some extensions to other nonlinear generators with

polynomials and rational functions of low degree.
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Power Generator

Shparlinski, 1998:

Let M = pl, where p and l are two distinct primes.

Assume that the sequence (xn), given by the power

generator

xn+1 ≡ xe
n (mod M), 0 ≤ xn ≤ m− 1,

is purely periodic with period t. Then for the linear

complexity L of this sequence the bound

L ≥ tϕ(m)−1/2

holds.

The bound is tight!

Griffin and Shparlinski, 1998):

Generalization to linear complexity of finite seg-

ments of the power generator.
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Predictability

Known: the general rule (and some of other pa-

rameters),

Unknown: the initial value.

Question: Given several consecutive elements

xn, . . . , xn+k−1

(either their exact values or only some bits of

them), continue to generate

xn+k, xn+k+1, xn+k+2 . . . .
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Linear Congruencial Generator

xn+1 ≡ axn + b (mod p), 0 ≤ xn ≤ p− 1,

Trivial: a, b, m are known, xn, . . . , xn+k−1 are given

in full

Knuth; Boyar; Frieze & H̊astad & Kannan & La-

garias; Krawczyk, 1980–1992:

a, b are known/unknown, m is known and only

some bits of xn, . . . , xn+k−1 are given — rigorous

results

Joux & Stern, 1994

Contini& Shparlinski, 2004 :

a, b, m are unknown, only some bits of xn, . . . , xn+k−1

are given — heuristic results
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Non-linear Generator

Lagarias & Reeds, 1990:

xn+1 = F (xn) , n = 0,1, . . . ,

where F is an unknown polynomial map and

xn, . . . ,xn+k−1

are given in full.

Proof makes use of rather deep results about poly-

nomial ideals.

Blackburn &Gomez-Perez & Gutierrez & Shpar-

linski, 2003

One dimensional polynomial and inversive gener-

ators where only some bits of xn, . . . , xn+k−1 are

given.

Proofs make use of lattice reduction.


