Pisot Substitutions and (Limit-) Quasiperiodic Model Sets

Bernd Sing
Fakultät für Mathematik
Universität Bielefeld
Germany
sing@math.uni-bielefeld.de

Substitutions

Use a finite alphabet \mathcal{A} and a rule σ how to substitute letters to generate a (two-sided) sequence (denote by $n=\operatorname{card} \mathcal{A}$).
(e) Fibonacci-substitution $\mathcal{A}=\{a, b\}, \quad a \stackrel{\sigma}{\mapsto} a b, \quad b \stackrel{\sigma}{\mapsto} a$

$$
\begin{aligned}
b . a & \stackrel{\sigma}{\mapsto} \sigma(b \cdot a)=\sigma(b) \cdot \sigma(a)=a \cdot a b \stackrel{\sigma}{\mapsto} \sigma(a \cdot a b)=\sigma(a) \cdot \sigma(a) \sigma(b)=a b \cdot a b a \\
& \stackrel{\sigma}{\mapsto} \ldots \stackrel{\sigma}{\mapsto} \ldots a b a a b a\left\{\begin{array}{l}
a b \\
b a
\end{array}\right\} \cdot a b a a b a b a \ldots
\end{aligned}
$$

Substitutions

Use a finite alphabet \mathcal{A} and a rule σ how to substitute letters to generate a (two-sided) sequence (denote by $n=\operatorname{card} \mathcal{A}$).
(a) Fibonacci-substitution $\mathcal{A}=\{a, b\}, \quad a \stackrel{\sigma}{\mapsto} a b, \quad b \stackrel{\sigma}{\mapsto} a$

$$
\begin{aligned}
b . a & \stackrel{\sigma}{\mapsto} \sigma(b \cdot a)=\sigma(b) \cdot \sigma(a)=a \cdot a b \stackrel{\sigma}{\mapsto} \sigma(a \cdot a b)=\sigma(a) \cdot \sigma(a) \sigma(b)=a b \cdot a b a \\
& \stackrel{\sigma}{\mapsto} \ldots \stackrel{\sigma}{\mapsto} \ldots a b a a b a\left\{\left\{\begin{array}{l}
a b \\
b a
\end{array}\right\} \cdot a b a a b a b a \ldots\right.
\end{aligned}
$$

Define $(n \times n)$-substitution matrix M where $M_{i j}=\# i$'s in $\sigma(j)=\#_{i}(\sigma(j))$.
(at) for Fibonacci-substitution $M=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$

Substitutions

Use a finite alphabet \mathcal{A} and a rule σ how to substitute letters to generate a (two-sided) sequence (denote by $n=\operatorname{card} \mathcal{A}$).
(2) \&-substitution

$$
\mathcal{A}=\{a, b\}, \quad a \stackrel{\sigma}{\mapsto} a a b a, \quad b \stackrel{\sigma}{\mapsto} a a
$$

$$
a . a \stackrel{\sigma}{\mapsto} \sigma(a . a)=\text { aaba.aaba } \stackrel{\sigma}{\mapsto} \ldots \stackrel{\sigma}{\mapsto} \ldots \text {. baaaaaba.aabaaaba } \ldots
$$

Define $(n \times n)$-substitution matrix M where $M_{i j}=\# i$'s in $\sigma(j)=\#_{i}(\sigma(j))$.
(a) for $\boldsymbol{\&}$-substitution

$$
M=\left(\begin{array}{ll}
3 & 2 \\
1 & 0
\end{array}\right)
$$

Substitutions of Pisot type

σ is Pisot substitution if M has exactly one dominant (simple) eigenvalue $\lambda>1$ and all other eigenvalues λ_{i} satisfy $0<\left|\lambda_{i}\right|<1$ (inside unit circle).

- Characteristic polynomial $p(x)=\operatorname{det}(x \cdot \mathbb{1}-M)$ is irreducible over \mathbb{Z}. Denote by r the number of real roots, and by s the number of pairs of complex conjugate roots ($n=r+2 \cdot s$).
- M is primitive.

Let u be any fixed point of σ, denote by $\mathcal{O}(u)$ the orbit of u under shift S. Then $\mathcal{X}=\overline{\mathcal{O}(u)}$ is a compact space w.r.t. product topology and (\mathcal{X}, S) is a (strictly ergodic) dynamical system (\rightsquigarrow local hull).
σ is a unimodular Pisot substitution if $|\operatorname{det} M|=1$.

Substitutions of Pisot type

σ is Pisot substitution if M has exactly one dominant (simple) eigenvalue $\lambda>1$ and all other eigenvalues λ_{i} satisfy $0<\left|\lambda_{i}\right|<1$ (inside unit circle).

- Characteristic polynomial $p(x)=\operatorname{det}(x \cdot \mathbb{1}-\boldsymbol{M})$ is irreducible over \mathbb{Z}. Denote by r the number of real roots, and by s the number of pairs of complex conjugate roots ($n=r+2 \cdot s$).
- M is primitive.

Let u be any fixed point of σ, denote by $\mathcal{O}(u)$ the orbit of u under shift S. Then $\mathcal{X}=\overline{\mathcal{O}(u)}$ is a compact space w.r.t. product topology and (\mathcal{X}, S) is a (strictly ergodic) dynamical system (\rightsquigarrow local hull).
σ is a unimodular Pisot substitution if $|\operatorname{det} M|=1$.
(e) for Fibonacci-substitution $\lambda=\frac{1+\sqrt{5}}{2} \approx 1.618 \quad \lambda_{2}=\frac{1-\sqrt{5}}{2} \approx-0.618$ $\operatorname{det} \boldsymbol{M}=-1$.
(e) for $\boldsymbol{\%}$-substitution

$$
\begin{aligned}
& \lambda=\frac{3+\sqrt{17}}{2} \approx 3.562 \quad \lambda_{2}=\frac{3-\sqrt{17}}{2} \approx-0.562 \\
& \operatorname{det} \boldsymbol{M}=-2
\end{aligned}
$$

Model Sets

Cut and project scheme:

where G, H are LCAGs, \tilde{L} is a lattice, π_{1}, π_{2} are the canonical projections and ${ }^{\star}: L \rightarrow H$ denotes the mapping $\pi_{2} \circ\left(\left.\pi_{1}\right|_{\tilde{L}}\right)^{-1}$.

A set $\Lambda(W):=\left\{x \in L \mid x^{\star} \in W\right\} \subset G$ is a regular model set, if $W \subset H$ is a non-empty relatively compact set with $\mathrm{cl} W=\operatorname{cl}(\operatorname{int} W)$ and boundary $\partial W=\operatorname{cl} W \backslash$ int W of Haar-measure zero.

Length Representation

We want to represent a sequence $u \in \mathcal{X}$ as (Delone) point set $\varphi(u)=\Lambda \subset \mathbb{R}$ (where $\varphi: u \rightarrow \mathbb{R}$).

For this, let $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right)$ be a left eigenvector of M to the eigenvalue λ. Let the 'distance' between $\varphi\left(u_{i}\right)$ and $\varphi\left(u_{i+1}\right)$ be ℓ_{i}, and set $\varphi\left(u_{0}\right)=0$. (ℓ_{i} 's are rationally independent)
(e) Fibonacci-substitution: $\ell=(\lambda, 1)$

Length Representation

We want to represent a sequence $u \in \mathcal{X}$ as (Delone) point set $\varphi(u)=\Lambda \subset \mathbb{R}$ (where $\varphi: u \rightarrow \mathbb{R}$).

For this, let $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right)$ be a left eigenvector of M to the eigenvalue λ. Let the 'distance' between $\varphi\left(u_{i}\right)$ and $\varphi\left(u_{i+1}\right)$ be ℓ_{i}, and set $\varphi\left(u_{0}\right)=0$. (ℓ_{i} 's are rationally independent)
(a) Fibonacci-substitution: $\ell=(\lambda, 1)$

Formally, define a map $l: u \rightarrow \mathbb{Z}^{n}$ (Abelianization) by

$$
l\left(u_{k}\right)=\left\{\begin{array}{cc}
(0, \ldots, 0) & \text { if } k=0, \\
\left(\#_{i}\left(u_{0} \ldots u_{k-1}\right)\right)_{1 \leq i \leq n} & \text { if } k>0, \\
\left(-\#_{i}\left(u_{k} \ldots u_{-1}\right)\right)_{1 \leq i \leq n} & \text { if } k<0 .
\end{array}\right.
$$

Then: $\varphi\left(u_{k}\right)=\ell \cdot l\left(u_{k}\right)$.

Length Representation

We want to represent a sequence $u \in \mathcal{X}$ as (Delone) point set $\varphi(u)=\Lambda \subset \mathbb{R}$ (where $\varphi: u \rightarrow \mathbb{R}$).

For this, let $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right)$ be a left eigenvector of M to the eigenvalue λ. Let the 'distance' between $\varphi\left(u_{i}\right)$ and $\varphi\left(u_{i+1}\right)$ be ℓ_{i}, and set $\varphi\left(u_{0}\right)=0$. (ℓ_{i} 's are rationally independent)
(a) Fibonacci-substitution: $\ell=(\lambda, 1)$
$\ldots a a b . a b a \ldots \quad \ldots^{-2 \lambda-1}{ }^{-\lambda-1} \quad-1 \quad 0 \quad \underset{\bullet}{0} \quad \lambda+1$
■ φ lines up with substitution $\sigma: \lambda \cdot \varphi(u) \subset \varphi(\sigma(u))$
Especially for fixed point $u=\sigma(u) \quad \Longrightarrow \quad \lambda \cdot \Lambda \subset \Lambda \quad(\rightsquigarrow$ Meyer set)

- Since $\ell_{i} \in \mathbb{Q}(\lambda)$, this representation is in fact defined on algebraic number field (of degree n).

Local Fields

Look at the completions of $\mathbb{Q}(\lambda) \cong \mathbb{Q}[x] / p(x)$:

- Recall $n=r+2 \cdot s$, therefore there are r different embeddings into \mathbb{R} and s different (non-equivalent) embeddings into \mathbb{C} (w.r.t. the usual absolute value $\left.\|\cdot\|_{\infty}\right)$.
Since we are in the Pisot case, we have $\|\lambda\|_{\infty}>1$ and $\left\|\lambda_{i}\right\|_{\infty}<1$ (by $\lambda \Lambda \subset \Lambda$: 1 expanding, $r-1+s$ contracting).
- Every prime ideal \mathfrak{p} of the algebraic integers $\mathfrak{o}_{\mathbb{Q}(\lambda)}$ of $\mathbb{Q}(\lambda)$ yields a (complete) \mathfrak{p}-adic field $\mathbb{Q}_{\mathfrak{p}}$ (w.r.t. an ultrametric absolute value $\|\cdot\|_{\mathfrak{p}}$).

One has: $\|\lambda\|_{\mathfrak{p}} \leq 1$ for all \mathfrak{p}, the inequality being strict only if \mathfrak{p} lies above a prime divisor of $|\operatorname{det} \boldsymbol{M}|$ (because $\left.|\operatorname{det} \boldsymbol{M}|=N_{\mathbb{Q}(\lambda) / \mathbb{Q}}(\lambda)=\prod_{i} N_{\mathbb{Q}_{p_{i}}} / \mathbb{Q}_{p}(\lambda)\right)$

Local Fields

Look at the completions of $\mathbb{Q}(\lambda) \cong \mathbb{Q}[x] / p(x)$:

- Recall $n=r+2 \cdot s$, therefore there are r different embeddings into \mathbb{R} and s different (non-equivalent) embeddings into \mathbb{C} (w.r.t. the usual absolute value $\left.\|\cdot\|_{\infty}\right)$.
Since we are in the Pisot case, we have $\|\lambda\|_{\infty}>1$ and $\left\|\lambda_{i}\right\|_{\infty}<1$ (by $\lambda \Lambda \subset \Lambda: 1$ expanding, $r-1+s$ contracting).
- Every prime ideal \mathfrak{p} of the algebraic integers $\mathfrak{o}_{\mathbb{Q}(\lambda)}$ of $\mathbb{Q}(\lambda)$ yields a (complete) \mathfrak{p}-adic field $\mathbb{Q}_{\mathfrak{p}}$ (w.r.t. an ultrametric absolute value $\|\cdot\|_{\mathfrak{p}}$).

One has: $\|\lambda\|_{\mathfrak{p}} \leq 1$ for all \mathfrak{p}, the inequality being strict only if \mathfrak{p} lies above a prime divisor of $|\operatorname{det} M|$
(x) \&-substitution: $\operatorname{det} \boldsymbol{M}=-2 \quad p(x)=x^{2}-3 x-2 \quad \lambda=\frac{3+\sqrt{17}}{2}$ prime ideal factorization: $(2)=(\lambda) \cdot(3-\lambda)$ \mathfrak{p}-adic absolute values: $\|\lambda\|_{(\lambda)}=\frac{1}{2} \quad\|\lambda\|_{(3-\lambda)}=1$.

Visualization of \mathfrak{p}-adic fields

Given $\mathbb{Q}_{\mathfrak{p}}$, the ring $\mathbb{Z}_{\mathfrak{p}}=\left\{x \in \mathbb{Q}_{\mathfrak{p}} \mid\|x\|_{\mathfrak{p}} \leq 1\right\}$ is a discrete valuation ring with (unique) prime ideal $\mathfrak{m}=\left\{x \in \mathbb{Q}_{\mathfrak{p}} \mid\|x\|_{\mathfrak{p}}<1\right\}$.
Every element π s.t. $\mathfrak{m}=\pi \mathbb{Z}_{\mathfrak{p}}$ is called a uniformizer.
Every element $x \in \mathbb{Q}_{\mathfrak{p}}$ can (uniquely) be written as

$$
x=\sum_{k=m}^{\infty} d_{k} \pi^{k} \quad \text { with } d_{k} \in D \text { and } m \in \mathbb{Z},
$$

where D is a system of representatives of the residue field $\mathbb{Z}_{\mathfrak{p}} / \mathfrak{m}$ (including 0).
(e) ${ }^{2}$-substitution: We can take $\pi=\lambda$ but also $\pi=2$, i.e., $\mathbb{Q}_{(\lambda)} \cong \mathbb{Q}_{2}$. Take $\pi=2$ and $D=\{0,1\}$, then for $x \in \mathbb{Q}$ the above sum is just the well-known binary expansion.
For $x \in \mathbb{Q}_{2}$ the absolute value is given by $\|x\|_{2}=2^{-\min \left\{k \mid d_{k}=1\right\}}$ e.g., $\lambda=0 \cdot 2^{0}+1 \cdot 2^{1}+1 \cdot 2^{2}+0 \cdot 2^{3}+1 \cdot 2^{4}+\ldots$
\mathbb{Z}_{2} can be visualized as Cantor set (lines up with topology).

Cut and Project Scheme

- Direct space $G=\mathbb{R}$ ("expanding")
- Internal space $H=\mathbb{H}=\mathbb{R}^{r-1} \times \mathbb{C}^{s} \times \mathbb{Q}_{\mathfrak{p}_{1}} \times \cdots \times \mathbb{Q}_{\mathfrak{p}_{k}}$ ("contracting")
- Lattice $\tilde{L} \subset \mathbb{R} \times \mathbb{H}$ given by diagonal embedding of
$\bigcup_{m=0}^{\infty} \frac{1}{\lambda^{m}}<\ell_{1}, \ldots, \ell_{n}>_{\mathbb{Z}}$
(if $|\operatorname{det} M|=1$ reduces to $\left\langle\ell_{1}, \ldots, \ell_{n}\right\rangle_{\mathbb{Z}}$, since then λ is a unit)
■ Star map ${ }^{\star}: \mathbb{Q}(\lambda) \rightarrow \mathbb{H}, x^{\star}=\left(\sigma_{2}(x), \ldots, \sigma_{r+s}(x), x, \ldots, x\right)$, where the σ_{i} 's denote Galois automorphisms
- 1 - 1 and denseness by number field construction

Window

Substitution σ induces a recursion equation for the point sets Λ_{i} (where Λ_{i} are the points of Λ associated to letter i)

$$
\Lambda_{i}=\bigcup_{1 \leq j \leq n} \lambda \cdot \Lambda_{j}+A_{i j}
$$

where $A_{i j}$ is a set of translation vectors.
We use the star-map and look at this equation in $\mathcal{K} \mathbb{H}$, the set of non-empty compact subsets of \mathbb{H}, equipped with the Hausdorff metric d_{H}. $\left(\mathcal{K} \mathbb{H}, d_{H}\right)$ is a complete metric space, λ^{*} a contraction. By Banach's contraction principle, we get a unique solution $\left(\Omega_{i}\right)_{1 \leq i \leq n}$ of the equation (called a (graph-directed) iterated function system (IFS))

$$
\Omega_{i}=\bigcup_{1 \leq j \leq n} \lambda^{*} \cdot \Omega_{j}+A_{i j}^{*} .
$$

These are candidates for the windows, so $\Lambda_{i} \stackrel{?}{=} \Lambda\left(\Omega_{i}\right)$.

Properties of Ω_{i}

- By construction $\Lambda_{i} \subset \Lambda\left(\Omega_{i}\right)$ und $\Lambda \subset \Lambda(\Omega)$ (where $\Omega=\bigcup_{i} \Omega_{i}$).
- Recall the defnition of \tilde{L} as diagonal embedding of
$L=\bigcup_{m=0}^{\infty} \frac{1}{\lambda^{m}}<\ell_{1}, \ldots, \ell_{n}>_{\mathbb{Z}} \subset\left\{\sum_{i} q_{i} \cdot \ell_{i} \mid q_{i} \in \mathbb{Q}\right\}=: \mathcal{L}$.
Define $\chi: \mathcal{L} \rightarrow \mathbb{Q}, x=\sum_{i} q_{i} \cdot \ell_{i} \mapsto \chi(x)=\sum_{i} q_{i}$.
$M:=\{x \in L \mid \chi(x)=0\}$, then M^{\star} is lattice in $\mathbb{H}, M^{\star}+\Omega$ is covering of \mathbb{H}.

Properties of Ω_{i}

- By construction $\Lambda_{i} \subset \Lambda\left(\Omega_{i}\right)$ und $\Lambda \subset \Lambda(\Omega)$ (where $\Omega=\bigcup_{i} \Omega_{i}$).
- For $M:=\{x \in L \mid \chi(x)=0\}$, we have: M^{\star} is lattice in $\mathbb{H}, M^{\star}+\Omega$ is covering of \mathbb{H}.
- Each Ω_{i} has non-empty interior and is the closure of its interior.
- The Ω_{i} 's are the windows iff $M^{\star}+\bigcup_{i} \Omega_{i}$ is a tiling. (modulo a set of measure zero)
- Unions on the right side of the IFS $\quad \Omega_{i}=\underset{1 \leq j \leq n}{ } \lambda^{*} \cdot \Omega_{j}+A_{i j}^{*} \quad$ are disjoint in (Haar) measure. (But what about $\bigcup_{i} \Omega_{i}$ and $M^{*}+\Omega$?)
- Boundaries $\partial \Omega_{i}$ have Haar measure 0 .

Examples

(a) Fibonacci-substitution: $\quad a \stackrel{\sigma}{\mapsto} a b, \quad b \stackrel{\sigma}{\mapsto} a \quad \ell=(\lambda, 1)$

$$
\begin{array}{rlrl}
\Lambda_{a} & =\lambda \cdot \Lambda_{a} & \cup \lambda \cdot \Lambda_{b} \\
\Lambda_{b} & =\lambda \cdot \Lambda_{a}+\lambda & \\
& & \\
\Omega_{a} & =\lambda^{\star} \cdot \Omega_{a} & \cup \lambda^{\star} \cdot \Omega_{b} \\
\Omega_{b} & =\lambda^{\star} \cdot \Omega_{a}+\lambda^{\star}
\end{array}
$$

Solution: $\quad \Omega_{a}=[\lambda-2, \lambda-1] \quad \Omega_{b}=[-1, \lambda-2]$
Remark: $\Omega=[-1, \lambda-1] \quad M^{\star}=\lambda \mathbb{Z} \quad \Longrightarrow \quad$ Fibonacci is model set

Examples

(e) \&-substitution: $\quad a \stackrel{\sigma}{\mapsto} a a b a, \quad b \stackrel{\sigma}{\mapsto} a a \quad \ell=\left(\frac{\lambda}{2}, 1\right)$

Examples

(e) \&-substitution: $\quad a \stackrel{\sigma}{\mapsto} a a b a, \quad b \stackrel{\sigma}{\mapsto} a a \quad \ell=\left(\frac{\lambda}{2}, 1\right)$

And $\Omega+M^{\star}$:

Dual Substitution

Instead of IFS $\quad \Omega_{i}=\bigcup_{1 \leq j \leq n} \lambda^{*} \cdot \Omega_{j}+A_{i j}^{*}$
look at point set equation

$$
X_{i}=\bigcup_{1 \leq j \leq n}\left(\lambda^{-1}\right)^{*} \cdot X_{j}+\left(\lambda^{-1}\right)^{*} \cdot A_{j i}^{*}
$$

X_{i} 's are model sets in the cut and project scheme

We get: $X_{i}=\Lambda\left(\left[0, \ell_{i}[)\right.\right.$.

Dual Substitution

Instead of IFS $\quad \Omega_{i}=\bigcup_{1 \leq j \leq n} \lambda^{*} \cdot \Omega_{j}+A_{i j}^{*}$ look at point set equation $\quad X_{i}=\underset{1 \leq j \leq n}{\bigcup}\left(\lambda^{-1}\right)^{*} \cdot X_{j}+\left(\lambda^{-1}\right)^{*} \cdot A_{j i}^{*}$.
Define $J=\bigcup_{i} X_{i}+\Omega_{i}$, then

- the covering degree of J is constant a.e.
- J is tiling of $M^{\star}+\Omega$ is tiling.
(a) Fibonacci-substitution:

$$
\begin{array}{ll}
\Omega_{a}=\lambda^{\star} \cdot \Omega_{a} \cup \lambda^{\star} \cdot \Omega_{b} & X_{a}=\left(\frac{1}{\lambda}\right)^{\star} \cdot X_{a} \cup\left(\frac{1}{\lambda}\right)^{\star} \cdot X_{b}+1 \\
\Omega_{b}=\lambda^{\star} \cdot \Omega_{a}+\lambda^{\star} & X_{b}=\left(\frac{1}{\lambda}\right)^{\star} \cdot X_{a} \\
\text { Get: } \quad X_{a}=\{\ldots,-\lambda, 0,1, \lambda+1, \ldots\} & X_{b}=\{\ldots-\lambda, 0, \lambda+1, \ldots\} .
\end{array}
$$

The Boundary

Knowledge of J also yields an IFS for the boundary $\bigcup_{i} \partial \Omega_{i}$
We have $\partial \Omega_{i}=\bigcup_{(i, j, x)} \Xi_{(i, j, x)}$ where $\Xi_{(i, j, x)}=\Omega_{i} \cap\left(\Omega_{j}+x\right)$ with $x \in X_{j}-X_{i}$.
(a) Fibonacci: $\left(\lambda^{\star}=-\frac{1}{\lambda}\right)$

$$
\begin{aligned}
& \Xi_{(b, a,-\lambda)}=-\frac{1}{\lambda} \Xi_{(a, a, 1)} \\
& \Xi_{(a, a, 1)}=-\frac{1}{\lambda} \Xi_{(b, a,-\lambda)} \\
& \Xi_{(b, a, 0)}=-\frac{1}{\lambda} \Xi_{(a, a,-1)} \\
& \Xi_{(a, a,-1)}=-\frac{1}{\lambda} \Xi_{(b, a, 0)}
\end{aligned}
$$

Get: $\partial \Omega_{a}=\Xi_{(a, a,-1)} \cup \Xi_{(a, a, 1)}=\{\lambda-2, \lambda-1\}$

$$
\partial \Omega_{b}=\Xi_{(b, a,-\lambda)} \cup \Xi_{(b, a, 0)}=\{-1, \lambda-2\} .
$$

Boundaries coincide at $\lambda-2$ and line up with $M^{\star}=\lambda \mathbb{Z}$
\Longrightarrow Fibonacci is model set

The Boundary

Knowledge of J also yields an IFS for the boundary $\bigcup_{i} \partial \Omega_{i}$
We have $\partial \Omega_{i}=\bigcup_{(i, j, x)} \Xi_{(i, j, x)}$ where $\Xi_{(i, j, x)}=\Omega_{i} \cap\left(\Omega_{j}+x\right)$ with $x \in X_{j}-X_{i}$.
(a) \&-substitution:

Do the boundaries match?

\rightsquigarrow still hard to decide

SCC

Idea: Use measure-disjoint unions of IFS to decide if $\bigcup_{i} \Omega_{i}$ is disjoint in measure.

Strong coincidence condition: [Host, Arnoux-Ito] A Pisot substitution satisfies the SCC if for every pair of vertices $i, j(i \neq j)$ in the (directed) substitution graph, there exists a vertex k and walks w and \tilde{w} of the same length N such that

- $w(\tilde{w})$ starts at k and ends at $i(j)$.
- $\delta(w)=\delta(\tilde{w})$, where $\delta\left(e_{1} \ldots e_{N}\right)=e_{1}+\ldots+\lambda^{N-1} \cdot e_{N}$.

Remark: In this case a small copy of $\Omega_{i} \cup \Omega_{j}$ appears inside Ω_{k}.
SCC \Longleftrightarrow the union $\bigcup_{i} \Omega_{i}$ is disjoint in measure.
[Barge-Diamond] The above condition holds for at least one pair i, j.
\Longrightarrow For Pisot substitutions over 2 letters: Ω_{a}, Ω_{b} are disjoint in measure.

GCC/SuperCC

Idea: Use measure-disjoint unions of IFS to decide if J is tiling.
Geometric coincidence condition [Barge-Kwapisz]
Super coincidence condition [lto-Rao]
A Pisot substitution satisfies the GCC/SuperCC if for every pair of vertices i, j and every walk w^{\prime} ending at i and every walk \hat{w} ending at j in the (directed) substitution graph, there exists a vertex k and walks w and \tilde{w} of the same length N such that

- $w(\tilde{w})$ starts at k and ends in $w^{\prime}(\hat{w})$
- $\delta(w)-\lambda^{N} \Delta\left(w^{\prime}\right)=\delta(\tilde{w})-\lambda^{N} \Delta(\hat{w})$, where
$\Delta\left(e_{1} \ldots e_{M}\right)=\left(\frac{1}{\lambda}\right)^{M} e_{1}+\ldots+\left(\frac{1}{\lambda}\right) e_{M}$.
Remark: In this case a small copy of $\left(\Omega_{i}+\Delta\left(w^{\prime}\right)^{\star}\right) \cup\left(\Omega_{j}+\Delta(\hat{w})^{\star}\right)$ appears inside Ω_{k} IFS for boundary \rightsquigarrow some triples $\left(i, j, \Delta(\hat{w})^{\star}-\Delta\left(w^{\prime}\right)^{\star}\right)$

GCC/SuperCC $\Longleftrightarrow J$ is tiling $\Longleftrightarrow \Lambda$ is model set.
Remarks: It suffices to check finitely many triples $(i, j, \hat{w}) \quad$ (compact Ω_{i} 's).
$\Longrightarrow \boldsymbol{\omega}$ is model set

The Torus

$\Upsilon \in \overline{\Lambda+\mathbb{R}}$ can also be described by the orbit of Υ under σ.
\Longrightarrow Two-sided infinite walk \hat{w}. \tilde{w} in the substitution graph (sofic shift).
Define: $\beta(\Upsilon)=\left(\Delta(\hat{w}),\left(\delta(\tilde{w})^{\star}\right) \in \mathbb{R} \times \mathbb{H}\right.$.
Let $F_{i}:=\{\hat{w} . \tilde{w} \mid \hat{w}(\tilde{w})$ ends (starts) at $i\}$.
Then $\beta\left(F_{i}\right)=\left[0, \ell_{i}\right] \times \Omega_{i}=: \tilde{\Omega}_{i}$.
$\tilde{L}+\bigcup_{i} \tilde{\Omega}_{i}$ is tiling of $\mathbb{R} \times \mathbb{H} \Longleftrightarrow J$ is tiling $\Longleftrightarrow \Lambda$ is model set.

In this case: $\bigcup_{i} \tilde{\Omega}_{i}$ is torus (Markov partition),
β is $1-1$ a.e. (torus parametrization).

Conclusion

- All checked Pisot substitutions so far are model sets!
- We have explained the equivalent formulations of the conjecture. (M^{\star}, J, GCC, etc.)

■ Everything also holds in the non-unimodular case.

- There are really limit-quasiperiodic model sets, i.e., model sets with mixed Euclidean and \mathfrak{p}-adic internal space.

Connections to...

- Primitive constant-length substitutions [Dekking] / lattice substitution systems [Lee-Moody-Solomyak]
Dekking-coincidence / modular coincidence ensure that $\bigcup_{i} \Omega_{i}$ is disjoint in measure.
(no M^{\star}, only compact internal space!)
- Digit tiles [Vince]

Equivalent tiling conditions there are "the same" as here.

- 2-dimensional tilings
e Watanabe-tilings: expect internal space $\mathbb{C} \times \mathbb{Q}_{2}\left(1+\xi_{8}\right)$.

