Pisot Substitutions and (Limit–) Quasiperiodic Model Sets

Bernd Sing

Fakultät für Mathematik Universität Bielefeld Germany

sing@math.uni-bielefeld.de

Substitutions

Use a finite alphabet A and a rule σ how to substitute letters to generate a (two-sided) sequence (denote by $n = \operatorname{card} A$).

(a) Fibonacci-substitution $\mathcal{A} = \{a, b\}, \quad a \stackrel{\sigma}{\mapsto} ab, \quad b \stackrel{\sigma}{\mapsto} a$

$$b.a \quad \stackrel{\sigma}{\mapsto} \sigma(b.a) = \sigma(b).\sigma(a) = a.ab \stackrel{\sigma}{\mapsto} \sigma(a.ab) = \sigma(a).\sigma(a)\sigma(b) = ab.aba$$
$$\stackrel{\sigma}{\mapsto} \dots \stackrel{\sigma}{\mapsto} \dots abaaba \begin{cases} ab \\ ba \end{cases}.abaababa \dots$$

Substitutions

Use a finite alphabet A and a rule σ how to substitute letters to generate a (two-sided) sequence (denote by $n = \operatorname{card} A$).

 $\textcircled{\ } \textbf{Fibonacci-substitution} \quad \mathcal{A} = \{a, b\}, \qquad a \stackrel{\sigma}{\mapsto} ab, \quad b \stackrel{\sigma}{\mapsto} a$

$$b.a \quad \stackrel{\sigma}{\mapsto} \sigma(b.a) = \sigma(b).\sigma(a) = a.ab \stackrel{\sigma}{\mapsto} \sigma(a.ab) = \sigma(a).\sigma(a)\sigma(b) = ab.aba$$
$$\stackrel{\sigma}{\mapsto} \dots \stackrel{\sigma}{\mapsto} \dots abaaba \begin{cases} ab \\ ba \end{cases}.abaababa \dots$$

Define $(n \times n)$ -substitution matrix M where $M_{ij} = \#i$'s in $\sigma(j) = \#_i(\sigma(j))$.

(a) for Fibonacci-substitution $M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

Substitutions

Use a finite alphabet A and a rule σ how to substitute letters to generate a (two-sided) sequence (denote by $n = \operatorname{card} A$).

(a) \clubsuit -substitution $\mathcal{A} = \{a, b\}, \qquad a \stackrel{\sigma}{\mapsto} aaba, \quad b \stackrel{\sigma}{\mapsto} aa$

 $a.a \quad \stackrel{\sigma}{\mapsto} \sigma(a.a) = aaba.aaba \stackrel{\sigma}{\mapsto} \dots \stackrel{\sigma}{\mapsto} \dots baaaaaba.aabaaaba \dots$

Define $(n \times n)$ -substitution matrix M where $M_{ij} = \#i$'s in $\sigma(j) = \#_i(\sigma(j))$.

(a) for
$$\clubsuit$$
-substitution $M = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$

Substitutions of Pisot type

 σ is *Pisot substitution* if M has exactly one dominant (simple) eigenvalue $\lambda > 1$ and all other eigenvalues λ_i satisfy $0 < |\lambda_i| < 1$ (inside unit circle).

Characteristic polynomial $p(x) = det(x \cdot 1 - M)$ is irreducible over \mathbb{Z} . Denote by r the number of real roots, and by s the number of pairs of complex conjugate roots ($n = r + 2 \cdot s$).

■ *M* is primitive.

Let u be any fixed point of σ , denote by $\mathcal{O}(u)$ the orbit of u under shift S. Then $\mathcal{X} = \overline{\mathcal{O}(u)}$ is a compact space w.r.t. product topology and (\mathcal{X}, S) is a (strictly ergodic) dynamical system (\rightsquigarrow local hull).

 σ is a unimodular Pisot substitution if $|\det M| = 1$.

Substitutions of Pisot type

 σ is *Pisot substitution* if M has exactly one dominant (simple) eigenvalue $\lambda > 1$ and all other eigenvalues λ_i satisfy $0 < |\lambda_i| < 1$ (inside unit circle).

- Characteristic polynomial $p(x) = det(x \cdot 1 M)$ is irreducible over \mathbb{Z} . Denote by r the number of real roots, and by s the number of pairs of complex conjugate roots ($n = r + 2 \cdot s$).
- *M* is primitive.

Let u be any fixed point of σ , denote by $\mathcal{O}(u)$ the orbit of u under shift S. Then $\mathcal{X} = \overline{\mathcal{O}(u)}$ is a compact space w.r.t. product topology and (\mathcal{X}, S) is a (strictly ergodic) dynamical system (\rightsquigarrow local hull).

 σ is a unimodular Pisot substitution if $|\det M| = 1$.

- (a) for Fibonacci-substitution $\lambda = \frac{1+\sqrt{5}}{2} \approx 1.618$ $\lambda_2 = \frac{1-\sqrt{5}}{2} \approx -0.618$ det M = -1.
- (a) for \clubsuit -substitution $\lambda = \frac{3+\sqrt{17}}{2} \approx 3.562$ $\lambda_2 = \frac{3-\sqrt{17}}{2} \approx -0.562$ det M = -2.

Model Sets

Cut and project scheme:

G	$\xleftarrow{\pi_1}$	$G \times H$	$\xrightarrow{\pi_2}$	H
\cup		\cup		\cup dense
L	$\stackrel{1-1}{\longleftrightarrow}$	\widetilde{L}	\longrightarrow	L^{\star}

where G, H are LCAGs, \tilde{L} is a lattice, π_1, π_2 are the canonical projections and $\star : L \to H$ denotes the mapping $\pi_2 \circ (\pi_1|_{\tilde{L}})^{-1}$.

A set $\Lambda(W) := \{x \in L \mid x^* \in W\} \subset G$ is a *regular model set*, if $W \subset H$ is a non-empty relatively compact set with $\operatorname{cl} W = \operatorname{cl}(\operatorname{int} W)$ and boundary $\partial W = \operatorname{cl} W \setminus \operatorname{int} W$ of Haar-measure zero.

Length Representation

We want to represent a sequence $u \in \mathcal{X}$ as (Delone) point set $\varphi(u) = \Lambda \subset \mathbb{R}$ (where $\varphi : u \to \mathbb{R}$).

For this, let $\ell = (\ell_1, \ldots, \ell_n)$ be a left eigenvector of M to the eigenvalue λ . Let the 'distance' between $\varphi(u_i)$ and $\varphi(u_{i+1})$ be ℓ_i , and set $\varphi(u_0) = 0$. (ℓ_i 's are rationally independent)

Length Representation

We want to represent a sequence $u \in \mathcal{X}$ as (Delone) point set $\varphi(u) = \Lambda \subset \mathbb{R}$ (where $\varphi : u \to \mathbb{R}$).

For this, let $\ell = (\ell_1, \ldots, \ell_n)$ be a left eigenvector of M to the eigenvalue λ . Let the 'distance' between $\varphi(u_i)$ and $\varphi(u_{i+1})$ be ℓ_i , and set $\varphi(u_0) = 0$. (ℓ_i 's are rationally independent)

Formally, define a map $l: u \to \mathbb{Z}^n$ (Abelianization) by

$$l(u_k) = \begin{cases} (0, \dots, 0) & \text{if } k = 0\\ (\#_i(u_0 \dots u_{k-1}))_{1 \le i \le n} & \text{if } k > 0\\ (-\#_i(u_k \dots u_{-1}))_{1 \le i \le n} & \text{if } k < 0 \end{cases}$$

Then: $\varphi(u_k) = \boldsymbol{\ell} \cdot l(u_k)$.

Length Representation

We want to represent a sequence $u \in \mathcal{X}$ as (Delone) point set $\varphi(u) = \Lambda \subset \mathbb{R}$ (where $\varphi : u \to \mathbb{R}$).

For this, let $\ell = (\ell_1, \ldots, \ell_n)$ be a left eigenvector of M to the eigenvalue λ . Let the 'distance' between $\varphi(u_i)$ and $\varphi(u_{i+1})$ be ℓ_i , and set $\varphi(u_0) = 0$. (ℓ_i 's are rationally independent)

- $\textcircled{O} \quad \mbox{Fibonacci-substitution: } \boldsymbol{\ell} = (\lambda, 1) \\ \dots aab.aba \dots \qquad \mapsto \qquad \dots \stackrel{-2\lambda-1}{\bullet} \stackrel{-\lambda-1}{\bullet} \stackrel{-1}{\bullet} \stackrel{0}{\bullet} \qquad \stackrel{\lambda}{\bullet} \stackrel{\lambda+1}{\bullet} \dots$
- φ lines up with substitution σ : $\lambda \cdot \varphi(u) \subset \varphi(\sigma(u))$ Especially for fixed point $u = \sigma(u) \implies \lambda \cdot \Lambda \subset \Lambda$ (\rightsquigarrow Meyer set)
- Since $\ell_i \in \mathbb{Q}(\lambda)$, this representation is in fact defined on algebraic number field (of degree n).

Local Fields

Look at the completions of $\mathbb{Q}(\lambda) \cong \mathbb{Q}[x]/p(x)$:

■ Recall n = r + 2 · s, therefore there are r different embeddings into R and s different (non-equivalent) embeddings into C (w.r.t. the usual absolute value || · ||∞).

Since we are in the Pisot case, we have $\|\lambda\|_{\infty} > 1$ and $\|\lambda_i\|_{\infty} < 1$ (by $\lambda \Lambda \subset \Lambda$: 1 expanding, r - 1 + s contracting).

Every prime ideal p of the algebraic integers o_{Q(\lambda)} of Q(\lambda) yields a (complete) p-adic field Q_p (w.r.t. an ultrametric absolute value || · ||_p).

One has: $\|\lambda\|_{\mathfrak{p}} \leq 1$ for all \mathfrak{p} , the inequality being strict only if \mathfrak{p} lies above a prime divisor of $|\det M|$

(because $|\det \mathbf{M}| = N_{\mathbb{Q}(\lambda)/\mathbb{Q}}(\lambda) = \prod_i N_{\mathbb{Q}_{\mathfrak{p}_i}/\mathbb{Q}_p}(\lambda)$)

Local Fields

Look at the completions of $\mathbb{Q}(\lambda) \cong \mathbb{Q}[x]/p(x)$:

■ Recall n = r + 2 · s, therefore there are r different embeddings into R and s different (non-equivalent) embeddings into C (w.r.t. the usual absolute value || · ||∞).

Since we are in the Pisot case, we have $\|\lambda\|_{\infty} > 1$ and $\|\lambda_i\|_{\infty} < 1$ (by $\lambda \Lambda \subset \Lambda$: 1 expanding, r - 1 + s contracting).

Every prime ideal p of the algebraic integers o_{Q(\lambda)} of Q(\lambda) yields a (complete) p-adic field Q_p (w.r.t. an ultrametric absolute value || · ||_p).

One has: $\|\lambda\|_{\mathfrak{p}} \leq 1$ for all \mathfrak{p} , the inequality being strict only if \mathfrak{p} lies above a prime divisor of $|\det M|$

Visualization of p**-adic fields**

Given $\mathbb{Q}_{\mathfrak{p}}$, the ring $\mathbb{Z}_{\mathfrak{p}} = \{x \in \mathbb{Q}_{\mathfrak{p}} \mid ||x||_{\mathfrak{p}} \leq 1\}$ is a discrete valuation ring with (unique) prime ideal $\mathfrak{m} = \{x \in \mathbb{Q}_{\mathfrak{p}} \mid ||x||_{\mathfrak{p}} < 1\}$.

Every element π s.t. $\mathfrak{m} = \pi \mathbb{Z}_{\mathfrak{p}}$ is called a uniformizer.

Every element $x \in \mathbb{Q}_p$ can (uniquely) be written as

$$x = \sum_{k=m}^{\infty} d_k \, \pi^k$$
 with $d_k \in D$ and $m \in \mathbb{Z}$,

where D is a system of representatives of the residue field $\mathbb{Z}_{\mathfrak{p}}/\mathfrak{m}$ (including 0).

Cut and Project Scheme

Direct space $G = \mathbb{R}$ ("expanding")

- Internal space $H = \mathbb{H} = \mathbb{R}^{r-1} \times \mathbb{C}^s \times \mathbb{Q}_{\mathfrak{p}_1} \times \cdots \times \mathbb{Q}_{\mathfrak{p}_k}$ ("contracting")
- Lattice $\tilde{L} \subset \mathbb{R} \times \mathbb{H}$ given by diagonal embedding of $\bigcup_{m=0}^{\infty} \frac{1}{\lambda^m} < \ell_1, \dots, \ell_n >_{\mathbb{Z}}$ (if $|\det M| = 1$ reduces to $< \ell_1, \dots, \ell_n >_{\mathbb{Z}}$, since then λ is a unit)
- Star map $\star : \mathbb{Q}(\lambda) \to \mathbb{H}, x^{\star} = (\sigma_2(x), \dots, \sigma_{r+s}(x), x, \dots, x),$ where the σ_i 's denote Galois automorphisms
- 1-1 and denseness by number field construction

Window

Substitution σ induces a recursion equation for the point sets Λ_i (where Λ_i are the points of Λ associated to letter *i*)

$$\Lambda_i = \bigcup_{1 \le j \le n} \lambda \cdot \Lambda_j + A_{ij}$$

where A_{ij} is a set of translation vectors.

We use the star-map and look at this equation in $\mathcal{K}\mathbb{H}$, the set of non-empty compact subsets of \mathbb{H} , equipped with the Hausdorff metric d_H . $(\mathcal{K}\mathbb{H}, d_H)$ is a complete metric space, λ^* a contraction. By Banach's contraction principle, we get a unique solution $(\Omega_i)_{1 \le i \le n}$ of the equation (called a (graph-directed) iterated function system (IFS))

$$\Omega_i = \bigcup_{1 \le j \le n} \lambda^* \cdot \Omega_j + A_{ij}^*.$$

These are candidates for the windows, so $\Lambda_i \stackrel{?}{=} \Lambda(\Omega_i)$.

Properties of Ω_i

• By construction $\Lambda_i \subset \Lambda(\Omega_i)$ und $\Lambda \subset \Lambda(\Omega)$ (where $\Omega = \bigcup_i \Omega_i$).

Recall the definition of \tilde{L} as diagonal embedding of

$$L = \bigcup_{m=0}^{\infty} \frac{1}{\lambda^m} < \ell_1, \dots, \ell_n >_{\mathbb{Z}} \subset \{\sum_i q_i \cdot \ell_i | q_i \in \mathbb{Q}\} =: \mathcal{L}.$$

Define $\chi: \mathcal{L} \to \mathbb{Q}$, $x = \sum_i q_i \cdot \ell_i \mapsto \chi(x) = \sum_i q_i$.

 $M := \{x \in L \mid \chi(x) = 0\}$, then M^* is lattice in \mathbb{H} , $M^* + \Omega$ is covering of \mathbb{H} .

Properties of Ω_i

- By construction $\Lambda_i \subset \Lambda(\Omega_i)$ und $\Lambda \subset \Lambda(\Omega)$ (where $\Omega = \bigcup_i \Omega_i$).
- For $M := \{x \in L \mid \chi(x) = 0\}$, we have: M^* is lattice in \mathbb{H} , $M^* + \Omega$ is covering of \mathbb{H} .
- Each Ω_i has non-empty interior and is the closure of its interior.
- The Ω_i 's are the windows iff $M^* + \bigcup_i \Omega_i$ is a tiling. (modulo a set of measure zero)

Unions on the right side of the IFS $\Omega_i = \bigcup_{1 \leq j \leq n} \lambda^* \cdot \Omega_j + A_{ij}^* \quad \text{are}$ disjoint in (Haar) measure.
(But what about $\bigcup_i \Omega_i$ and $M^* + \Omega$?)

Boundaries $\partial \Omega_i$ have Haar measure 0.

Examples

(a) Fibonacci-substitution: $a \stackrel{\sigma}{\mapsto} ab$, $b \stackrel{\sigma}{\mapsto} a$ $\ell = (\lambda, 1)$

$$\begin{split} \Lambda_a &= \lambda \cdot \Lambda_a & \cup \lambda \cdot \Lambda_b \\ \Lambda_b &= \lambda \cdot \Lambda_a + \lambda \end{split}$$

 $\begin{array}{rcl} \Omega_a & = & \lambda^{\star} \cdot \Omega_a & \cup & \lambda^{\star} \cdot \Omega_b \\ \Omega_b & = & \lambda^{\star} \cdot \Omega_a + \lambda^{\star} \end{array}$

Solution: $\Omega_a = [\lambda - 2, \lambda - 1]$ $\Omega_b = [-1, \lambda - 2]$

Remark: $\Omega = [-1, \lambda - 1]$ $M^{\star} = \lambda \mathbb{Z} \implies$ Fibonacci is model set

Examples

(a) \clubsuit -substitution: $a \stackrel{\sigma}{\mapsto} aaba, b \stackrel{\sigma}{\mapsto} aa \qquad \ell = (\frac{\lambda}{2}, 1)$

Examples

(a) \clubsuit -substitution: $a \stackrel{\sigma}{\mapsto} aaba, b \stackrel{\sigma}{\mapsto} aa$ $\ell = (\frac{\lambda}{2}, 1)$

And $\Omega + M^*$:

Dual Substitution

Instead of IFS $\Omega_i = \bigcup_{1 \le j \le n} \lambda^* \cdot \Omega_j + A_{ij}^*$ look at point set equation $X_i = \bigcup_{1 \le j \le n} (\lambda^{-1})^* \cdot X_j + (\lambda^{-1})^* \cdot A_{ji}^*.$

 X_i 's are model sets in the cut and project scheme

We get: $X_i = \Lambda([0, \ell_i[).$

Dual Substitution

Instead of IFS $\Omega_i = \bigcup_{1 \le j \le n} \lambda^* \cdot \Omega_j + A_{ij}^*$ look at point set equation $X_i = \bigcup_{1 \le j \le n} (\lambda^{-1})^* \cdot X_j + (\lambda^{-1})^* \cdot A_{ji}^*.$

Define $J = \bigcup_i X_i + \Omega_i$, then

• the covering degree of J is constant a.e.

• J is tiling iff $M^* + \Omega$ is tiling.

G Fibonacci-substitution:

$$\Omega_a = \lambda^* \cdot \Omega_a \cup \lambda^* \cdot \Omega_b \qquad X_a = \left(\frac{1}{\lambda}\right)^* \cdot X_a \cup \left(\frac{1}{\lambda}\right)^* \cdot X_b + 1$$

$$\Omega_b = \lambda^* \cdot \Omega_a + \lambda^* \qquad X_b = \left(\frac{1}{\lambda}\right)^* \cdot X_a$$

Get: $X_a = \{ \dots, -\lambda, 0, 1, \lambda + 1, \dots \}$ $X_b = \{ \dots -\lambda, 0, \lambda + 1, \dots \}.$

The Boundary

Knowledge of J also yields an IFS for the boundary $\bigcup_i \partial \Omega_i$

We have $\partial \Omega_i = \bigcup_{(i,j,x)} \Xi_{(i,j,x)}$ where $\Xi_{(i,j,x)} = \Omega_i \cap (\Omega_j + x)$ with $x \in X_j - X_i$.

(a) Fibonacci: $(\lambda^* = -\frac{1}{\lambda})$

$$\begin{aligned} \Xi_{(b,a,-\lambda)} &= -\frac{1}{\lambda} \Xi_{(a,a,1)} \\ \Xi_{(a,a,1)} &= -\frac{1}{\lambda} \Xi_{(b,a,-\lambda)} \\ \Xi_{(b,a,0)} &= -\frac{1}{\lambda} \Xi_{(a,a,-1)} \\ \Xi_{(a,a,-1)} &= -\frac{1}{\lambda} \Xi_{(b,a,0)} \end{aligned}$$

Get: $\partial \Omega_a = \Xi_{(a,a,-1)} \cup \Xi_{(a,a,1)} = \{\lambda - 2, \lambda - 1\}$ $\partial \Omega_b = \Xi_{(b,a,-\lambda)} \cup \Xi_{(b,a,0)} = \{-1, \lambda - 2\}.$

Boundaries coincide at $\lambda - 2$ and line up with $M^* = \lambda \mathbb{Z}$ \implies Fibonacci is model set

The Boundary

0

Knowledge of J also yields an IFS for the boundary $\bigcup_i \partial \Omega_i$

We have $\partial \Omega_i = \bigcup_{(i,j,x)} \Xi_{(i,j,x)}$ where $\Xi_{(i,j,x)} = \Omega_i \cap (\Omega_j + x)$ with $x \in X_j - X_i$.

Do the boundaries match?

 \rightsquigarrow still hard to decide

Idea: Use measure-disjoint unions of IFS to decide if $\bigcup_i \Omega_i$ is disjoint in measure.

Strong coincidence condition: [Host, Arnoux-Ito]

A Pisot substitution satisfies the SCC if for every pair of vertices i, j ($i \neq j$) in the (directed) substitution graph, there exists a vertex k and walks w and \tilde{w} of the same length N such that

- $w(\tilde{w})$ starts at k and ends at i(j).
- $\delta(w) = \delta(\tilde{w})$, where $\delta(e_1 \dots e_N) = e_1 + \dots + \lambda^{N-1} \cdot e_N$.

Remark: In this case a small copy of $\Omega_i \cup \Omega_j$ appears inside Ω_k .

SCC \iff the union $\bigcup_i \Omega_i$ is disjoint in measure.

[Barge-Diamond] The above condition holds for at least one pair i, j.

 \implies For Pisot substitutions over 2 letters: Ω_a, Ω_b are disjoint in measure.

GCC/SuperCC

Idea: Use measure-disjoint unions of IFS to decide if J is tiling.

Geometric coincidence condition [Barge-Kwapisz] Super coincidence condition [Ito-Rao] A Pisot substitution satisfies the GCC/SuperCC if for every pair of vertices i, j and every walk w' ending at i and every walk \hat{w} ending at j in the (directed) substitution graph, there exists a vertex k and walks w and \tilde{w} of the same length N such that

- $w(\tilde{w})$ starts at k and ends in $w'(\hat{w})$
- $\delta(w) \lambda^N \Delta(w') = \delta(\tilde{w}) \lambda^N \Delta(\hat{w})$, where $\Delta(e_1 \dots e_M) = \left(\frac{1}{\lambda}\right)^M e_1 + \dots + \left(\frac{1}{\lambda}\right) e_M$.

Remark: In this case a small copy of $(\Omega_i + \Delta(w')^*) \cup (\Omega_j + \Delta(\hat{w})^*)$ appears inside Ω_k

IFS for boundary \rightsquigarrow some triples $(i, j, \Delta(\hat{w})^* - \Delta(w')^*)$

 $\operatorname{GCC}/\operatorname{SuperCC} \iff J$ is tiling $\iff \Lambda$ is model set.

Remarks: It suffices to check finitely many triples (i, j, \hat{w}) (compact Ω_i 's). $\implies \clubsuit$ is model set

The Torus

 $\Upsilon \in \overline{\Lambda + \mathbb{R}}$ can also be described by the orbit of Υ under σ .

 \implies Two-sided infinite walk $\hat{w}.\tilde{w}$ in the substitution graph (sofic shift).

Define: $\beta(\Upsilon) = (\Delta(\hat{w}), (\delta(\tilde{w})^*) \in \mathbb{R} \times \mathbb{H}.$

Let $F_i := \{\hat{w}.\tilde{w} \mid \hat{w}(\tilde{w}) \text{ ends (starts) at } i\}.$ Then $\beta(F_i) = [0, \ell_i] \times \Omega_i =: \tilde{\Omega}_i.$

 $\tilde{L} + \bigcup_i \tilde{\Omega}_i$ is tiling of $\mathbb{R} \times \mathbb{H} \iff J$ is tiling $\iff \Lambda$ is model set.

In this case: $\bigcup_i \tilde{\Omega}_i$ is torus (Markov partition), β is 1 - 1 a.e. (torus parametrization).

Conclusion

- All checked Pisot substitutions so far are model sets!
- We have explained the equivalent formulations of the conjecture. $(M^{\star}, J, \text{GCC}, \text{etc.})$
- Everything also holds in the non-unimodular case.
- There are really limit-quasiperiodic model sets, i.e., model sets with mixed Euclidean and p-adic internal space.

Connections to...

Primitive constant-length substitutions [Dekking] / lattice substitution systems [Lee-Moody-Solomyak]

Dekking-coincidence / modular coincidence ensure that $\bigcup_i \Omega_i$ is disjoint in measure. (no M^* , only compact internal space!)

Digit tiles [Vince]

Equivalent tiling conditions there are "the same" as here.

- 2-dimensional tilings
 - W Watanabe-tilings: expect internal space $\mathbb{C} \times \mathbb{Q}_2(1 + \xi_8)$.

