
COLOURINGS OF CYCLOTOMIC INTEGERS WITH

CLASS NUMBER ONE

MA. LOUISE ANTONETTE DE LAS PEÑAS, ENRICO PAOLO BUGARIN,
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Abstract. This paper continues the study on colourings of the sets of
cyclotomic integers Mn = Z[ξn], (ξn = e2πi/n, a primitive nth root of
unity) with class number one. We present results for the colour sym-
metry group and colour preserving group for a given ideal colouring of
Mn, with φ(n) = 8 and 10, thus completing the characterisation of
the colour preserving group for the cases φ(n) ≤ 10, where φ is Euler’s
totient function.

1. Introduction

The classification of colour symmetries for periodic crystals has been in-
vestigated in much detail in existing literature [1, 2, 3, 4, 5]. With the
advent of quasicrystals, the problem has been extended to include the study
of colour symmetry groups of quasiperiodic and non-periodic structures. In
our work, the problem on colour symmetries of periodic and non-periodic
structures, including quasiperiodic structures, is analysed by studying the
sets of cyclotomic integers Mn = Z[ξn] (where, ξn = e2πi/n) following the
setting given in [6, 7, 8]. We consider values of n for which Mn = Z[ξn] is
a principal ideal domain and has class number one, namely

(*)
n = 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24,

25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84.

The symmetry cases are grouped into classes with equal value of the Euler
φ-function

φ(n) =
∣∣{1 ≤ k ≤ n|gcd(k, n) = 1}

∣∣.
If n is odd, we have Mn = M2n, and Mn thus has 2n-fold symmetry. To
avoid duplication of results, values of n ≡ 2 mod 4 do not appear in (*).
The smallest value n not covered in this work is n = 23, involving 46-fold
symmetry, as our methods involve unique factorization in Z[ξn], possible
only for the values given in (*). For a discussion of other n than in (*), see
[9].

Our previous work derived the colour symmetry group for any n and fo-
cused on determining the colour preserving group for the crystallographic
cases: n = 3, 4 [1]; as well as the non-periodic cases: n = 5, 8, 12 (in-
volving standard quasicrystallographic symmetries) [10] and n = 7, 9 [11].
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In this note, we enumerate the colour preserving group for the cases n =
11, 15, 16, 20, 24; thus completing the characterisation of colour symmetries
of ideal colourings associated with Mn for φ(n) ≤ 10. We outline the results
that facilitate our calculations.

2. Ideal colourings of Mn

In studying the colourings of Mn, we consider colourings of Mn which
are compatible with its underlying symmetry. A restriction to be imposed
is that a colour occupies a subset which is of the same Bravais type as the
original set, while the other colours code the cosets. Assuming this compat-
ibility requirement, a Bravais colouring of Mn is arrived at by considering
a colouring using cosets of a principal ideal of Mn. Given an ideal of index
` in Mn, each element of Mn is assigned a colour from a set of ` distinct
colours. A Bravais colouring c of Mn with ` colors is a surjective map
c : Mn → {1, 2, . . . , `}.

We also refer to c as an ideal colouring of Mn which we define formally
as follows:

Definition 2.1. Let (q) denote the ideal generated by q ∈ Mn. An ideal
colouring c of Mn with ` colours is defined as: Let q ∈ Mn such that
[Mn : (q)] = `. For each z ∈ (q) = qMn, let c(z) = 1. Let the other cosets
of (q) be (q) + t2, . . . , (q) + t`. For each z ∈ (q) + ti, let c(z) = i.

If (q) is given explicitly, we also call such an ideal colouring as a colouring
induced by (q).

In the analysis of an ideal colouring c of Mn, we consider the symmetry
group G of Mn. This group is symmorphic, that is, G = Mn o DN , the
semi-direct product of its translation group with its point group, the dihedral
groupDN (N = n if n is even, andN = 2n if n is odd). For a given colouring,
we also consider the following subgroup of G, the group

H = {h ∈ G | ∃π ∈ S` ∀x ∈ Mn : c(h(x)) = π(c(x))},
where S` denotes the symmetric group on ` letters. The elements of H are
called the colour symmetries of Mn and H is the colour symmetry group of
the corresponding colouring c of Mn.

By the requirement πc = ch, each h ∈ H determines a unique permutation
π = πh. This also defines a map

P : H → S`, P (h) := πh.

Let g, h ∈ H. Because of c(hg(x)) = ch(g(x)) = πhc(g(x)) = πh(πg(c(x))) =
πhπg(c(x)), we obtain the following lemma.

Lemma 2.2. P is a group homomorphism. �
Another group of interest is the subgroup of H which consists of elements

which fix the colours of the colouring c of Mn, the colour preserving group

K := {k ∈ H | c(k(x)) = c(x), x ∈ Mn}.
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In other words, K is the kernel of P , a normal subgroup of H. The aim
of our study is to deduce the nature of the groups H and K for the ideal
colourings of Mn.

3. The structure of the colour symmetry group H

Definition 3.1. A colouring c ofMn is called perfect, if its colour symmetry
group H equals G. It is called chirally perfect, if H = G′, where G′ is the
index 2 subgroup of G consisting of the orientation preserving isometries in
G.

In [11], it is shown that all chirally perfect colourings ofMn arise from the
principal ideals (q) = qMn, q ∈ Mn. Consequently, there exists a chirally
perfect colouring of Mn with ` colours, if and only if there is a q such that
Nn(q) = [Mn : (q)] = `, where Nn(q) is the algebraic norm of q.

The unique factorisation of q over Mn (with class number one) reads

q = ε
∏
pi∈P

pαi
i

∏
pj∈C

ω
βj
pj ωpj

γj
∏
pk∈R

pδkk ,

where ε is a unit in Mn and ωpjωpj = pj . Here, P (resp. C, resp. R) denotes
the set of inert (resp. complex splitting, resp. ramified) primes over Mn.
The generator q is called balanced if βj = γj for all j. In other words: q is
balanced if it is of the form

q = εxp,

where ε is a unit in Mn, x is a real number in Mn, and p is a product of
ramified primes. By the definition of a ramified prime p (see [12]), p ∈ (p)
holds in Mn. (Equivalently, p/p is a unit in Mn.) Recall that all units ε in
Z[ξn] are of the form ε = ±λξkn, where λ ∈ Z[ξ + ξ]. See [11].

In [11], it is shown that an ideal colouring of Mn induced by (q) is perfect
(that is, H = G) if and only if q is balanced. Otherwise, H = G′.

For an ideal (q) of Mn of index ` = 2φ(n), the following assertions are
true and allow us to conclude directly the structure of H.

Lemma 3.2. Suppose ` = 2φ(n). Then q is balanced if and only if (q) = (2).
Otherwise, (q) 6= (2).

Proof. If (q) = (2), then (2) = (2), and so q is balanced. Conversely, suppose

q is balanced and Nn(q) = ` = 2φ(n). From the unique factorisation of q, we
write q = εyp, where ε is a unit in Mn, y being real is a product of complex
splitting primes (and/or inert primes) and p is a product of ramified primes.
We then observe what happens to p, noting that only either Nn(p) = 1 or

Nn(p) = 2φ(n), since y is real.

If Nn(p) = 1, then Nn(εy) = 2φ(n), implying y = 2. Thus q = 2ε, and so

(q) = (2). Suppose Nn(p) = 2φ(n). This forces (y) = (1) . More so, p, being
the product of ramified primes, can only take factors of (2), or else Nn(p) 6=
2φ(n). This implies (p) = (2). Since q = εp, then (q) = (p) = (2). �
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Corollary 3.3. If ` = 2φ(n) but (q) 6= (2), then q is not balanced and so
H = G′.

For M15 for example, there are three colourings with 2φ(15) = 256 colours.
From the above corollary it follows that one colouring is perfect (H = G)
and the other two colourings are chirally perfect (H = G′). See Table 2.

4. The structure of the colour preserving group K

We now give a series of results that will be used in the determination of
the structure of K. These results complement those given in [11] and serve
as additional tools in arriving at the calculations carried out in this work.

The following notations will be used to denote particular isometries in
Mn: Let S denote the reflection z 7→ z, and Rk the k-fold rotation about
0. In particular R2 is the rotation by π about 0. We denote the group of
translations by elements in (q) by T(q). Note that T(q) is always contained
in K. (See [11].)

Lemma 4.1. If ` - 2φ(n), then R2 /∈ K.

Proof. IfR2 ∈ K, then c(1) = c(−1). This implies 2 ∈ (q). Thus, Nn(q)|Nn(2)

or `|2φ(n). �

Lemma 4.2. For n prime in Z: If ` 6= nj for any j, and ` - 2φ(n) then
K = T(q).

Proof. This follows immediately from Lemma 5.10 in [11], which states that

if ` - 2φ(n) and ` - nφ(n), then K = T(q). �

Lemma 4.3. For n > 2 prime in Z: If ` = nj for j > 1, then K = T(q).

Proof. Since n is an odd prime, there are four elements of DN = D2n that
may generate a subgroup which fixes the colours. These are R2, Rn, R2n

and S.

If c(1) = c(−1) then ` | 2φ(n), which is a contradiction. So R2 does
not fix the colours. Similarly, if c(1) = c(ξ), then 1 − ξ ∈ (q) which is
again a contradiction since Nn(1 − ξ) = n < nj , and so Nn(q) - Nn(1 − ξ).
Hence, Rn and thus also R2n are not in K. Finally, c(ξ) = c(ξn−1) implies
c(1) = c(ξ2) = c(ξ4) = . . . = c(ξn−1) = c(ξ), which is another contradiction,
and so S cannot fix the colours. �
Lemma 4.4. For n > 2 prime in Z: ` = n if and only if K = T(q) oDn.

Proof. Note that in the case when n is an odd prime, the symmetry group
of (q) contains DN = D2n.

Let 2 < ` = n and n prime in Z. Then the unique factorisation of
` = n in Mn is ` =

∏n−1
i=1 (1 − ξi). Thus ` ramifies, and the possible

generators of the ideal (q) are exactly the 1 − ξi. Hence each colouring is
perfect: H = G. In fact, there is only one such colouring, since for all
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1 ≤ j ≤ n holds: 1 − ξj ∈ (1 − ξ). (This follows from ξk(1 − ξ) ∈ (q), thus∑j−1
k=0 ξ

k(1− ξ) = 1− ξj ∈ (q).) Moreover, it follows that c(1) = c(ξj) for all
j.

Since ` is prime in Z, we have Mn/(q) ∼= C` (the cyclic group of order `),
and so the ` distinct cosets can be expressed as (q), (q)+1, (q)+2, . . . , (q)+
` − 1. Each coset is invariant under multiplication by ξj , but not under
multiplication by −ξ. Thus, K = T(q) oDn.

Conversely, compare the proof of the last lemma. Notice that if K =
T(q) o Dn then 1 − ξ ∈ (q) and so ` | n. Since n is prime in Z then either
` = 1 or ` = n. The case ` = 1 is trivial and soK = G and is a contradiction.
Thus, ` = n. �

It is well known that
∏pr−1

j=1 (1− ξjpr) = pr, for p prime. This implies the
following:

(**)
∏

(pr,j)=1

(1− ξjpr) = p, for any r > 0.

Now, recall that the algebraic norm of q ∈ Mn is defined as follows:

Nn(q) =

φ(n)∏
j=1

σj(q), where σj ∈ Gal(Q(ξn),Q),

and that Nn(q) = Nn(σj(q)) for all j. The following results characterise the
norm Nn(1− ξrs).

Lemma 4.5. For n = pr, p prime and r > 0, Npr(1 − ξpr) = p for any
r > 0.

Proof. This follows from (**), since Npr(1 − ξpr) =
∏φ(pr)

j=1 σj(1 − ξpr) =∏
(pr,j)=1(1− ξjpr) = p. �

Lemma 4.6. For prime p dividing n: Nn(1− ξp) = pφ(n)/φ(p).

Proof. Since Nn(1 − ξp) =
∏φ(n)

j=1 σj(1 − ξp) =
∏φ(n)/φ(p)

j=1

∏φ(p)
k=1 σ

′
k(1 − ξp),

where σj ∈ Gal(Q(ξn),Q) and σ′
k ∈ Gal(Q(ξp),Q), then Nn(1 − ξp) =∏φ(n)/φ(p)

j=1 Np(1− ξp) = pφ(n)/φ(p). �

Lemma 4.7. If two distinct primes p and q divide n, then Nn(1− ξn) = 1.

Proof. Let pq divide n. Then (1−ξp) ⊂ (1−ξn) and (1−ξq) ⊂ (1−ξn). Thus
Nn(1−ξn) | Nn(1−ξp) andNn(1−ξn) | Nn(1−ξq), and soNn(1−ξn) = 1. �

Lemma 4.8. Nn(1− ξmn ) = Nn(1− ξn) whenever (m,n) = 1.

Proof. This follows from the fact that Nn(q) = Nn(σj(q)), where σj ∈
Gal(Q(ξn),Q). �
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Theorem 4.9. Whenever (r, s) = 1, for integers r and s, the following is

true: Nn(1 − ξrs) = Nn(1 − ξs) = pφ(n)/φ(s), if s = pj for some j > 0;
otherwise, Nn(1− ξrs) = Nn(1− ξs) = 1.

Proof. From the previous lemma, Nn(1 − ξrs) = Nn(1 − ξs). Now, recall

that Nn(1 − ξs) =
∏φ(n)

j=1 σj(1 − ξs) =
∏φ(n)/φ(s)

j=1

∏φ(s)
k=1 σ

′
k(1 − ξs), where

σj ∈ Gal(Q(ξn),Q) and σ′
k ∈ Gal(Q(ξs),Q). This implies that Nn(1 −

ξs) =
∏φ(n)/φ(s)

j=1 Ns(1− ξs). Finally, from Lemmas 4.5 and 4.7, the assertion
follows. �

The lemma that follows suggests that for any non-trivial colouring of Mn,
for which n is odd, the 2n-fold rotation cannot preserve the colours, and so
R2n /∈ K.

Lemma 4.10. For n odd, if R2n ∈ K, then ` = 1.

Proof. Since R2n fixes the colours, then in particular, c(1) = c(ξn) = c(−1).
The last equality implies that ` | Nn(1 − ξn) and ` | Nn(2). From the
previous lemmas, Nn(1− ξn) is only either 1 or pj for some j, where p is a
prime dividing n. Since n is odd, then p is also odd. A number dividing 2
and an odd prime can only be 1. Thus, ` = 1. �

With the addition of the next result, we can then enumerate all permissi-
ble indices for a rotation Rk (or S) to be contained in the colour preserving
group K given an ideal colouring of Mn.

Lemma 4.11. For 2 < j ≤ n: If Rj ∈ K, then ` | Nn(1 − ξ
n/j
n ). When

j = 2, then ` | 2φ(n).

Proof. From the previous lemma, if n is odd, R2n /∈ K, hence, we only need

to check until j = n. If Rj ∈ K, then c(1) = c(ξ
n/j
n ), which implies that

` | Nn(1− ξ
n/j
n ). �

Theorem 4.9 facilitates the computation of Nn(1− ξ
n/j
n ). Table 1 gives a

comprehensive list of permissible indices for a particular element of DN to
fix the colours given a coset colouring of Mn induced by (q). For example,
consider the ideal colouring of M15 induced by (q). Suppose R3, which is a
3-fold rotation, fixes all the colours, then c(1) = c(ξ515). Thus, (1−ξ515) ∈ (q)
and so, ` | [M15 : (1 − ξ515)] = Nn(1 − ξ515)Nn(1 − ξ3) = 34 = 81. Hence, if
` - 81, then we have R3 /∈ K.

In this table, syt denotes that an s-fold rotation may only preserve all the
colours if the index ` divides t. This implies that if ` does not divide t, then
an s-fold rotation cannot fix the colours. Note that 2 in the table pertains
to the reflection along the horizontal axis.

We enumerate our calculations for the groups H and K as shown in
Tables 2, 3 and 4. In these tables, many entries under H and K follow
immediately from the results we have established (also, see [11]). Entries
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in brackets require further computations (compare [10, 13]), depending on
the case. For instance, if n = 16, ` = 4 (see Table 2), one checks that the
four cosets are invariant under R8 but not R16. On the other hand, entries
without brackets are immediate. Entries with an asterisk mean that there
are multiple different possibilities. The last column lists one (out of possibly
more than one) generator q of a corresponding `-colouring.

5. Conclusion

In this work we present a series of results that strengthens our under-
standing of the colour symmetry group and colour preserving group of ideal
colourings of Mn. The results given here provide us with more insight
on the colour preserving group K and facilitate the characterisation of its
structure in addition to what has already been determined in previous works
[10, 11, 13]. Moreover, the results make the derivation of K more straight-
forward for a large number of cases. As an example, consider the case when
n = 11. From [11], we learn the following: K = T(q) o D11 when ` = 11;

K = T(q) o C2 when ` = 210 = 1024; and K = T(q) for all `-colourings
whenever ` > 1024. Using Lemmas 4.2 and 4.3, we learn that all the other
`-colourings yield K = T(q) (see Table 4).
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Table 1. Divisibility conditions. syt denotes an s-fold
rotation may only fix the colours of an `-colouring if ` divides
t.

φ(n) n Divisibility conditions
2 3 2y4 3y3 2y3

4 2y4 4y2 2y4
4 5 2y16 5y5 2y5

8 2y16 4y4 8y2 2y4
12 2y16 3y9 4y4

6 7 2y64 7y7 2y7
9 2y64 3y27 9y3 2y3

8 15 2y256 3y81 5y25
16 2y256 4y16 8y4 16y2 2y4
20 2y256 4y16 5y25
24 2y256 3y81 4y16 8y4

10 11 2y1024 11y11 2y11
12 13 2y4096 13y13 2y13

21 2y4096 3y729 7y49
28 2y4096 4y64 7y49
36 2y4096 3y729 4y64 9y9

16 17 2y65536 17y17 2y17
32 2y65536 4y256 8y16 16y4 32y2 2y4
40 2y65536 4y256 5y625 8y16
48 2y65536 3y6561 4y256 8y16
60 2y65536 3y6561 4y256 5y625

18 19 2y262144 19y19 2y19
27 2y262144 3y19683 9y27 27y3 2y3

20 25 2y1048576 5y3125 25y5 2y5
33 2y1048576 3y59049 11y121
44 2y1048576 4y1024 11y121

24 35 2y16777216 5y15625 7y2401
45 2y16777216 3y531441 5y15625 9y81
84 2y16777216 3y531441 4y4096 7y2401
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Table 2. The cases n = 15, 16 (φ(n) = 8). Here, j denotes
the number of colourings with ` colours.

φ(n) n ` j H K q
8 15 16 2 {G′} {T(q) o C2} 1 + ξ15 + ξ415

25 1 G {T(q) o C5} 1− ξ315
31 8 G′ T(q) 1 + ξ15 + ξ315
61 8 G′ T(q) 1 + ξ315 + ξ515 + ξ715
81 1 G {T(q) o C3} 1− ξ515
121 4 {G′} T(q) 2 + ξ315 + ξ615
151 8 G′ T(q) 1− 2ξ15
181 8 G′ T(q) 1 + ξ15 + ξ315 + ξ515 + ξ715
211 8 G′ T(q) 1 + ξ215 + 2ξ315
241 8 G′ T(q) 1− ξ615 + 2ξ715 − ξ915
256 1 G T(q) o C2 2

2 G′ T(q) (1 + ξ15 + ξ415)
2

> 256 * * T(q) *

8 16 2 1 G T(q) oD16 1− ξ16
4 1 G {T(q) oD8} 1− ξ216
8 1 G {T(q) o C4} (1− ξ16)

3

16 1 G {T(q) o C4} 1− ξ416
17 8 G′ T(q) 1− ξ16 + ξ316
32 1 G {T(q) o C2} (1− ξ16)

5

34 8 {G′} T(q) (1− ξ16)(1− ξ16 + ξ316)
49 4 {G′} T(q) 1− ξ16 − ξ216
64 1 G {T(q) o C2} (1− ξ216)

3

68 8 {G′} T(q) (1− ξ216)(1− ξ16 + ξ316)
81 2 G′ T(q) 1 + ξ416 + ξ616
97 8 G′ T(q) 1 + 2ξ316 + ξ516 + ξ716
98 4 {G′} T(q) (1− ξ16)(1− ξ16 − ξ216)
113 8 G′ T(q) 2− 2ξ16 + ξ516
128 1 G {T(q) o C2} (1− ξ16)

7

136 8 {G′} T(q) (1− ξ16)
3(1− ξ16 + ξ316)

162 2 {G′} T(q) (1− ξ16)(1 + ξ416 + ξ616)
193 8 G′ T(q) 1− ξ216 − ξ316 + ξ416 + ξ716
194 8 {G′} T(q) (1− ξ16)(1 + 2ξ316 + ξ516 + ξ716)
196 4 {G′} T(q) (1− ξ216)(1− ξ16 − ξ216)
226 8 {G′} T(q) (1− ξ16)(2− 2ξ16 + ξ516)
241 8 G′ T(q) 1− ξ16 − ξ216 + ξ316 + ξ516
256 1 G T(q) o C2 2

> 256 * * T(q) *
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Table 3. The cases n = 20, 24 (φ(n) = 8). Here, j denotes
the number of colourings with ` colours.

φ(n) n ` j H K q
8 20 5 2 {G′} {T(q) o C5} 1 + ξ20 − ξ320

16 1 G {T(q) o C4} 1− ξ520
25 1 {G} {T(q) o C5} 1− ξ420

2 {G′} {T(q)} (1 + ξ20 − ξ320)
2

41 8 G′ T(q) 1 + ξ20 − ξ520
61 8 G′ T(q) 1 + ξ20 + ξ220
80 2 {G′} {T(q)} (1 + ξ20 − ξ320)(1− ξ520)
81 2 {G′} T(q) 1 + ξ20 + ξ220 + ξ320 + ξ820
101 8 G′ T(q) 2 + ξ20 − ξ320
121 2 {G′} T(q) 2− ξ220
125 2 {G} {T(q)} (1 + ξ20 − ξ320)

3

2 {G′} {T(q)} (1 + ξ20 − ξ320)(1− ξ420)
181 8 G′ T(q) 2 + 2ξ20 − ξ320
205 16 {G′} T(q) (1 + ξ20 − ξ320)(1 + ξ20 − ξ520)
241 8 G′ T(q) 1− ξ20 + ξ420 − 2ξ620
256 1 G T(q) o C2 2

> 256 * * T(q) *

8 24 4 1 G {T(q) o C8} 1− ξ324
9 2 {G′} {T(q) o C3} 1− ξ24 − ξ324
16 1 G {T(q) o C4} 1− ξ624
25 4 {G′} T(q) 1 + ξ24 − ξ324
36 2 {G′} {T(q)} (1− ξ324)(1− ξ24 − ξ324)
49 4 {G′} T(q) 1− ξ24 − ξ624
64 1 G {T(q) o C2} (1− ξ324)

3

73 8 G′ T(q) 1− ξ24 + ξ424
81 1 {G} {T(q) o C3} 1− ξ824

2 {G′} {T(q)} (1− ξ24 − ξ324)
2

97 8 G′ T(q) 1− ξ24 − ξ224 + ξ324 + ξ524 + ξ624
100 4 {G′} T(q) (1− ξ324)(1 + ξ24 − ξ324)
121 4 {G′} T(q) 2 + ξ24 − ξ224 − ξ424 − ξ724
144 2 {G′} {T(q)} (1− ξ24 − ξ324)(1− ξ624)
169 4 {G′} T(q) 2− ξ224
193 8 G′ T(q) 2− 2ξ24 + ξ724
196 4 {G′} T(q) (1− ξ324)(1− ξ24 − ξ624)
225 8 {G′} T(q) (1− ξ24 − ξ324)(1 + ξ24 − ξ324)
241 8 G′ T(q) 2− ξ24
256 1 G T(q) o C2 2

> 256 * * T(q) *
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Table 4. The case φ(n) = 10. Here, j denotes the number
of colourings with ` colours.

φ(n) n ` j H K q
10 11 11 1 G T(q) oD11 1− ξ11

23 10 G′ T(q) 1− ξ11 + ξ311
67 10 G′ T(q) 1− ξ11 − ξ311
89 10 G T(q) 1− ξ311 + ξ511 + ξ611
121 1 G T(q) (1− ξ11)

2

199 10 G′ T(q) 1 + 2ξ11 − ξ311
243 2 {G′} T(q) 2− ξ211 + ξ511 + ξ711 − ξ811
253 10 {G′} T(q) (1− ξ11)(1− ξ11 + ξ311)
331 10 G′ T(q) 2 + ξ211 + ξ411 + ξ711 + ξ811
353 10 G′ T(q) 2 + ξ311 + ξ511 + ξ611
397 10 G′ T(q) 1 + ξ11 + ξ211 − ξ311
419 10 G′ T(q) 2 + ξ811 + ξ911
463 10 G′ T(q) 2 + ξ11 + ξ311 + ξ411
529 55 {G′} T(q) (1− ξ11 + ξ311)

2

617 10 G′ T(q) 2 + ξ11 − ξ311
661 10 G′ T(q) 2− ξ11 + ξ511 − ξ711
683 10 G′ T(q) 2 + ξ11
727 10 G′ T(q) 1− ξ11 + ξ311 + ξ411 − ξ511
737 10 {G′} T(q) (1− ξ11)(1− ξ11 − ξ311)
859 10 G′ T(q) 1− ξ11 − ξ311 − ξ411 + ξ511
881 10 G′ T(q) 1− ξ11 + 2ξ311 + ξ511 + ξ811 + ξ911
947 10 G′ T(q) 2 + ξ411 − ξ811 − ξ911
979 10 {G′} T(q) (1− ξ11)(1− ξ311 + ξ511 + ξ611)
991 10 G′ T(q) 2 + ξ11 + ξ311
1013 10 G′ T(q) 2− ξ11 − ξ211 − ξ911
1024 1 G T(q) o C2 2

> 1024 * * T(q) *


