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1 Overview

This text summarises the articles on which this application for habilitation is based, namely, references
[1] to [15]. The remainder of this section gives a brief overview of all results. Section 2 contains the
basic facts and definitions underlying these results. In Sections 3, 4, 5, each subsection summarises
one, two, or three of the references [1] to [15] separately. These subsections are ordered into sections
according to their relation. This text is organised in a way such that the reader may switch to any
subsection after reading Sections 1 and 2.

The references belonging to this application for habilitation are cited by numbers. Further relevant
references are cited by letters.

1.1 Mathematical theory of aperiodic order

The discovery of alloys with sharp diffraction images which show non-crystallographic symmetries
(quasicrystals) by Shechtman et al [SBGC] initiated extensive studies of such nonperiodic, but highly
ordered structures. In fact, the discovery of Shechtman et al was anticipated by theoretical models like
the Penrose tilings [PEN] or the three dimensional examples by Kramer [KRA]. But it was the impact
of the discovery of real world quasicrystals that fuelled the search for further examples in the realm
between crystallographic structures and entirely chaotic structures, the mathematical description of
their properties, the understanding of possible symmetries of quasiperiodic structures, and the need of
a precise definition of order.

During the last two decades a lot of progress has been made, accumulating in a mathematical theory
of aperiodic order. It turned out that many mathematical disciplines are relevant to this field. There
are connections to discrete geometry, combinatorics, harmonic analysis (the work under consideration
falls essentially under these three topics), dynamical systems, topology, number theory and statistical
mechanics. One fundamental result here is that the diffraction spectrum of any regular model set (see
[HOF], [SCHL], or Theorem 2.1 below) is a countable sum of Dirac deltas (it is ’pure point’). The
proof uses methods from the theory of dynamical systems. As a consequence, one standard method
to decide whether a given structure has pure point spectrum is to establish that it is a regular model
set. Unfortunately, this yields only a sufficient condition for pure point spectrum in the general case,
not a necessary condition.

1.2 Pure point spectrum

The articles [2, 4, 6, 15] are dedicated to the problem of determining the model set property for some
given structure. In [4] we obtain a necessary and sufficient condition for a lattice substitution system
to have pure point spectrum, where we built upon an earlier result [LMS]. Lattice substitution systems
are the most intensively studied instances of nonperiodic point sets supported on a lattice in Rd .

In [2, 6] Galois duals (or more general, star-duals) of model sets are studied. Galois duality was
introduced by Thurston in 1989 [THU]. In [2] it was shown how to use Galois duality to prove the
model set property (thus pure point spectrum) for certain model sets in R2. In [6] the concept of
Galois duality was generalized to locally Abelian groups, using Moody’s star map. This more general
concept is thus called star-duality. It is shown in [6] how this concept yields rigorous proofs for the
model set property, thus for pure point spectrum, of many ’nice’ aperiodic structures. In particular
it was applied to reprove the model set property of Penrose tilings and Ammann-Beenker tilings, by
computing their star-duals.
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1.3 Beyond pure point spectrum

Today, there are a lot of results on aperiodic structures with pure point spectrum, whereas the structures
with mixed spectrum and/or continuous spectrum are poorly understood. There are very few non-
pure point examples where any detailed result is known about their spectra. Even results for single
examples seem hard to achieve here. Results in this direction are obtained in [1, 3, 5, 7, 9].

SCD tilings are prominent classes of aperiodic tilings in R3. In [1] it was shown, that the diffraction
spectrum of incommensurate SCD tilings is singular continuous apart from a central line. This was
only the second example so far where rigorous results about the nature of non pure point spectra of
deterministic aperiodic structures could be established.

In [3, 5] we aimed for a similar result for the Conway-Radin pinwheel tiling. This tiling is the most
prominent instance of deterministic structures in the plane, where the tiles occur in infinitely many
orientations. Several partial results are obtained in [3], in particular on the frequency module of the
tiling, and a radial version of the Poisson summation formula. However, since there is evidence of the
presence of absolutely continuous parts in the spectrum, this case seems harder than the SCD tilings.

Many results on the pinwheel tiling were generalised to all primitive substitution tilings with tiles in
infinitely many orientations in [7, 9]. This includes the equidistribution of the orientations of the tiles
(statistical circular symmetry), a kind of repetitivity (with respect to an appropriate topology of the
tiling spaces), and circular symmetry of the diffraction spectrum, and hence purely singular spectrum
(apart from 0).

1.4 Symmetries and colour symmetries

In the articles mentioned above the study of the symmetry of the structure under consideration is
essential. In particular, these structures show statistical circular symmetry, which implies the perfect
circular symmetry of the autocorrelation and thus of the diffraction spectrum. The articles [10, 11,
12, 13, 14] contain further results on possible symmetries of aperiodic structures. In [13] the possible
symmetries of a large class of aperiodic hyperbolic structures (’Böröczky tilings’) are classified. The
importance of these structures lies in their universality: Böröczky’s construction is the only one known
today which yields deterministic hyperbolic tilings in any dimension.

The study of colour symmetries of crystallographic structures in Euclidean space is a classical topic,
see for instance [SCHB]. It was kind of surprising that very few results are published on colour sym-
metries of regular hyperbolic structures. This inspired the papers [11, 12]. They give an enumeration
of perfect colourings of regular hyperbolic tilings [12] and concrete realizations of some of them [11].

The possible symmetries of plane quasiperiodic tilings are well understood, compare for instance
[HRB]. These symmetries can be well described in rings of cyclotomic integers. Thus the papers
[10, 14] deal with colour symmetries of cyclotomic integers, yielding results on the algebraic strucutre
of colour groups of perfect colourings of those.

Finally, [8] answered an open question raised in [FR]: In a tiling of Rd by convex polytopes, is there a
point x∈Rd which is vertex of exactly one of the polytopes? The answer is negative for all dimensions
d, when the tiling is locally finite. (Otherwise, counterexamples are easily constructed, see [8], Figure
1.)
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2 Preliminaries

In the following we state some preliminaries. The closed ball of radius r centred in x ∈ Rd is denoted
by Br(x). A lattice in Rd is the Z-span of d linearly independent vectors in Rd . More general, in any
topological group G, a lattice is a discrete cocompact subgroup of G. ByHd we denote d-dimensional
hyperbolic space. The closure of A is denoted by cl(A).

Let Λ be a point set in Rd . In order to rule out some pathological cases, we require Λ to be a Delone
set.

Definition A set Λ⊂ Rd is a Delone set, if there are R > r > 0, such that

1. For all x ∈ Rd , BR(x) contains at least one element of Λ (Λ is relatively dense), and

2. For all x ∈ Rd , Br(x) contains at most one element of Λ (Λ is uniformly discrete).

Sometimes Delone sets are also called separated nets or (r,R)-sets. Each lattice in Rd is a Delone
set. A Delone set Λ (more generally, any set Λ in Rd) is called aperiodic, if Λ = Λ+ t implies t = 0.
Otherwise, Λ is called periodic. Moreover, Λ is called crystallographic, if the set of translations fixing
Λ is a lattice in Rd . In particular, any lattice is crystallographic. Two important properties to describe
highly ordered, but aperiodic, Delone sets are given in the following definition.

Definition Let Λ⊂ Rd be a Delone set. Λ has finite local complexity, if for any r > 0, there are only
finitely many translation classes of Br(x)∩Λ.
Λ is called repetitive, if for any Br(x)∩Λ the set

{y |Br(y)∩Λ is a translate of Br(x)∩Λ}
is relatively dense in Rd .

Loosely speaking, finite local complexity means that there are only finitely many different local con-
stellations fitting into a ball of radius r. Repetitivity means that a copy of each local constellation in
Λ occurs ’everywhere’ in Λ.

Note that one may define repetitivity alternatively with respect to congruence, rather than to transla-
tions. Whenever we want to emphasise which one is considered, we will write ’repetitive with respect
to translation (respectively congruence)’. A third notion is stated in [7], see also Subsection 4.3.

2.1 Diffraction measures

By regarding each element of a Delone set Λ as an atomic position, Λ can serve as a model of some
physical solid. Thus we may be interested in the diffraction image of Λ. In a physical experiment,
this would be the outcome of an X-ray experiment, where the X-ray is scattered by Λ (respectively a
large, but finite portion of Λ). In mathematics, the appropriate analogue of the diffraction image is the
Fourier transform of the autocorrelation measure of Λ (see below, or [HOF] for details). In order to
turn Λ into a measure — on which we can perform a Fourier transform — we assign to Λ its Dirac
comb: Let δx denote the normed Dirac measure in x: δx(M) = 1 if x ∈M, and 0 else. The Dirac comb
of Λ is

δΛ = ∑
x∈Λ

δx,
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Since Λ is a Delone set, δΛ is a translation bounded (positive) measure. The autocorrelation measure
γΛ of Λ is the volume averaged convolution of δΛ with itself:

γ = γΛ = lim
r→∞

1
volBr(0) ∑

x,y∈Λ∩Br(0)
δx−y,

where the limit is taken in the vague topology. In general, it is not clear whether this limit exists. But
since δΛ is translation bounded, there exists at least one convergent subsequence. So we consider each
convergent subsequence, separately whenever we speak of the limit in the sequel. Now, the diffraction
measure of Λ is the Fourier transform γ̂Λ of γΛ. Whenever it is convenient, we may use the framework
of tempered distributions (see for instance [RUD], [SCHW]) to compute the Fourier transform of γΛ or
its properties.

By construction, the autocorrelation measure is positive definite. Since the Fourier transform of a
positive definite measure in Rd is again a positive measure in Rd [RS], the diffraction measure γ̂ = γ̂Λ
decomposes by Lebesgue’s decomposition theorem uniquely into three parts, with respect to Lebesgue
measure in Rd :

γ̂ = γ̂pp + γ̂sc + γ̂ac.

Here, γ̂ac denotes an absolutely continuous measure (a measure which can be described by a density
function, by the Radon-Nikodym theorem). γ̂pp denotes a pure point measure, that is, a countable sum
of (weighted) Dirac measures. γ̂sc denotes a singular continuous measure. That is, γ̂sc vanishes on
single points, but its support has Lebesgue measure zero.

A fundamental question in the theory of aperiodic order is:

What kind of matter diffracts?

In our framework, this asks for a classification of Delone sets according to their diffraction measure.
For instance, one would like to find a necessary and sufficient condition on a Delone set having
pure point diffraction (that is, the diffraction measure is a pure point measure), or purely continuous
diffraction (that is, the pure point part vanishes apart from the origin). Today, a general answer is out
of reach. One of the deepest results in this direction is Theorem 2.1 below. Two particular problems
derived from the question above motivated the work under consideration: How to apply Theorem 2.1
efficiently? (That is, how to prove pure point spectrum efficiently.) And can we find Delone sets —
deterministic ones, say — where we can prove rigorous results on their spectrum, if it is not pure
point?

2.2 Model sets

A model set in general is given as follows: Let G,H be two locally compact Abelian groups, and let
L be a lattice in G×H. Let W ⊂ H have nonempty interior and compact closure in H. Furthermore,
let π1 and π2 be projections from G×H to G respectively H, such that π1|L is injective, and π2(L) is
dense in W . The following diagram may illustrate the situation.

G π1←− G×H π2−→ H
∪ ∪ ∪
Λ L W

(1)
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Let Λ contain all π1(x), where x ∈ L, such that π2(x) is contained in W :

Λ = {π1(x) |x ∈ L,π2(x) ∈W}.

Then Λ is called a model set. If, in addition to the conditions above, the boundary of W has Haar
measure zero, then Λ is a regular model set.

Regular model sets share many properties with lattices: They are Delone sets, they have finite local
complexity, they are usually repetitive, but in general they are aperiodic. The relevance of regular
model sets in connection with diffraction measures is based on the following result by Hof [HOF] for
G×H = Rd , and Schlottmann [SCHL] for the general case.

Theorem 2.1 All regular model sets have pure point diffraction measure.

This result can be used to show pure point diffraction for some given Delone set Λ by establishing
that Λ is a regular model set. Many Delone sets are immediately seen not to be model sets, for
instance random point sets, or more generally: any Delone set without finite local complexity. A vast
number of appropriate candidates (deterministic, with finite local complexity, repetitive) are given by
substitution tilings.

2.3 Substitution tilings and iterated function systems

Informally, a tile substitution is given by a finite number of prototiles (compact sets) T1, . . . ,Tm, an in-
flation factor λ > 1, and a rule how to dissect each inflated tile λTi into tiles congruent to the prototiles
T1, . . . ,Tm. Illustrations are given in Figures 1 and 2. The process of inflating and subdividing is called
a tile substitution. The tile substitution σ can be repeated, starting with a single tile Ti. In each step we
obtain a finite collection of non-overlapping tiles, the supertiles σk(Ti). Any pattern occurring in such
a supertile is called legal (with respect to σ). Any tiling of Rd — or more general, of some metric
space — which contains only legal patterns, is called substitution tiling (with substitution σ). For a
more formal definition see [2] or [7]. Tile substitutions are a simple and powerful method to generate
a lot of aperiodic tilings. For a wealth of examples, see [FRH]. By assigning to each prototile some
control point, one can easily derive a Delone set from a substitution tiling by considering the set of
all control points, compare Figure 2. It is also possible to formulate substitutions for Delone sets. But
for historical and illustrative reasons, one usually sticks to substitution tilings.

A tile substitution σ is primitive, if for each prototile Ti there is k≥ 1 such that σk(Ti) contains copies
of all prototiles T1, . . . ,Tm. Commonly, a tile substitution is required to be primitive in order to rule
out pathological cases.

A formal definition of a tile substitution can be given by a digit set matrix. Let D = (Di j)1≤i, j≤m,
where each entry Di j is a finite (possibly empty) set of translation vectors. Using D, we can write the
tile substitution σ as

σ(Tj) =
[

1≤i≤m

[

t∈Di j

{Ti + t} (1≤ j ≤ m).

Since σ is known to be a tile substitution, it follows

λTj =
[

T∈σ(Tj)

T =
[

1≤i≤m

[

t∈Di j

Ti + t (1≤ j ≤ m), (2)
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S

L

Figure 1: An example of a tile substitution with two prototiles S,L and inflation factor λ =
√

5+1
2 (left)

and the first three iterations of the substitution on the prototile L (right). This substitution yields the
famous Penrose tilings. The dots on the triangles indicate their orientation. They may also serve as
control points in order to derive a Delone set from the tiling.

where the unions are non-overlapping. Since λ > 1, multiplication of the last equation by λ−1 yields
a (multi-component) iterated function system. An iterated function system (IFS) with one component
is an equation of the form

K =
[

1≤i≤n

fi(K),

where each fi is a contraction. It is well known that each iterated function system possesses a unique
nonempty compact solution [HUT]. This is also true for multi component IFS, see for instance [SI].
Thus the digit set matrix together with the substitution factor λ determines the prototiles uniquely.

It is a simple consequence of the Perron-Frobenius theorem that, for a primitive tile substitution, the
digit set matrix determines the inflation factor uniquely. (To be precise: the leading eigenvalue of the
matrix of the cardinalities in D is λd .) Thus the digit set matrix alone already determines the prototiles
and the inflation factor. Let us list these facts in a comprehensive form.

• Each tile substitution σ can be defined by a digit set matrix D.

• Such a digit set matrix defines an IFS, whose unique solutions are the prototiles of σ.

• If σ is primitive, D determines σ uniquely.

Note that sometimes substitutions are considered which do not fulfil (2). That is, the union of tiles in
σ(Ti) is not longer similar to Ti. We consider here self-similar substitutions only, that is, those which
fulfil (2).

2.4 Symmetry

Let (X,d) be a metric space. An isometry is a map f : X→ X where for all x,y ∈ X: d(x,y) =
d( f (x), f (y)). The symmetry group S(X) of some set X ⊂ X is the group of all isometries f with
f (X) = X .

By definition, an aperiodic tiling has no translational symmetry. But it may possess other symme-
tries. For instance, there are two Penrose tilings (out of uncountably many) showing fivefold dihedral
symmetry [GSH]. Nevertheless, all Penrose tilings show statistical tenfold dihedral symmetry in the
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sense that each tile occurs in each of the ten possible orientations with the same frequency, roughly
spoken. In the following, we have to assume that each tiling under consideration is well behaved in
the sense that it looks locally alike everywhere. Formally, we require uniform patch frequency up to
congruence, see [7], Section 6, Equation (4).

A precise definition of statistical symmetry needs some care and can be found in [9]. Two cases have
to be distinguished: Either the tiles in a given tiling occur in finitely many orientations only, or in
infinitely many orientations. In the first case, it makes sense to define the frequency freq(Ti,α) of tiles
of type Ti in orientation α (compare [9], equation (1)). The angles α where freq(Ti,α) does not vanish
allow the definition of statistical symmetry of the tiling under consideration.

It may sound surprising at a first glance that the second case — the tiles in the tiling occur in infinitely
many orientations — actually occurs for deterministic tilings, say, for substitution tilings. References
[5, 7, 9] contain a lot of examples where it occurs. In this case, all values freq(Ti,α), defined as above,
may vanish. Thus we define statistical circular symmetry by requiring that the orientations of the tiles
in the tiling are equidistributed in [0,2π[. For the full definition, see [9], or [7], Definition 3.2.

A further type of symmetry is colour symmetry. The study of colour symmetries of crystallographic
patterns — like lattices — is a classical topic. For a thorough survey see [SCHB].

In brief words, a colour symmetry is the following: Let X be a metric space (in our case either Rd or
Hd) and X either a tiling or a point set in X. To each element of X we assign an additional attribute,
say, one of finitely many colours. Formally, this is described by a surjective map c : X → {1, . . . ,k}.
Let f be an isometry in X and π a permutation on k letters. The pair ( f ,π) is called a colour symmetry
of X , if c( f (x)) = π(c(x)) for all x ∈ X . In plain words, f fixes the coloured object (X ,c), up to a
global permutation of colours. The set of all colour symmetries of (X ,c) is called its colour symmetry
group (or k-colour symmetry group, if the number of colours should be emphasised).

Applied to crystallographic Delone sets in Rd , the concept of colour symmetry generalises the clas-
sification of crystallographic groups. For instance, it is a classical result that there are 17 distinct
crystallographic groups in R2 (the ’wallpaper groups’). ’Distinct’ means, that no two of them can be
transformed into each other by an affine transformation. An analogue for colour groups is the result
that there are 46 distinct crystallographic 2-colour symmetry groups in R2 and 23 distinct crystallo-
graphic 3-colour symmetry groups [GSH]. It is hard to judge who achieved these two results first,
since there has been confusion about the meaning of ’distinct’ for a long time, see [SCHB].

The work under consideration takes first steps beyond the framework described above, by studying
colourings in the hyperbolic plane, and colourings of cyclotomic integers. Thereby it concentrates
on the study of perfect colourings. A colouring is called perfect, if each symmetry of the uncoloured
pattern X yields a colour symmetry.
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Figure 2: A tiling whose translation module is a lattice.

3 Pure point spectrum

3.1 Computing modular coincidences

Article [4]: An important class of aperiodic tilings, or aperiodic Delone sets, are lattice substitution
systems (LSS). Historically, they arise from aperiodic substitution tilings whose translation module is
a lattice. The translation module of a tiling T is the Z-span of the difference set DT of T :

DT = {x |∃T,T ′ ∈ T : T = T ′+ x}.

Such a tiling is shown in Figure 2. It was first realized in [BMS] how to generate LSS as model sets
by choosing H (compare (1)) as a ring of p-adic integers. In [LMS] this result has been generalised.
In particular, it was shown that a lattice substitution system has pure point diffraction if and only if
it is a regular model set. Moreover, an algorithm was derived which decides whether a given lattice
substitution system consists of model sets. This algorithm used modular coincidences (see [LMS] or
[4], Section 3). The drawback of this algorithm is the following: If the given LSS consists of model
sets, it answers YES after finitely many steps, but the number of steps is a priori unknown. If the
given LSS does not consist of model sets, the algorithm does not terminate.

In [4] we established the connection between modular coincidence and a generalisation of Dekking
coincidence (see [DEK] or [4], Appendix A). Dekking coincidence can be applied to symbolic one-
dimensional substitution sequences, and it is very simple to compute. By generalising Dekking co-
incidence to LSS in arbitrary dimension and establishing the equivalence with modular coincidence
(Theorem 4.4), we were able to give an a priori upper bound on the number of steps of the algorithm
discussed above (Theorem 4.5). Moreover, we obtained several simple conditions to decide whether
a given LSS consists of model sets or not (Corollaries 4.6, 4.7, 4.9). By the results in [LMS], this
answers also the question whether the given LSS has pure point diffraction or not. These conditions
could be easily applied to most LSS in the literature. For instance, out methods enabled us to prove
for the first time that the example in Figure 2 does not have pure point diffraction.

Article [4] was produced in close cooperation with Bernd Sing in Greifswald and Bielefeld. The main
results were achieved together, and both authors contributed equally to the text.
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3.2 Star-duality of model sets

Articles [2], [6], [15]: In his seminal paper [THU] Thurston noticed already in 1989 that a model set
in R which possesses a substitution σ gives rise to an IFS in the internal space H = Re. The solution
of this dual IFS is the window W . Moreover, this dual IFS defines a tile substitution in H. Thurston
called this tile substitution the Galois dual of σ, since it could easily be expressed in terms of Galois
conjugates of the data defining σ. This idea can be used to determine the model set property — and
thus the pure point diffractivity — of a given substitution tiling. Note that for a given tiling, or the
corresponding point set Λ, the construction of the lattice L and the internal space H (compare (1)) is
standard, see [SI], or [6], Section 3, for a detailed discussion of the case of two prototiles. The IFS in
H yields W . The problem is to show the following points:

• W has nonempty interior,

• the boundary of W has Haar measure zero, and

• Λ indeed consists of all projected points from G×W (maybe up to a zero set, this does not
affect the pure point diffractivity).

Article [2] illustrates Thurston’s Galois duality using certain one-dimensional tilings. Their Galois
duals in H = R2 are obtained, and it is shown that these Galois dual tilings — respectively the set of
their control points — are regular model sets, thus pure point diffractive. This is possible by the fact
that the window of the Galois dual tilings lives in G = R, and is just an interval. So the three points
above can easily be checked. This idea can be employed further: whenever the solution of the dual
IFS, that is, the window W , is a polytope, the three points are easily checked.

In [6], Galois duality is generalized to the case of non-Euclidean H. The key is the so called star map:
In (1), the projection π1 is invertible on π1(L). Thus we can define the map

? : π1(L)→ H, x 7→ x? = π2π−1
1 (x).

One benefit of the star map is that many facts can be stated in a simple manner. For instance, we
obtain the identity W = cl(Λ?), where Λ? = {x? |x ∈ Λ}.
It turns out that — with the appropriate embedding of the lattice L, see the exemplary outline in [2],
Equation (9) — the star map is the same as the Galois dual of Thurston, if H = Re. But using the star
map generalises the notion of duality to arbitrary internal spaces H. With the help of the so defined
star duality we can easily write down the IFS yielding the window in internal space H: If σ is given
by a digit set matrix D, the IFS in H is given just by (DT )?. This is outlined in [6], and applied to the
two most famous substitution tilings: The Penrose tiling and the Ammann Beenker tiling. Since their
windows are polytopes, the model set property of both examples is easily established. Note that this
has been done before several times.

A new result is the following: As outlined in Subsection 2.3, the internal IFS, given by (DT )?, defines
a dual substitution. In this way we obtain in [6] the dual substitution for the Penrose tiling (Theorem
3.1) — which has been done before with much more effort [BKSZ] — and the dual substitution for
the Ammann Beenker tiling (Theorem 3.2), which apperas here for the first time.

In [6] the question is raised about self-dual substitutions with respect to star duality. A necessary
condition and a sufficient condition are obtained for a substitution to be self-dual. A complete char-
acterisation for one-dimensional substitutions with two prototiles is obtained in [15]. Theorem 6.3
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lists four conditions which are equivalent for a substitution to be self-dual in this case. Furthermore,
the equivalence of several notions of duality which occur in the literature is established in this special
case (Theorem 5.7). In particular, a connection to automorphisms on the free group F2 is established:
an automorphism ϕ ∈ Aut(F2) is conjugate to its inverse, up to permutation of letters, if and only if
the corresponding substitution is a primitive substitution for a model set with connected window and
H = R (Theorem 5.7 in connection with Theorem 1.1).

Both authors provided equally to article [15]. Sections 1, 2, 3 are provided by F., Section 4 is provided
by V. Berthé, Sections 5 and 6 are provided by both authors.

4 Beyond pure point spectrum

4.1 SCD patterns have singular diffraction

Article [1]: Up today, for many Delone sets with pure point diffraction, the spectrum is known ex-
plicitly. In contrast, there are very few cases where anything is known about the continuous part in
their diffraction. One exception is the diffraction of the Thue-Morse sequence, see [KAK], [BG2]. Its
spectrum is singular continuous (plus some pure point part, depending on the scatter intensities), even
though the closure of its support is the whole line.

Another Delone set where it was possible to prove results on the nature of the diffraction measure are
SCD patterns. SCD pattern stands for the set of control points in an SCD tiling (’Schmitt-Conway-
Danzer tiling’). SCD tilings are tilings in R3 by a single prototile. It is the only single prototile known
so far which admits only aperiodic tilings. (There are several sets of two or more prototiles which
allow only aperiodic tilings, in R2 or R3.) In particular, in any generic SCD tiling the tiles occur in
infinitely many orientations.

In [1] we were able to show that the diffraction spectrum of SCD patterns do not have an absolutely
continuous part (Theorem 2.1). In the generic case, the pure point part is contained on a single line `,
and the singular continuous part is supported on a set of concentric cylinders centred in ` (Theorem
2.5).

The proofs use explicit calculations within the framework of tempered distributions and utilise the
fact that the autocorrelation measure of SCD patterns is invariant under arbitrary rotations about `.

Both authors contributed equally to Article [1].

4.2 Pinwheel diffraction

Articles [3], [5]: After obtaining the results on the diffraction measure of SCD tilings, we turned to
the most prominent instance of tilings with tiles in infinitely many orientations: the Conway-Radin
pinwheel tiling of the plane [RAD]. It was known already that its autocorrelation measure is invariant
under rotations about the origin (see [RAD], [MPS], or [3], Theorem 6) and consequently, the pure
point part of its diffraction spectrum vanishes apart from the origin. As usual, we translated the
pinwheel tiling into a point set Λ by assigning to each tile a control point (see for instance [3], Figure
5). In order to study the diffraction further, we determined the frequency module of the autocorrelation
([3], Claim 5) by determining the frequencies of the smallest constellation in the pinwheel tilings,
namely, of its vertex stars. Frequency of a constellation C means the average number of congruent
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copies of C per unit area. The frequency module is the Z-span of the frequencies of all 2-point
constellations. The introduction of an alternative substitution rule for the pinwheel tiling (the kite-
domino substitution, see [3], Figure 4) allowed for the determination of the frequency module.

Moreover, we obtained a radial analogue of Poisson’s summation formula (Theorem 3). The motiva-
tion was to apply it to the autocorrelation of the pinwheel tiling. It turned out that it can be successfully
applied to a simple model for powder diffraction. This is basically the union of copies of the integer
lattice Z2, see [3], Proposition 5.

Regarding the diffraction of the pinwheel tiling, we were able to establish partial results only. How-
ever, our approach allowed for a numerical investigation of the diffraction with unmatched precision.
Our results support the conjecture that the diffraction of the pinwheel tiling has a singular part, which
is concentrated on concentric rings about the origin (similar to SCD patterns), but that it also has an
absolutely continuous part, in contrast to SCD patterns.

Article [3] developed in strong cooperation of the first two authors. The first author provided more of
the diffraction results, the second author provided more of the geometrical results. The third author
provided the numerical results and most of the typesetting.

Article [5] gives a short report on the results of [3] with focus on physical implications. F.s contribu-
tion was mainly commentarial and in providing the results of [3].

4.3 Substitution tilings with statistical circular symmetry

Articles [7], [9]: The key in establishing singular spectrum for SCD patterns and pinwheel tilings
was the circular symmetry of the autocorrelation. This circular symmetry in turn is the result of the
statistical circular symmetry of SCD tilings and pinwheel tilings. In [7] it was shown that all primitive
substitution tilings with tiles in infinitely many orientations are of statistical circular symmetry. Thus
it is not possible for such tilings to have some ’preferred’ orientations. Consequently, all of them have
circular symmetric autocorrelation, and circular symmetric — hence purely continuous — diffraction
spectrum.

Moreover, two infinite series of substitution tilings with statistical circular symmetry are given explic-
itly. This implies that circular statistical symmetry is not necessarily an exotic property for substitution
tilings, but may be even a kind of generic case. Finally, it is shown that all such tilings possess a kind
of repetitivity, namely, w-repetitivity ([7], Theorem 6.3). It is well known — and easy to see — that
all primitive substitution tilings are repetitive with respect to congruence (compare Section 2). In
contrast, no tiling of statistical circular symmetry is repetitive with respect to translations. However,
there is a notion of repetitivity in between these two: A tiling, respectively its corresponding point set
Λ, is w-repetitive (for wiggle-repetitive), if for any r > 0,ε > 0, for each Br(x)∩Λ the set

{y |Br(y)∩Λ is a translate of Br(x)∩Λ, up to a rotation by α≤ ε}
is uniformly dense. In plain words, there is R > 0 such that each ball of radius R contains a copy of
Br(x)∩Λ, up to a rotation by less than ε. Theorem 6.3 in [7] establishes w-repetitivity for all primitive
substitution tilings with statistical circular symmetry. The relevance of this result is that the dynamical
system of the hull of a tiling (see [9], Section 4, and references there) is minimal if and only if the
tiling is repetitive.

Article [9] gives an overview over most results of [7], provides the detailed proof how the circu-
lar symmetry of the diffraction measure follows from the statistical circular symmetry of the tiling
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(Theorems 3.2, 3.3), and a result about equidistribution of orientations of tiles in tilings with finitely
many orientations (Theorem 2.3). Cum grano salis, one may summarise these results as follows: in
each primitive substitution tiling, each orientation accours with the same frequency. But compare the
example in [9], Figure 1.

5 Symmetry groups and colour symmetry groups

5.1 Colour symmetries of cyclotomic integers

Articles [10], [14]: After the discovery of quasicrystals it seemed natural to ask for their colour
symmetries, in analogy to colour symmetries of crystallographic structures. Many aperiodic structures
in the plane with nontrivial symmetry (be it statistical or perfect) are based on cyclotomic integers
Mn = Z[e2πi/n]. For instance, the vertices of the famous Ammann-Beenker tilings of the plane form a
subset of M8, compare [14], Figure 2. This leads to the study of colour symmetries of Mn, which are
— for n = 5, n≥ 7 — dense in the plane. A first step was the determination of the number of perfect
colourings of cyclotomic integers with class number one [B], [BG1]. This topic is more combinatorial
in nature. Based on their approach, we studied in [14] the algebraic properties of perfect colourings
of Mn with class number one by identifying perfect colourings with ideals in Mn. In particular, it was
shown that all ideals in Mn yield chirally perfect colourings (Theorem 3.4), and that they are perfect
depending on the factorisation of the generator q of the ideal. This breaks down beyond the (finitely
many) class number one cases. Furthermore, we established results on the algebraic nature of the
colour symmetry group H (Section 3) and of the colour preserving group K (Section 4). The algebraic
structure of K was established for all but finitely many cases.

The second part of [10] is mainly based on the results in [14]. It discusses the cases M5,M8 and M12
in more detail. The first part of [10] studies point groups of lattices L which are suitable to generate
model sets with symmetries which can be described in the framework of cyclotomic integers.

F. provided and wrote down essentially all results in [14], motivated by, and in discussion with,
M.L.A.N. de las Peñas during her visit in Bielefeld. These results were presented in more detail
in the second part of [10] for special cases, where F.s contribution was mainly to provide the more
general results of [14].

5.2 Colour symmetries of regular hyperbolic tilings

Articles [11], [12]: As mentioned in Section 2, the study of colour symmetries in Rd has a long
tradition. So it is kind of surprising that next to nothing is known about colour symmetries in Hd .
One of the first questions one may ask is: For which number k of colours does there exist a perfect
colouring of a regular tiling inHd? Reference [12] answers this questions for small values of k, where
small means approximately less than 30. This is achieved by identifying perfect colourings with left
cosets in the symmetry group of the regular hyperbolic tiling by p-gons, where at each vertex q tiles
intersect. This group is a Coxeter group

Gp,q = 〈a,b,c |a2,b2,c2,(ab)p,(bc)q,(ac)2〉.
Now perfect colourings can be counted by counting subgroups of Coxeter groups, given by this finite
presentation. Unfortunately, this is a problem which cannot be computed efficiently. This limits the
number of colours to be considered to 30 to 50.
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In a similar way, chirally perfect colourings can be counted. These are colourings which are perfect
with respect to the direct symmetry group (the subgroup Ḡp,q of Gp,q containing no reflections). This
problem is even harder to compute, since the different subgroups of Ḡp,q has to be distinguished up to
conjugacy in Gp,q. This limits the number of colours to be considered to less than 20 in some cases.

Article [11] gives some concrete realisations of colourings of regular hyperbolic tilings with 10
colours. In this article, the theoretical framework is due to F., where the concrete realisations were
found by R. Lück.

5.3 Symmetries of aperiodic hyperbolic tilings

Article [13]: In 1974, K. Böröczky published a construction of tilings of H2 by a single prototile.
This construction can be extended to any dimension, yielding tilings of Hd . His aim was to show that
there is no such natural notion of density inHd as in Euclidean space Rd . It was soon realized that his
tilings are aperiodic, in the sense that their symmetry groups are not cocompact. (That is, they have
no compact fundamental domain with respect to Hd .)

In plain words, the construction goes as follows. Let us describe it for H3 first. (Compare also [13],
Figure 2, for the case H2.) Consider a collection of concentric horospheres, where consecutive horo-
spheres have equal distance. Each horosphere is conformal to the Euclidean plane R2. So consider a
partition of each horosphere into the canonical tiling of R2 by unit squares. Erect on each square a
prism, such that the top of the prism is made of four squares of the next layer. This yields a tiling of
H3, where each tile carries four tiles on its top. Analogues are possible in any dimension.

The main result of [13] is the classification of all possible symmetry groups of Böröczky tilings in Hd

(Theorem 6.1). It turns out that the symmetry group of a Böröczky tiling inHd+1 is either isomorphic
to the symmetry group Bk of a k-dimensional cube (k≤ d, possibly k = 0, thus trivial), or to the direct
product Z×Bk. In particular, the symmetry group may be infinite, but never cocompact.

Analogues of this construction allow many further tilings of Hd , for instance by embedding a plane
Euclidean substitution tiling T on one horosphere, embedding the successors σ(T ),σ2(T ), . . . in the
horospheres above, and the predecessors σ−1(T ),σ−2(T ), . . . in the horospheres below. The results
in [13] can be easily generalised to such tilings.

The article developed over five years in close cooperation of both authors, with some interruptions.
Both authors contributed equally to it.

5.4 The lonely vertex problem

Article [8] falls slightly out of the scope of the work discussed above. It concerns a problem in classi-
cal convex geometry. Nevertheless, its motivation lies in local properties of tilings, and in establishing
finite local complexity of certain substitution tilings.

The question is: In a locally finite tiling by convex polytopes in Rd , is it possible that there is x ∈ Rd

which is vertex of exactly one of the polytopes? (A tiling is locally finite, if each ball Br(x) intersects
only finitely many tiles.) In other words, can there be a vertex of some polytope in the tiling which
intersects no neighbouring polytope in a vertex? In [8] the answer is shown to be negative for all
dimensions. A central result is Theorem 2.1. In plain words, it states that the indicator function of a
convex spherical polytope without antipodal points (A-type) can not equal a finite linear combination
of indicator functions of convex spherical polytopes which all contain antipodal points (B-type). From
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Theorem 2.1 follows that the sphere cannot be partitioned into some B-type polytopes and exactly
one A-type polytope (Theorem 2.4). Furthermore, this yields a negative answer to the question above
(Theorem 2.5).

In addition, these results are used to show that each tile substitution, where the Z-span of the vertices
of the prototiles is a lattice, is of finite local complexity.

Both authors contributed equally to [8]. The problem itself was posed by F., the application to finite
local complexity of tilings, too. However, the most fundamental result, Theorem 2.1, is due to A.
Glazyrin.
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[5] Michael Baake, Dirk Frettlöh, Uwe Grimm: Pinwheel patterns and powder diffraction,
Phil. Mag. 87 (2007) 2831-2838, arXiv:math-ph/0610012.
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[FRH] D. Frettlöh, E. Harriss: Tilings encyclopedia, available online at:
http://tilings.math.uni-bielefeld.de .

[GEL] G. Gelbrich: Fractal Penrose tiles II: Tiles with fractal boundary as duals of Penrose triangles,
Aequationes Math. 54 (1997) 108-116.
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