On colour symmetries of hyperbolic regular tilings and cyclotomic integers

Dirk Frettlöh

University of Bielefeld
Bielefeld, Germany

11th International Conference on Discrete Mathematics:
Convexity and Discrete Geometry
TU Dortmund, 25-29 July 2009
$S(X)$: full symmetry group of some pattern X (including reflections).
$R(X)$: proper symmetry group of some pattern X (without reflections).
$S(X)$: full symmetry group of some pattern X (including reflections).
$R(X)$: proper symmetry group of some pattern X (without reflections).

Perfect colouring: Colouring of some pattern X, where each $f \in S(X)$ acts as a global permutation of colours.

Chirally perfect: dito for $R(X)$.

Perfect colouring of $\left(4^{4}\right)$ with two colours:

Not a perfect colouring of $\left(4^{4}\right)$:

					1									
							\|							
							\|			\|	\|			
							\|							

Chirally perfect colouring of (4^{4}) with five colours:

Perfect colouring of $\left(8^{3}\right)$ with three colours:

Dirk Frettlöh
On colour symmetries of hyperbolic regular tilings and cycloton

Questions: Given some nice pattern X,

1. for which number of colours does there exist a perfect colouring?
2. how many for a certain number of colours?
3. what is the algebraic structure of the colour symmetry group?

Questions: Given some nice pattern X,

1. for which number of colours does there exist a perfect colouring?
2. how many for a certain number of colours?
3. what is the algebraic structure of the colour symmetry group?

Well known for lattices, regular tilings etc. in $\mathbb{R}^{2}, \mathbb{R}^{3}, \ldots$
(Belov \& Shubnikov, ... van der Waerden, Schwarzenberger, ... Grünbaum \& Shephard, Conway)

Few is known for regular tilings in \mathbb{H}^{2}

Regular tiling $\left(p^{q}\right)$: edge-to-edge tiling by regular p-gons, where q tiles meet at each vertex.

In \mathbb{R}^{2} : three regular tilings: $\left(4^{4}\right),\left(3^{6}\right),\left(6^{3}\right)$.
In \mathbb{S}^{2} : five regular tilings: $\left(3^{3}\right),\left(4^{3}\right),\left(3^{4}\right),\left(5^{3}\right),\left(3^{5}\right)$.
In \mathbb{H}^{2} : Infinitely many regular tilings: $\left(p^{q}\right)$, where $\frac{1}{p}+\frac{1}{q}<\frac{1}{2}$.

Regular hyperbolic tiling $\left(8^{3}\right)$:

Dirk Frettlöh
On colour symmetries of hyperbolic regular tilings and cycloton

Perfect colourings (F. 2008):

$\left(4^{4}\right)$	$1,2,4,8,9,16,18,25,32,36, \ldots$
$\left(3^{6}\right)$	$1,2,4,6,8,16,18,24,25,32, \ldots$
$\left(6^{3}\right)$	$1,3,4,9,12,16,25,27,36, \ldots$
$\left(7^{3}\right)$	$1,8,15,22,24,30,36^{2}, 44,50^{5}, \ldots$
$\left(3^{7}\right)$	$1,22,28^{5}, 37,42^{4}, 44,49^{7}, 50^{3}, \ldots$
$\left(8^{3}\right)$	$1,3,6,12,17,21^{4}, 24,25^{5}, 27^{3}, 29^{4}, 31^{4}, 33^{6}, 37^{6}, 39^{8}, \ldots$
$\left(3^{8}\right)$	$1,2,4,8,10^{2}, 12,14,16^{2}, 18,20^{4}, 24^{3}, 25^{5}, 26,28^{12}, 29,30^{2}, \ldots$
$\left(5^{4}\right)$	$1,2,6,11,12,16^{2}, 21^{3}, 22^{5}, 24,26^{9}, 28, \ldots$
$\left(4^{5}\right)$	$1,5^{2}, 10^{4}, 11,15^{7}, 16,20^{9}, 21^{3}, 22,25^{27}, 26,27^{3}, 30^{38}, \ldots$
$\left(6^{4}\right)$	$1,2,4,6,8,10^{2}, 12^{7}, 13^{4}, 14,15^{2}, 16^{13}, 18^{13}, 19^{10}, 20^{23}, 21^{10} \ldots$
$\left(4^{6}\right)$	$1,2,3,5,6^{3}, 9^{4}, 10^{1}, 11^{2}, 12^{7}, 13^{5}, 14^{2}, 15^{16}, 16^{2}, 17^{9}, 18^{26}, \ldots$

Chirally perfect colourings (F. 2008):

$\left(4^{4}\right)$	$1,2,4,5,8,9,10,13,16,17,18,20,25^{2}, 26,29,32, \ldots$
$\left(3^{6}\right)$	$1,2,4,6,7,8,13,14,16,18,19,24,25,26,28,31, \ldots$
$\left(6^{3}\right)$	$1,3,4,7,9,12,13,16,19,21,25,27,28,31,36,37, \ldots$
$\left(7^{3}\right)$	$1,8,9,15^{2}, 22^{7}, 24, \ldots$
$\left(3^{7}\right)$	$1,7,8,14^{6}, 21^{2}, 22^{7}, \ldots$
$\left(8^{3}\right)$	$1,3,6,9,10,12,13^{2}, 15,17^{5}, 18^{5}, 19^{5}, \ldots$
$\left(3^{8}\right)$	$1,2,4,8^{4}, 10^{3}, 12,13^{2}, 14^{2}, 16^{12}, 17^{5}, 18,19^{5}, \ldots$
$\left(5^{4}\right)$	$1,2,6^{2}, 11^{3}, 12^{6}, 16^{12}, 17^{4}, \ldots$
$\left(4^{5}\right)$	$1,5^{2}, 6,10^{6}, 11^{3}, 15^{15}, 16^{2}, 17^{4}, \ldots$
$\left(6^{4}\right)$	$1,2,4^{2}, 6,7^{2}, 8^{3}, 9^{2}, 10^{6}, 12^{11}, \ldots$
$\left(4^{6}\right)$	$1,2,3,5,6^{4}, 7^{2}, 8,9^{8}, 10^{3}, 11^{5}, 12^{15}, \ldots$

Perfect colouring of (4^{5}) with five colours (R. Lück, Stuttgart):

Dirk Frettlöh
On colour symmetries of hyperbolic regular tilings and cycloton

Perfect colouring of $\left(4^{5}\right)$ with 25 colours (R. Lück, Stuttgart):

Dirk Frettlöh
On colour symmetries of hyperbolic regular tilings and cycloton

How to obtain these values?
The (full) symmetry group of a regular tiling $\left(p^{q}\right)$ is a Coxeter group:

$$
G_{p, q}=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=(a b)^{p}=(a c)^{2}=(b c)^{q}=\mathrm{id}\right\rangle
$$

Dirk Frettlöh
On colour symmetries of hyperbolic regular tilings and cycloton

Left coset colouring of $\left(p^{q}\right)$:
Let F be the fundamental triangle.

- Choose a subgroup S of $G_{p, q}$ such that $a, b \in S$
- Assign colour 1 to each $f F(f \in S)$
- Analoguosly, assign colour i to the i-th coset S_{i} of S

Yields a colouring with $\left[G_{p, q}: S\right]$ colours.

How to count perfect colourings now?

- Show that each of these colourings is perfect (simple)
- Show that each perfect colouring is obtained in his way
- Count subgroups of index k in $G_{p, q}$ (hard)

Using GAP yields the tables above.

Nonperiodic tilings: Penrose

Nonperiodic tilings: Ammann-Beenker

Nonperiodic tilings: Danzer's $k \pi / 7$

What are colour symmetries/perfect colourings here?

- Fourier space approach (Mermin, Lifshitz)
- Cyclotomic integers (Moody, Baake)

What are colour symmetries/perfect colourings here?

- Fourier space approach (Mermin, Lifshitz)
- Cyclotomic integers (Moody, Baake)

Consider $\mathbb{Z}\left[\xi_{n}\right], \xi_{n}=e^{2 \pi i / n}$, as a point set in the plane.

- $n=4$: square lattice
- $n=3, n=6$: hexagonal lattice
- $n=5, n \geq 7$: dense point sets

What are colour symmetries/perfect colourings here?

- Fourier space approach (Mermin, Lifshitz)
- Cyclotomic integers (Moody, Baake)

Consider $\mathbb{Z}\left[\xi_{n}\right], \xi_{n}=e^{2 \pi i / n}$, as a point set in the plane.

- $n=4$: square lattice
- $n=3, n=6$: hexagonal lattice
- $n=5, n \geq 7$: dense point sets

Consider colourings of $\mathbb{Z}\left[\xi_{n}\right]$, the tilings inherit the colours from those.

0000 OOOOOOOOOOOO 00000000000000 000000000000000000 000000000000000 $00_{0}^{0000000000000000}$ 00000000000 00000000000000000 00000000000000
 00000000000000

Ideals in the ring $\mathbb{Z}\left[\xi_{n}\right]$ generate colourings.
If $\mathbb{Z}\left[\xi_{n}\right]$ has class number one, each ideal is a principal ideal, generated by some $q \in \mathbb{Z}\left[\xi_{n}\right]$.

Thm (Bugarin, de las Peñas, F 2009) Let $\mathbb{Z}\left[\xi_{n}\right]$ have class number one, C a colouring of $\mathbb{Z}\left[\xi_{n}\right]$.

- C is generated by an ideal, iff C is chirally perfect.
- C generated by an ideal (q) is perfect, iff q is balanced.
q balanced: in the unique factorization

$$
q=\varepsilon \prod_{p_{i} \in \mathcal{P}} p_{i}^{\alpha_{i}} \prod_{p_{j} \in \mathcal{C}} \omega_{p_{j}}^{\beta_{j}}{\overline{\omega_{p_{j}}}}^{\gamma} \prod_{p_{k} \in \mathcal{R}} p_{k}^{\delta_{k}}
$$

holds: $\beta_{j}=\gamma_{j}$.

Ideals in the ring $\mathbb{Z}\left[\xi_{n}\right]$ generate colourings.
If $\mathbb{Z}\left[\xi_{n}\right]$ has class number one, each ideal is a principal ideal, generated by some $q \in \mathbb{Z}\left[\xi_{n}\right]$.

Thm (Bugarin, de las Peñas, F 2009) Let $\mathbb{Z}\left[\xi_{n}\right]$ have class number one, C a colouring of $\mathbb{Z}\left[\xi_{n}\right]$.

- C is generated by an ideal, iff C is chirally perfect.
- C generated by an ideal (q) is perfect, iff q is balanced.
q balanced: in the unique factorization

$$
q=\varepsilon \prod_{p_{i} \in \mathcal{P}} p_{i}^{\alpha_{i}} \prod_{p_{j} \in \mathcal{C}} \omega_{p_{j}}^{\beta_{j}} \overline{\omega_{p_{j}}} \gamma_{j} \prod_{p_{k} \in \mathcal{R}} p_{k}^{\delta_{k}}
$$

holds: $\beta_{j}=\gamma_{j}$.
E.g.: $n=4$ (square lattice):

- 4 colours: $q=2=(1+i)(1-i)$ balanced
- 5 colours: $q=(2+i)$ not balanced

