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Regular tiling (p?): edge-to-edge tiling by regular p-gons, where g
tiles meet at each vertex.

In R?: three regular tilings: (4%), (3°%), (63).
In S2: five regular tilings: (3%), (43), (3%), (5%), (3°).

In H?: Infinitely many regular tilings: (p9), where % +% < %

Dirk Frettloh Counting colour symmetries of regular tilings



Regular hyperbolic tiling (8%):
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Let Sym(X) denote the symmetry group of some pattern X.

Perfect colouring Those colourings of some pattern X, where each
f € Sym(X) acts as a global permutation of colours.
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Let Sym(X) denote the symmetry group of some pattern X.

Perfect colouring Those colourings of some pattern X, where each
f € Sym(X) acts as a global permutation of colours.

chirally perfect dito for orientation preserving symmetries

(Sometimes a perfect colouring is called colour symmetry.)
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Perfect colouring of (4*) with two colours:
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Not a perfect colouring of (44):
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Chirally perfect colouring of (4*) with five colours:
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Perfect colouring of (83%) with three colours:
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Questions:  Given a regular tiling (p?),

1. for which number of colours does there exist a perfect
colouring?

how many for a certain number of colours?

3. what is the structure of the generated permutation group?
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Questions:  Given a regular tiling (p?),

1. for which number of colours does there exist a perfect
colouring?

2. how many for a certain number of colours?
3. what is the structure of the generated permutation group?

Some answers:
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Perfect colourings:

N
N

1,2,4,8,9,16,18,25,32,36,...
1,2,4,6,8,16,18,24,25,32, ...

1,3,4,9,12,16,25,27,36,. ..
1,8,15,22,24,30,36%,44,50°, . ..
1,22,28°,37,42% 44,497 50°, . ..

1,3,6,12,17,21%, 24,25°,273,29% 31%,33°,37°,308, . ..
1,2,4,8,10%,12,14,162,18,20%, 243, 25°, 26,2812, 29,302, ...
1,2,6,11,12,16°,213,22% 24,267 28, ...

1,5%,10% 11,157, 16,207, 213,22, 25°7 26,273,30%, ..
1,2,4,6,8,10%,127,13% 14,15%,16'3,1813,1910 2023 2110 .
1,2,3,5,63,9% 10%,11%,127,13°,14%,15'%,16°,17°,18%°, . ..
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Chirally perfect colourings:

N
N

1,2,4,5,8,9,10,13,16,17, 18, 20, 252,26, 29, 32, . ..
1,2,4,6,7,8,13,14,16,18,19,24,25,26,28,31, ...
1,3,4,7,9,12,13,16, 19, 21, 25,27, 28,31, 36, 37, ..
1,8,9,15%,227 24, ...

1,7,8,14% 212 227 .
1,3,6,9,10,12,13%,15,17°,18°,19°, . ..

1,2,4,8% 10%,12,13%,14%,16%,17°,18,19°, . ..
1,2,6%,113,12° 16%2, 174, ...

1,5°%,6,10°, 113,155 162,174, ..
1,2,4%,6,7°,83,9°,10°, 1211 .
1,2,3,5,6%,7%,8,9%,103,11%, 121> ..
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Perfect colouring of (4°) with five colours (R. Liick, Stuttgart):
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Perfect colouring of (4°) with 25 colours (R. Liick, Stuttgart):
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How to obtain these values?

The (full) symmetry group of a regular tiling (p9) is a Coxeter
group:

Gp.q = (a,b,c|a®> = b? = c? = (ab)P = (ac)?® = (bc)? = id)
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A o=
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Left coset colouring of (p9):

Let F be the fundamental triangle.

» Choose a subgroup S of G, 4 such that a,bc S
» Assign colour 1 to each f F (f € S)

» Analoguosly, assign colour i to the i-th coset S; of S

Yields a colouring with [Gp 4 : S] colours.
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How to count perfect colourings now?

» Show that each of these colourings is perfect (simple)
» Show that each perfect colouring is obtained in this way

» Count subgroups of index k in Gp, 4 (hard)
Using GAP vyields the tables above.

Since GAP identifies subgroups if they are conjugate, we obtain
indeed all different colourings.
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In a similar way one can count chirally perfect colourings.

» Consider the rotation group Gp,q = (ab,ac)q, -
> Use left coset colouring in Cp,q-

» Check for conjugacy in Gp q.

The last step requires some programming in GAP.
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Conclusion

We've seen a method to count perfect colourings of regular tilings.
What next?

> Algebraic properties of S. For instance, some S are generated
by three generators, some S require four generators.

» Algebraic properties of the induced permutation group P. For
a start, P acts transitively on the colours. Which P can arise
in this way? Can we obtain a symmetric group?
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