Counting colour symmetries of regular tilings

Dirk Frettlöh

University of Bielefeld
Bielefeld, Germany

Combinatorial and computational aspects of tilings
London
30 July - 8 August

Regular tiling $\left(p^{q}\right)$: edge-to-edge tiling by regular p-gons, where q tiles meet at each vertex.

In \mathbb{R}^{2} : three regular tilings: $\left(4^{4}\right),\left(3^{6}\right),\left(6^{3}\right)$.
In \mathbb{S}^{2} : five regular tilings: $\left(3^{3}\right),\left(4^{3}\right),\left(3^{4}\right),\left(5^{3}\right),\left(3^{5}\right)$.
In \mathbb{H}^{2} : Infinitely many regular tilings: $\left(p^{q}\right)$, where $\frac{1}{p}+\frac{1}{q}<\frac{1}{2}$.

Regular hyperbolic tiling (83):

Let $\operatorname{Sym}(X)$ denote the symmetry group of some pattern X.
Perfect colouring Those colourings of some pattern X, where each $f \in \operatorname{Sym}(X)$ acts as a global permutation of colours.

Let $\operatorname{Sym}(X)$ denote the symmetry group of some pattern X.
Perfect colouring Those colourings of some pattern X, where each $f \in \operatorname{Sym}(X)$ acts as a global permutation of colours.
chirally perfect dito for orientation preserving symmetries
(Sometimes a perfect colouring is called colour symmetry.)

Perfect colouring of $\left(4^{4}\right)$ with two colours:

Not a perfect colouring of $\left(4^{4}\right)$:

Dirk Frettlöh
Counting colour symmetries of regular tilings

Chirally perfect colouring of (4^{4}) with five colours:

Dirk Frettlöh
Counting colour symmetries of regular tilings

Perfect colouring of $\left(8^{3}\right)$ with three colours:

Questions: Given a regular tiling $\left(p^{q}\right)$,

1. for which number of colours does there exist a perfect colouring?
2. how many for a certain number of colours?
3. what is the structure of the generated permutation group?

Questions: Given a regular tiling $\left(p^{q}\right)$,

1. for which number of colours does there exist a perfect colouring?
2. how many for a certain number of colours?
3. what is the structure of the generated permutation group?

Some answers:

Perfect colourings:

$\left(4^{4}\right)$	$1,2,4,8,9,16,18,25,32,36, \ldots$
$\left(3^{6}\right)$	$1,2,4,6,8,16,18,24,25,32, \ldots$
$\left(6^{3}\right)$	$1,3,4,9,12,16,25,27,36, \ldots$
$\left(7^{3}\right)$	$1,8,15,22,24,30,36^{2}, 44,50^{5}, \ldots$
$\left(3^{7}\right)$	$1,22,28^{5}, 37,42^{4}, 44,49^{7}, 50^{3}, \ldots$
$\left(8^{3}\right)$	$1,3,6,12,17,21^{4}, 24,25^{5}, 27^{3}, 29^{4}, 31^{4}, 33^{6}, 37^{6}, 39^{8}, \ldots$
$\left(3^{8}\right)$	$1,2,4,8,10^{2}, 12,14,16^{2}, 18,20^{4}, 24^{3}, 25^{5}, 26,28^{12}, 29,30^{2}, \ldots$
$\left(5^{4}\right)$	$1,2,6,11,12,16^{2}, 21^{3}, 22^{5}, 24,26^{9}, 28, \ldots$
$\left(4^{5}\right)$	$1,5^{2}, 10^{4}, 11,15^{7}, 16,20^{9}, 21^{3}, 22,25^{27}, 26,27^{3}, 30^{38}, \ldots$
$\left(6^{4}\right)$	$1,2,4,6,8,10^{2}, 12^{7}, 13^{4}, 14,15^{2}, 16^{13}, 18^{13}, 19^{10}, 20^{23}, 21^{10} \ldots$
$\left(4^{6}\right)$	$1,2,3,5,6^{3}, 9^{4}, 10^{1}, 11^{2}, 12^{7}, 13^{5}, 14^{2}, 15^{16}, 16^{2}, 17^{9}, 18^{26}, \ldots$

Chirally perfect colourings:

$\left(4^{4}\right)$	$1,2,4,5,8,9,10,13,16,17,18,20,25^{2}, 26,29,32, \ldots$
$\left(3^{6}\right)$	$1,2,4,6,7,8,13,14,16,18,19,24,25,26,28,31, \ldots$
$\left(6^{3}\right)$	$1,3,4,7,9,12,13,16,19,21,25,27,28,31,36,37, \ldots$
$\left(7^{3}\right)$	$1,8,9,15^{2}, 22^{7}, 24, \ldots$
$\left(3^{7}\right)$	$1,7,8,14^{6}, 21^{2}, 22^{7}, \ldots$
$\left(8^{3}\right)$	$1,3,6,9,10,12,13^{2}, 15,17^{5}, 18^{5}, 19^{5}, \ldots$
$\left(3^{8}\right)$	$1,2,4,8^{4}, 10^{3}, 12,13^{2}, 14^{2}, 16^{12}, 17^{5}, 18,19^{5}, \ldots$
$\left(5^{4}\right)$	$1,2,6^{2}, 11^{3}, 12^{6}, 16^{12}, 17^{4}, \ldots$
$\left(4^{5}\right)$	$1,5^{2}, 6,10^{6}, 11^{3}, 15^{15}, 16^{2}, 17^{4}, \ldots$
$\left(6^{4}\right)$	$1,2,4^{2}, 6,7^{2}, 8^{3}, 9^{2}, 10^{6}, 12^{11}, \ldots$
$\left(4^{6}\right)$	$1,2,3,5,6^{4}, 7^{2}, 8,9^{8}, 10^{3}, 11^{5}, 12^{15}, \ldots$

Perfect colouring of (4^{5}) with five colours (R. Lück, Stuttgart):

Perfect colouring of $\left(4^{5}\right)$ with 25 colours (R. Lück, Stuttgart):

How to obtain these values?
The (full) symmetry group of a regular tiling $\left(p^{q}\right)$ is a Coxeter group:

$$
G_{p, q}=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=(a b)^{p}=(a c)^{2}=(b c)^{q}=\mathrm{id}\right\rangle
$$

Dirk Frettlöh
Counting colour symmetries of regular tilings

Left coset colouring of $\left(p^{q}\right)$:
Let F be the fundamental triangle.

- Choose a subgroup S of $G_{p, q}$ such that $a, b \in S$
- Assign colour 1 to each $f F(f \in S)$
- Analoguosly, assign colour i to the i-th coset S_{i} of S

Yields a colouring with $\left[G_{p, q}: S\right]$ colours.

How to count perfect colourings now?

- Show that each of these colourings is perfect (simple)
- Show that each perfect colouring is obtained in this way
- Count subgroups of index k in $G_{p, q}$ (hard)

Using GAP yields the tables above.
Since GAP identifies subgroups if they are conjugate, we obtain indeed all different colourings.

In a similar way one can count chirally perfect colourings.

- Consider the rotation group $\bar{G}_{p, q}=\langle a b, a c\rangle_{G_{p, q}}$.
- Use left coset colouring in $\bar{G}_{p, q}$.
- Check for conjugacy in $G_{p, q}$.

The last step requires some programming in GAP.

Conclusion

We've seen a method to count perfect colourings of regular tilings. What next?

- Algebraic properties of S. For instance, some S are generated by three generators, some S require four generators.
- Algebraic properties of the induced permutation group P. For a start, P acts transitively on the colours. Which P can arise in this way? Can we obtain a symmetric group?

