Highly symmetric fundamental domains for lattices

Dirk Frettlöh

Fakultt für Mathematik (SFB 701) Universität Bielefeld

DMV Jahrestagung 2010 in München Minisymposium Diskrete Geometrie

(4 回 ト イヨト イヨト

Point lattice Γ in \mathbb{R}^d : the \mathbb{Z} -span of *d* linearly independent vectors.

Fundamental cell of Γ : \mathbb{R}^d/Γ .

Э

Point lattice Γ in \mathbb{R}^d : the \mathbb{Z} -span of d linearly independent vectors.

Fundamental cell of Γ : \mathbb{R}^d/Γ .

Point group $P(\Gamma)$ of Γ : All linear isometries f with $f(\Gamma) = \Gamma$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Э

Trivially, each lattice Γ has a fundamental cell which symmetry group is $P(\Gamma)$.

For instance, take the Voronoi cell of a lattice point x. (That is the set of points closer to x than to each other lattice point.)

Theorem (Elser, Fr.)

Let $\Gamma \subset \mathbb{R}^2$ be a lattice, but not a rhombic lattice. Then there is a fundamental cell F of Γ which symmetry group is strictly larger than $P(\Gamma)$: $[S(F) : P(\Gamma)] = 2$.

'Rhombic lattice' means here: one with basis vectors of equal length, but neither square lattice nor hexagonal lattice.

向下 イヨト イヨト

Generic lattice:

< □ > < □ > < □ > < □ > < □ > < □ > = □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □

Generic lattice:

・ロト ・回ト ・ヨト ・ヨト ・ヨ

Square lattice (Veit Elser):

(日) (四) (王) (王)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

・ロン ・四シ ・ヨン ・ヨン 三日

・ロン ・四 と ・ ヨン ・ ヨン

12

Hexagonal lattice (Elser-Cockayne, Baake-Klitzing-Schlottmann):

Rectangular lattice

イロト イヨト イヨト

Э

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへで

Consider the square lattice \mathbb{Z}^2 , and $R_{45}\mathbb{Z}^2$, the square lattice rotated by 45°.

Problem: Find a perfect matching between \mathbb{Z}^2 and $R_{45}\mathbb{Z}^2$ with maximal distance not larger than C > 0. How small can C be?

向下 イヨト イヨト

Consider the square lattice \mathbb{Z}^2 , and $R_{45}\mathbb{Z}^2$, the square lattice rotated by 45°.

Problem: Find a perfect matching between \mathbb{Z}^2 and $R_{45}\mathbb{Z}^2$ with maximal distance not larger than C > 0. How small can C be?

That is, find $f: \mathbb{Z}^2 \to R_{45}\mathbb{Z}^2$, where f is bijective and

$$\forall x \in \mathbb{Z}^2$$
: $d(x, f(x)) \leq C$

for C as small as possible.

(It is easy to see that $C \geq \frac{\sqrt{2}}{2} = 0.7071....$)

Dirk Frettlöh Highly symmetric fundamental domains for lattices

Highly symmetric fundamental domains for lattices

Dirk Frettlöh Highly symmetric fundamental domains for lattices

Naively: difficult.

Using the 8-fold fundamental domain F yields a matching with C=0.92387....

How?

3

Naively: difficult.

Using the 8-fold fundamental domain F yields a matching with C = 0.92387...

How?

- Consider Z² + F. Each x + F (x ∈ Z²) contains exactly one point of Z² in its centre.
- F is also fundamental domain for R₄₅Z². Thus each x + F (x ∈ Z²) contains exactly one point x' ∈ R₄₅Z².

• Let
$$f(x) = x'$$
.

向下 イヨト イヨト

This (and its analogues) yields good matchings for

- \triangleright \mathbb{Z}^2 and $R_{45}\mathbb{Z}^2$: C = 0.92387....
- The hexagonal lattice H and $R_{30}H$: C = 0.78867...
- A rectangular lattice P and $R_{90}P$: $C \leq \frac{1}{\sqrt{2}} \frac{\sqrt{5}+1}{2}b$.

Here, b is the length of the longer lattice basis vector of P.

- Rhombic lattices
- Higher dimensions
- ► IFS: Not even known for Elser's example
- Dimension of the boundary

- 4 回 ト - 4 回 ト

Э

1