Highly symmetric fundamental domains for lattices

Dirk Frettlöh

Fakultẗ für Mathematik (SFB 701)
Universität Bielefeld

DMV Jahrestagung 2010 in München Minisymposium Diskrete Geometrie

Point lattice Γ in \mathbb{R}^{d} : the \mathbb{Z}-span of d linearly independent vectors.
Fundamental cell of $\Gamma: \mathbb{R}^{d} / \Gamma$.

Point lattice Γ in \mathbb{R}^{d} : the \mathbb{Z}-span of d linearly independent vectors.
Fundamental cell of $\Gamma: \mathbb{R}^{d} / \Gamma$.

Point group $P(\Gamma)$ of Γ : All linear isometries f with $f(\Gamma)=\Gamma$.

Trivially, each lattice Γ has a fundamental cell which symmetry group is $P(\Gamma)$.

For instance, take the Voronoi cell of a lattice point x. (That is the set of points closer to x than to each other lattice point.)

Main result

Theorem (Elser, Fr.)

Let $\Gamma \subset \mathbb{R}^{2}$ be a lattice, but not a rhombic lattice. Then there is a fundamental cell F of Γ which symmetry group is strictly larger than $P(\Gamma): \quad[S(F): P(\Gamma)]=2$.
'Rhombic lattice' means here: one with basis vectors of equal length, but neither square lattice nor hexagonal lattice.

Generic lattice:

Generic lattice:

Square lattice (Veit Elser):

Dirk Frettlöh
Highly symmetric fundamental domains for lattices

Dirk Frettlöh
Highly symmetric fundamental domains for lattices

Hexagonal lattice (Elser-Cockayne, Baake-Klitzing-Schlottmann):

Rectangular lattice

Application: Minimal matchings

Consider the square lattice \mathbb{Z}^{2}, and $R_{45} \mathbb{Z}^{2}$, the square lattice rotated by 45°.

Problem: Find a perfect matching between \mathbb{Z}^{2} and $R_{45} \mathbb{Z}^{2}$ with maximal distance not larger than $C>0$. How small can C be?

Application: Minimal matchings

Consider the square lattice \mathbb{Z}^{2}, and $R_{45} \mathbb{Z}^{2}$, the square lattice rotated by 45°.

Problem: Find a perfect matching between \mathbb{Z}^{2} and $R_{45} \mathbb{Z}^{2}$ with maximal distance not larger than $C>0$. How small can C be?

That is, find $f: \mathbb{Z}^{2} \rightarrow R_{45} \mathbb{Z}^{2}$, where f is bijective and

$$
\forall x \in \mathbb{Z}^{2}: \quad d(x, f(x)) \leq C
$$

for C as small as possible.
(It is easy to see that $C \geq \frac{\sqrt{2}}{2}=0.7071 \ldots$.)
-
\bullet
-

$$
0^{\circ}
$$

8
-

\bigcirc

○

\bigcirc

- 0

∞
- -

-

-
\bigcirc

$$
\bullet \bullet
$$

- -
- ? 0
- -
-
-

-

-

\bigcirc

\bigcirc

 $?$

Naively: difficult.
Using the 8-fold fundamental domain F yields a matching with $C=0.92387 \ldots$.

How?

Naively: difficult.
Using the 8-fold fundamental domain F yields a matching with $C=0.92387 \ldots$...

How?

- Consider $\mathbb{Z}^{2}+F$. Each $x+F\left(x \in \mathbb{Z}^{2}\right)$ contains exactly one point of \mathbb{Z}^{2} in its centre.
- F is also fundamental domain for $R_{45} \mathbb{Z}^{2}$. Thus each $x+F$ $\left(x \in \mathbb{Z}^{2}\right)$ contains exactly one point $x^{\prime} \in R_{45} \mathbb{Z}^{2}$.
- Let $f(x)=x^{\prime}$.

This (and its analogues) yields good matchings for

- \mathbb{Z}^{2} and $R_{45} \mathbb{Z}^{2}$:

$$
C=0.92387 \ldots
$$

- The hexagonal lattice H and $R_{30} H: \quad C=0.78867 \ldots$
- A rectangular lattice P and $R_{90} P: \quad C \leq \frac{1}{\sqrt{2}} \frac{\sqrt{5}+1}{2} b$.

Here, b is the length of the longer lattice basis vector of P.

What next?

- Rhombic lattices
- Higher dimensions
- IFS: Not even known for Elser's example
- Dimension of the boundary

