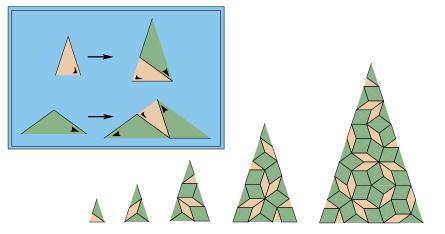
Introduction to the Mathematics of Quasiperiodic Structures

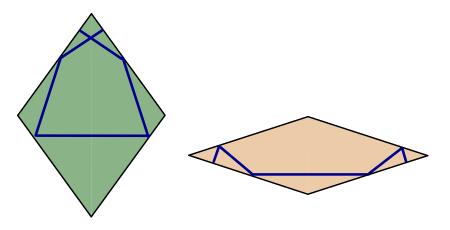
Dirk Frettlöh

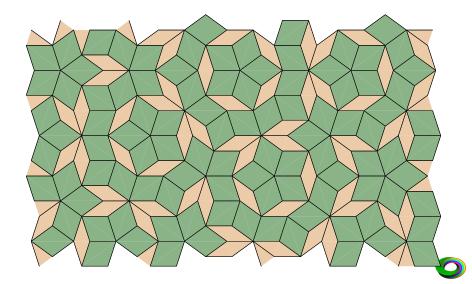
Universität Bielefeld, SFB 701

Hamburg 12. November 2007

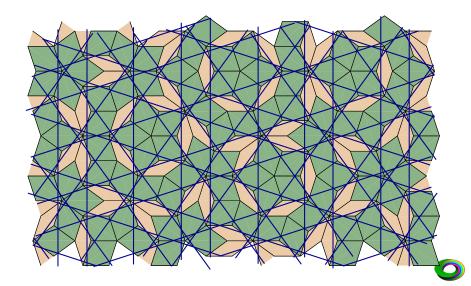
- 1. Examples
- 2. Diffraction
- 3. Cut-and-project method

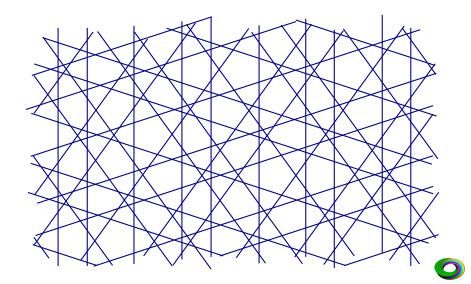






Dirk Frettlöh Introduction to the Mathematics of Quasiperiodic Structures





For more on the Penrose tiling, read chapter 10 in

Grünbaum, Shephard: Tilings and Patterns

For more examples & facts, visit the Tilings Encyclopedia

tilings.math.uni-bielefeld.de

2 Diffraction

Mathematical description:

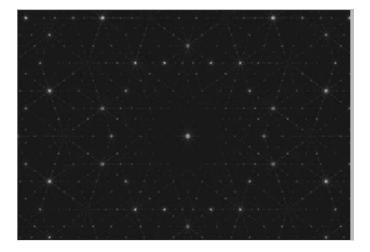
- Tiling \rightsquigarrow discrete point set Λ .
- Autocorrelation $\gamma_{\Lambda} = \lim_{r \to \infty} \frac{1}{\operatorname{vol} B_r} \sum_{x, y \in \Lambda \cap B_r} \delta_{x-y}.$

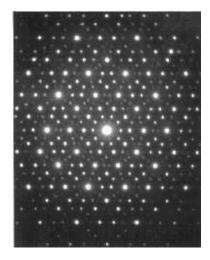
▶ Fouriertransform $\widehat{\gamma}_{\Lambda}$ of the autocorrelation is the diffraction spectrum.

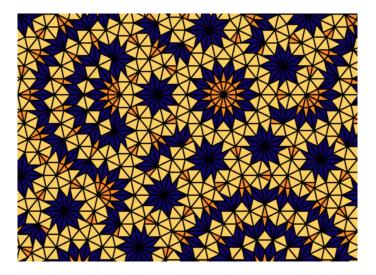
Since $\widehat{\gamma} := \widehat{\gamma}_{\Lambda}$ is again a measure, it decomposes into three parts:

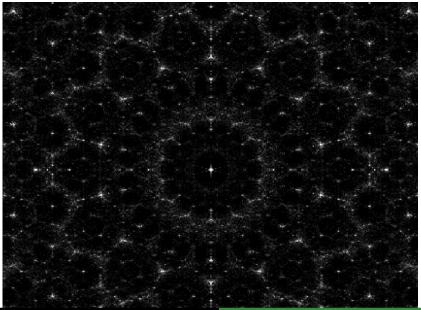
$$\widehat{\gamma} = \widehat{\gamma}_{pp} + \widehat{\gamma}_{sc} + \widehat{\gamma}_{ac}$$

(pp: pure point, ac: absolutely continuous, sc: singular continuous)









Dirk Frettlöh

Introduction to the Mathematics of Quasiperiodic Structures

0

For crystals:

$$\widehat{\gamma} = \widehat{\gamma}_{pp} + \widehat{\gamma}_{sc} + \widehat{\gamma}_{ac}$$

For crystals: Λ is a lattice.

$$\gamma = \sum_{x \in \Lambda} \delta_x$$

By Poisson's summation formula:

$$\widehat{\gamma} = \mathsf{dens}(\Lambda) \sum_{x \in \Lambda^*} \delta_x = \widehat{\gamma}_{pp}$$

(where Λ^* is the *dual* lattice: $\Lambda^* = \{z \mid \forall x \in \Lambda : z.x \in \mathbb{Z}\}.$)

Thus (ideal, infinite, perfect) crystals have pure point diffraction.

$$\widehat{\gamma} = \widehat{\gamma}_{pp} + \widehat{\gamma}_{sc} + \widehat{\gamma}_{ac}$$

An ideal (mathematical, infinite) quasicrystal has also pure point diffraction:

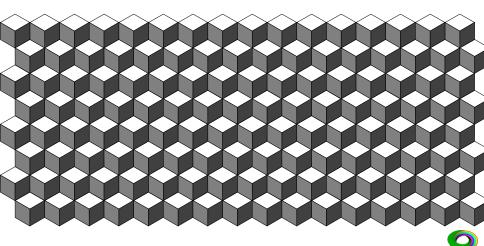
$$\widehat{\gamma} = \widehat{\gamma}_{pp}$$

E.g., for the Penrose pattern, we know everything about its diffraction: intensities and positions of the Bragg peaks.

Also for other examples, with 8-fold, 12-fold or icosahedral symmetry.

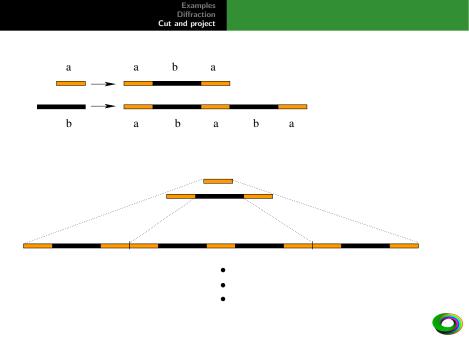
In contrast, for several patterns we know very few about their diffraction.

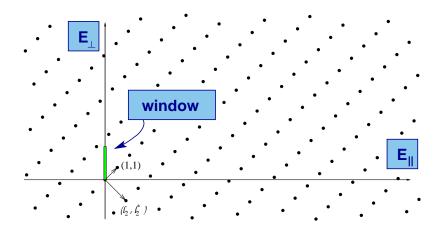
3 Cut and project method

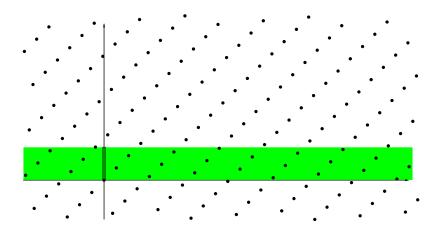


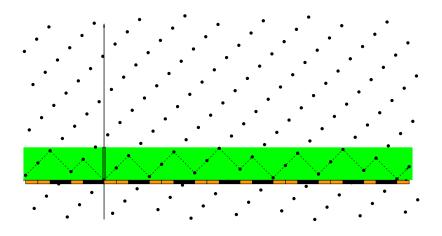
3 Cut and project method

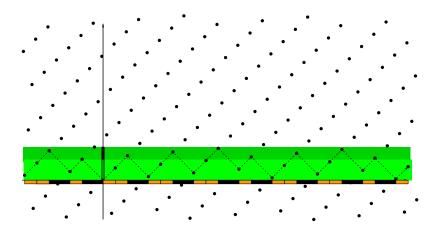
First in dimension 1.











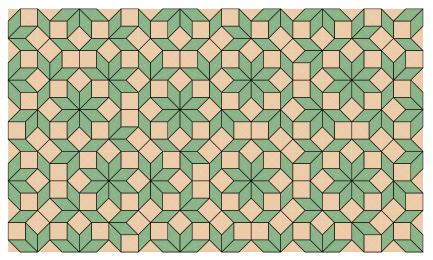
We know:

Theorem (Hof 95, Schlottmann 2000)

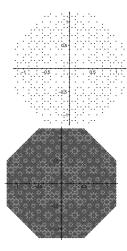
Each cut-and-project pattern, with compact & regular window, is pure point diffractive.

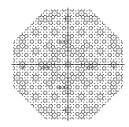
Cut and project for 2dim patterns:

The Ammann Beenker tiling is obtained by projection from \mathbb{R}^4 . The window is a regular octagon.

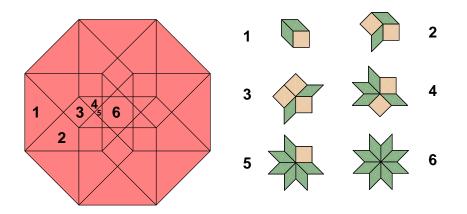


	٠	•		•	•	•		•	•		•	•	•		•	•		•	•		•	•	•		•	•		•	•
٠			٠	٠		٠	٠			•	٠		•	•			•	٠		٠	٠	•	٠	•			•	٠	
•		•	•	•		•	٠	•		•	•		•	•		•	•	•		•	٠		•	٠	•		٠	•	
	•	•		•	•	•		•	•		•	•	•		•	•		•	•		•	•	•		•	•		•	•
•	٠	•	٠	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•		•	•	•
•		•	•	•		•	•	•		•	•		•	•		•	•	•		•	•		•	•	•		•	•	
	•	•			٠		•	•	•	•		٠	•		•	•		•	•		•	٠	•	•	•	٠	•		•
	٠	•		•	•	•		•	•		•	٠	٠		•	•		•	•		•	•	•		•	٠		•	•
•	•	• .	-	٠		•	٠			•	•		•	•		•	•	•	•	•	•	•	•	•	•		٠	•	
•		•	•	•		•	•	٠		•	•		•	•		•	•	•		•	•		•	•	٠		•	٠	
	٠																												
		•		٠	•	٠		•	٠		٠	٠	•		•	٠		•	•		•	•	•		•	٠		•	-
•	•		•	•																•			•	•	•	•	•	•	•
•	•	٠	•		•	•	•		•	•	•	•		•	•	•	•	•			•		•		•		•		•
•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•		•		
•		•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•		•	•	• • •	•	•	•	• •	•	•	•	•	• • •		• •	•	•	•••	•	•	•	•	•	•	•	•	•	•	•
•		•	•	• • •	•	•	• • •	• • •	•	•	• • •	•	• • •	•	•	•	•	••••••	•	•	•	•	•	•	•	•	•	•	•



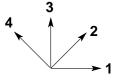


[picture removed]



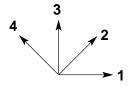
d С e b а

Examples Diffraction Cut and project

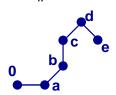


a: (1,0,0,0)

- b: (1,1,0,0)
- c: (1,1,1,0)
- d: (1,2,1,0)
- e: (1,2,1,-1)

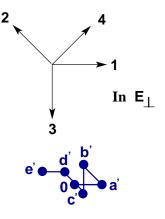


In E_{||}



- a: (1,0,0,0)
- b: (1,1,0,0)
- c: (1,1,1,0)
- d: (1,2,1,0)

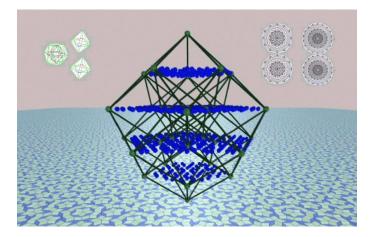
e: (1,2,1,-1)



For the Penrose pattern: slightly more complicated.

One *can* obtain it by projection from \mathbb{R}^4 , but this requires some further techniques.

One obtains it by projection from \mathbb{R}^5 more easily.

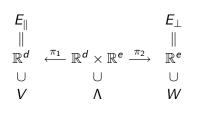


Conclusion

The cut-and-project method is useful.

- To prove pure point diffractivity
- To determine quantities, e.g. intensities of Bragg peaks, density of points etc.
- More general, it is a powerful tool to analyze quasiperiodic structures.

Thank you.



- Λ a *lattice* in $\mathbb{R}^d \times \mathbb{R}^e$
- π_1, π_2 projections
 - $\pi_1|_{\Lambda}$ injective
 - $\pi_2(\Lambda)$ dense
- ► The window W compact
 - cl(int(W)) = W
 - $\mu(\partial(W)) = 0$

Then $V = \{\pi_1(x) | x \in \Lambda, \pi_2(x) \in W\}$ is a (regular) model set.

The star map :
$$\star : \pi_1(\Lambda) \to \mathbb{R}^e, \ x^{\star} = \pi_2 \circ {\pi_1}^{-1}(x)$$

Given a substitution tiling which is a cut-and-project tiling:

Tiling \rightsquigarrow point set V; $\overline{V^{\star}} = W$ which is the *window*.

