About duality of cut-and-project tilings.

Dirk Frettlöh

University of Bielefeld
Bielefeld, Germany

Special Session on Computational and Combinatorial Aspects
of Tiling and Substitutions
2007 AMS Spring Southeastern Section Meeting
Davidson, NC
March 3-4

$\square \rightarrow \square$

Dual substitution

Notions of duality in dim 1

- Natural decomposition method
- Inverse substitution
- Galois-dual (star-dual)
- Dual maps of substitutions

Inverse substitution

For $d=1$, two letters:
View the substitution σ as an endomorphism of the free group F_{2} on 2 letters.

Inverse substitution

For $d=1$, two letters:
View the substitution σ as andomorphism of the free group F_{2} on 2 letters.

$$
\text { Ex.: } \quad \sigma(a)=a b a, \quad \sigma(b)=a b a b a
$$

If $\sigma \in \operatorname{Aut}\left(F_{2}\right)$ then σ^{-1} defines another substitution.

In this case, essentially the same substitution.
(up to an (outer) automorphism $\tau: a \rightarrow a, b \rightarrow b^{-1}$)

Inverse substitution

For $d=1$, two letters:
View the substitution σ as andomorphism of the free group F_{2} on 2 letters.

$$
\text { Ex.: } \quad \sigma(a)=a b a, \quad \sigma(b)=a b a b a .
$$

If $\sigma \in \operatorname{Aut}\left(F_{2}\right)$ then σ^{-1} defines another substitution.

$$
\text { Ex. cont.: } \sigma^{-1}(a)=a b^{-1} a, \quad \sigma^{-1}\left(b^{-1}\right)=a b^{-1} a b^{-1} a .
$$

In this case, essentially the same substitution.
(up to an (outer) automorphism $\tau: a \rightarrow a, b \rightarrow b^{-1}$)

Galois-dual

Consider a tile-substitution ($d=1,2$ tiles):

- prototiles T_{1}, T_{2} intervals,
- $\lambda>1$ the inflation factor,
- $\mathcal{D}_{j i}(1 \leq i, j \leq 2)$ digit sets (set of translation vectors)
such that

$$
\begin{aligned}
& \lambda T_{1}=T_{1}+\mathcal{D}_{11} \cup T_{2}+\mathcal{D}_{21} \\
& \lambda T_{2}=T_{1}+\mathcal{D}_{12} \cup T_{2}+\mathcal{D}_{22}
\end{aligned}
$$

(non-overlapping)
This yields a selfsimilar tile-substitution
$\sigma\left(T_{i}\right)=\left\{T_{j}+\mathcal{D}_{j i} \mid j=1,2\right\}$.

Galois-dual

Consider a tile-substitution ($d=1,2$ tiles):

- prototiles T_{1}, T_{2} intervals,
- $\lambda>1$ the inflation factor,
- $\mathcal{D}_{j i}(1 \leq i, j \leq 2)$ digit sets (set of translation vectors)
such that

$$
\begin{aligned}
& \lambda T_{1}=T_{1}+\mathcal{D}_{11} \cup T_{2}+\mathcal{D}_{21} \\
& \lambda T_{2}=T_{1}+\mathcal{D}_{12} \cup T_{2}+\mathcal{D}_{22}
\end{aligned}
$$

(non-overlapping). This yields a selfsimilar tile-substitution

$$
\sigma\left(T_{i}\right)=\left\{T_{j}+\mathcal{D}_{j i} \mid j=1,2\right\}
$$

Galois-dual

$S=\left(\left|\mathcal{D}_{j i}\right|\right)_{1 \leq i, j \leq m}$ is the substitution matrix ($=$ 'incidence matrix').
The Perron-Frobenius eigenvector of S is the inflation factor λ.
For simplicity, let $\operatorname{det}(S)=1$. Then, the inflation factor λ is a quadratic algebraic integer.
Let $\nu=\lambda^{-1}$, its algebraic conjugate.
Let all vertices, maps... be expressed in $\mathbb{Z}[\lambda]$

Galois-dual

$S=\left(\left|\mathcal{D}_{j i}\right|\right)_{1 \leq i, j \leq m}$ is the substitution matrix ($=$ 'incidence matrix').
The Perron-Frobenius eigenvector of S is the inflation factor λ.
For simplicity, let $\operatorname{det}(S)=1$. Then, the inflation factor λ is a quadratic algebraic integer.
Let $\nu=\lambda^{-1}$, its algebraic conjugate.
Let all vertices, maps... be expressed in $\mathbb{Z}[\lambda]$.

Let all vertices, maps... be expressed in $\mathbb{Z}[\lambda]$.
For $x=a+b \lambda \in \mathbb{Z}[\lambda]$, let $x^{*}:=a+b \nu$.

$$
\begin{aligned}
& \lambda T_{1}^{*}=T_{1}^{*}+\mathcal{D}_{11}^{*} \cup T_{2}^{*}+\mathcal{D}_{12}^{*} \\
& \lambda T_{2}^{*}=T_{1}^{*}+\mathcal{D}_{21}^{*} \cup T_{2}^{*}+\mathcal{D}_{22}^{*}
\end{aligned}
$$

defines the Galois-dual substitution

$$
\sigma^{*}\left(T_{i}^{*}\right)=\left\{T_{j}^{*}+\mathcal{D}_{i j}^{*} \mid j=1,2\right\} .
$$

(The T_{i}^{*} arise from the corresponding IFS)

Let all vertices, maps... be expressed in $\mathbb{Z}[\lambda]$.
For $x=a+b \lambda \in \mathbb{Z}[\lambda]$, let $x^{*}:=a+b \nu$.

$$
\begin{aligned}
& \lambda T_{1}^{*}=T_{1}^{*}+\mathcal{D}_{11}^{*} \cup T_{2}^{*}+\mathcal{D}_{12}^{*} \\
& \lambda T_{2}^{*}=T_{1}^{*}+\mathcal{D}_{21}^{*} \cup T_{2}^{*}+\mathcal{D}_{22}^{*}
\end{aligned}
$$

defines the Galois-dual substitution

$$
\sigma^{*}\left(T_{i}^{*}\right)=\left\{T_{j}^{*}+\mathcal{D}_{i j}^{*} \mid j=1,2\right\}
$$

(The T_{i}^{*} arise from the corresponding IFS)

Dual maps of substitutions

Realize a sequence ababaaba as a path in \mathbb{Z}^{2}.

Define the space \mathcal{G}_{1} of all formal (finite) sums

$$
\sum_{k} n_{k}\left(x_{k}, i_{k}\right), \quad\left(n_{k} \in \mathbb{Z}, x_{k} \in \mathbb{Z}^{2}, i_{k}=1,2\right)
$$

where (x, i) represents a path from x to $x+e_{i}$.
Here, a substitution reads

$$
\begin{aligned}
E_{1}(\sigma):(0,1) \mapsto & (0,1)+\left(e_{1}, 2\right)+\left(e_{1}+e_{2}, 1\right) \\
(0,2) \mapsto & (0,1)+\left(e_{1}, 2\right)+\left(e_{1}+e_{2}, 1\right) \\
& +\left(2 e_{1}+e_{2}, 2\right)+\left(2 e_{1}+2 e_{2}, 1\right)
\end{aligned}
$$

Define the space \mathcal{G}_{1} of all formal (finite) sums

$$
\sum_{k} n_{k}\left(x_{k}, i_{k}\right), \quad\left(n_{k} \in \mathbb{Z}, x_{k} \in \mathbb{Z}^{2}, i_{k}=1,2\right)
$$

where (x, i) represents a path from x to $x+e_{i}$.
Here, a substitution reads

$$
\begin{aligned}
E_{1}(\sigma):(0,1) \mapsto & (0,1)+\left(e_{1}, 2\right)+\left(e_{1}+e_{2}, 1\right) \\
(0,2) \mapsto & (0,1)+\left(e_{1}, 2\right)+\left(e_{1}+e_{2}, 1\right) \\
& +\left(2 e_{1}+e_{2}, 2\right)+\left(2 e_{1}+2 e_{2}, 1\right)
\end{aligned}
$$

$$
\begin{aligned}
& E_{1}(\sigma):(0,1) \mapsto(0,1)+\left(e_{1}, 2\right)+\left(e_{1}+e_{2}, 1\right) \\
&(0,2) \mapsto(0,1)+\left(e_{1}, 2\right)+\left(e_{1}+e_{2}, 1\right) \\
&+\left(2 e_{1}+e_{2}, 2\right)+\left(2 e_{1}+2 e_{2}, 1\right) \\
& \xrightarrow{1} \longrightarrow \xrightarrow[\mid ~]{\text { l }} \xrightarrow{1}
\end{aligned}
$$

The dual $E_{1}^{*}(\sigma)$ is defined on the dual space \mathcal{G}_{1}^{*} of \mathcal{G}_{1}. Here: $\mathcal{G}_{1}^{*} \cong \mathcal{G}_{1}$.

letter in $\sigma(i), f$ abelianization map of $\{a, b\}$.

The dual $E_{1}^{*}(\sigma)$ is defined on the dual space \mathcal{G}_{1}^{*} of \mathcal{G}_{1}. Here: $\mathcal{G}_{1}^{*} \cong \mathcal{G}_{1}$.

As usual, $\langle v, \phi\rangle=\phi(v)$ for $v \in \mathcal{G}_{1}, \phi \in \mathcal{G}_{1}^{*}$.
Then $E_{1}^{*}(\sigma)$ is defined by $\left\langle v, E_{1}^{*}(\sigma) \phi\right\rangle=\left\langle E_{1}(\sigma) v, \phi\right\rangle$.

Explicit formula, here:

(S the substitution matrix, $P_{n}^{(i)}\left(W_{n}^{(i)}\right)$ prefix (type) of the n-th
letter in $\sigma(i), f$ abelianization man of $\{a, b\}$.)

The dual $E_{1}^{*}(\sigma)$ is defined on the dual space \mathcal{G}_{1}^{*} of \mathcal{G}_{1}.
Here: $\mathcal{G}_{1}^{*} \cong \mathcal{G}_{1}$.
As usual, $\langle v, \phi\rangle=\phi(v)$ for $v \in \mathcal{G}_{1}, \phi \in \mathcal{G}_{1}^{*}$.
Then $E_{1}^{*}(\sigma)$ is defined by $\left\langle v, E_{1}^{*}(\sigma) \phi\right\rangle=\left\langle E_{1}(\sigma) v, \phi\right\rangle$.
Explicit formula, here:

$$
E_{1}^{*}(\sigma)\left(x, i^{*}\right)=\sum_{n, j: W_{n}^{(j)}=i}\left(S^{-1}\left(x-f P_{n}^{(j)}\right), j^{*}\right)
$$

(S the substitution matrix, $P_{n}^{(i)}\left(W_{n}^{(i)}\right)$ prefix (type) of the n-th letter in $\sigma(i), f$ abelianization map of $\{a, b\}$.)

Ex. (cont.)

$$
\begin{aligned}
E_{1}^{*}(\sigma):\left(0,1^{*}\right) \mapsto & \left(0,1^{*}\right)+\left(e_{1}-e_{2}, 1^{*}\right)+\left(0,2^{*}\right) \\
& +\left(e_{1}-e_{2}, 2^{*}\right)+\left(2 e_{1}-2 e_{2}, 2^{*}\right) \\
\left(0,2^{*}\right) \mapsto & \left(0,1^{*}\right)+\left(0,2^{*}\right)+\left(e_{1}-e_{2}, 2^{*}\right)
\end{aligned} \quad \begin{aligned}
\xrightarrow[2^{*}]{2^{*}} \\
2_{2}^{*}
\end{aligned}
$$

(now, $\left(x, i^{*}\right)$ represents a path from $x+e_{i}$ to $\left.x+e_{i}+e_{i}^{*}\right)$.

Notions of duality in dim 1

- Natural decomposition method
- Inverse substitution
- Galois-dual (star-dual)
- Dual maps of substitutions

All notions are equivalent in dim 1
w.r.t. the tilings they define.
(Inverse subtitution: two letters only)

Notions of duality in dim >1

- Natural decomposition method, problem: vertices vs tiles
- Control points
- Vertex star type
- Generic direction
- Inverse substitution
- Galois-dual (star-dual)
- Dual maps of substitutions

In $\operatorname{dim} 1$ it is clear how to identify tiles and vertices:

In $\operatorname{dim}>1$ not.

Both dual tilings are not Ammann-Beenker tilings.
Not even MLD to them. (Why? Fractal windows)

On the other hand, the Galois dual of the Ammann-Beenker tiling is MLD to Ammann-Beenker:

- Λ a lattice in $\mathbb{R}^{d} \times H$ (i.e. cocompact discrete subgroup)

- π_{1}, π_{2} projections
- $\pi_{1} \mid \wedge$ injective
- $\pi_{2}(\Lambda)$ dense
- W compact
- $\operatorname{cl}(\operatorname{int}(W))=W$
- $\mu(\partial(W))=0$

Then $V=\left\{\pi_{1}(x) \mid x \in \Lambda, \pi_{2}(x) \in W\right\}$ is a (regular) model set.

The star map: $\quad \star: \pi_{1}(\Lambda) \rightarrow \mathbb{R}^{e}, x^{\star}=\pi_{2} \circ \pi_{1}{ }^{-1}(x)$

Given a substitution tiling which is a cut-and-project tiling:

Tiling \sim point set $V ; \overline{V^{\star}}=W$
(the window or Rauzy fractal).

From the substitution:

$$
\lambda T_{i}=\bigcup_{j=1}^{m} T_{j}+\mathcal{D}_{j i}
$$

one obtains an IFS:

$$
T_{i}=\bigcup_{j=1}^{m} \lambda^{-1}\left(T_{j}+\mathcal{D}_{j i}\right)
$$

The unique compact nonempty solution: the prototiles.

From the substitution:

$$
\lambda T_{i}=\bigcup_{j=1}^{m} T_{j}+\mathcal{D}_{j i}
$$

one obtains an IFS:

$$
T_{i}=\bigcup_{j=1}^{m} \lambda^{-1}\left(T_{j}+\mathcal{D}_{j i}\right)
$$

The unique compact nonempty solution: the prototiles.
And...
...from the substitution:

$$
\lambda T_{i}=\bigcup_{j=1}^{m} T_{j}+\mathcal{D}_{j i}
$$

one obtains an expanding IFS:

$$
V_{j}=\bigcup_{i=1}^{m} \lambda V_{i}-\mathcal{D}_{i j}
$$

A - non-unique - solution: A tupel of point sets $\left(V_{1}, V_{2}, \ldots V_{m}\right)$,

...from the substitution:

$$
\lambda T_{i}=\bigcup_{j=1}^{m} T_{j}+\mathcal{D}_{j i}
$$

one obtains an expanding IFS:

$$
V_{j}=\bigcup_{i=1}^{m} \lambda V_{i}-\mathcal{D}_{i j}
$$

A - non-unique - solution: A tupel of point sets $\left(V_{1}, V_{2}, \ldots V_{m}\right)$, such that

$$
\bigcup_{i=1}^{m} T_{i}+V_{i}
$$

is the substitution tiling.

$$
\begin{array}{lll}
T_{i}=\bigcup_{j=1}^{m} \lambda^{-1}\left(T_{j}+\mathcal{D}_{j i}\right) & \text { (1) } & T_{i}^{\star}=\bigcup_{j=1}^{m}\left(\lambda^{-1}\right)^{\star}\left(T_{j}^{\star}+\mathcal{D}_{j i}^{\star}\right) \\
V_{j}=\bigcup_{i=1}^{m} \lambda V_{i}-\mathcal{D}_{i j} & \text { (2) } & V_{j}^{\star}=\bigcup_{i=1}^{m} \lambda^{\star} V_{i}^{\star}-\mathcal{D}_{i j}^{\star}
\end{array}
$$

(1) and (4): IFS with unique solutions.
(1): the prototiles of the original tiling.
(4): the window, and the prototiles of the dual tiling.
(2) and (3): Discrete point sets, MLD to the original (2) and the dual (3) tiling.

$$
\begin{array}{lll}
T_{i}=\bigcup_{j=1}^{m} \lambda^{-1}\left(T_{j}+\mathcal{D}_{j i}\right) & \text { (1) } & T_{i}^{\star}=\bigcup_{j=1}^{m}\left(\lambda^{-1}\right)^{\star}\left(T_{j}^{\star}+\mathcal{D}_{j i}^{\star}\right) \\
V_{j}=\bigcup_{i=1}^{m} \lambda V_{i}-\mathcal{D}_{i j} & \text { (2) } & V_{j}^{\star}=\bigcup_{i=1}^{m} \lambda^{\star} V_{i}^{\star}-\mathcal{D}_{i j}^{\star}
\end{array}
$$

(1) and (4): IFS with unique solutions.
(1): the prototiles of the original tiling.
(4): the window, and the prototiles of the dual tiling.
(2) and (3): Discrete point sets, MLD to the original (2) and the dual (3) tiling.

How does the star-map act:
If the inflation factor λ is an algebraic unit, then

$$
\lambda^{\star}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right)
$$

where λ_{i} are the algebraic conjugates of λ.
If the inflation factor λ is an integer, then
($\mathbb{Z}_{p} p$-adic integers)

How does the star-map act:
If the inflation factor λ is an algebraic unit, then

$$
\lambda^{\star}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right)
$$

where λ_{i} are the algebraic conjugates of λ.
If the inflation factor λ is an integer, then

$$
\star: \mathbb{Z}^{d} \rightarrow\left(\mathbb{Z}_{p}\right)^{d}, \quad x^{\star}=x
$$

($\mathbb{Z}_{p} p$-adic integers)

Ex.: Halfhex tiling and its dual

Conclusion:

- In dim 1, most concepts of 'dual substitution tiling' are equivalent.
- In $\operatorname{dim}>1$, concepts diverge. In particular, there is no satisfying concept of the natural decomposition method.

Star-duality provides a framework for higher dimensions, for
non-Euclidean settings, allows algebraic description to
compute and to prove stuff.

Conclusion:

- In dim 1, most concepts of 'dual substitution tiling' are equivalent.
- In $\operatorname{dim}>1$, concepts diverge. In particular, there is no satisfying concept of the natural decomposition method.
- Star-duality provides a framework for higher dimensions, for non-Euclidean settings, allows algebraic description to compute and to prove stuff.

