About duality of cut-and-project tilings.

Dirk Frettlöh

University of Bielefeld Bielefeld, Germany

Special Session on Computational and Combinatorial Aspects of Tiling and Substitutions 2007 AMS Spring Southeastern Section Meeting Davidson, NC March 3-4

Inverse substitution Star-dual substitution

Notions of duality in dim 1

- Natural decomposition method
- Inverse substitution
- Galois-dual (star-dual)
- Dual maps of substitutions

Inverse substitution

For d = 1, two letters:

View the substitution σ as an endomorphism of the free group F_2 on 2 letters.

Ex.: $\sigma(a) = aba, \quad \sigma(b) = ababa.$

If $\sigma \in Aut(F_2)$ then σ^{-1} defines another substitution.

Ex. cont.: $\sigma^{-1}(a) = ab^{-1}a, \quad \sigma^{-1}(b^{-1}) = ab^{-1}ab^{-1}a.$

In this case, essentially the same substitution.

(up to an (outer) automorphism $au: a \to a, b \to b^{-1}$)

Inverse substitution

For d = 1, two letters:

View the substitution σ as an endomorphism of the free group F_2 on 2 letters.

$$\underline{\mathsf{Ex.:}} \quad \sigma(\mathbf{a}) = \mathbf{a}\mathbf{b}\mathbf{a}, \quad \sigma(\mathbf{b}) = \mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}.$$

If $\sigma \in Aut(F_2)$ then σ^{-1} defines another substitution.

Ex. cont.: $\sigma^{-1}(a) = ab^{-1}a$, $\sigma^{-1}(b^{-1}) = ab^{-1}ab^{-1}a$.

In this case, essentially the same substitution.

(up to an (outer) automorphism $au: a o a, b o b^{-1}$)

Inverse substitution

For d = 1, two letters:

View the substitution σ as an endomorphism of the free group F_2 on 2 letters.

Ex.:
$$\sigma(a) = aba, \quad \sigma(b) = ababa.$$

If $\sigma \in Aut(F_2)$ then σ^{-1} defines another substitution.

Ex. cont.:
$$\sigma^{-1}(a) = ab^{-1}a$$
, $\sigma^{-1}(b^{-1}) = ab^{-1}ab^{-1}a$.

In this case, essentially the same substitution.

(up to an (outer) automorphism $au: a o a, b o b^{-1}$)

 Dimension 1
 Inverse substitution

 Dimension > 1
 Star-dual substitution

Galois-dual

Consider a tile-substitution (d = 1, 2 tiles):

- prototiles T_1, T_2 intervals,
- $\lambda > 1$ the inflation factor,
- \mathcal{D}_{ji} $(1 \le i, j \le 2)$ digit sets (set of translation vectors)

such that

$$\lambda T_1 = T_1 + \mathcal{D}_{11} \cup T_2 + \mathcal{D}_{21}$$
$$\lambda T_2 = T_1 + \mathcal{D}_{12} \cup T_2 + \mathcal{D}_{22}$$

(non-overlapping). This yields a selfsimilar tile-substitution

$$\sigma(T_i) = \{T_j + \mathcal{D}_{ji} \mid j = 1, 2\}.$$

 Dimension 1
 Inverse substitution

 Dimension > 1
 Star-dual substitution

Galois-dual

Consider a tile-substitution (d = 1, 2 tiles):

- prototiles T_1, T_2 intervals,
- $\lambda > 1$ the inflation factor,
- \mathcal{D}_{ji} $(1 \le i, j \le 2)$ digit sets (set of translation vectors)

such that

$$\lambda T_1 = T_1 + \mathcal{D}_{11} \cup T_2 + \mathcal{D}_{21}$$
$$\lambda T_2 = T_1 + \mathcal{D}_{12} \cup T_2 + \mathcal{D}_{22}$$

(non-overlapping). This yields a selfsimilar tile-substitution

$$\sigma(T_i) = \{T_j + \mathcal{D}_{ji} \mid j = 1, 2\}.$$

- $S = (|\mathcal{D}_{ji}|)_{1 \le i,j \le m}$ is the substitution matrix (='incidence matrix'). The Perron-Frobenius eigenvector of S is the inflation factor λ . For simplicity, let det(S) = 1. Then, the inflation factor λ is a quadratic algebraic integer. Let $\nu = \lambda^{-1}$, its algebraic conjugate.
- Let all vertices, maps... be expressed in $\mathbb{Z}[\lambda]$.

 $S = (|\mathcal{D}_{ji}|)_{1 \le i,j \le m}$ is the <u>substitution matrix</u> (='incidence matrix'). The Perron-Frobenius eigenvector of S is the inflation factor λ . For simplicity, let det(S) = 1. Then, the inflation factor λ is a quadratic algebraic integer.

Let $\nu = \lambda^{-1}$, its algebraic conjugate.

Let all vertices, maps... be expressed in $\mathbb{Z}[\lambda]$.

Let all vertices, maps... be expressed in $\mathbb{Z}[\lambda]$. For $x = a + b\lambda \in \mathbb{Z}[\lambda]$, let $x^* := a + b\nu$.

$$\lambda T_1^* = T_1^* + \mathcal{D}_{11}^* \cup T_2^* + \mathcal{D}_{12}^*$$
$$\lambda T_2^* = T_1^* + \mathcal{D}_{21}^* \cup T_2^* + \mathcal{D}_{22}^*$$

defines the Galois-dual substitution

$$\sigma^*(T_i^*) = \{ T_j^* + \mathcal{D}_{ij}^* \, | \, j = 1, 2 \}.$$

(The T_i^* arise from the corresponding IFS)

Let all vertices, maps... be expressed in $\mathbb{Z}[\lambda]$. For $x = a + b\lambda \in \mathbb{Z}[\lambda]$, let $x^* := a + b\nu$.

$$\lambda T_1^* = T_1^* + \mathcal{D}_{11}^* \cup T_2^* + \mathcal{D}_{12}^*$$
$$\lambda T_2^* = T_1^* + \mathcal{D}_{21}^* \cup T_2^* + \mathcal{D}_{22}^*$$

defines the Galois-dual substitution

$$\sigma^*(T_i^*) = \{T_j^* + \mathcal{D}_{ij}^* | j = 1, 2\}.$$

(The T_i^* arise from the corresponding IFS)

Dimension 1 Dimension > 1

Inverse substitution Star-dual substitution

Dual maps of substitutions

Realize a sequence *ababaaba* as a path in \mathbb{Z}^2 .

Dimension 1Inverse substitutionDimension > 1Star-dual substitution

Define the space \mathcal{G}_1 of all formal (finite) sums

$$\sum_{k} n_k(x_k, i_k), \qquad (n_k \in \mathbb{Z}, x_k \in \mathbb{Z}^2, i_k = 1, 2)$$

where (x, i) represents a path from x to $x + e_i$.

Here, a substitution reads

$$\begin{split} \mathsf{E}_1(\sigma) : & (0,1) \mapsto (0,1) + (e_1,2) + (e_1 + e_2,1) \\ & (0,2) \mapsto (0,1) + (e_1,2) + (e_1 + e_2,1) \\ & + (2e_1 + e_2,2) + (2e_1 + 2e_2,1) \end{split}$$

Define the space \mathcal{G}_1 of all formal (finite) sums

$$\sum_{k} n_k(x_k, i_k), \qquad (n_k \in \mathbb{Z}, x_k \in \mathbb{Z}^2, i_k = 1, 2)$$

where (x, i) represents a path from x to $x + e_i$. Here, a substitution reads

$$egin{aligned} & E_1(\sigma): (0,1) \mapsto (0,1) + (e_1,2) + (e_1+e_2,1) \ & (0,2) \mapsto (0,1) + (e_1,2) + (e_1+e_2,1) \ & + (2e_1+e_2,2) + (2e_1+2e_2,1) \end{aligned}$$

)

$$egin{aligned} & E_1(\sigma): (0,1) \mapsto (0,1) + (e_1,2) + (e_1 + e_2,1) \ & (0,2) \mapsto (0,1) + (e_1,2) + (e_1 + e_2,1) \ & + (2e_1 + e_2,2) + (2e_1 + 2e_2,1) \end{aligned}$$

The dual $E_1^*(\sigma)$ is defined on the dual space \mathcal{G}_1^* of \mathcal{G}_1 . Here: $\mathcal{G}_1^* \cong \mathcal{G}_1$.

As usual, $\langle v, \phi \rangle = \phi(v)$ for $v \in \mathcal{G}_1, \phi \in \mathcal{G}_1^*$. Then $E_1^*(\sigma)$ is defined by $\langle v, E_1^*(\sigma)\phi \rangle = \langle E_1(\sigma)v, \phi \rangle$. Explicit formula, here:

$$E_1^*(\sigma)(x, i^*) = \sum_{n, j: W_n^{(j)} = i} \left(S^{-1}(x - f P_n^{(j)}), j^* \right)$$

(S the substitution matrix, $P_n^{(i)}(W_n^{(i)})$ prefix (type) of the *n*-th letter in $\sigma(i)$, f abelianization map of $\{a, b\}$.)

The dual $E_1^*(\sigma)$ is defined on the dual space \mathcal{G}_1^* of \mathcal{G}_1 . Here: $\mathcal{G}_1^* \cong \mathcal{G}_1$. As usual, $\langle v, \phi \rangle = \phi(v)$ for $v \in \mathcal{G}_1$, $\phi \in \mathcal{G}_1^*$.

Then $E_1^*(\sigma)$ is defined by $\langle v, E_1^*(\sigma)\phi \rangle = \langle E_1(\sigma)v, \phi \rangle$.

Explicit formula, here:

$$E_1^*(\sigma)(x, i^*) = \sum_{n, j: W_n^{(j)} = i} \left(S^{-1}(x - f P_n^{(j)}), j^* \right)$$

(S the substitution matrix, $P_n^{(i)}(W_n^{(i)})$ prefix (type) of the *n*-th letter in $\sigma(i)$, f abelianization map of $\{a, b\}$.)

The dual $E_1^*(\sigma)$ is defined on the dual space \mathcal{G}_1^* of \mathcal{G}_1 . Here: $\mathcal{G}_1^* \cong \mathcal{G}_1$. As usual, $\langle v, \phi \rangle = \phi(v)$ for $v \in \mathcal{G}_1, \ \phi \in \mathcal{G}_1^*$. Then $\Sigma^*(\cdot)$ is defined by $\langle -\Sigma^*(\cdot) \rangle = \langle \Sigma(\cdot) \rangle$.

Then $E_1^*(\sigma)$ is defined by $\langle v, E_1^*(\sigma)\phi \rangle = \langle E_1(\sigma)v, \phi \rangle$.

Explicit formula, here:

$$E_1^*(\sigma)(x, i^*) = \sum_{n, j: W_n^{(j)} = i} \left(S^{-1}(x - f P_n^{(j)}), j^* \right)$$

(S the substitution matrix, $P_n^{(i)}(W_n^{(i)})$ prefix (type) of the *n*-th letter in $\sigma(i)$, f abelianization map of $\{a, b\}$.)

Ex. (cont.)

1

$$egin{aligned} & \mathsf{E}_1^*(\sigma): (0,1^*) \mapsto (0,1^*) + (e_1 - e_2,1^*) + (0,2^*) \ & + (e_1 - e_2,2^*) + (2e_1 - 2e_2,2^*) \ & (0,2^*) \mapsto (0,1^*) + (0,2^*) + (e_1 - e_2,2^*) \end{aligned}$$

(now, (x, i^*) represents a path from $x + e_i$ to $x + e_i + e_i^*$).

Notions of duality in dim 1

- Natural decomposition method
- Inverse substitution
- Galois-dual (star-dual)
- Dual maps of substitutions

All notions are equivalent in dim 1

w.r.t. the tilings they define.

(Inverse subtitution: two letters only)

Notions of duality in dim > 1

Natural decomposition method, problem: vertices vs tiles

- Control points
- Vertex star type
- Generic direction
- ▶ ...
- Inverse substitution
- Galois-dual (star-dual)
- Dual maps of substitutions

In dim 1 it is clear how to identify tiles and vertices:

In dim > 1 not.

Both dual tilings are not Ammann-Beenker tilings. Not even MLD to them. (Why? Fractal windows)

On the other hand, the Galois dual of the Ammann-Beenker tiling is MLD to Ammann-Beenker:

н

U

W

 $\mathbb{R}^d \quad \stackrel{\pi_1}{\longleftarrow} \mathbb{R}^d \times H \stackrel{\pi_2}{\longrightarrow}$

U

٨

IJ

V

▶ Λ a lattice in $\mathbb{R}^d \times H$ (i.e. cocompact discrete subgroup) • π_1, π_2 projections • $\pi_1|_{\Lambda}$ injective • $\pi_2(\Lambda)$ dense ► W compact • cl(int(W)) = W• $\mu(\partial(W)) = 0$

Then $V = \{\pi_1(x) | x \in \Lambda, \pi_2(x) \in W\}$ is a (regular) model set.

The star map :
$$\star : \pi_1(\Lambda) \to \mathbb{R}^e, \ x^* = \pi_2 \circ {\pi_1}^{-1}(x)$$

Given a substitution tiling which is a cut-and-project tiling:

Tiling \rightsquigarrow point set V; $\overline{V^{\star}} = W$ (the window or Rauzy fractal).

From the substitution:

$$\lambda T_i = \bigcup_{j=1}^m T_j + \mathcal{D}_{ji}$$

one obtains an IFS:

$$T_i = \bigcup_{j=1}^m \lambda^{-1} (T_j + \mathcal{D}_{ji})$$

The unique compact nonempty solution: the prototiles.

From the substitution:

$$\lambda T_i = igcup_{j=1}^m T_j + \mathcal{D}_{ji}$$

one obtains an IFS:

$$T_i = \bigcup_{j=1}^m \lambda^{-1} (T_j + \mathcal{D}_{ji})$$

The unique compact nonempty solution: the prototiles. And...

... from the substitution:

$$\lambda T_i = \bigcup_{j=1}^m T_j + \mathcal{D}_{ji}$$

one obtains an expanding IFS:

$$V_j = \bigcup_{i=1}^m \lambda V_i - \mathcal{D}_{ij}$$

A - non-unique - solution: A tupel of point sets ($V_1, V_2, ... V_m$), such that

$$\bigcup_{i=1}^m T_i + V_i$$

is the substitution tiling

... from the substitution:

$$\lambda T_i = \bigcup_{j=1}^m T_j + \mathcal{D}_{ji}$$

one obtains an expanding IFS:

$$V_j = \bigcup_{i=1}^m \lambda V_i - \mathcal{D}_{ij}$$

A - non-unique - solution: A tupel of point sets $(V_1, V_2, ... V_m)$, such that

$$\bigcup_{i=1}^m T_i + V_i$$

is the substitution tiling.

Dimension 1 Dimension > 1

$$T_{i} = \bigcup_{j=1}^{m} \lambda^{-1} (T_{j} + \mathcal{D}_{ji}) \quad (1) \qquad T_{i}^{\star} = \bigcup_{j=1}^{m} (\lambda^{-1})^{\star} (T_{j}^{\star} + \mathcal{D}_{ji}^{\star}) \quad (3)$$
$$V_{j} = \bigcup_{i=1}^{m} \lambda V_{i} - \mathcal{D}_{ij} \qquad (2) \qquad V_{j}^{\star} = \bigcup_{i=1}^{m} \lambda^{\star} V_{i}^{\star} - \mathcal{D}_{ij}^{\star} \qquad (4)$$

(1) and (4): IFS with unique solutions.

- (1): the prototiles of the original tiling.
- (4): the window, and the prototiles of the dual tiling.
- (2) and (3): Discrete point sets, MLD to the original (2) and the dual (3) tiling.

Dimension 1 Dimension > 1

$$T_{i} = \bigcup_{j=1}^{m} \lambda^{-1} (T_{j} + \mathcal{D}_{ji}) \quad (1) \qquad T_{i}^{\star} = \bigcup_{j=1}^{m} (\lambda^{-1})^{\star} (T_{j}^{\star} + \mathcal{D}_{ji}^{\star}) \quad (3)$$
$$V_{j} = \bigcup_{i=1}^{m} \lambda V_{i} - \mathcal{D}_{ij} \qquad (2) \qquad V_{j}^{\star} = \bigcup_{i=1}^{m} \lambda^{\star} V_{i}^{\star} - \mathcal{D}_{ij}^{\star} \qquad (4)$$

(1) and (4): IFS with unique solutions.

- (1): the prototiles of the original tiling.
- (4): the window, and the prototiles of the dual tiling.
- (2) and (3): Discrete point sets, MLD to the original (2) and the dual (3) tiling.

How does the star-map act:

If the inflation factor λ is an algebraic unit, then

$$\lambda^{\star} = (\lambda_1, \lambda_2, \dots, \lambda_N)$$

where λ_i are the algebraic conjugates of λ .

$$\star: \mathbb{Z}^d \to (\mathbb{Z}_p)^d, \quad x^\star = x$$

 $(\mathbb{Z}_p \ p\text{-adic integers})$

How does the star-map act:

If the inflation factor λ is an algebraic unit, then

$$\lambda^{\star} = (\lambda_1, \lambda_2, \ldots, \lambda_N)$$

where λ_i are the algebraic conjugates of λ . If the inflation factor λ is an integer, then

$$\star:\mathbb{Z}^d\to(\mathbb{Z}_p)^d,\quad x^\star=x$$

 $(\mathbb{Z}_p \ p\text{-adic integers})$

 $\begin{array}{l} \text{Dimension 1} \\ \text{Dimension} > 1 \end{array}$

Ex.: Halfhex tiling and its dual

in \mathbb{R}^2

Conclusion:

- In dim 1, most concepts of 'dual substitution tiling' are equivalent.
- In dim > 1, concepts diverge. In particular, there is no satisfying concept of the natural decomposition method.
- Star-duality provides a framework for higher dimensions, for non-Euclidean settings, allows algebraic description to compute and to prove stuff.

Conclusion:

- In dim 1, most concepts of 'dual substitution tiling' are equivalent.
- In dim > 1, concepts diverge. In particular, there is no satisfying concept of the natural decomposition method.
- Star-duality provides a framework for higher dimensions, for non-Euclidean settings, allows algebraic description to compute and to prove stuff.

