Self-Duality and \star-dual tilings

Dirk Frettlöh
University of Bielefeld
Bielefeld, Germany

Combinatorics, Automata and Number Theory
May 8-19, 2006
Liège

Substitutions

Symbolic substitution: \mathcal{A} alphabet, \mathcal{A}^{*} all finite words.

$$
\sigma: \mathcal{A} \rightarrow \mathcal{A}^{*}
$$

With $\sigma(a b):=\sigma(a) \sigma(b), \sigma$ extends to \mathcal{A}^{*} and $\mathcal{A}^{\mathbb{Z}}$.
$E_{x .:} \quad \mathcal{A}=\{a, b\}, \quad \sigma(a)=a b a, \quad \sigma(b)=a b a b a$.
$a \xrightarrow{\sigma}$ aba $\xrightarrow{\sigma}$ abaababaaba $\xrightarrow{\sigma}$ abaababaabaabaababaabaababaabaabaabab

Tile-substitution:

- $T_{1}, T_{2}, \ldots T_{m}$ prototiles in \mathbb{R}^{d},
- $\lambda>1$ an algebraic integer (the inflation factor),
- $\mathcal{D}_{j i}(1 \leq i, j \leq m)$ digit sets (set of translation vectors)
such that

$$
\lambda T_{i}=\bigcup_{j=1}^{m} T_{j}+\mathcal{D}_{j i}
$$

(non-overlapping). This yields a (selfsimilar) tile-substitution

$$
\sigma\left(T_{i}\right):=\left\{T_{j}+\mathcal{D}_{j i} \mid j=1 \ldots m\right\}
$$

$S=\left(\left|D_{j i}\right|\right)_{1 \leq i, j \leq m}$ is the substitution matrix ($=$ 'incidence matrix'). In this talk:

- λ unimodular, real PV (Pisot Vijayaraghavan number).
- Tilings in dimensions $d=1$ or $d=2$ only.
- All vertices, maps... can be expressed in $\mathbb{Z}[\lambda](d=1)$ respectively $\mathbb{Z}[i, \lambda](d=2)$.

The equation system

$$
\lambda T_{i}=\bigcup_{i=1}^{m} T_{j}+\mathcal{D}_{j i}
$$

gives rise to the corresponding - graph-directed - iterated function system (IFS)

$$
T_{i}=\bigcup_{i=1}^{m} \lambda^{-1}\left(T_{j}+\mathcal{D}_{j i}\right)
$$

and vice versa.
The prototiles are the unique compact nonempty solution of the corresponding IFS. (In other words: With this choice: self-similar)

Ex.: $a \rightarrow a b a, \quad b \rightarrow a b a b a$

$$
\mathcal{D}=\left(\begin{array}{cc}
\left\{0,1+\frac{\sqrt{3}}{3}\right\} & \left\{0,1+\frac{\sqrt{3}}{3}, 2+2 \frac{\sqrt{3}}{3}\right\} \\
\left\{\frac{\sqrt{3}}{3}\right\} & \left\{\frac{\sqrt{3}}{3}, 1+2 \frac{\sqrt{3}}{3}\right\}
\end{array}\right)
$$

IFS:

$$
\begin{aligned}
& a=\beta a+\left\{0,1+\frac{\sqrt{3}}{3}\right\} \quad \beta b+\left\{\frac{\sqrt{3}}{3}\right\} \\
& b=\beta a+\left\{0,1+\frac{\sqrt{3}}{3}, 2+2 \frac{\sqrt{3}}{3}\right\} \cup \beta b+\left\{\frac{\sqrt{3}}{3}, 1+2 \frac{\sqrt{3}}{3}\right\}
\end{aligned}
$$

Solution: $a=\left[0, \frac{\sqrt{3}}{3}\right], \quad b=[0,1]$

Model Sets and Rauzy fractals

Another way to generate tilings.

- Λ a lattice in \mathbb{R}^{d+e}
- π_{1}, π_{2} projections
- $\left.\pi_{1}\right|_{\wedge}$ injective
- $\pi_{2}(\Lambda)$ dense
- W compact
- $\operatorname{cl}(\operatorname{int}(W))=W$
- $\mu(\partial(W))=0$

Then $V=\left\{\pi_{1}(x) \mid x \in \Lambda, \pi_{2}(x) \in W\right\}$ is a (regular) model set.

The star map : $\quad \star: \pi_{1}(\Lambda) \rightarrow \mathbb{R}^{e}, x^{\star}=\pi_{2} \circ \pi_{1}{ }^{-1}(x)$

Given a substitution tiling which is a model set:

Tiling \leadsto point set $V ; \overline{V^{\star}}=W$ (the window or Rauzy fractal).

The natural decomposition \sim IFS.

$$
\sigma: \quad S \rightarrow M L, \quad M \rightarrow S M L, \quad L \rightarrow L M L
$$

The natural decomposition, resp. its IFS \leadsto the dual substitution tiling. (See Sing, Sirvent-Wang,...)

Substitutions and Model sets
The \star-dual substitution and self-duality

The \star-dual substitution

Dirk Frettlöh

The dual substitution tiling \mathcal{T}^{\prime} defines a family of tilings, the tiling space $\mathbb{X}_{\mathcal{T}^{\prime}}$.

A(nother) way to compute the dual tiling:

Let \mathcal{D} be the digit set for \mathcal{T}
(where \mathcal{T} arises from a model set. E.g., the vertices of \mathcal{T} are a model set.)
Then $\left(\mathcal{D}^{\star}\right)^{T}$ defines a new substitution: σ^{\star}.
(See Thurston, Gelbrich, Vince)

Ex.:

$$
\begin{aligned}
\mathcal{D} & =\left(\begin{array}{cc}
\left\{0,1+\frac{\sqrt{3}}{3}\right\} & \left\{0,1+\frac{\sqrt{3}}{3}, 2+2 \frac{\sqrt{3}}{3}\right\} \\
\left\{\frac{\sqrt{3}}{3}\right\} & \left\{\frac{\sqrt{3}}{3}, 1+2 \frac{\sqrt{3}}{3}\right\}
\end{array}\right) \\
\left(\mathcal{D}^{\star}\right)^{T} & =\left(\begin{array}{cc}
\left\{0,1-\frac{\sqrt{3}}{3}\right\} & \left\{-\frac{\sqrt{3}}{3}\right\} \\
\left\{0,1-\frac{\sqrt{3}}{3}, 2-2 \frac{\sqrt{3}}{3}\right. & \left\{-\frac{\sqrt{3}}{3}, 1-2 \frac{\sqrt{3}}{3}\right\}
\end{array}\right)
\end{aligned}
$$

Claim: The tiling spaces $\mathbb{X}_{\mathcal{T}^{\prime}}$ and $\mathbb{X}_{\mathcal{T}^{\star}}$ are equal, at least if $d=e=1$, two letters.
(\mathcal{T}^{\star} a tiling generated by σ^{\star})

Some \star-dual tilings (better: tiling spaces):

- Fibonacci: Fibonacci itself (self-dual!)
- a a aaab, $\quad b \rightarrow a a a b: \quad c \rightarrow c d, \quad d \rightarrow d c d c d c d$
- Ex. above $a \rightarrow a b a, \quad b \rightarrow a b a b a:$ Again, itself (self-dual!)

Ex.: Penrose tiling, version with Robinson triangles:

- 40 prototiles up to translations
- 2 prototiles up to isometries

So it is better to work with isometries instead of digit sets.
(Allow reflections and rotations.)
Use cyclotomic number fields $\mathbb{Z}[\xi], \xi=e^{2 \pi i / n}$.

플

Ex.: Ammann-Beenker

Dirk Frettlöh
Self-Duality and \star-dual tilings
三ㅡㅡ

Self-duality

- The dual of the Penrose tiling: the Tübingen triangle tiling (different w.r.t. diffraction, dynamics, top. properties of $\mathbb{X}_{\mathcal{T}}$).
- The dual of the Ammann-Beenker tiling: A very similar tiling!

Def.: (preliminary)
A substitution is self-dual (with respect to \star-duality),
if $\mathbb{X}_{\sigma}=\mathbb{X}_{\sigma^{\star}}$.

Necessary:

- Factor λ is of algebraic degree 2 .
- Substitution matrix $M^{T}=P M P^{-1}$.

For two tiles (or letters), in any dim:
This gives a characterization of all possible substitution matrices
(λ unimodular!).
$\left(\begin{array}{cc}k & m \\ \left(k^{2} \pm 1\right) / m & k\end{array}\right) \quad$ or $\left(\begin{array}{cc}m & k \\ k & \left(k^{2} \pm 1\right) / m\end{array}\right) \quad k, m \geq 1, m \mid k$

Connections to automorphisms

Case $d=1$, two letters.
The symbolic substitution σ defines an endomorphism of the free group F_{2} on 2 letters.

Ex. $\quad \sigma(a)=a b a, \quad \sigma(b)=a b a b a$.
If $\sigma \in \operatorname{Aut}\left(F_{2}\right)$ then σ^{-1} defines another substitution.
Ex. cont.: $\sigma^{-1}(a)=a b^{-1} a, \quad \sigma^{-1}\left(b^{-1}\right)=a b^{-1} a b^{-1} a$.
This is the same, up to an (outer) automorphism $\tau: a \rightarrow a, b \rightarrow b^{-1}$.

In all examples so far: $\sigma^{-1} \sim \tau \circ \sigma^{\star}$.

$$
\text { (} \tau \in\langle s, t\rangle, \text { essentially a permutation of letters) }
$$

This is no surprise. What I learned last week: This follows from a paper of Hiromi Ei (2003).
M. Baake \& JAG Roberts (2001) showed a necessary condition for σ being self-dual ('reversing symmetries').
V. Berthé (preprint) has a necessary \& sufficient criterion for σ being self-dual ($d=1,2$ letters).

