Self–Duality and *–dual tilings

Dirk Frettlöh

University of Bielefeld Bielefeld, Germany

Combinatorics, Automata and Number Theory

May 8-19, 2006

Liège

< 注 → < 注 →

4

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

・ロト ・回 ト ・ヨト ・ヨト

Substitutions

Symbolic substitution: \mathcal{A} alphabet, \mathcal{A}^* all finite words.

 $\sigma:\mathcal{A}\to\mathcal{A}^*$

With $\sigma(ab) := \sigma(a)\sigma(b)$, σ extends to \mathcal{A}^* and $\mathcal{A}^{\mathbb{Z}}$.

Ex.:
$$\mathcal{A} = \{a, b\}, \quad \sigma(a) = aba, \quad \sigma(b) = ababa.$$

ヘロト ヘアト ヘビト ヘビン

Tile-substitution:

- $T_1, T_2, \ldots T_m$ prototiles in \mathbb{R}^d ,
- $\lambda > 1$ an algebraic integer (the *inflation factor*),
- ▶ D_{ji} (1 ≤ *i*, *j* ≤ *m*) *digit sets* (set of translation vectors)

such that

$$\lambda T_i = \bigcup_{j=1}^m T_j + \mathcal{D}_{ji}$$

(non-overlapping). This yields a (selfsimilar) tile-substitution

$$\sigma(T_i) := \{T_j + \mathcal{D}_{ji} \mid j = 1 \dots m\}.$$

<ロト <回ト < 回ト < 回ト

 $S = (|D_{ji}|)_{1 \le i,j \le m}$ is the substitution matrix (='incidence matrix'). In this talk:

- λ unimodular, real PV (Pisot Vijayaraghavan number).
- Tilings in dimensions d = 1 or d = 2 only.
- ► All vertices, maps... can be expressed in Z[λ] (d = 1) respectively Z[i, λ] (d = 2).

-1

The equation system

$$\lambda T_i = \bigcup_{i=1}^m T_j + \mathcal{D}_{ji}$$

gives rise to the corresponding — graph-directed — iterated function system (IFS) $% \left(\mathsf{IFS}\right) = \left(\mathsf{IFS}\right) \left(\mathsf{IFS}\right) \left(\mathsf{IFS}\right) = \left(\mathsf{IFS}\right) \left(\mathsf{IFS}\right) \left(\mathsf{IFS}\right) \left(\mathsf{IFS}\right) \left(\mathsf{IFS}\right) \right)$

$$T_i = \bigcup_{i=1}^m \lambda^{-1} (T_j + \mathcal{D}_{ji})$$

and vice versa.

The prototiles are the unique compact nonempty solution of the corresponding IFS. (In other words: With this choice: self-similar)

イロト イポト イヨト イヨト

$$E_{X::} a \rightarrow aba, \qquad b \rightarrow ababa$$

$$\mathcal{D} = \begin{pmatrix} \{0, 1 + \frac{\sqrt{3}}{3}\} & \{0, 1 + \frac{\sqrt{3}}{3}, 2 + 2\frac{\sqrt{3}}{3}\} \\ \{\frac{\sqrt{3}}{3}\} & \{\frac{\sqrt{3}}{3}, 1 + 2\frac{\sqrt{3}}{3}\} \end{pmatrix}$$

IFS:

$$a = \beta a + \{0, 1 + \frac{\sqrt{3}}{3}\} \quad \cup \quad \beta b + \{\frac{\sqrt{3}}{3}\}$$
$$b = \beta a + \{0, 1 + \frac{\sqrt{3}}{3}, 2 + 2\frac{\sqrt{3}}{3}\} \quad \cup \quad \beta b + \{\frac{\sqrt{3}}{3}, 1 + 2\frac{\sqrt{3}}{3}\}$$
Solution: $a = [0, \frac{\sqrt{3}}{3}], \qquad b = [0, 1]$

▲ロト ▲圖ト ▲国ト ▲国ト

0

-1

Substitutions and Model sets The *---dual substitution and self-duality Substitutions and IFS Model sets and Rauzy fractals

Model Sets and Rauzy fractals

Another way to generate tilings.

・ロン ・四 と ・ ヨン ・ ヨン

・ロン ・四 と ・ ヨン ・ ヨン

・ロト ・回ト ・モト ・モト

$\begin{array}{cccc} \mathbb{R}^d & \xleftarrow{\pi_1} \mathbb{R}^d \times H \xrightarrow{\pi_2} & H \\ \cup & \cup & \cup \\ V & \Lambda & W \end{array}$

 \mathbb{R}^{e}

U

W

 $\mathbb{R}^d \xrightarrow{\pi_1} \mathbb{R}^{d+e} \xrightarrow{\pi_2}$

U

Λ

U

V

- A a *lattice* in \mathbb{R}^{d+e}
- π_1, π_2 projections
 - $\pi_1|_{\Lambda}$ injective
 - $\pi_2(\Lambda)$ dense
- ► W compact
 - cl(int(W)) = W

・ロト ・回ト ・ヨト ・ヨト

• $\mu(\partial(W)) = 0$

Then $V = \{\pi_1(x) | x \in \Lambda, \pi_2(x) \in W\}$ is a (regular) model set.

The star map :
$$\star : \pi_1(\Lambda) \to \mathbb{R}^e, \ x^* = \pi_2 \circ {\pi_1}^{-1}(x)$$

Given a substitution tiling which is a model set:

Tiling \rightsquigarrow point set V; $\overline{V^*} = W$ (the window or Rauzy fractal).

イロト イポト イヨト イヨト

The natural decomposition \rightsquigarrow IFS.

The natural decomposition, resp. its IFS \sim the *dual* substitution tiling. (See Sing, Sirvent-Wang,...)

(日) (四) (王) (王)

Substitutions and Model sets The *****—dual substitution and self-duality

The *****—dual substitution

Dirk Frettlöh

Self–Duality and *****–dual tilings

æ

The dual substitution tiling \mathcal{T}' defines a family of tilings, the *tiling* space $\mathbb{X}_{\mathcal{T}'}$.

A(nother) way to compute the dual tiling:

Let \mathcal{D} be the digit set for \mathcal{T} (where \mathcal{T} arises from a model set. E.g., the vertices of \mathcal{T} are a model set.) Then $(\mathcal{D}^*)^{\mathcal{T}}$ defines a new substitution: σ^* .

(See Thurston, Gelbrich, Vince)

ヘロト ヘロト ヘヨト ヘヨト

Ex.:

$$\mathcal{D} = \begin{pmatrix} \{0, 1 + \frac{\sqrt{3}}{3}\} & \{0, 1 + \frac{\sqrt{3}}{3}, 2 + 2\frac{\sqrt{3}}{3}\} \\ \{\frac{\sqrt{3}}{3}\} & \{\frac{\sqrt{3}}{3}, 1 + 2\frac{\sqrt{3}}{3}\} \end{pmatrix}$$
$$(\mathcal{D}^{\star})^{\mathsf{T}} = \begin{pmatrix} \{0, 1 - \frac{\sqrt{3}}{3}\} & \{-\frac{\sqrt{3}}{3}\} \\ \{0, 1 - \frac{\sqrt{3}}{3}, 2 - 2\frac{\sqrt{3}}{3} & \{-\frac{\sqrt{3}}{3}, 1 - 2\frac{\sqrt{3}}{3}\} \end{pmatrix}$$

▲口→ ▲圖→ ▲国→ ▲国→

Claim: The tiling spaces $X_{\mathcal{T}'}$ and $X_{\mathcal{T}^{\star}}$ are equal, at least if d = e = 1, two letters.

 $(\mathcal{T}^{\star} \text{ a tiling generated by } \sigma^{\star})$

Some *****-dual tilings (better: tiling spaces):

- Fibonacci: Fibonacci itself (self-dual!)
- $\blacktriangleright a \rightarrow aaaab, \quad b \rightarrow aaab: \qquad c \rightarrow cd, \quad d \rightarrow dcdcdcd$
- Ex. above $a \rightarrow aba$, $b \rightarrow ababa$: Again, itself (self-dual!)

Ex.: Penrose tiling, version with Robinson triangles:

- 40 prototiles up to translations
- 2 prototiles up to isometries

So it is better to work with isometries instead of digit sets. (Allow reflections and rotations.) Use cyclotomic number fields $\mathbb{Z}[\xi]$, $\xi = e^{2\pi i/n}$.

・ロン ・回 と ・ ヨン ・ ヨン

・ロン ・回 と ・ ヨン ・ ヨン

Ex.: Ammann–Beenker

▲ロト ▲圖ト ▲温ト ▲温ト

▲ロト ▲圖ト ▲温ト ▲温ト

Self-duality

- ► The dual of the Penrose tiling: the Tübingen triangle tiling (different w.r.t. diffraction, dynamics, top. properties of X_T).
- ► The dual of the Ammann-Beenker tiling: A very similar tiling!

Def.: (preliminary)

A substitution is *self-dual* (with respect to \star -duality),

if $\mathbb{X}_{\sigma} = \mathbb{X}_{\sigma^{\star}}$.

<ロト <回ト < 回ト < 回ト

Necessary:

- Factor λ is of algebraic degree 2.
- Substitution matrix $M^T = PMP^{-1}$.

For two tiles (or letters), in any dim:

This gives a characterization of all possible substitution matrices (λ unimodular!).

$$egin{pmatrix} k & m \ (k^2\pm 1)/m & k \end{pmatrix}$$
 or $egin{pmatrix} m & k \ k & (k^2\pm 1)/m \end{pmatrix}$ $k,m\geq 1,\ m|k$

- 4 回 2 - 4 □ 2 - 4 □

Connections to automorphisms

Case d = 1, two letters.

The symbolic substitution σ defines an endomorphism of the free group F_2 on 2 letters.

Ex.
$$\sigma(a) = aba$$
, $\sigma(b) = ababa$.

If $\sigma \in Aut(F_2)$ then σ^{-1} defines another substitution.

Ex. cont.:
$$\sigma^{-1}(a) = ab^{-1}a$$
, $\sigma^{-1}(b^{-1}) = ab^{-1}ab^{-1}a$.

This is the same, up to an (outer) automorphism $\tau: a \rightarrow a, b \rightarrow b^{-1}$.

イロト イヨト イヨト

In all examples so far: $\sigma^{-1} \sim \tau \circ \sigma^{\star}$.

 $(au \in \langle s, t
angle$, essentially a permutation of letters)

This is no surprise. What I learned last week: This follows from a paper of Hiromi Ei (2003).

M. Baake & JAG Roberts (2001) showed a necessary condition for σ being self-dual ('reversing symmetries').

V. Berthé (preprint) has a necessary & sufficient criterion for σ being self-dual (d = 1, 2 letters).

イロト イポト イヨト イヨト