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Abstract Modelling the process of recombination leads to a large coupled nonlinear dynamical

system. Here, we consider a particular case of recombination in discrete time, allowing only for single

crossovers. While the analogous dynamics in continuous time admits a closed solution [3], this no

longer works for discrete time. A more general model (i.e. without the restriction to single crossovers)

has been studied before [5, 9, 10] and was solved algorithmically by means of Haldane linearisation.

Using the special formalism introduced in [3], we obtain further insight into the single-crossover

dynamics and the particular difficulties that arise in discrete time. We then transform the equations

to a solvable system in a two-step procedure: linearisation followed by diagonalisation. Still, the

coefficients of the second step must be determined in a recursive manner, but once this is done for

a given system, they allow for an explicit solution valid for all times.

Keywords population genetics · recombination dynamics · Möbius linearisation · diagonalisation ·

linkage disequilibria

Mathematics Subject Classification (2000) 92D10 · 37N30 · 06A07 · 60J05

1 Introduction

The dynamics of the genetic composition of populations evolving under recombination has been a

long-standing subject of research. The traditional models assume random mating, non-overlapping

generations (meaning discrete time), and populations so large that stochastic fluctuations may be

neglected and a law of large numbers (or infinite-population limit) applies. Even this highly idealised

setting leads to models that are notoriously difficult to treat and solve, namely, to large systems of

coupled, nonlinear difference equations. Here, the nonlinearity is due to the random mating of the

partner individuals involved in sexual reproduction.
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Elucidating the underlying structure and finding solutions to these equations has been a chal-

lenge to theoretical population geneticists for nearly a century now. The first studies go back to

Jennings [13] in 1917 and Robbins [17] in 1918. Building on [13], Robbins solved the dynamics for

two diallelic loci (to be called sites from now on) and gave an explicit formula for the (haplo)type

frequencies as functions of time. Geiringer [11] investigated the general recombination model for

an arbitrary number of loci and for arbitrary ‘recombination distributions’ (meaning collections of

probabilities for the various partitionings of the sites that may occur during recombination) in 1944.

She was the first to state the general form of the solution of the recombination equation (as a con-

vex combination of all possible products of certain marginal frequencies derived from the initial

population) and developed a method for the recursive evaluation of the corresponding coefficients.

This simplifies the calculation of the type frequencies at any time compared to the direct evaluation

through successive iteration of the dynamical system. Even though she worked out the method for

the general case in principle, its evaluation becomes quite involved for more than three sites.

Her work was followed by Bennett [5] in 1954. He introduced a multilinear transformation of the

type frequencies to certain functions that he named principal components. They correspond to linear

combinations of certain correlation functions that transform the dynamical system (exactly) into

a linear one. The new variables decay independently and geometrically for all times, whence they

decouple and diagonalise the dynamics. They therefore provide an elegant solution in principle, but

the price to be paid is that the coefficients of the transformation must be constructed via recursions

that involve the parameters of the recombination model. Bennett worked this method out for up to

six sites, but did not give an explicit method for an arbitrary number of sites. The approach was later

completed within the systematic framework of genetic algebras, where it became known as Haldane

linearisation, compare [14, 15]. But, in fact, Bennett’s program may be completed outside this

abstract framework, as was shown by Dawson [9, 10], who derived a general and explicit recursion for

the coefficients of the principal components. However, the proofs are somewhat technical and do not

reveal the underlying mathematical structure. It is the aim of this paper to provide a more systematic,

but still elementary, approach that exploits the inherent (multi)linear and combinatorial structure

of the problem — at least for one particular, but biologically relevant, special case, which will now

be described. Our special case is obtained by the restriction to single crossovers, which leads to what

we call single-crossover recombination (SCR). This is the extreme case of the biological phenomenon

of interference, and describes the situation where a crossover event completely inhibits any other

crossover event in the same generation, at least within the genomic region considered. Surprisingly,

the corresponding dynamics in continuous time can be solved in closed form [2, 3]. Again, a crucial

ingredient is a transformation to certain correlation functions (or linkage disequilibria) that linearise

and diagonalise the system. Luckily, in this case, the corresponding coefficients are independent of

the recombination parameters, and the transformation is available explicitly.

Motivated by this result, we now investigate the analogous single-crossover dynamics in discrete

time. The paper is organised as follows. We first describe the discrete-time model and the general

framework (Section 2) and then recapitulate the essentials of the continuous-time model and its

solution (Section 3). Section 4 returns to discrete time. We first analyse explicitly the cases of two,

three, and four sites. For two and three sites, the dynamics is analogous to that in continuous

time (and, in particular, available in closed form), but differs from then on. This is because a

certain linearity present in continuous time is now lost. The transformations used in continuous time

are therefore not sufficient to both linearise and diagonalise the discrete-time dynamics. They do,

however, lead to a linearisation; this is worked out in Sections 5 and 6. The resulting linear system

has a triangular structure that can be diagonalised in a second step in a recursive way (Section 7). We

summarise and discuss our results in Section 8. An explicit example is worked out in the Appendix.
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2 Preliminaries and notation

Let us briefly recall the recombination model described in [3] and the special notation introduced

there, as the remainder of this paper critically depends on it. A chromosome (of length n+1, say) is

represented as a linear arrangement of the n + 1 sites of the set S = {0, 1, . . . , n}. Sites are discrete

positions on a chromosome that may be interpreted as gene or nucleotide positions. A set Xi collects

the possible elements (such as alleles or nucleotides) at site i. For convenience, we restrict ourselves

to finite sets Xi in this paper, though much of the theory can be extended to the case that each Xi

is a locally compact space, which can be of importance for applications in quantitative genetics. A

type is now defined as a sequence (x0, x1, . . . , xn) ∈ X0 ×X1 × · · · ×Xn =: X, where X denotes the

(finite) type space.

Recombination events take place at the so-called links between neighbouring sites, collected into

the set L = { 1
2 , 3

2 , . . . , 2n−1
2 }, where link α = 2i+1

2 is the link between sites i and i+1. Since we only

consider single crossovers here, each individual event yields an exchange of the sites either before or

after the respective link between the two types involved. A recombination event at link 2i+1
2 that

involves x = (x0, . . . , xn) and y = (y0, . . . , yn) thus results in the types (x0, . . . , xi, yi+1, . . . , yn) and

(y0, . . . , yi, xi+1, . . . , xn), with both pairs considered as unordered.

Although one is ultimately interested in the stochastic process defined by recombination acting on

populations of finite size, compare [4] and references therein, we restrict ourselves to the deterministic

limit of infinite population size here, also known as infinite population limit (IPL). Consequently,

we are not looking at the individual dynamics, but at the induced dynamics on the probability

distribution on the type space X. Let P(X) denote the convex space of all possible probability

distributions on X. As X is finite, a probability distribution can be written as a vector p = (p(x))x∈X ,

where p(x) denotes the relative frequency of type x in the population.

Let us look at the time evolution of the relative frequencies pt(x) of types x = (x0, . . . , xn) when

starting from a known initial distribution p0 of the population at time t = 0. In discrete time, it is

given by the following collection of recombination equations for all x ∈ X:

pt+1(x) =
X

α∈L

ραpt(x0, x1, . . . , x⌊α⌋, ∗, ∗, . . . , ∗) pt(∗, ∗, . . . , ∗, x⌈α⌉, x⌈α⌉+1, . . . , xn)

+
“

1 −
X

α∈L

ρα

”

pt(x), with t ∈ N0 ,
(1)

where the coefficients ρα, α ∈ L, are the probabilities for a crossover at link α. Consequently, we

must have ρα ≥ 0 and
P

α∈L ρα ≤ 1, where ρα > 0 is assumed from now on without loss of generality

(when ρα = 0, the set Xα− 1

2

×Xα+ 1

2

can be considered as a space for an effective site that comprises

i = α − 1
2 and i = α + 1

2). When the ρα do not sum to 1, the remainder is the probability that

no crossover occurs, which is taken care of by the last term in the equation. Moreover, ⌊α⌋ (⌈α⌉)

denotes the largest integer below (the smallest above) α and the star ∗ at site i stands for Xi, and

thus indicates marginalisation over site i.

An important step to solve the large nonlinear coupled system of equations (1) lies in its refor-

mulation in a more compact way with the help of certain recombination operators. To construct

them, we need the canonical projection operator πi : X −→ Xi, defined by x 7→ πi(x) = xi as usual.

Likewise, for any index set J ⊆ S, the projector πJ is defined as πJ : X −→ XJ :=×i∈J
Xi. We

will frequently use

π<α := π{0,...,⌊α⌋} and π>α := π{⌈α⌉,...,n} .

These can be understood as cut-and-forget operators since they ‘cut out’ the leading and the trailing

segment of a type x, respectively, and ‘forget’ about the rest. The projectors induce linear mappings

from P(X) to P(XJ) by p 7→ πJ·p := p ◦ π−1
J , where π−1

J denotes the preimage under πJ and ◦
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indicates composition of mappings. The operation . (not to be confused with a multiplication sign) is

known as the pullback of πJ with respect to p. Consequently, πJ·p is simply the marginal distribution

of p with respect to the sites of J .

Now consider recombination at link α, performed on the entire population. Since the resulting

population consists of randomly chosen leading segments relinked with randomly chosen trailing

segments, it may be described through the (elementary) recombination operator (or recombinator

for short) Rα : P(X) −→ P(X), defined by p 7→ Rα(p) with

Rα(p) := (π<α·p) ⊗ (π>α·p), (2)

where ⊗ denotes the product measure and reflects the independent combination of both marginals

π<α·p and π>α·p. Note that the recombinators are structural operators that do not depend on the

recombination probabilities.

Before we rewrite the recombination equations in terms of these recombinators, let us recall

some of their elementary properties, see [3] for proofs. First of all, the elementary recombinators Rα

are idempotents and commute with one another on P(X). This permits the consistent definition of

composite recombinators

RG :=
Y

α∈G

Rα (3)

for arbitrary subsets G ⊆ L. In particular, one has R∅ = 1 and R{α} = Rα.

Proposition 1 On P(X), the elementary recombinators are commuting idempotents. For α ≤ β,

they satisfy

π<α·

`

Rβ(p)
´

= π<α·p and π>α·

`

Rβ(p)
´

= (π{⌈α⌉,...,⌊β⌋}·p) ⊗ (π>β·p) ; (4)

likewise, for α ≥ β,

π>α·

`

Rβ(p)
´

= π>α·p and π<α·

`

Rβ(p)
´

= (π<β·p) ⊗ (π{⌈β⌉,...,⌊α⌋}·p) . (5)

Furthermore, the composite recombinators satisfy

RGRH = RG∪H (6)

for arbitrary G, H ⊆ L. �

These properties can be understood intuitively as well: (4) says that recombination at or after link

α does not affect the marginal frequencies at sites before α, whereas the marginal frequencies at

the sites after α change into the product measure (and vice versa in (5)). Furthermore, repeated

recombination at link α does not change the situation any further (recombinators are idempotents)

and the formation of the product measure with respect to ≥ 2 links does not depend on the order in

which the links are affected. As we shall see below, these properties of the recombinators are crucial

for finding a solution of the SCR dynamics, both in continuous and in discrete time.

3 SCR in continuous time

Let us briefly review the SCR dynamics in continuous time, as its structure will be needed below.

Making use of the recombinators introduced above, the dynamics (in the IPL) is described by a

system of differential equations for the time evolution of the probability distribution (or measure),

starting from an initial condition p0 at t = 0. It reads [3]

ṗt =
X

α∈L

eρα

`

Rα − 1´(pt), (7)

where eρα is now the rate for a crossover at link α. Though (7) describes a coupled system of nonlinear

differential equations, the closed solution for its Cauchy (or initial value) problem is available [2, 3]:
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Theorem 1 The solution of the recombination equation (7) with initial value p0 can be given in

closed form as

pt =
X

G⊆L

eaG(t)RG(p0), (8)

with the coefficient functions

eaG(t) =
Y

α∈L\G

exp(−eραt)
Y

β∈G

(1 − exp(−eρβt)). (9)

These are non-negative functions, which satisfy
P

G⊆L eaG(t) = 1 for all t ≥ 0. �

The coefficient functions can be interpreted probabilistically. Given an individual sequence in the

population, eaG(t) is the probability that the set of links that have seen at least one crossover event

until time t is precisely the set G. Note that the product structure of the eaG(t) implies independence

of links, a decisive feature of the single-crossover dynamics in continuous time, as we shall see later

on. By (8), pt is always a convex combination of the probability measures RG(p0) with G ⊆ L.

Consequently, given an initial condition p0, the entire dynamics takes place on the closed simplex

(within P(X)) that is given by conv{RG(p0) | G ⊆ L}, where conv(A) denotes the convex hull of A.

It is surprising that a closed solution for the dynamics (7) can be given explicitly, and this

suggests the existence of an underlying linear structure [2], which is indeed the case and well known

from similar equations, compare [14]. In the context of the formulation with recombinators, it can

be stated as follows, compare [3] for details.

Theorem 2 Let
˘

c
(L′)
G′ (t) | ∅ ⊆ G′ ⊆ L′ ⊆ L

¯

be a family of non-negative functions with c
(L)
G (t) =

c
(L1)
G1

(t) c
(L2)
G2

(t), valid for any partition L = L1 ∪̇L2 of the set L and all t ≥ 0, where Gi := G ∩ Li.

Assume further that these functions satisfy
P

H⊆L′ c
(L′)
H (t) = 1 for any L′ ⊆ L and t ≥ 0. If

v ∈ P(X) and H ⊆ L, one has the identity

RH

“

X

G⊆L

c
(L)
G (t)RG(v)

”

=
X

G⊆L

c
(L)
G (t)RG∪H(v),

which is then satisfied for all t ≥ 0. �

Here, the upper index specifies the respective set of links. So far, Theorem 2 depends crucially on the

product structure of the functions c
(L)
G (t), but we will show later how this assumption can be relaxed.

In any case, the coefficient functions eaG(t) of (9) satisfy the conditions of Theorem 2. The result

then means that the recombinators act linearly along solutions (8) of the recombination equation (7).

Denoting ϕt as the flow of Eq. (7), Theorem 2 thus has the following consequence.

Corollary 1 On P(X), the forward flow of (7) commutes with all recombinators, which means that

RG ◦ ϕt = ϕt ◦ RG holds for all t ≥ 0 and all G ⊆ L. �

The conventional approach to solve the recombination dynamics consists in transforming the

type frequencies to certain functions which diagonalise the dynamics, see [5, 9, 10, 14] and references

therein for more. From now on, we will call these functions principal components after Bennett [5].

For the single-crossover dynamics in continuous time, they have a particularly simple structure: they

are given by certain correlation functions, or linkage disequilibria (LDE), which play an important

role in biological applications. They have a counterpart at the level of operators on P(X).

Namely, let us define LDE operators on P(X) as linear combinations of recombinators via

TG :=
X

H⊇G

(−1)|H−G|
RH , with G ⊆ L , (10)
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so that the inverse relation is given by

RH =
X

G⊇H

TG (11)

due to the combinatorial Möbius inversion formula, compare [1]. Let us note for further use that, by

Eq. (6) in Proposition 1, TG ◦ RG = TG. Note also that, for a probability measure p on X, TG(p)

is a signed measure on X; in particular, it need not be positive. The LDEs are given by certain

components of the TG(p) — see [3, 4] for more. In the continuous-time single-crossover setting, it

was shown in [3] that, if pt is the solution (8), the TG(pt) satisfy

d

dt
TG(pt) = −

“

X

α∈L\G

eρα

”

TG(pt), for all G ⊆ L, (12)

which is a decoupled system of homogeneous linear differential equations, with the standard expo-

nential solution. That is, the LDE operators both linearise and diagonalise the system, and the LDEs

are thus, at the same time, principal components.

A straightforward calculation now reveals that the solution (8) can be rewritten as

pt =
X

G⊆L

eaG(t)RG(p0) =
X

K⊆L

bK(t)TK(p0) =
X

K⊆L

TK(pt), (13)

where the new coefficient functions are given by

bK(t) := exp
“

−
X

α∈L\K

eραt
”

.

At this point, it is important to notice the rather simple structure of the LDE operators, which

do not depend on the crossover rates. Moreover, the transformation between recombinators and

LDE operators is directly given by the Möbius formula, see Eqs. (10) and (11). This is a significant

simplification in comparison with previous results, compare [5, 9, 10, 11], where the coefficients of

the transformation generally depend on the crossover rates and must be determined recursively.

Below, we shall see that the SCR dynamics in continuous time is indeed a special case, and that

the above results cannot be transferred directly to the corresponding dynamics in discrete time.

Nevertheless, part of the continuous-time structure prevails and offers a useful entry point for the

solution of the discrete-time counterpart.

4 SCR in discrete time

Employing recombinators, the SCR equations (1) in discrete time with a given initial distribution

p0 can be compactly rewritten as

pt+1 = pt +
X

α∈L

ρα

`

Rα − 1´(pt) =: Φ(pt) . (14)

As indicated, the nonlinear operator of the right-hand side of (14) is denoted by Φ from now on. We

aim at a closed solution of (14), namely for pt = Φt(p0) with t ∈ N0. Based on the result for the

continuous-time model, the solution is expected to be of the form

pt = Φ
t(p0) =

X

G⊆L

aG(t)RG(p0) , (15)

with non-negative aG(t), G ⊆ L,
P

G⊆L aG(t) = 1, describing the (unknown) coefficient functions

arising from the dynamics. This representation of the solution was first stated by Geiringer [11]. In

particular, also the discrete-time dynamics takes place on the simplex conv{RG(p0) | G ⊆ L}.
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We are particularly interested in whether a discrete-time equivalent to Corollary 1 exists, that

is, whether all recombinators RG commute with Φ. This is of importance since it would allow for

a diagonalisation of the dynamics via the LDE operators (10). To see this, assume for a moment

that Rα ◦ Φ = Φ ◦ Rα for all α ∈ L, and thus RG ◦ Φ = Φ ◦ RG for all G ⊆ L. Noting that, when

α ∈ G ⊆ H, Eq. (6) from Proposition 1 implies that (Rα−1)RH = RH∪{α}−RH = RH −RH = 0,

we see that the assumption above would lead to

TG ◦ Φ =
X

H⊇G

(−1)|H−G|
RH ◦ Φ =

X

H⊇G

(−1)|H−G|
Φ ◦ RH

=
X

H⊇G

(−1)|H−G|
RH +

X

H⊇G

(−1)|H−G|
X

α∈L

ρα(Rα − 1)RH

= TG +
X

H⊇G

(−1)|H−G|
X

α∈L\G

ρα(Rα − 1)RH

=
“

1 −
X

α∈L\G

ρα

”

TG +
X

α∈L\G

ρα

X

H⊇G
α/∈H

“

(−1)|H−G|
RH∪{α} + (−1)|H∪{α}−G|

RH∪{α}

”

=
“

1 −
X

α∈L\G

ρα

”

TG ,

so that, indeed, all TG(pt) would decay geometrically. This wishful calculation is badly smashed by

the nonlinear nature of the recombinators, and the remainder of this paper is concerned with true

identities that repair the damage.

To get an intuition for the dynamics in discrete time, let us first take a closer look at the discrete-

time model with two, three, and four sites.

4.1 Two and three sites

For two sites, one simply has S = {0, 1} and L = { 1
2}, so that only one non-trivial recombinator

exists, R = R 1

2

, with corresponding recombination probability ρ = ρ 1

2

. Consequently, the SCR

equation simplifies to

pt+1 = Φ(pt) = ρ R(pt) + (1 − ρ) pt , (16)

where pt is a |X|-dimensional probability vector. The solution is given by

pt = a(t) p0 +
`

1 − a(t)
´

R(p0) (17)

with a(t) = a∅(t) = (1− ρ)t. This formula is easily verified by induction [18]. Thus, in analogy with

the SCR dynamics in continuous time, the solution is available in closed form, and the coefficient

functions allow an analogous probabilistic interpretation. Furthermore, it is easily seen that the

recombinators R∅ = 1 and R 1

2

= R commute with Φ and therefore with Φt for all t ∈ N0. For two

sites, the analogue of Corollary 1 thus holds in discrete time. As a consequence, the LDE operators

from (10) decouple and linearise the system (16). At the level of the component LDEs, this is common

knowledge in theoretical population genetics; compare [12, Chap.3].

Similarly, the recombination equation (1) for three sites can be solved explicitly as well. An ele-

mentary calculation (applying the iteration and comparing coefficients) shows that the corresponding

coefficient functions aG(t) follow the linear recursion

0

B

B

B

B

@

a∅(t + 1)

a 1

2

(t + 1)

a 3

2

(t + 1)

a{ 1

2
, 3

2
}(t + 1)

1

C

C

C

C

A

=

0

B

B

B

B

B

@

1 − ρ 1

2

− ρ 3

2

0 0 0

ρ 1

2

1 − ρ 3

2

0 0

ρ 3

2

0 1 − ρ 1

2

0

0 ρ 3

2

ρ 1

2

1

1

C

C

C

C

C

A

0

B

B

B

B

@

a∅(t)

a 1

2

(t)

a 3

2

(t)

a{ 1

2
, 3

2
}(t)

1

C

C

C

C

A

,
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with solution

a∅(t) =
`

1 − ρ 1

2

− ρ 3

2

´t
,

a 1

2

(t) =
`

1 − ρ 3

2

´t
−
`

1 − ρ 1

2

− ρ 3

2

´t
,

a 3

2

(t) =
`

1 − ρ 1

2

´t
−
`

1 − ρ 1

2

− ρ 3

2

´t
,

a{ 1

2
, 3

2
}(t) = 1 −

`

1 − ρ 3

2

´t
−
`

1 − ρ 1

2

´t
+
`

1 − ρ 1

2

− ρ 3

2

´t
.

(18)

These coefficient functions have the same probabilistic interpretation as the corresponding eaG(t),

G ⊆ L, in the continuous-time model, so that aG(t) is the probability that the links that have been

involved in recombination until time t are exactly those of the set G.

But there is a crucial difference. Recall that, in continuous time, single crossovers imply indepen-

dence of links, which is expressed in the product structure of the coefficient functions eaG(t) (see (9)).

This independence is lost in discrete time, where a crossover event at one link forbids any other cut

at other links in the same time step. Consequently, already for three sites, the coefficients of the

discrete-time dynamics fail to show the product structure used in Theorem 2.

But even though Corollary 1, concerning the forward flow of (7), is a consequence of Theorem 2,

which, in turn, is based upon the product structure of the coefficients, a short calculation reveals

that RG ◦ Φ = Φ ◦ RG still holds for the discrete-time model with three sites for all G ⊆
˘

1
2 , 3

2

¯

. As

a consequence, just as in the case of two sites, the TG linearise and decouple the dynamics, which is

well-known to the experts, see [5, 6] for more.

To summarise: despite the loss of independence of links, an explicit solution of the discrete-time

recombination dynamics is still available, and a linearisation and diagonalisation of the dynamics can

be achieved with the methods developed for the continuous-time model, that is, a transformation

to a solvable system via the TG. However, things will become more complex if we go to four sites

and beyond. In particular, there is no equivalent to Corollary 1, i.e., in general, the recombinators

do not commute with Φ, and we have to search for a new transformation that replaces (10), as will

be explained next.

4.2 Four sites

The complication with four sites originates from the fact that R 3

2

◦Φ 6= Φ ◦R 3

2

, so that the property

described by Corollary 1 for continuous time is lost here. Consequently, the TG fail the desired

properties. In particular, one finds

T∅(Φ(p)) =
`

1 − ρ 1

2

− ρ 3

2

− ρ 5

2

´

T∅(p) − ρ 1

2

ρ 5

2

T 3

2

(p),

so that an explicit solution of the model cannot be obtained as before.

This raises the question why four sites are more difficult than three sites, even though indepen-

dence of links has already been lost with three sites. To answer this, we look at the time evolution

of the coefficient functions aG(t), G ⊆ L. For this purpose, let us return to the general model with

an arbitrary number of sites.

4.3 General case

We now consider an arbitrary (but finite) set S with the corresponding link set L. For each G ⊆ L,

we use the following abbreviations:

G<α := {i ∈ G | i < α} , G>α := {i ∈ G | i > α} ,

L≤α := {i ∈ L | i ≤ α} , L≥α := {i ∈ L | i ≥ α} .
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Furthermore, we set η := 1 −
P

α∈L ρα. We then obtain

Theorem 3 For all G ⊆ L and t ∈ N0, the coefficient functions aG(t) evolve according to

aG(t + 1) = η aG(t) +
X

α∈G

ρα

“

X

H⊆L≥α

aG<α∪H(t)
”“

X

K⊆L≤α

aK∪G>α
(t)
”

, (19)

with initial condition aG(0) = δG,∅.

Proof Geiringer [11] already explained in words how to derive this general recursion, and illustrated it

with the four-site example; we give a proof via our operator formalism. Using (15), the recombination

equation for pt+1 reads

pt+1 =
X

G⊆L

aG(t + 1)RG(p0) = Φ
`

pt

´

= Φ

„

X

G⊆L

aG(t)RG(p0)

«

=
X

α∈L

ρα

„

“

π<α·

“

X

H⊆L

aH(t)RH(p0)
””

⊗
“

π>α·

“

X

K⊆L

aK(t)RK(p0)
””

«

+ η
“

X

G⊆L

aG(t)RG(p0)
”

,

where each product term in the first sum can be calculated as

„

π<α·

“

X

H⊆L

aH(t)RH(p0)
”

«

⊗

„

π>α·

“

X

K⊆L

aK(t)RK(p0)
”

«

=
X

H,K⊆L

aH(t)aK(t)

„

“

π<α·RH(p0)
”

⊗
“

π>α·RK(p0)
”

«

=
X

H,K⊆L

aH(t)aK(t)

„

“

π<α·RH<α∪K>α
(p0)

”

⊗
“

π>α·RH<α∪K>α
(p0)

”

«

=
X

H,K⊆L

aH(t)aK(t)

„

Rα

“

RH<α∪K>α
(p0)

”

«

,

where we use the linearity of the projectors in the first step, and Eqs. (4) and (5) from Proposition 1

in the second (more precisely, we use the left parts of Eqs. (4) and (5), reading them both forward

and backward). Insert this into the expression for pt+1 and rearrange the sums for a comparison of

coefficients of RG with G ⊆ L. Comparison of coefficients is justified by the observation that, for

generic p0 and generic site spaces, the vectors RG(p0) with G ⊆ L are the extremal vectors of the

closed simplex conv{RK(p0) | K ⊆ L}. They are the vectors that (generically) cannot be expressed

as non-trivial convex combination within the simplex, and hence the vertices of the latter (in cases

with degeneracies, one reduces the simplex in the obvious way). If G = ∅, we only have η a∅(t) as

coefficient for R∅. Otherwise, we get additional contributions for each α ∈ G, namely, from those

H, K ⊆ L for which H<α = G<α and K>α = G>α, while H≥α and K≤α can be any subset of L≥α

and L≤α, respectively. Hence, the term belonging to RG(p0) reads

X

α∈G

ρα

“

X

H⊆L≥α

X

K⊆L≤α

aG<α∪H(t)aK∪G>α
(t)
”

+ η aG(t) ,

and the assertion follows. �
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The aG(t) have the same probabilistic interpretation as the eaG(t) (9) from the continuous-time model,

and the above iteration can be understood intuitively as well: A type x resulting from recombination

at link α is composed of two segments x<α and x>α. These segments themselves may have been

pieced together in previous recombination events already, and the iteration explains the possible cuts

these segments may carry along. The first term in the product stands for the type delivering the

leading segment (which may bring along arbitrary cuts in the trailing segment), the second for the

type delivering the trailing one (here any leading segment is allowed). The term η aG(t) covers the

case of no recombination.

Note that the above iteration is generally nonlinear, where the products stem from the fact that

types recombine independently. This nonlinearity is the reason that an explicit solution cannot be

given as before.

A notable exception is provided by recombination events that occur at links where one of the

involved segments cannot have been affected by previous crossovers, namely the links 1
2 and 2n−1

2 .

In this case, at least one of the factors in Eq. (19) becomes 1 (since, obviously, G<α = ∅ for α = 1
2

and G>α = ∅ for α = 2n−1
2 ) and the resulting linear and triangular recursion can be solved. The

coefficients for the corresponding link sets can be inferred directly (proof via simple induction) as

a∅(t) = η
t
,

a 1

2

(t) =
“

η + ρ 1

2

”t
− η

t
,

a 2n−1

2

(t) =
“

η + ρ 2n−1

2

”t
− η

t
, and

a{ 1

2
, 2n−1

2
}(t) = η

t −
“

η + ρ 1

2

”t
−
“

η + ρ 2n−1

2

”t
+
“

η + ρ 1

2

+ ρ 2n−1

2

”t
.

(20)

This explains the availability of an explicit solution for the model with up to three sites, where we

do not have links other than 1
2 and/or 3

2 , so that all corresponding coefficients can be determined

explicitly. Indeed, one recovers (18) with n = 2 and η = 1 − ρ 1

2

− ρ 3

2

.

So far, we have observed that the product structure of the coefficient functions, known from

continuous time, is lost in discrete time from three sites onwards; this reflects the dependence of

links. In contrast, the linearity of the iteration is only lost from four sites onwards. The latter can be

understood further by comparison of (19) with the differential equations for the coefficients of the

continuous-time model. These read:

d

dt
eaG(t) = −

“

X

α∈L\G

ρ̃α

”

eaG(t) +
X

α∈G

ρ̃αeaG\{α}(t) , (21)

that is, they are linear, with solution (9). Note that this linear dynamics emerges from a seemingly

nonlinear one, namely the analogue of (19),

d

dt
eaG(t) = −

“

X

α∈L

ρ̃α

”

eaG(t) +
X

α∈G

ρ̃α

“

X

H⊆L
≥α

eaG<α∪H(t)
”“

X

K⊆L
≤α

eaK∪G>α
(t)
”

. (22)

However, due to the product structure of the solution, the product term in the second sum, when

inserting (9), reduces to a single term,

“

X

H⊆L≥α

eaG<α∪H(t)
”“

X

K⊆L≤α

eaK∪G>α
(t)
”

= eaG(t) + eaG\{α}(t) ,

which turns (22) into (21).

What happens here is the following. From four sites onwards (namely, beginning with n = 3 and

a crossover at α = 3
2 , and both in discrete and continuous time), it happens that leading and trailing

segments meet that both possess at least one link that may possibly have seen a previous cut. When
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a crossover at α takes place, the new joint distribution of cuts before and after α is formed as the

product measure of the marginal distributions of cuts in the leading and trailing segments (cf. (19)

and (22)) — akin to the formation of product measures of marginal types by Rα. In continuous

time, the links are all independent, hence the new combination leaves the joint distribution of cuts

unchanged. Therefore, a set G of affected links (before and after α) is simply augmented by α if α is

a ‘fresh’ cut; this results in the linearity of (21). In discrete time, however, the dependence between

the links, in particular between those in the leading and trailing segment, means that the formation

of the product measure changes the joint distribution of affected links, in addition to the new cut at

α; thus (19) remains nonlinear.

Since we aim at an explicit solution of the discrete-time recombination model, we need to find a

way to overcome the obstacles of nonlinearity. Inspired by the results of the continuous-time model,

we now search for a transformation that decouples and linearises the dynamics.

To this end, we first investigate the behaviour of the RG and TG in the discrete-time model, since

a deeper understanding of their actions will help us find a new transformation. We are still concerned

with the LDE operators from the continuous-time model, because of their favourable structure and

the existence of the inverse transformation (Möbius inversion). Moreover, as will become clear later,

some of them still have the desired features and can be adopted directly for the discrete-time model.

First, we need further notation.

Definition 1 Two links α, β ∈ L are called adjacent if |α − β| = 1. We say that a subset L̃ ⊆ L is

contiguous if for any two links α, β ∈ L̃ with α ≤ β, also all links between α and β belong to L̃ (this

includes the case L̃ = ∅). A non-empty contiguous set of links is written as L̃ = {ℓmin, . . . , ℓmax}.

Whereas, according to Theorem 2, all recombinators act linearly on the solution of the continuous-

time recombination equation, this does not hold for the solution of the discrete-time model in general,

though the following property still holds.

Lemma 1 Let {cG | G ⊆ L} be a family of non-negative numbers with
P

G⊆L cG = 1. For an arbi-

trary v ∈ P(X) and for all K ⊆ L with L \ K contiguous, one has

RK

“

X

G⊆L

cGRG(v)
”

=
X

G⊆L

cGRG∪K(v) .

Proof When K = ∅, the claim is clear, because R∅ = 1 and L itself is contiguous. Otherwise, we

have K = A∪B with A := { 1
2 , 3

2 , . . . , α} and B := {β, β +1, . . . , 2n−1
2 } for some β > α (this includes

the case K = L via β = α + 1). Since we work on P(X), we have RK = RBRA from Proposition 1.

With the projection πi· : P(X) → P(Xi) onto a single site i, we obtain

πi·

“

X

G⊆L

cGRG(v)
”

=
X

G⊆L

cGπi·RG(v) =
X

G⊆L

cGπi·v = πi·v , (23)

since πi· is a linear operator and πi·RG(v) = πi·v by Proposition 1. For the contiguous set A and

w :=
P

G⊆L cGRG(v), we obtain, with the help of (23) and a repeated application of Proposition 1,

RA

“

X

G⊆L

cGRG(v)
”

= π0·w ⊗ · · · ⊗ π⌊α⌋·w ⊗ π>α·w

= π0·v ⊗ · · · ⊗ π⌊α⌋·v ⊗ π>α·w =
X

G⊆L

cG

`

π0·v ⊗ · · · ⊗ π⌊α⌋·v ⊗ π>α·RG(v)
´

=
X

G⊆L

cG

`

π0·RG(v) ⊗ · · · ⊗ π⌊α⌋·RG(v) ⊗ π>α·RG(v)
´

=
X

G⊆L

cGRA∪G(v) .

An analogous calculation reveals RB

`
P

G⊆L cGRA∪G(v)
´

=
P

G⊆L cGRA∪B∪G(v) for contiguous B.

This proves the assertion. �
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The intuitive content of Lemma 1 falls into place with the explanation of Theorem 3. The linearity

of the particular recombinators of Lemma 1 is due to the fact that RK produces only one segment,

namely L \ K, that might be affected by previous recombination events while all other segments

consist of only one site and thus cannot bring along cuts from ‘the past’.

5 Reduction to subsystems

In this section, we show a certain product structure of the recombinators and the LDE operators.

This will turn out as the key for constructing an appropriate transformation. Recall that a crossover

at link α ∈ L partitions S into {0, . . . , ⌊α⌋} and {⌈α⌉ , . . . , n}. In general, recombination at the links

belonging to G =
˘

α1, . . . , α|G|

¯

⊆ L, α1 < α2 < · · · < α|G|, induces the following ordered

partition SG =
˘

JG
0 , JG

1 , . . . , JG
|G|

¯

of S (see Fig. 1):

J
G
0 = {0, . . . , ⌊α1⌋} , J

G
1 = {⌈α1⌉ , . . . , ⌊α2⌋} , . . . , J

G
|G| =

˘

⌈α|G|⌉, . . . , n
¯

.

Note that the partition is ordered due to the restriction to single crossovers. In connection with this,

we have the sets of links that correspond to the respective parts of the partition SG (Fig. 1). Namely,

for G =
˘

α1, . . . , α|G|

¯

⊆ L, LG :=
n

IG
0 , IG

1 , . . . , IG
|G|

o

with

I
G
0 =

˘

α ∈ L : 1
2 ≤ α < α1

¯

, I
G
|G| =

˘

α ∈ L : α|G| < α ≤ 2n−1
2

¯

,

and I
G
ℓ = {α ∈ L : αℓ < α < αℓ+1} for 1 ≤ ℓ ≤ |G| − 1

(24)

specifies the links belonging to the respective parts of SG: the links associated with JG
k ∈ SG,

0 ≤ k ≤ |G|, are exactly those of IG
k ∈ LG (and vice versa).

0 1 2 3 4 5 6 7 8 9

1
2

3
2

5
2

7
2

9
2

11
2

13
2

15
2

17
2

I0 I1 I2 = ∅ I3

J0 J1 J2
J3

Fig. 1 A system with 10 sites (i.e., S = {0, . . . , 9}, L = { 1
2
, . . . , 17

2
}) cut at the links G = { 5

2
, 13

2
, 15

2
} (broken

lines). The resulting subsystems are SG = {J0, . . . , J3} and LG = {I0, . . . , I3} with J0 = {0, 1, 2}, J1 = {3, 4, 5, 6},

J2 = {7} and J3 = {8, 9} as well as I0 = { 1
2
, 3
2
}, I1 = { 7

2
, 9
2
, 11

2
}, I2 = ∅ and I3 = { 17

2
} (the upper index G is

suppressed here for clarity).

With this definition, IG
i = ∅ is possible for each 0 ≤ i ≤ |G| and will be included (possibly

multiply) in LG. Furthermore, L∅ := {L}, so that I∅
0 = L. The upper index will be suppressed in

cases where the corresponding set of links is obvious. Clearly, LG is not a partition of L, whereas

SG is a partition of S.

This way, recombination at the links in G ⊆ L produces several ‘subsystems’ (characterised

through the sites Jk and the corresponding links Ik, 0 ≤ k ≤ |G|) with respect to the ‘full system’

described through the sites S and the links L. We demonstrate below that it is sufficient to consider
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these subsystems separately, a property that reduces the problem of dealing with the recombination

dynamics. Note first that repeated application of (4) and (5) leads to

π<α·R
(L)
G (p) = R

(L
<α

)

G<α
(π<α·p) and π>α·R

(L)
G (p) = R

(L
>α

)

G>α
(π>α·p) , (25)

where R
(L)
G is our usual recombinator acting on P(X) = P(X0 × · · · × Xn), and R

(L
<α

)

G<α
denotes

the respective recombinator on P(X0 × · · · × X⌊α⌋), which acts on the subsystem specified through

the sites L<α and cuts the links G<α (and analogously for R
(L

>α
)

G>α
). Likewise, recombinators R

(I
i
)

H ,

H ⊆ Ii, acting on P(XJi
), may be defined for all subsystems, 0 ≤ i ≤ |G|, in the obvious way. For

consistency, we define R
(∅)
∅ = 1. From now on, the upper index specifies the corresponding system

the RG (and, likewise, the TG) are acting on. It will be suppressed in cases where the system is

obvious. We now explain the inherent product structure of the recombinators:

Proposition 2 Let G ⊆ L. For each α ∈ G and p ∈ P(X), one has the identity

R
(L)
G (p) =

“

R
(L<α)
G<α

(π<α·p)
”

⊗
“

R
(L>α)
G>α

(π>α·p)
”

.

Proof For α ∈ G, Proposition 1 implies :

R
(L)
G (p) = R

(L)
α

“

R
(L)
G (p)

”

=
“

π<α·R
(L)
G (p)

”

⊗
“

π>α·R
(L)
G (p)

”

=
“

R
(L

<α
)

G<α
(π<α·p)

”

⊗
“

R
(L

>α
)

G>α
(π>α·p)

”

,

where the last step follows from (25). �

This proposition carries over to the LDE operators:

Proposition 3 On P(X), the LDE operators satisfy

T
(L)
G (p) =

“

T
(L<α)
G<α

(π<α·p)
”

⊗
“

T
(L>α)
G>α

(π>α·p)
”

for all α ∈ G,

where T
(L<α)
G<α

and T
(L

>α
)

G>α
now describe the operators acting on the simplices P(X0×· · ·×X⌊α⌋) and

P(X⌈α⌉ × · · · × Xn), respectively.

Proof Let α ∈ G. Using the product structure from Proposition 2 and splitting the sum into two

disjoint parts, one obtains

T
(L)
G (p) =

X

H⊇G

(−1)|H−G|
R

(L)
H (p) =

X

H⊇G

(−1)|H−G|
„

“

R
(L

<α
)

H<α
(π<α·p)

”

⊗
“

R
(L

>α
)

H>α
(π>α·p)

”

«

=
X

L\{α}⊇H⊇G\{α}

(−1)|H−G\{α}|
„

“

R
(L

<α
)

H<α
(π<α·p)

”

⊗
“

R
(L

>α
)

H>α
(π>α·p)

”

«

=
X

L<α⊇H<α⊇G<α

(−1)|H<α−G
<α|

X

L>α⊇H>α⊇G>α

(−1)|H>α
−G

>α|
„

R
(L

<α
)

H<α
(π<α·p) ⊗ R

(L
>α

)

H>α
(π>α·p)

«

=
“

X

L<α⊇H<α⊇G<α

(−1)|H<α
−G

<α|
“

R
(L

<α
)

H<α
(π<α·p)

””

⊗
“

X

L>α⊇H>α⊇G>α

(−1)|H>α
−G

>α|
“

R
(L

>α
)

H>α
(π>α·p)

””

=
“

T
(L

<α
)

G<α
(π<α·p)

”

⊗
“

T
(L

>α
)

G>α
(π>α·p)

”

,

which establishes the claim. �



14 Ute von Wangenheim et al.

Using this argument iteratively on the respective segments, one easily obtains

T
(L)
G (p) =

“

T
(I

0
)

∅ (πJ
0
·p)
”

⊗
“

T
(I

1
)

∅ (πJ
1
·p)
”

⊗ · · · ⊗
“

T
(I|G|)
∅ (πJ|G|·p)

”

, (26)

where the upper index specifies the corresponding subsystems associated with G, compare (24).

Hence, the effect of TG on the full system is given by that of T∅ on the respective subsystems

corresponding to G.

Our goal is now to study the effect of the RG and TG on Φ, the right-hand side of the recombi-

nation equation (15). This will show us in more detail when and why the LDE operators from the

continuous-time model are not sufficient for solving the discrete-time model and, at the same time,

will direct us to the new transformation.

If Φ(L) denotes the right-hand side of the recombination equation on the full simplex P(X0 ×

· · · × Xn), then, for any contiguous I = {α, . . . , β} ⊆ L, the right-hand side of the recombination

equation on the subsimplex P(X⌊α⌋× · · ·×X⌈β⌉) will be denoted with Φ(I). Again, we suppress the

upper index when the simplex is obvious.

Proposition 4 For the right-hand side of the recombination equation,

Φ
(L)(p) = η p +

X

α∈L

ραR
(L)
α (p) = p +

X

α∈L

ρα

`

R
(L)
α − 1(L)´(p) ,

one finds

R
(L)
α

`

Φ
(L)(p)

´

=
“

Φ
(L<α)(π<α·p)

”

⊗
“

Φ
(L>α)(π>α·p)

”

for every α ∈ L and p ∈ P(X).

Proof Since R
(L)
α

`

Φ(L)(p)
´

=
“

π<α·

`

Φ(L)(p)
´

”

⊗
“

π>α·

`

Φ(L)(p)
´

”

, we obtain with the help of (25):

π<α·

`

Φ
(L)(p)

´

= π<α·

“

p +
X

β∈L

ρβ

`

R
(L)
β − 1(L)´(p)

”

= π<α·p +
X

β<α

ρβ(R
(L

<α
)

β − 1(L
<α

))(π<α·p) +
X

β≥α

ρβ(R
(L

<α
)

∅ − 1(L
<α

))(π<α·p)

= π<α·p +
X

β<α

ρβ(R
(L

<α
)

β − 1(L
<α

))(π<α·p) = Φ
(L

<α
)(π<α·p) .

Analogously, one obtains π>α·

“

Φ(L)(p)
”

= Φ(L
>α

)(π>α·p), and the assertion follows. �

More generally, this theorem implies inductively that

R
(L)
G (Φ(L)(p)) =

“

Φ
(I

0
)(πJ

0
·p)
”

⊗
“

Φ
(I

1
)(πJ

1
·p)
”

⊗ · · · ⊗
“

Φ
(I|G|)(πJ

|G|
·p)
”

. (27)

Finally, for the interaction between the T
(L)
G and Φ(L), we have the following result.

Proposition 5 For the LDE operators (10) and all G ⊆ L, one has

T
(L)
G

`

Φ
(L)(p)

´

=
“

T
(I

0
)

∅

`

Φ
(I

0
)(πJ

0
·p)
´

”

⊗
“

T
(I

1
)

∅

`

Φ
(I

1
)(πJ

1
·p)
´

”

⊗ · · · ⊗
“

T
(I|G|)

∅

`

Φ
(I|G|)(πJ

|G|
·p)
´

”

,

with I0, . . . , I|G| according to (24).

Proof Using (27) and (26), one calculates

T
(L)
G

`

Φ
(L)(p)

´

= T
(L)
G

“

R
(L)
G

`

Φ
(L)(p)

´

”

= T
(L)
G

“

`

Φ
(I

0
)(πJ

0
·p)
´

⊗ · · · ⊗
`

Φ
(I|G|)(πJ|G|·p)

´

”

=
“

T
(I

0
)

∅

`

Φ
(I

0
)(πJ

0
·p)
´

”

⊗ · · · ⊗
“

T
(I|G|)

∅

`

Φ
(I|G|)(πJ

|G|
·p)
´

”

,

which establishes the formula. �
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This result is of particular significance since it shows that, to determine the effect of the T
(L)
G on Φ,

it is sufficient to know the action of the T∅ on the subsystems that correspond to G. Hence, we now

need to determine T∅ ◦ Φ. It will turn out that this relies crucially on the commutators of RG with

Φ, which will be the subject of the next section.

6 The commutator and linearisation

The more algebraic approach of [2], which was later generalised by Popa [16], suggests to further

analyse the problem in terms of commuting versus non-commuting quantities. For G ⊆ L, the

commutator is defined as [ RG, Φ ] := RG ◦ Φ − Φ ◦ RG. Recall that, in the continuous-time model,

the linear action of the recombinators on the solution of the differential equations entails that the

corresponding forward flow commutes with each recombinator (see Corollary 1). But this no longer

holds for discrete time: [ RG, Φ ] = 0 is not true in general. We are interested in the commutators

because — as we will see in a moment — they lead us to the evaluation of T∅ ◦ Φ, and this in turn

gives TG ◦ Φ (see Proposition 5).

Proposition 6 Let η = 1 −
P

α∈L ρα as before. On P(X), one has

T∅ ◦ Φ = η T∅ +
X

G⊆L

(−1)|G| [ RG, Φ ] .

Proof Expressing the left-hand side as

T∅ ◦ Φ =
X

G⊆L

(−1)|G|(RG ◦ Φ) =
X

G⊆L

(−1)|G|(Φ ◦ RG) +
X

G⊆L

(−1)|G| [ RG, Φ ] ,

and using Φ = η 1+
P

α∈L ραRα, one calculates

X

G⊆L

(−1)|G|(Φ ◦ RG) =
X

α∈L

“

X

G⊆L

(−1)|G|
ραRαRG

”

+ η
X

G⊆L

(−1)|G|
RG

= η T∅ +
X

α∈L

X

G⊆L
α/∈G

“

(−1)|G|
ραRαRG + (−1)|G∪{α}|

ραRG∪{α}

”

= η T∅ +
X

α∈L

“

X

G⊆L
α/∈G

(−1)|G|
ρα(RαRG − RG∪{α})

”

= ηT∅ ,

which shows the claim. �

Proposition 6 shows that T∅ only yields a diagonal component if all recombinators commute with

Φ. We now need to determine the commutator [ RG, Φ ]. To this end, it is advantageous to introduce

a new set of operators.

Definition 2 For G ⊆ K ⊆ L, we define the operators

eTG,K :=
X

G⊆H⊆K

(−1)|H−G|
RH . (28)

Equivalently, for any M ⊆ L \ G, this means that

eTG,G∪̇M =
X

G⊆H⊆G∪̇M

(−1)|H−G|
RH =

X

K⊆M

(−1)|K|
RG∪̇K .
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These operators act on the full simplex and can be interpreted in analogy to the original LDE

operators (10), where the links in the complement of G∪̇M (the disjoint union of G and M) are

regarded as inseparable. If necessary, we will specify the system the operators are acting on by an

upper index as before.

Lemma 2 On P(X), the operators (28) satisfy

eTG,G = RG and eTG,L = TG .

They have a product structure,

eT
(L)

G,G∪̇H
(p) =

“

eT
(IG

0
)

∅,H∩IG
0

(πJG
0
·p)
”

⊗
“

eT
(IG

1
)

∅,H∩IG
1

(πJG
1
·p)
”

⊗ · · · ⊗
“

eT
(IG

|G|)

∅,H∩IG
|G|

(πJG
|G|

·p)
”

, (29)

for all H ⊆ L \ G. Moreover, one has

eTG,G∪̇M =
X

G⊆H⊆L\M

TH =
X

K⊆L\(M∪G)

TG∪̇K (30)

for all G, M ⊆ L with G ∩ M = ∅. Consequently, Möbius inversion returns TG as

TG =
X

G⊆H⊆L\M

(−1)|H−G|
eTH,H∪̇M . (31)

Proof The first assertion is obvious; the second is analogous to (26) and follows along the same lines.

Relation (30) is true since

eTG,G∪̇M =
X

K⊆M

(−1)|K|
RG∪̇K =

X

K⊆M

(−1)|K|
X

H⊇G∪̇K

TH

=
X

H⊇G

X

K⊆M
K⊆H

(−1)|K|
TH =

X

H⊇G

TH

X

K⊆M∩H

(−1)|K|

=
X

H⊇G

δM∩H,∅ TH =
X

G⊆H⊆L\M

TH .

In the second-last step, we used that, if H is a finite set, one has

X

G⊆H

(−1)|G| = δH,∅ , (32)

which is the key property of the Möbius function of ordered partitions. �

Before we turn to the commutator, we introduce a new function, the separation function, which

will allow for a clear and compact notation.

Definition 3 For G, H ⊆ L with G ∩ H = ∅, we say that G separates H if, for all α, β ∈ H with

α < β, there is a γ ∈ G with α < γ < β. Hence, we define the separation function as

sep(G, H) =

8

<

:

1, if G separates H,

0, otherwise.

In the particular cases H = ∅ and H = {α}, α ∈ L, we define sep(G, H) = 1 for all G ⊆ L, and it is

understood that sep(G, H) = 0 whenever G ∩ H 6= ∅.

First, let us summarise some elementary properties of the separation function.

Lemma 3 The separation function sep(G, H) with H ⊆ L \ G has the following properties:
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1. sep(G, H) = 0, if H contains any adjacent links;

2. sep(G, H) = 0 implies sep(G
′

, H) = 0 for all G
′

⊆ G;

3. sep(G, H) = 0 whenever L \ G is contiguous with H ⊆ L \ G and |H| ≥ 2;

4. sep(G, H) = 1 implies IH
i ∩ G 6= ∅ for all i ∈ {1, . . . , |H| − 1}. �

Later, we need the following summation formula for the separation function.

Lemma 4 Let H, K ⊆ L with H 6= ∅, H ∩ K = ∅, and IH
i defined as in (24). Then

X

G⊆K

(−1)|G| sep(G, H) = sep(K,H) (−1)|H|−1
δK∩IH

0
,∅ δK∩IH

|H|
,∅ .

Proof For sep(K,H) = 0, the claim is clear by Lemma 3(2). We now define Ai := K ∩ IH
i for

all i ∈ {0, . . . , |H|}. Then, for sep(K, H) = 1, it follows from Lemma 3(4) that Aj 6= ∅ for all

1 ≤ j ≤ |H| − 1. Likewise, since G ⊆ K, sep(G, H) = 1 if and only if G ∩ IH
j 6= ∅ for all

1 ≤ j ≤ |H| − 1, with no condition emerging for G ∩ IH
0 or G ∩ IH

|H|. This gives

X

G⊆K

(−1)|G| sep(G, H) =
X

B
0
⊆A

0

(−1)|B0
|
|H|−1
Y

i=1

“

X

B
i
⊆A

i

B
i
6=∅

(−1)|Bi
|
”

X

B
|H|

⊆A
|H|

(−1)|B|H|| =

|H|
Y

j=0

Fj .

Here, for j = 0 and j = |H|, the factors Fj are given by Fj :=
P

B
j
⊆A

j
(−1)|Bj

| = δAj ,∅, where we

have used (32). For 1 ≤ j ≤ |H| − 1,

Fj :=
X

B
j
⊆A

j

B
j
6=∅

(−1)|Bj
| = −1 +

X

B
j
⊆A

j

(−1)|Bj
| = −1 + δA

j
,∅ = −1 ,

where we have again used (32) in the second-last step, and Aj 6= ∅ in the last. �

With this notation, let us take a closer look at R
(L)
G

`

Φ(L)(p)
´

for G ⊆ L. Evaluating (27) explicitly,

using Definition 2, expanding and using the product structure (29) backwards gives

R
(L)
G

`

Φ
(L)(p)

´

=
“

πJ
0
·p +

X

α
0
∈I

0

ρα
0
(R

(I
0
)

α
0

− 1(I
0
))(πJ

0
·p)
”

⊗ · · ·⊗

“

πJ
|G|

·p +
X

α
|G|

∈I
|G|

ρα
|G|

(R
(I|G|)
α

|G|
− 1(I|G|))(πJ

|G|
·p)
”

=
“1(I

0
) −

X

α
0
∈I

0

ρα
0

eT
(I

0
)

∅,α
0

”

(πJ
0
·p) ⊗ · · · ⊗

“1(I|G|) −
X

α
|G|

∈I
|G|

ρα
|G|

eT
(I

0
)

∅,α
|G|

”

(πJ
|G|

·p)

=
X

H⊆L\G

(−1)|H| sep(G, H)ρH
eT
(L)

G,G∪̇H
(p) ,

where, in the last step, we have further set ρH =
Q

α∈H ρα for all H ⊆ L (in particular, ρ∅ = 1) and

used Lemma 3(4); note that the separation function is basically used as an indicator variable here.

On the other hand, we obtain

Φ ◦ RG =
X

α∈L\G

ραRαRG +
`

1 −
X

α∈L\G

ρα

´

RG

= eTG,G −
X

α∈L\G

ρα
eTG,G∪̇{α}

= sep(G, ∅) eTG,G −
X

α∈L\G

sep(G, {α})ρα
eTG,G∪̇{α} ,

which finally yields the commutator.
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Theorem 4 For all G ⊆ L, the commutator on P(X) is given by

[ RG, Φ ] =
X

H⊆L\G
|H|≥2

(−1)|H| sep(G, H) ρH
eTG,G∪̇H .

�

Please note that, by the properties of the separation function, many of the summands vanish. In

particular, [ RG, Φ ] = 0 whenever |L \ G| ≤ 1.

Corollary 2 [ RG, Φ ] = 0 if L \ G is contiguous.

Proof By Theorem 4, only terms with |H| ≥ 2 need be considered. For these, Lemma 3(3) tells us

that sep(G, H) = 0 if L \ G is contiguous and H ⊆ L \ G. Hence, [ RG, Φ ] = 0. �

Let us note in passing that the converse direction of Corollary 2 may fail if the site spaces are

sufficiently trivial. Nevertheless, in the generic case, [ RG, Φ ] = 0 implies sep(G, H) = 0 for all

H ⊆ L \G with |H| ≥ 2, because the relevant terms then cannot cancel each other. We omit a more

precise discussion of this point, because we do not need it later on.

Recalling that Φt is the discrete-time analogue of ϕt, we can consider Corollary 2 as what is

left of Corollary 1 in discrete time. Hence, it becomes clear why the LDE operators (10) from the

continuous-time model do not suffice to linearise and decouple the discrete-time dynamics.

We still aim at determining T∅◦Φ according to Proposition 6, expressing the commutator [ RG, Φ ]

in terms of the TG (which are related to the eTG,G∪̇M via (30)).

Theorem 5 On P(X), the operators TG = T
(L)
G and Φ = Φ(L) satisfy

T
(L)
G ◦ Φ

(L) =
X

K⊇G

z
(L)(G, K) T

(L)
K (33)

for all G ⊆ L. The coefficients z(L)(∅,K), K ⊆ L, are given by

z
(L)(∅, ∅) = 1 −

X

α∈L

ρα (34)

and, for K 6= ∅, by

z
(L)(∅,K) = −

X

H⊆L\K

ρH sep(K,H) (1 − δH∩IK
0

,∅) (1 − δH∩IK
|K|

,∅) . (35)

For K ⊇ G 6= ∅, the coefficients are recursively determined by

z
(L)(G, K) = z

(IG
0

)
“

∅, K ∩ I
G
0

”

· . . . · z(IG
|G|)
`

∅,K ∩ I
G
|G|

´

.

Proof Let us first prove the case G = ∅. According to Proposition 6, we have T∅ ◦ Φ = ηT∅ +
P

G
′
⊆L(−1)|G

′
|[ R

G′ , Φ ], where η = z(L)(∅, ∅) by definition. Let us thus evaluate the last term. In

the first step, we insert the commutator from Theorem 4; we then use Definition 2 and change the

order of summation to arrive at
X

G
′
⊆L

(−1)|G
′
|[ RG′ , Φ ] =

X

G
′
⊆L

(−1)|G
′
|
X

H⊆L\G
′

|H|≥2

(−1)|H| sep(G
′

, H)ρH
eTG′ ,G′ ∪̇H

=
X

G
′
⊆L

(−1)|G
′
|
X

H⊆L\G
′

|H|≥2

(−1)|H| sep(G
′

, H)ρH

X

G
′
⊆K⊆L\H

TK

=
X

K⊆L

TK

X

H⊆L\K
|H|≥2

(−1)|H|
ρH

X

G
′
⊆K

(−1)|G
′
| sep(G

′

, H) , (36)
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which does not contain any term with T∅. We can now compare coefficients for TK . Note first that, by

(36), we only need to consider sets H ⊆ L\K, that is, H∩K = ∅. In this case, δK∩IH
0

,∅ = 1−δH∩IK
0

,∅

and δK∩IH
|H|

,∅ = 1−δH∩IK
|K|

,∅. This is true since K∩IH
0 = ∅ ( 6= ∅) implies that the smallest element

in H is smaller (larger) than the smallest element in K, thus H ∩ IK
0 6= ∅ (= ∅) (and vice versa for

K ∩ IH
|H|). Taking this together with Lemma 4, the coefficient of TK in (36) turns into

X

H⊆L\K
|H|≥2

(−1)|H|
ρH

X

G′⊆K

(−1)|G
′
| sep(G

′

, H)

= −
X

H⊆L\K
|H|≥2

ρH sep(K,H) (1 − δH∩IK
0

,∅)(1 − δH∩IK
|K|

,∅)

= −
X

H⊆L\K

ρH sep(K,H) (1 − δH∩IK
0

,∅)(1 − δH∩IK
|K|

,∅) .

Note that, in the last step, the restriction on |H| may be dropped since it is already implied by the

factors involving the δ-functions. This proves the claim for G = ∅. For the case G 6= ∅, we follow

Proposition 5 and write, for p ∈ P(X),

T
(L)
G

`

Φ
(L)(p)

´

=
“

T
(I

0
)

∅

`

Φ
(I

0
)(πJ

0
·p)
´

”

⊗
“

T
(I

1
)

∅

`

Φ
(I

1
)(πJ

1
·p)
´

”

⊗ · · · ⊗
“

T
(I|G|)

∅

`

Φ
(I|G|)(πJ

|G|
·p)
´

”

.

Applying the above result for G = ∅ to each factor, and using the product structure of Proposition 5

backwards, establishes the claim. �

Corollary 3 The coefficients z(∅,K) with K 6= ∅ can be expressed explicitly as

z
(L)(∅,K) = −

X

α
0
∈IK

0

ρα
0

`

|K|−1
Y

i=1

(1 +
X

α
i
∈IK

i

ρα
i
)
´

X

α
|K|

∈IK
|K|

ρα
|K|

. (37)

Proof Let us consider those H whose contribution to the sum in (35) is not annihilated by the

separation function or the δ-functions. For sep(K,H) = 1 to hold, each α ∈ H must belong to a

different IK
i ∈ LK . Furthermore, H must contain one element each from IK

0 and IK
|K| (α0 and α|K|,

respectively) to keep the factors involving the δ-functions from vanishing. Thus, the sum in (35) may

be factorised as claimed. �

In particular, z(L)(∅, K) = 0 if K ∩
˘

1
2 , 2n−1

2

¯

6= ∅. Taking this together with (34), one obtains

z(L)(∅,K) = (1−
P

α∈L ρα) δK,∅ for K ⊆ L whenever |L| ≤ 2, and hence, in these cases, T
(L)
∅ ◦Φ(L) =

(1 −
P

α∈L ρα)T
(L)
∅ is already a diagonal component in line with the observation in Section 4.

Furthermore, Theorem 5 and (37) entail that z(L)(G, K) = 0 whenever

K ∩
“

[

0≤i≤|G|

{min(IG
i ),max(IG

i )}
”

6= ∅ . (38)

Theorem 5 reveals the linear structure inherent in the action of TG on Φ. In fact, the structure is

even triangular (with respect to the partial ordering) since T
(L)
G ◦Φ(L) is a linear combination of the

T
(L)
K , K ⊇ G. Thus, diagonalisation will boil down to recursive elimination. As a preparation, we

make the following observation.

Corollary 4 If L 6= ∅, one has the relation z(L)(G, L) = 0 for all ∅ ⊆ G ( L.

Proof When ∅ ⊆ G ( L, the intersection in (38), with K = L, can never be empty, so that

z(L)(G, L) = 0 follows. �
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7 Diagonalisation

Motivated by the triangular structure of (33), we make the ansatz to define new operators UG,

G ⊆ L, as the following linear combination of the well-known TG:

UG =
X

H⊇G

c(G, H) TH , (39)

where the coefficients c(G, H) are to be determined in such a way that they transform the recombi-

nation equation into a decoupled diagonal system, more precisely so that

UG ◦ Φ = λGUG , G ⊆ L , (40)

with eigenvalues λG that are still unknown as well. An example for this transformation can be found

in Appendix A. Note first that, with the help of (33), Eqs. (39) and (40) may be rewritten as

UG ◦ Φ = c(G, G) TG ◦ Φ +
X

N)G

c(G, N) (TN ◦ Φ)

= c(G, G)
“

z
(L)(G, G) TG +

X

K)G

z
(L)(G, K)TK

”

+
X

N)G

c(G, N)
“

z
(L)(N, N)TN +

X

M)N

z
(L)(N,M) TM

”

!
= λG

“

c(G, G) TG +
X

N)G

c(G, N) TN

”

= λGUG.

(41)

Obviously, there is some freedom in the choice of the c(G, G); we set c(G, G) = 1 for all G ⊆ L (and

we will see shortly that this is consistent). Eq. (41) has the structure of an eigenvalue problem of

a triangular matrix with coefficients z(L)(G, H), where the role of the unit vectors is taken by the

TH , and the c(G, H), H ⊇ G, take the roles of the components of the eigenvector corresponding

to λG (note that, by considering c(G, H) for H ⊇ G only, we have already exploited the triangular

structure). Recall next that the eigenvalues of a triangular matrix are given by its diagonal entries,

which are

λG = z
(L)(G, G) =

|G|
Y

i=0

z
(IG

i
)(∅, ∅) =

|G|
Y

i=0

“

1 −
X

α
i
∈IG

i

ρα
i

”

(42)

by Theorem 5. In particular, λ∅ = η = 1−
P

α∈L ρα ≥ 0. The λG describe the probability that there

is no further recombination between the respective sites of the subsystems corresponding to G; they

have already been identified by Bennett [5] and Dawson [9, 10].

Lemma 5 For all G, H ⊆ L with G ( H, one has λG < λH .

Proof Let ∅ ( G ( L. Then, for H = G
·
∪ {β}, with β ∈ IG

i for an arbitrary i ∈ {0, . . . , |G|}, we see

from (42) that z(L)(H, H) = λH and hence obtain

λH =

 

i−1
Y

j=0

“

1 −
X

α
j
∈IG

j

ρα
j

”

!

“

1 −
X

α
i
∈IG

i

α
i
<β

ρα
i

”“

1 −
X

α
i
∈IG

i

α
i
>β

ρα
i

”

 |G|
Y

j=i+1

“

1 −
X

α
j
∈IG

j

ρα
j

”

!

= λG

“

1 −
P

α
i
∈IG

i

α
i
<β

ρα
i

”“

1 −
P

α
i
∈IG

i

α
i
>β

ρα
i

”

“

1 −
P

α
i
∈IG

i
ραi

” > λG ,
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because all ρα are positive, as are all three terms in parentheses of the fraction, and ρβ > 0 by

assumption. Finally, the argument also works for λ∅ = η, provided η > 0. Since λG > 0 for all

G 6= ∅, the claim trivially also holds for η = 0. The assertion then follows inductively for any

H ) G. �

The coefficients c(G, H) can now be calculated recursively as follows.

Theorem 6 The coefficients c(G, H) of (39) are determined by c(G, G) = 1 and

c(G, H) =

P

H)K⊇G c(G, K) z(L)(K,H)

λG − λH

(43)

for H ) G. The coefficients of the inverse transformation of (39),

TG =
X

H⊇G

c
∗(G, H) UH , with G ⊆ L , (44)

are determined by

c
∗(G, K) = −

X

K)H⊇G

c
∗(G, H) c(H,K) , (45)

for K ) G together with c∗(G, G) = 1.

Proof Considering (41) with c(G, G) = 1, comparing coefficients for TH , H ) G, and observing (42),

one obtains

z
(L)(G, H) + c(G, H)λH +

X

H)K)G

c(G, K) z
(L)(K,H)

!
= λG c(G, H) ,

and the recursion for c(G, H) follows. It is always well-defined for all H ) G, since λG < λH by

Lemma 5. The recursion for the coefficients of the inverse transformation follows directly from

TG =
X

H⊇G

c
∗(G, H) UH =

X

H⊇G

c
∗(G, H)

X

K⊇H

c(H,K)TK =
X

K⊇G

TK

X

K⊇H⊇G

c
∗(G, H) c(H,K) ,

which enforces
P

K⊇H⊇G c∗(G, H) c(H, K) = δK,G, as the TK are distinct. �

We now identify those TG that already give diagonal components of the discrete-time system:

Theorem 7 For all G ⊆ L that satisfy |IG
i | ≤ 2 for all i ∈ {0, . . . , |G|}, one has

TG

`

Φ(p)
´

= λGTG(p)

for p ∈ P(X).

Proof In this case, we have (38) for all K ) G, hence z(G, K) = λGδK,G, from which the assertion

follows via Theorem 5. �

Note that |IG
i | ≤ 2 for all IG

i ∈ LG simply implies that each subsystem consists of at most three

sites, hence all subsystems can be reduced to the simple cases considered in Section 4. Then, for such

G, c(G, H) = c∗(G, H) = δG,H for all H ⊇ G.

With the help of this transformation, we can finally specify the solution pt of the recombination

equation in terms of the initial condition p0. To this end, we first use the transformation (11) from

the recombinators to the TG operators, and then relation (44) to arrive at the UH operators, which
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finally diagonalise the system according to (40). Finally, we use the appropriate inversions to return

to the recombinators:

pt = Φ
t(p0) = R∅(Φt(p0)) =

X

G⊆L

TG(Φt(p0)) =
X

G⊆L

X

H⊇G

c
∗(G, H) UH(Φt(p0))

=
X

G⊆L

X

H⊇G

c
∗(G, H)λt

H UH(p0) =
X

G⊆L

X

H⊇G

c
∗(G, H)λt

H

X

M⊇H

c(H,M) TM (p0)

=
X

G⊆L

X

H⊇G

c
∗(G, H)λt

H

X

M⊇H

c(H,M)
X

T⊇M

(−1)|T−M|
RT (p0) .

(46)

The coefficient functions can now be extracted as follows.

Theorem 8 The coefficient functions aG(t) of the solution (15) of the recombination equation in

discrete time may be expressed as

aG(t) =
X

M⊆G

(−1)|G−M|
X

H⊆M

X

K⊆H

c(H, M) λ
t
H c

∗(K,H)

for all G ⊆ L. Here, c(H, M) and c∗(K,H) are the coefficients of Theorem 6. �

To derive the asymptotic behaviour for large iteration numbers, we need the following property

of the coefficients.

Lemma 6 The coefficients c(G, L) and c∗(G, L) satisfy c(G, L) = c∗(G, L) = δG,L for arbitrary

∅ ⊆ G ⊆ L.

Proof We have c(G, G) = c∗(G, G) = 1 for all G by Theorem 6. The claim for c(G, L) now follows

from the recursion (43) together with Corollary 4. Inserting this into recursion (45) establishes the

relation for the c∗(G, L). �

As an example, the path to a solution via the above chain of transformations for the model with

five sites will be presented in Appendix A.

Finally, let us consider what happens in the limit as t → ∞.

Proposition 7 The solution pt of the recombination equation (14) with initial condition p0 satisfies

pt
t→∞
−−−→ RL(p0) =

n
O

i=0

(πi·p0) ,

with exponentially fast convergence in the norm topology.

Proof When expressing pt in terms of UH according to (46), we first observe pt = UL(p0) +
P

G(L

P

H⊇G c∗ (G, H) λt
H UH(p0), because λL = 1 and c∗(G, L) = δG,L by Lemma 6. Since

UL = RL, we obtain the following estimate in the variation norm

‖pt − RL(p0)‖ =
‚

‚

‚

X

G(L

X

H⊇G

c
∗ (G, H) λ

t
HUH(p0)

‚

‚

‚

≤
X

H(L

λ
t
H

‚

‚

‚

X

G⊆H

c
∗ (G, H) UH(p0)

‚

‚

‚

t→∞
−−−→ 0 ,

which establishes the claim since λH < 1 for H 6= L. �

As was to be expected, the solution of the recombination equation converges towards the independent

combination of the alleles, that is towards linkage equilibrium.
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8 Discussion

In this paper, we have investigated the dynamics of an ‘infinite’ population that evolves due to re-

combination alone. To this end, we assumed discrete (non-overlapping) generations, and restricted

ourselves to the case of single crossovers. Previous results had shown that the corresponding single-

crossover dynamics in continuous time admits a closed solution [3]. This astonishing result is con-

cordant with a ‘hidden’ linearity in the system that is due to independence of links. The fact that

crossovers at different links occur independently manifests itself in the product structure of the

coefficient functions of the solution ensuing from the linear action of the nonlinear recombination

operators along the solution of the recombination equation. Additionally, in [3], a certain set of

linkage disequilibria was found that linearise and diagonalise the dynamics.

Since the overwhelming part of the literature deals with discrete-time models, our aim was to

find out whether, and to what extent, these continuous-time results carry over to single-crossover

dynamics in discrete time. We could show that the discrete-time dynamics is far more complex than

the continuous-time one, and, as a consequence, a closed solution cannot be given.

The main reason for these difficulties lies in the fact that the key feature of the continuous-time

model, the independence of links, does not carry over to discrete time. This is due to interference:

The occurrence of a recombination event in the discrete-time model forbids any further crossovers in

the same generation. In connection with this, the recombinators do not, in general, act linearly on

the right-hand side of the recombination equation. Likewise, the coefficient functions of the solution

follow a nonlinear iteration that cannot be solved explicitly.

While Geiringer [11] developed a skilful procedure for the generation-wise evaluation of these

coefficients, we constructed a method that allows for an explicit formula valid for all times, once the

coefficients of the transformation have been determined recursively for a given system.

As in previous approaches, this is achieved by a transformation of the nonlinear, coupled system

of equations to a linear diagonal one. This was done before by Bennett [5] and Dawson [9, 10] for

the more general recombination equation (without restriction to single crossovers), and they pre-

sented an appropriate transformation that includes parameters that must be determined recursively.

Unfortunately, the corresponding derivations are rather technical and fail to reveal the underlying

mathematical structure. It was our aim to improve on this and add some structural insight. Unlike

the previous approaches, we proceeded in two steps: first linearisation followed by diagonalisation.

More precisely, it turns out that the LDE operators TG, which both linearise and diagonalise the

continuous-time system, still linearise the discrete-time dynamics, but fail to diagonalise it for four

or more loci. However, the resulting linear system may be diagonalised in a second step. This relies

on linear combinations UG of the TG, with coefficients derived in a recursive manner.

As it must be, the transformation agrees with the one of Dawson [9, 10] when translated into

his framework. (Note that our c(G, H) are coefficients of TH , whereas his coefficients belong to

components of RH(p). Note also that SCR does not belong to the singular cases he excludes). It

remains an interesting open problem how much of the above findings can be transferred to the

general recombination model (i.e. without the restriction to single crossovers), where one loses the

simplifying structure of ordered partitions.

Acknowledgements It is our pleasure to thank Th. Hustedt for critically reading the manuscript and K. Schneider

for valuable suggestions to further improve it. This work was supported by DFG (Research training group Bioinfor-

matics, and Dutch-German Bilateral Research Group on Mathematics of Random Spatial Models in Physics and

Biology).



24 Ute von Wangenheim et al.

Appendix A: Five Sites

To illustrate the construction, let us spell out the example of five sites. We have S = {0, 1, 2, 3, 4} and

L =
˘

1
2 , 3

2 , 5
2 , 7

2

¯

, the corresponding recombination probabilities ρα, α ∈ L, η = 1−ρ 1

2

−ρ 3

2

−ρ 5

2

−ρ 7

2

,

and a given initial population p0. Aiming at determining the coefficient functions aG(t) for all G ⊆ L,

we can immediately write down a∅(t) = ηt, a 1

2

(t) = (η + ρ 1

2

)t − ηt, a 7

2

(t) = (η + ρ 7

2

)t − ηt and

a{ 1

2
, 7

2
}(t) = ηt − (η + ρ 1

2

)t − (η + ρ 7

2

)t + (η + ρ 1

2

+ ρ 7

2

)t, see (20).

If we wanted to determine the remaining coefficient functions aG(t) for a given time t, they could

be calculated using the method of Geiringer [11] (i.e. Theorem 3). But since we aim at a closed

solution for all t, we use the procedure developed above. To determine the coefficients of Theorem 8,

we have to calculate the corresponding c(G, H) and c∗(G, H). Theorem 6 and 7 imply UL = TL,

UL\{α} = TL\{α} for all α ∈ L, UL\{α,β} = TL\{α,β} for all α, β ∈ L, as well as U 3

2

= T 3

2

and

U 5

2

= T 5

2

. Hence, in these cases, the only non-vanishing coefficients are c(L, L) = c(L\{α},L\{α}) =

c(L \ {α, β}, L \ {α, β}) = c({ 3
2}, {

3
2}) = c({ 5

2}, {
5
2}) = 1 for all α, β ∈ L. It remains to determine

U 1

2

, U 7

2

and U∅.

1. Constructing U 1

2

:

The recursion starts with c({ 1
2}, {

1
2}) = 1. Following (38), z(L)({ 1

2},H) = 0 for all H ) { 1
2}

except for H = { 1
2 , 5

2}, and thus the only non-zero c({ 1
2},H), H ) { 1

2}, is

c({ 1
2}, {

1
2 , 5

2}) =
z({ 1

2}, {
1
2 , 5

2})

λ 1

2

− λ
{ 1

2
, 5

2
}

=
ρ 3

2

ρ 7

2

ρ 5

2

+ ρ 3

2

ρ 7

2

,

where we have used the recursion (43) and λ 1

2

= 1−ρ 3

2

−ρ 5

2

−ρ 7

2

, λ{ 1

2
, 5

2
} = (1 − ρ 3

2

) (1 − ρ 7

2

).

So, for the transformation (39) we obtain

U 1

2

= T 1

2

+
ρ 3

2

ρ 7

2

ρ 5

2

+ ρ 3

2

ρ 7

2

T{ 1

2
, 5

2
} ,

so that U 1

2

◦ Φ = (1 − ρ 3

2

− ρ 5

2

− ρ 7

2

)U 1

2

. Analogously,

U 7

2

= T 7

2

+
ρ 1

2

ρ 5

2

ρ 3

2

+ ρ 1

2

ρ 5

2

T{ 3

2
, 7

2
} .

2. Constructing U∅:

By (38), the only non-vanishing coefficients are c(∅, ∅), c(∅, { 3
2}), c(∅, { 5

2}), and c(∅, { 3
2 , 5

2}).

They are determined by the recursion (43) and lead to the following transformation (39):

U∅ = T∅ +
ρ 1

2

(ρ 5

2

+ ρ 7

2

)

ρ 3

2

+ ρ 1

2

(ρ 5

2

+ ρ 7

2

)
T 3

2

+
(ρ 1

2

+ ρ 3

2

)ρ 7

2

ρ 5

2

+ (ρ 1

2

+ ρ 3

2

)ρ 7

2

T 5

2

+
ρ 1

2

ρ 7

2

ρ 1

2

ρ 7

2

+ ρ 3

2

+ ρ 5

2

T{ 3

2
, 5

2
} .
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Now that we know the c(G, H), the coefficients c∗(G, H) are calculated via (45). Finally, the

remaining coefficient functions follow from Theorem 8:

a 3

2

(t) =
ρ 3

2

ρ 1

2

(ρ 5

2

+ ρ 7

2

) + ρ 3

2

(λt
3

2

− λ
t
∅)

a 5

2

(t) =
ρ 5

2

ρ 7

2

(ρ 1

2

+ ρ 3

2

) + ρ 5

2

(λt
5

2

− λ
t
∅)

a{ 1

2
, 3

2
}(t) = λ

t
{ 1

2
, 3

2
} − λ

t
1

2

−
ρ 3

2

ρ 1

2

(ρ 5

2

+ ρ 7

2

) + ρ 3

2

(λt
3

2

− λ
t
∅)

a{ 1

2
, 5

2
}(t) =

ρ 5

2

ρ 3

2

ρ 7

2

+ ρ 5

2

(λt
{ 1

2
, 5

2
} − λ

t
1

2

) −
ρ 5

2

ρ 7

2

(ρ 1

2

+ ρ 3

2

) + ρ 5

2

(λt
5

2

− λ
t
∅)

a{ 3

2
, 5

2
}(t) =

ρ 3

2

+ ρ 5

2

ρ 1

2

ρ 7

2

+ ρ 3

2

+ ρ 5

2

λ
t
{ 3

2
, 5

2
} −

ρ 3

2

ρ 1

2

(ρ 5

2

+ ρ 7

2

) + ρ 3

2

λ
t
3

2

−
ρ 5

2

ρ 7

2

(ρ 1

2

+ ρ 3

2

) + ρ 5

2

λ
t
5

2

+
“

1 −
(ρ 1

2

+ ρ 3

2

)ρ 7

2

ρ 7

2

(ρ 1

2

+ ρ 3

2

) + ρ 5

2

−
(ρ 5

2

+ ρ 7

2

)ρ 1

2

ρ 1

2

(ρ 5

2

+ ρ 7

2

) + ρ 3

2

+
ρ 1

2

ρ 7

2

ρ 1

2

ρ 7

2

+ ρ 3

2

+ ρ 5

2

”

λ
t
∅

a{ 3

2
, 7

2
}(t) =

ρ 3

2

ρ 1

2

ρ 5

2

+ ρ 3

2

(λt
{ 3

2
, 7

2
} − λ

t
7

2

) −
ρ 3

2

ρ 1

2

(ρ 5

2

+ ρ 7

2

) + ρ 3

2

(λt
3

2

− λ
t
∅)

a{ 5

2
, 7

2
}(t) = λ

t
{ 5

2
, 7

2
} − λ

t
7

2

−
ρ 5

2

ρ 7

2

(ρ 1

2

+ ρ 3

2

) + ρ 5

2

(λt
5

2

− λ
t
∅)

a{ 1

2
, 3

2
, 5

2
}(t) = λ

t

{ 1

2
, 3

2
, 5

2
} − λ

t

{ 1

2
, 3

2
} −

ρ 5

2

ρ 5

2

+ ρ 3

2

ρ 7

2

(λt

{ 1

2
, 5

2
} − λ

t
1

2

) −
ρ 3

2

+ ρ 5

2

ρ 3

2

+ ρ 5

2

+ ρ 1

2

ρ 7

2

λ
t

{ 3

2
, 5

2
}

+
ρ 3

2

ρ 1

2

(ρ 5

2

+ ρ 7

2

) + ρ 3

2

λ
t
3

2

+
ρ 5

2

ρ 7

2

(ρ 1

2

+ ρ 3

2

) + ρ 5

2

λ
t
5

2

−
“

1 −
(ρ 1

2

+ ρ 3

2

)ρ 7

2

ρ 7

2

(ρ 1

2

+ ρ 3

2

) + ρ 5

2

−
(ρ 5

2

+ ρ 7

2

)ρ 1

2

ρ 1

2

(ρ 5

2

+ ρ 7

2

) + ρ 3

2

+
ρ 1

2

ρ 7

2

ρ 1

2

ρ 7

2

+ ρ 3

2

+ ρ 5

2

”

λ
t
∅

a{ 1

2
, 3

2
, 7

2
}(t) = λ

t

{ 1

2
, 3

2
, 7

2
} − λ

t

{ 1

2
, 3

2
} − λ

t

{ 1

2
, 7

2
} −

ρ 3

2

ρ 3

2

+ ρ 1

2

ρ 5

2

λ
t

{ 3

2
, 7

2
} + λ

t
1

2

+
ρ 3

2

ρ 3

2

+ ρ 1

2

(ρ 5

2

+ ρ 7

2

)
λ

t
3

2

+
ρ 3

2

ρ 3

2

+ ρ 1

2

ρ 5

2

λ
t
7

2

−
ρ 3

2

ρ 3

2

+ ρ 1

2

(ρ 5

2

+ ρ 7

2

)
λ

t
∅

a{ 1

2
, 5

2
, 7

2
}(t) = λ

t

{ 1

2
, 5

2
, 7

2
} − λ

t

{ 5

2
, 7

2
} − λ

t

{ 1

2
, 7

2
} −

ρ 5

2

ρ 5

2

+ ρ 3

2

ρ 7

2

λ
t

{ 1

2
, 5

2
} + λ

t
7

2

+
ρ 5

2

ρ 5

2

+ ρ 3

2

ρ 7

2

λ
t
1

2

+
ρ 5

2

ρ 5

2

+ ρ 7

2

(ρ 1

2

+ ρ 3

2

)
λ

t
5

2

−
ρ 5

2

ρ 5

2

+ ρ 7

2

(ρ 1

2

+ ρ 3

2

)
λ

t
∅

a{ 3

2
, 5

2
, 7

2
}(t) = λ

t

{ 3

2
, 5

2
, 7

2
} − λ

t

{ 5

2
, 7

2
} −

ρ 3

2

ρ 3

2

+ ρ 1

2

ρ 5

2

(λt

{ 3

2
, 7

2
} − λ

t
7

2

) −
ρ 3

2

+ ρ 5

2

ρ 3

2

+ ρ 5

2

+ ρ 1

2

ρ 7

2

λ
t

{ 3

2
, 5

2
}

+
ρ 3

2

ρ 1

2

(ρ 5

2

+ ρ 7

2

) + ρ 3

2

λ
t
3

2

+
ρ 5

2

ρ 7

2

(ρ 1

2

+ ρ 3

2

) + ρ 5

2

λ
t
5

2

−
“

1 −
(ρ 1

2

+ ρ 3

2

)ρ 7

2

ρ 7

2

(ρ 1

2

+ ρ 3

2

) + ρ 5

2

−
(ρ 5

2

+ ρ 7

2

)ρ 1

2

ρ 1

2

(ρ 5

2

+ ρ 7

2

) + ρ 3

2

+
ρ 1

2

ρ 7

2

ρ 1

2

ρ 7

2

+ ρ 3

2

+ ρ 5

2

”

λ
t
∅
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and

a{ 1

2
, 3

2
, 5

2
, 7

2
}(t) = λ

t

{ 1

2
, 3

2
, 5

2
, 7

2
} − λ

t

{ 1

2
, 3

2
, 5

2
} − λ

t

{ 1

2
, 3

2
, 7

2
} − λ

t

{ 1

2
, 5

2
, 7

2
} − λ

t

{ 3

2
, 5

2
, 7

2
} + λ

t
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2
, 3

2
}

+
ρ 5

2

ρ 5

2

+ ρ 3

2

ρ 7

2

λ
t

{ 1

2
, 5

2
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t
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2
, 7

2
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ρ 3

2

+ ρ 5

2

ρ 3

2

+ ρ 5

2

+ ρ 1

2

ρ 7

2

λ
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2
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2
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2

+ ρ 1

2
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2
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2
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2

−
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2

ρ 1

2

(ρ 5

2
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2
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2
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−
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where the λG are given by (42).
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