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Coincidences of hypercubic lattices in 4 dimensions
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Abstract. We consider the CSLs of 4-dimensional hy-
percubic lattices. In particular, we derive the coincidence
index X and calculate the number of different CSLs as
well as the number of inequivalent CSLs for a given X.
The hypercubic face centered case is dealt with in detail
and it is sketched how to derive the corresponding results
for the primitive hypercubic lattice.

1. Introduction

Coincidence site lattices (CSL) for three-dimensional lat-
tices have been studied intensively since they are an impor-
tant tool to characterize and analyze the structure of grain
boundaries in crystals ([1, 2] and references therein). For
quasicrystals these concepts have to be adapted. Since a lot
of quasiperiodic structures can be obtained by the well-
known cut and projection scheme [3, 4] from a periodic
structure in superspace, it is natural to also investigate
CSLs in higher dimension. An important example are the
four-dimensional hypercubic lattices, which shall be dis-
cussed here. Four-dimensional lattices are particularly inter-
esting since they are the first ones that allow 5-fold, 8-fold,
10-fold and 12-fold symmetries which are actually ob-
served in quasicrystals. In particular the four-dimensional
hypercubic lattices allow 8-fold symmetries, from which
we can obtain e.g. the prominent Ammann-Beenker tiling [4].

Since rotations in four-dimensional space can be para-
meterized by quaternions, one has a strong tool to investi-
gate the CSLs of the hypercubic lattices. In particular, one
knows all coincidence rotations [5] and thus all CSLs can
be characterized. But one can go much further and this will
be done in the present paper. We first calculate the coinci-
dence index X and then we try to find all CSLs for a given
index X. It turns out that one can calculate the total number
of different CSLs for a given X and furthermore, we can
derive even the number of inequivalent CSLs and for each
CSL we can calculate the number of equivalent CSLs.

ak + bl 4+ cm + dn
al — bk 4+ cn — dm
am — bn — ck + d¢
an + bm — cl — dk

—al + bk + cn — dm
ak + bl — cm — dn
an + bm + cf + dk
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—am — bn + ck + d/
—an + bm + cf — dk
ak — bl + cm — dn
al + bk + cn + dm

These calculations are facilitated by the fact that the
four-dimensional rotations are closely related to the their
three-dimensional counterparts. In particular we exploit the
fact that SO(4) ~ SU(2) x SU(2)/C,, i.e. we can make
use of the results of the three-dimensional cubic case that
have been published recently [6]. Thus the results of the
hypercubic case are quite similar to the three-dimensional
results, although proofs are a bit more lengthy and the re-
sulting formulas are a bit more complex. However, there is
one big difference between three and four dimensions:
Whereas all important quantities like X, number of CSLs
etc. are equal for all three kinds of cubic lattices, this is no
longer true for four dimensions. For a given coincidence
rotation R, the coincidence indices for the primitive and the
face centered hypercubic lattice are in general not the same,
which is not surprising since the point groups are different,
too. Thus we must deal with both cases separately. How-
ever, one can derive the results of the primitive lattice from
the corresponding results of the face centered lattice. Thus
we concentrate on the latter and sketch how these results
can then be used for the primitive hypercubic lattice.

Now let us recall some basic facts and fix the notation.
Let L C R” be an n-dimensional lattice and R a rotation.
Then L(R) = L N RL is called a coincidence site lattice (CSL)
if it is a sublattice of finite index of L, the corresponding
rotation is called a coincidence rotation [5]. The coinci-
dence index X (R) is defined as the index of L(R) in L. By
index we mean the group theoretical index of L(R) in L,
where we view L(R) and L as additive groups.

Any rotation in 4 dimensions can be parameterized by
two quaternions p = (k,¢,m,n) and q = (a,b,c,d) in the
following way [7-9]:

Rp.) = o M(p.a). "
M(p,q)= pluiq) (pui|uiq) (pus|uqg) (pus|uq

)
pluxq) (pui|urq) (pus|uzq) (pus|u>q)
plusq) (pui|usq) (pus|usq) (pus|usq)
(2)
—an + bm — ¢l + dk
am + bn + ck + d/ (3)
—al — bk + cn + dm
ak — bl — cm + dn
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Here, u; are the unit quaternions uy = (1,0,0,0),
u; =(0,1,0,0), u; = (0,0,1,0) and u3z = (0,0,0,1) and
lp|> = k> + 2+ m? 4+ n? is the norm of p. Furthermore
we have made use of the inner product (p|q):=ak
+ bl + cm+ dn. If we identify the quaternions with the
elements of Z* (or R*) in the obvious way, then the ac-
tion of M(p,q) on a vector x € Z* can be written as
M(p,q)x = pxq. Here q = (a,—b,—c,—d) denotes the
conjugate of q. By an infegral quaternion we mean a qua-
ternion with integral coefficients. If the greatest common
divisor of all coefficients is 1, we call the quaternion pri-
mitive. In the following, all quaternions will be either pri-
mitive or normalized to unity. It will always be clear from
the context which convention has been chosen. Obviously
R(p,q) is a rational matrix if p and ¢ are integral quatern-
ions such that |pg| is an integer. In this case we call the
pair (p,q) admissible [5]. On the other hand any rational
orthogonal matrix R can be parameterized by an admis-
sible palir of integral quaternions. Furthermore recall
p'=—p
Pl

2. The CSLs and their X'-values

In 4 dimensions there are only two different hypercubic
lattices, namely the primitive and the centered hypercubic
lattices. They are equivalent to Lp = Z* and Lp = Dy, re-
spectively. Dy C Z* is of index 2 and consists of all inte-
ger vectors n with |n|* even. It is known that R is a coin-
cidence rotation of Z* or Dy, if and only if all its entries
are rational [5], i.e. R = R(p,q) for some admissible pair
of primitive quaternions (p,q). In order to analyze the
CSLs it is often convenient to find some appropriate sub-
lattices of the CSLs. To this end we define the denomina-
tor

den(R) = ged{k € N|kRL C L(R)}, (4)

where gcd denotes the greatest common divisor. Since
den(R) - L is a sublattice of L(R) it follows that

den(R) < X¥(R) < den(R)", (5)

where n = 4 is the dimension of L. In case of the primi-
tive cubic lattice this definition coincides with [5]

denp(R) = ged{k € N | kR integer matrix} , (6)
whereas for the centered lattice we find
deng(R) = 27" denp(R), (7)

where ¢ = 0,1 is the maximal power such that 2 divides
denp(R). In particular we find for any admissible pair p, ¢

denr(R(p.q)) = 2""Ipql, (8)

where ¢ =0, 1,2 is the maximal power such that 2¢ di-
vides |pq|.

It follows from Egq. (5) that R is a symmetry operation
of L if and only if den(R) = 1. Thus R(p,q) is a Symine-
try operatlon of the centered lattlce Dy if and only if |p|* =
1,4 and |g|* = 1,4 or |p|* = |g|* = 2. This gives the well
known 576 pure symmetry rotations of D4. Note that not

all of them are integer matrices, which reflects the fact
that the symmetry group of Dy is larger than those of Z*.
In fact only 192 rotations are integer matrices, namely the
pure symmetry rotations of Z*. These are the rotatlons
correspondlng to the pairs (p,q) such that | p| |q| =1
or [pl*=lq> =2 with (p|q) even or |p|> =|q* =4
with (p|q) divisible by 4.

We consider the face centered lattice first, formulating
and proving a result that was first stated (without proof) in
[5], Eq. (3.21).

Theorem 2.1 Let p,q be an admissible pair ofprimi—
tive integer quaternions and let X(p) =2~ where
¢ =0,1,2 is the maximal power such that 2" dlwdes |p|*.
Then, for the fcc-lattice, the rotation R(p,q) has coinci-
dence index

2r(p,q) = 2r(R(p,q)) = lem (Z(p), 2(q)) . 9)

Proof: Let us write |p|> = a2y, |q* = B* y, where y =
gcd (|p| lg|). Further let p?) = pu; and ") = @,qg. Then
Bp® and aq(l) are integer vectors with integer pre-images.
Thus they are in Lp(R) and hence certainly 28p() and
204Y) are in Lp(R).” Thus if i # j and k # £ the four vec-
tors 28p", 28pY), 2ag™®, 2aq'") span a sublattice of Lr(R).

Since
det(ﬁp ,BpY, ag®, ag >)
N (pP1g"))—(p"

=B ((p? |a<" 1§ (p? |g*)y, (10)

where k', ¢ are chosen such that (K',¢' k,¢) is an even
permutation of (0, 1,2, 3).

Hence we conclude that Z(R) divides 8¢, where c is
the greatest common divisor of ¢/ = (p)|g®))(p)|g(®)
—(pDg")(pV|g")). Using the expansion

3 . .
|p’a = > (p01a)p?,

(11)

we see that ¢ divides

52 ¥ (pl|a) = P (lal 4 (6 |4

—(alg") (p" 1g")),
for any integral quaternion a. We now choose a such that
(a|g®) =0, in particular if k =0 we choose a = qsuq
+ qoug and a = q(@ — quug — qouy. Hence ¢ must divide
11> (g% + @) (¥ |§). Now g is primitive s0 that the
greatest common divisor of all combmatlons g, + q> is at
most 2. Thus ¢ divides 2| p| ( ) |q). Similarly one proofs
that ¢ divides 2| p| (pY | g®)y for arbitrary k, and hence ¢
must divide 8| p| because ¢ and p are both primitive. In the
same way one shows that ¢ divides 8|q| Thus ¢ divides 8y

and Xp(R) divides 64a2ﬁ y. But Zr(R) divides denp(R)4,
which is odd. So Zr(R) divides lem (Z(p), 2(q)).

It remains to show the converse statement,
lem (2(p), Z(q)) < Zr(R). To this end, we count the vec-

(12)

! Unless |p|* and |g|* are both odd, even fp) and ag!) are
elements of Lp(R). In any case AB(p" +p?)cLp(R) and
a(@® +3" € Lr(R).
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tors y € Lr(R) contained in the hypercube H(2pp")
spanned by 2Bp"%). If there are np of them then Zp(R) =
86%|p|* /nr = 8a4|q| /np Now Lp(R) is a sublattlce of
Lp(R), so that Zp(R) is a multiple of 83*|p|*/np if np
denotes the number of vectors y € Lp(R) contained in the
hypercube H(2fp"). Now n, = 16n}, where n), is the
number of the vectors y € Lp(R) contained in the smaller
hypercube H(Bp'")) spanned by Sp). Equivalently we can
count their pre-images x = Ry lying inside the hyper-
cube H(au;q). In the following we identify H(au;q) with
the factor group Lp/L,, where L, denotes the Z-span of
the vectors au;q.

Observe that any vector x of H(au;q) can be expressed as

1 3
X=-— > (x|uiq)uiq, (13)
lq|” =0
such that 0 < (x|u,q) < alg]*. Now x is in Lp(R) if its
image
R q)X p |uiq ) 14)
p.q)x |pq| Z ) (x| uig) (
is an integral vector. Since
i |P| a

all coefficients (x |u;q) must be divisible by S. In order to
determine the vectors that satisfy this condition we first
observe that there exists a vector x such that (x|q) =1
since g is primitive. Regarding x as an element of the
abelian group Lp/L we see that it has order alg|™
Among all vectors x’ with (x"|g) = 0 there ex1sts one of
order alg|*/2 or alq|’, dependlng on whether |g|* is divi-
sible by 4 or not.> Hence x and x’ generate a subgroup of
order o2|g|* or a2|q| /2 of Lp/L% Condition (15) is satis-
fied by a?|g*/B* or o?|q|*/ (Zﬂ ) of them, respectively.
Thus Lp/L, contains at most a 4q|* /B> vectors satlsfylng
condltlon (15) and hence n, is a divisor of a*|q|*/A>. Let
L denote the subgroup of Lp/L, that is formed by the
vectors satisfying cond. (15) and assume x € L/; in the
following. We can rewrite Eq. (14) as

3 _ 3, (x| puiq)
Rp,g)x =—= > uix|puq)= ) uwi—————
(p ) |P‘I| IZ::() < ‘ > i;() aPy

)

(16)

i.e. |pq| must divide (x| pu,q) By assumption,  divides
(x| pu,g). On the other hand, since den(R) = |pq|/2’,
there exists an element x of order ay /2’ or higher. Thus
at most 25|LP|/(ay) vectors x € Lp/L satlsfy condition (14)
and hence n, divides 2'*'ad|gl*/(By) = 2”1 3|q|
From this we infer that ¥ (R) is a multiple of alg|*/2/*
and hence a multiple of 2(q). Analogously we prove that
3r(R) is a multiple of X(p). Thus lem (Z(p),Z(q))
< Zr(R) and the claim follows. O
From this result we can easily infer the coincidence
index Xp(R) for the primitive lattice. Since Ly is a sublat-

2 Consider the vectors qug — qoug and uyq + qouo — qouy. Their
orders are multiples of alg|*/ ged(algl*, ¢? + ¢q3) and an appropriate
combination thereof gives the desired vector x'.

tice of index 2 of Lp, Xp(R) must divide 2Xr(R) and
2r(R) must divide 2Xp(R) [5]. Since Zr(R) is odd we
have Zp(R) = X¢(R) or 2p(R) =22¢(R). Due to Eq. (5)
the index Xp(R) is odd if den(R) is odd and even if
den(R) is even. Hence we have proved:

Theorem 2.2 Let p,q be an admissible pair of primi-
tive integer quaternions and let 3(q) =2"|q|%, where
¢ =0,1,2 is the maximal power such that 2' divides |q|
Then, for the primitive lattice, the rotation R(p,q) has
coincidence index

ZP(pa q) = ZP(R(pv q))
=lem [2(p),2(q),den (R(p.q))] - (17)

This was first stated, without proof, in [5].

3. Equivalent CSLs

Different coincidence rotations may generate the same
CSL or rotated copies of each other. It is natural to group
these rotations and CSLs in appropriately chosen equiva-
lence classes. The natural way is to call two coincidence
rotations equivalent if they are in the same double coset of
the symmetry group of the lattice [6, 10, 11]. To be pre-
cise, let Gp and Gy denote the symmetry groups of the
primitive and the face-centered hypercubic lattice. Then
we call two coincidence rotations R, R’ P-equivalent (F-
equivalent) if there exist two rotations Q,Q € Gp
(0,0 € Gr) such that R = QR'Q’. Accordingly, we call
two CSLs P-equivalent (F-equivalent) if the corresponding
coincidence rotations are P-equivalent (F-equivalent). In
particular, R and RQ, O € Gp give rise to the same CSL.

Hence two coincidence rotations are equivalent if they
belong to the same double coset GpRGp or GpRGp. These
double cosets can be calculated if one knows the sub-
groups H;(R) := G;NRG;R™!, i = P,F. In order to deter-
mine these groups we make use of the fact that
SU(2) x SU(2) is a double cover of the 4-dimensional
rotation group SO(4), which is reflected in the parameter-
ization Eq. (2). Although the corresponding double cover
of Gr and Gp is not a direct product but a subdirect prod-
uct, we can make use of this special property and reduce
the 4-dimensional case to the 3-dimensional one.

In order to do this we recall that the 3-dimensional
rotations can be parameterized by quaternions as well [7—
9]. The group G of order |G| = 48 generated by the quater-

nions (41,0,0,0), %(11,11,0,0), Up(1, 1, 1, +1)
and permutations thereof is a double cover of the cubic
symmetry group O of order |O| = 24. Based on the notion
of equivalence of 3-dimensional coincidence rotations we
introduce the following equivalence notion for quater-
nions: Two quaternions ¢ and ¢’ are equivalent (g ~ ¢q') if
there exist quaternions s,s’ € G such that ¢’ = sqs’. Their
equivalence classes are known [6] and the different types
are summarized in Table 1. Here H(q) :=GNqGq™"
Furthermore the number of inequivalent CSLs for a given
2 is known [6, 11]. These numbers are summarized in
Table 2 for all special quaternions g. The number of in-
equivalent CSLs for a general ¢ can be obtained by con-
sidering the total number of CSLs [6].
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Table 1. Equivalence classes of quaternions: Any primitive quaternion is equivalent to one of the quaternions in the first column. The second
column gives a set of generators of H(q). The third column gives the order of |H(g)| and the forth column states the number of equivalent g,
which is 48 times the number of equivalent 3-dimensional CSLs.

q H(q) [H(q)l G4

(1,0,0,0) g 48 48

0,1,1,1) ~ (3,1,1,1) H, = [(—1,0,0,0),(1,1,1,1),(0,1,—1,0)] 12 4.48 =192
(m,n,n,n) H, = [(—1,0,0,0),(1,1,1,1)] 6 848 =384
(m,n,0,0) Hs = [(—1,0,0,0),(1,1,0,0)] 8 6-48 =288
(m,n,n,0) Hs = [(—1,0,0,0),(0,1,1,0)] 4 12-48 = 576
otherwise Hs = [(—1,0,0,0)] 2 2448 = 1152

Table 2. Number of inequivalent cubic CSLs/coincidence rotations for a fixed value 2. The last column gives the condition under which these
values hold. If this condition is not satisfied, the corresponding number of inequivalent CSLs is O for the particular type of q.

q inequiv. CSLs condition
(1,0,0,0) 1 =1
0,1,1,1) 1 >=3
(m,n,n,n) 2k-1 p =1 mod 6 for all prime factors p #3 of X > 3, the factor p =3 occurs at most once and k is the
number of different prime factors p = 1 mod 6 of X.
(m,n,0,0) 2k-1 p =1 mod 4 for all prime factors p of £ and k is the number of different prime factors of 2.
m,n,n,0 2k1 p =1 or 3 mod 8 for all prime factors p of X, where k is the number of different prime factors of X > 3.
p p

Table 3. F-Equivalence classes of admissible pairs. For each admissible pair the corresponding group Hr(p, g) and its order is listed. The last
column gives the number of equivalent coincidence rotations R(p, ¢). By dividing these numbers by 576 we obtain the number of equivalent
CSLs. In order to save space we have omitted some pairs. These can be easily obtained by interchanging the role of p and ¢ and by adapting the
subgroup Hr correspondingly.

p q Hr(p.q) IHr(p.q)| |GrR(p.q) Gr|
(1,0,0,0) (1,0,0,0) Gr 1152 576 gro0 = 576
(1,0,0,0) (m,n,n,n) g @M, 144 576 gror — 8 - 576
1 1
1,0,0,0 m,n,0,0 g’®H’u(— 1,1,0,0), — 1,1,0,0>g’®H’ 192 576 gro3 = 6 - 576
( ) ( ) 3 ﬁ( ) ﬂ( ) 3 8ro3
1 1
1,0,0,0 m,n,n,0 g’®H’u(— 1.1,0,0,—0,1,1,0)Q’®H’ 96 576 gros = 12+ 576
( ) ) ( ] ) 4 \/5( J ) \/E( ) ) 4 8Fo4
(1,0,0,0) general G @ H 48 576 gros = 24 - 576
1 1
0,1,1,1) 0,1,1,1) M, ®H, U ( % (0,1,-1,0), 5(0,1,—1,0)) M, ®H, 72 576 g1 = 16 - 576
(0,1,1,1) (m,n,n,n) H) @ H) 36 576 gr12 = 32576
1 1
0,1,1,1 .1,0,0 H, ® Hy U ( 0,1,-1,0), —(1 IOO)H’ H, 48 576 gr13 = 24 - 576
(0,1,1,1) (m,n,0,0) \/i( )\/5( ) ) Hi ® H; g3
1
0,1,1,1) (m,n,n,0) H ® Hy U (ﬁ(o,l, ,0), 7(0,171,0)) H @ H, 24 576 gr14 = 48 - 576
(0,1,1,1) general H ® H; 12 576 gris = 96 - 576
(m,n,n,n) (m' ', n',n) H, @ H, 36 576 gy = 32-576
m,n,n,n m',n’,0,0 H, @ H; 24 576 gry; = 48 - 576
2 3
(m,n,n,n) (m',n',n',0) H, @ H, 12 576 gray = 96 - 576
(m,n,n,n) general Hy ® H 12 576 gras = 96 - 576
1 1
1,00 ' 10,0 H’®H/U(— 1,1,0,0), — l,l,0.0)H’@H’ 32 576 gra3 = 36 - 576
(m,n ) (m',n ) 3 3 ﬁ( ) ﬂ( ,0) 3 3 8F33
1
(m,n,0,0) (', ', 1, 0) My ®H, U (—(1,1,0 0), (0,1,1,0)) H, @ H, 16 576 grau = 72 - 576
V2 V2
(m,n,0,0) general Hy @ H 8 576 gr3s = 144 - 576
1
(m,n,n,0) (', 0,1, 0) M, ®H, U (\[(o, 1,1,0), ﬁ(o 11, 0)) H, @ H) 8 576 gras = 144 - 576
(m,n,n,0) general Hy @ Hs 4 576 gras = 288 - 576
general general HS @ Hs 4 576 grss = 288 - 576
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Table 4. Number of F-inequivalent CSLs (Part 1). The last column gives the condition under which these values hold. If this condition is not
satisfied, the corresponding number of inequivalent CSLs is O for the particular type of (p, ¢). In order to save space we have omitted some
pairs. These can be easily obtained by interchanging p and ¢ and reading of the corresponding value ng; = ng;;.

P q inequivalent CSLs condition

(1,0,0,0) (1,0,0,0) nroo = 1 Sr=1

(1,0,0,0) (m,n,n,n) npoy = 2871 k is the number of different prime factors, all prime factors p = 1
mod 6, X is a square

(1,0,0,0) (m,n,0,0) npoy = 251 k is the number of different prime factors, all prime factors p = 1
mod 4, Xr is a square

(1,0,0,0) (m,n,n,0) npos = 2871 k is the number of different prime factors, all prime factors p = 1 or
3 mod 8, X is a square

,0,0, enera nros r is a square
1,0,0,0 g 1 2Fisasq

(0,1,1,1) (0,1,1,1) nr11 =1 ZF:3

(0,1,1,1) (m,n,n,n) npy = 2k71 3 = 3d?, k is the number of different prime factors of a, all prime
factors p = 1 mod 6

(0,1,1,1) (m,n,n,0) npig = 2871 3r =3a% k is the number of different prime factors of X, all
prime factors p =1 or 3 mod 8

0,1,1,1) general nr1s Sr =3d%

(m,n,n,n) (m' 0’0 n') gy =241t — 02k 3r=3"a, r=0,1, k is the number of different prime factors of a,

[

(m,n,n,n) (m',n',0,0) gy = 2Ktk gl ];[ ty
_612k2+k3*2 _ 522k1+k372
(m,n,n,n) general nEas
(m,n,n,n) (m,’n,7n,70) N4 = 2k|+k24k371 Htk
‘
- 1/2(711702 + npi2 + npos + nris)
(m,n,0,0) (m',n',0,0) npay = 41 [t — 02!
‘
(m,n,0,0) (m' ', ,0)  nppy = 2ktR4kI Ty,
‘
3 1/2("1702 + npi2 + npos + nris)
(m,n,0,0) general nr3s
(m,n,n,0) (m',n',n',0) npgy = 41 ]t — 02!
‘
(m,n,n,0) general NE45
general general nFss

which is not divisible by 3, all prime factors p = 1 mod 6, 6 = 1 if
a is a square and 6 = 0 otherwise

Sp =[1p* Hp;zd 14} pi =1 (mod4) # 1 (mod 6),p; = 1 (mod
. . ’

6) #1 (mod)/4, qe =1 (mod4) =1 (mod6),k;,k,, k3 denote the
number of different prime factors of type p;, pj’. and ¢y, respectively.
&1 = 0 unless all #;, are even and k; = 0, where ; = 1. An analo-
gous definition applies for 0, with k; = 0 replaced by k, = 0.

p=3[1p" T1P T4} pi =1 (mod 6) # 1 or 3 (mod 8),
p;=1 or'3 (moﬁ 8) # “ (mod) 6,g; =1 (mod 6) = 1 or 3 (mod 8),
there must be at least one prime factor = 1 (mod 6) and one = 1 or
3 (mod 8). k;, k, denote the number of different prime factors of
type p; and p;, respectively. k3 is the number of prime factors of
type g, if s = 0 and the number of prime factors of type g, plus 1 if
s> 1.

k is the number of different prime factors of X, all prime factors
p=1mod4, 6 =1 if 2 is a square and 0 = 0 otherwise

Zp=[1p}" Hp}zr; [14},pi=1(mod4) # 1 or 3 (mod 8),
i ' ]

i J 4

p; =3 (mod8), g, =1 (mod) 8, there must be at least one prime
factor = 1(mod 4) and one = 1 or 3 (mod 8). k;, k», k3 denote the
number of different prime factors of type p;, p]/-, and gl , respectively

k is the number of different prime factors of 2, all prime factors
p=13mod8, 0 =1if Zp = a?, 3a® and 6 = 0 otherwise

Let G’ C G be the group generated by the quaternions
(£1,0,0,0), '/a(£1,41,41,£1) and permutations there-

of. Now the group Gr=G ®G U (\/LE(I7 1,0,0),
\/Lj(l, 1,0,0)> G ® @ is a double cover of Gr. We call
two pairs of quaternions (p,q) and (p’,q’) F-equivalent if
the corresponding rotations R(p,q) and R(p’,q’) are F-
equivalent. If (p,q) and (p’,q') are F-equivalent then
p ~p' and g ~ ¢/, but the converse is not true in general.
Let us analyze the converse situation. Let p ~p’ and
q ~ ¢, i.e. there exist r,¥ s,s' € G such that p’ = rpr’ and
q' = sqs’. If both pairs (p,q) and (p’,q’) are admissible,
then (rr’,ss’) must be admissible, too. If (r,s) is admissi-
ble, then so is (r,s’), and (p,q) and (p’,q’) are F-equiva-

lent. If (r,s) is not admissible, then (p,q) and (p’,q’) are
F-equivalent only if there exist admissible pairs (ry,s;)
and (r},s}) such that rpr’ = rpr| and sqs’ = s,gs). This
is possible if and only if H(p) or H(g) contains one of
1
V2
of. The latter statement is equivalent to the statement that p
or g is equivalent to one of the following quaternions:
(1,0,0,0), (0,1,1,1), (m,n,0,0) or (m,n,n,0). We can
summarize these considerations as follows: If (p,q) and
(p',q") are F-equivalent then p ~ p’ and g ~ ¢'. Conversely
p ~p and q ~ ¢ implies that (p,q) and (p’,q’') are F-
equivalent if p or ¢ is equivalent to one of the following qua-
ternions: (1,0,0,0), (0,1, 1, 1), (m,n,0,0) or (m,n, n,0).

the quaternions (£1,%£1,0,0) or a permutation there-
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Assume now that p ~ (m,n,n,n) and g ~ (m',n',n',n’).
Then we may not conclude that the admissible pair (p,q)
is F-equivalent to ((m,n,n,n),(m',n',n';n")). However,
we may conclude that (p,q) is F-equivalent either to
((myn,n,n),(m’ . n',n',n')) or ((m,n,nn),m,—n, —n
—n')). Note that the latter pairs are not F-equivalent.
Nevertheless, they are of the same type.

Having this in mind we can use Table 1 to calculate all
types of possible F-equivalence classes. Instead of calculat-
ing the groups Hr(R(p,q)) directly we compute their cor-
responding double covers Hp(p,q). It turns out that they
are simply given by Hr(p,q) = (H(p) ® H(q)) NG The
results are listed in Table 3. In order to save space we
have omitted some pairs. These can be easily obtained by
interchanging the role of p and ¢ and adapting the corre-
sponding subgroup Hg. In addition, we have used the de-
finition H, := H;N G

The fact that G is a special subgroup of G x G enables
us to derive the number of different and inequivalent
CSLs from the 3-dimensional case. First, we consider the
total number of different CSLs f#(Z). Recall that the total
number of different CSLs f(X) for a given X in the 3-
dimensional case is given by [5, 6]

f(1)=1 (18)
)= (19)
)= (p—H) ~!' ifpisanoddprime, r>1, (20)
f(mn) =f(m)f(n)  if m, nare coprime . (21)

The multiplicativity of f(X) is due to the uniqueness of
the (left) prime factorization of the integer quaternions [8].
The same reasoning holds true in four dimensions, too, so
we only need to calculate fr(p"). To this end we note that
there are precisely f(Z(p)) f(2(q)) different CSLs for giv-
en X(p) and Z(g). Summing up all admissible combina-
tions of (Z(p),Z(g)) that give a fixed p” we obtain [5]

70 =2 e - 2), 22)
In a similar way we can calculate the number of inequiva-
lent CSLs of a certain type, say (p,q) = ((0,1,1,1), (0,1,
1,1)) or ((m,n,n,n),(m n',n' ;n')). These results are
summarized in Table 4.

Let us discuss some of them. Consider pairs of type
((1,0,0,0), (m,n,n,n)) first. Then X(p,q) = Zr implies
3(q) = Zp. Hence the number of inequivalent CSLs is
equal to the number of inequivalent quaternions ¢ = (m,
n,n,n), which can be read off directly from Table 2. Thus
there are precisely 2¢~! inequivalent CSLs if p = 1 mod 6
for all the k different prime factors of Xr. Note that a
prime factor 3 cannot exist, since 2 must be a square as
(p,q) must be an admissible pair.

Consider now pairs of type ((m,n,n,n), (m n',n' n')).
Such pairs can only exist if Zr(p,q) = 3f le i H qz*+l

where all prime factors p;,q; = 1 mod 6 and t= O7 1. This

implies that X(p) =3"]] p,-zr‘{ I1 qjxﬁl and X(q) =
i J

Table 5. Splitting of F-equivalence classes into P-equivalence classes. The last column gives the decomposition of the F-equivalence class

Gr(p, q) Gr into double cosets of Gp. Here, s

= (uo,'/2 (1,1,1,1)), 52 =

(uo, '/» (—=1,1,1,1)). In order to save space we have omitted some

pairs. These can be easily obtained by interchanging p and ¢ and adapting the decomposition correspondingly, i.e. we have to interchange the

corresponding quaternions of the pairs gs;, §1g, ... as well.

GrgGp U Gpgs1Gp U Gps18Gp U Gps1gs1Gp U Gps1852Gp
GrgGr U Gpgs1Gp U Gpgs2Gp U Gps18Gp U GpsagGp U Gps1851Gp U Gps1852Gp U Gpsags1Gp U GpsagsrGp

g=(p,q double coset decomposition of GrgGr

((1,0,0,0), (1,0,0,0)) Gr Usi1Gp

((1,0,0,0), (m,n,n,n)) GprgGp U Gpgs1Gp U Gpgs,Gp

((1,0,0,0), (m,n,0,0)) GrgGp U Gpgs Gp

((1,0,0,0), (m,n,n,0)) GpgGpr U Gpgs 1 Gp

((1,0,0,0), (m,n,p,q)) GrgGpr U Gpgs1Gp U Gpgs,Gp

((0,1,1,1), (0,1,1,1)) GrgGp U Gpgs1Gp

((0,1,1,1), (m,n,n,n)) GrgGp U Gpgs1Gp U Gpgs Gp

((0,1,1,1), (m,n,0,0)) GpgGpr U Gpgs Gp

((0,1,1,1), (m,n,n,0)) GrgGr U Gpgs1Gp

((0,1,1,1), (m,n,p,q)) GrgGp U Gpgs1Gp U Gpgs,Gp

((m,n,n,n), (m',n',n',n")) GrgGr U Gpgs1Gp U Gpgs Gp

((m,n,n,n), (m',n',0,0)) GrgGp U Gpgs1Gp U Gpgs,Gp

((m,n,n,n), (m',n',n’,0)) GrgGp U Gpgs1Gp U Gpgs,Gp

((m,n,n,n), (m',n',p',q")) GrgGp U Gpgs1Gp U Gpgs,Gp

((m,n,0,0), (m',n',0,0)) GrgGp U Gpgs1Gp U Gps18Gp U Gps1gs1Gp U Gps1gs2Gp
((m,n,0,0), (m',n',n’,0)) GrgGp U Gpgs1Gp U GpgsGp U Gps18Gp U Gps1852Gp
((m,n,0,0), (m',n',p',q')) GrgGp U Gpgs1Gp U Gpgs:Gp U Gps18Gp U GpsagGp U Gps1851Gp U Gps1852Gp U Gpsygs 1 Gp U Gps,852Gp
( ) (

( ) (

( ), (

GrgGp U Gpgs1Gp U GpgsaGp U Gps18Gp U GpsagGp U Gps1851Gp U Gps1852Gp U Gpsags 1 Gp U Gps2852Gp
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Table 6. P-Equivalence classes of admissible pairs. The groups Hp(p, ¢) are given in terms of their generators listed in the third column, where we always
have to add the trivial generators ((—1,0,0,0), (1,0,0,0)) and ((1,0,0,0), (—1,0,0,0)). The last column gives the number of P-equivalent coincidence
rotations R(p, q). By dividing these numbers by 192 we obtain the number of P-equivalent CSLs. In order to save space we have omitted some pairs.
These can be easily obtained by interchanging p and ¢ and adapting the generators correspondingly.

P q non-trivial generators of Hp(p, q) [Hr(p, q)| |GpR(p, q)Gp|
(1,0,0,0)  (1,0,0,0) Gr 384 192
(1,0,0,0) (1,1,1,1) (ul,uo), (uz, uo), (ug,ul) (u(), uz), (1/2 (1,1,1,1), 1/2 (lﬂl,l,l)) 192 2192
(1,0,0,0)  (m,n,n,n) (wy, uo), (uz, up), (1/2(1 1,1,1), 1/2 (1,1,1,1)) 48 8192
1
(1,0,0,0)  (m,n,0,0) (w1, uo), (12, wo). <\[(1 1,0,0), —2(1,1,0,0)) 64 6192
m-—n m+n m—n m-+n
(1,0,0,0) > == ) (w1, ), (ua, up), (uo, uy) kY) 12192
1
(1,0,0,0) (m,n,n,()) (wy, uo), (uz, up), (\/A(O,l,l 0), —2(0 1,1 ())) 32 12-192
(1,0,0,0) (%— n, %Jrn, % %) (w1, uo), (2, wo) 16 24192
(1,0,0,0)  general (w1, uo), (uz, up) 16 24-192
1 1
0,1,1,1)  (0,1,1,1) (s (1L,1,1,1), Yo (1,1,1,1)), (5(0,1,71,0),—2(0,1,71,0)> 24 16192
0,1,1,1)  (3,1,1,1) (L1, 1,1), Yo (1,1,1,1)) 12 32.192
0,1,1,1)  (m,n,n,n) (fH(1,1,1,1), 1 (1,1,1,1)) 12 32-192
1 1
0,1,1,1)  (m,n,0,0) <ﬁ(o,o,1,71),ﬁ(1,1,o,0)) 16 24192
m—n m+n m—n m-+n
(0,1,1,1) ( R ) (uo, u1) 8 48192
1
0,1,1,1)  (m,n,n,0) (—(0,1.— 0, - 0,1,1,0) 8 48192
v2il V2
(0,1,1,1) (% 2+n’;”;’) - 4 96192
(0,1,1,1)  general - 4 96 - 192
(myn,n,n)  (m',n',n',n') (o (1,1,1,1), 15 (1,1,1,1)) 12 32-192
(m,n,n,n) (m',n',0,0) (wo, uy) 8 48 -192
(m,n,n,n) (m',n',n',0) = 4 96 - 192
(m,n,n,n) general - 4 96 - 192
1 1 1 1
m,n,0,0) (m',n',0,0 —(1,1,0,0), —(1,1,0,0) ), (—=(1,1,0,0), — (1, —1,0,0 32 12192
(m.0,0) (nf,1,0,0) (501:1:0.0: 75(1.1.0.0) ). (5501,1.0.0 (01, -1.0.0))
(m,n,0,0) (m',0,n',0) (wy, uo), (wo,uz) 16 24192
m —n m+n m—n om+n
(m,n,0,0) < I T ) (1, uo), (uo, uy) 16 24-192
m —n m+n m+n om—n
(m,n,0,0) < T Ty > (w1, uo), (uo, uz) 16 24192
Y Y R A A, /
(m,n,0,0) (mzn,mzn,m;",m;"> (1. wo), (o, u3) 16 24192
(m,n,0,0) (m',n',n,0) (w1, uo) 8 48192
1 1
(m,n,0,0)  (n,0,n,n') (ﬁ(l’ 1,0,0), (00,1, 1)) 16 24192
m m m m
(m, n,0,0) <7 —n T 7) (u1. uo) 8 48192
/ / / /
(m,n,0,0) <—m7 =i % "71 -1, 7) (1, uo) 8 48-192
m m m m
(m,n,0,0) <7 -, == + 1, ?) (uy, up) 8 48 -192
(m,n,0,0) general (w1, uo) 8 48192
1 1
m,n,n,0)  (m',n',n,0 —_(0,1,1,0), —(0,1,1,0 8 48192
(mom,0) (o ,0) (F501.1.0.550.1.10))
(m,n,n,0) (m',0,n',n") - 4 96 - 192
R T A
(m,n,n,0) <77n,7+n,7,7 - 4 96 - 192
/ / ! !
(m,n,n,0) <J"7 —, ’% ”71 _, m?) - 4 96-192
m ,omom o
: T o o L 4 -192
(m,n,n,0) <2 " +n > 96 - 19
(m,n,n,0) general - 4 96 - 192
general general - 4 96 - 192
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20" 257 +1
3tH pz i H q] J

For a fixed combination of {r].s}}. there are 2K-1 inequi-
valent quaternions p, where k' is the number of different
prime factors p;,g; # 3 contained in X(p). If we use the
notation v( )=0,1 for a =0, a > 1, respectively, we can

1/ H2v21 H2v2s+

number of 1nequ1valent admissible pairs (p,q) we have to
take the sum over all possible combinations of 7, . ,s], s]
Note that r{ runs through O0,.

with r; = max (r}, /), s; = max (s, s/).

IR j’j

write 2! In order to get the

.1 if r! =r; and vice
versa. Hence the number of inequlvalent admlsmble pairs
reads

1/2 Z H 2v(2r;)+v(2r,f’) H 2v(2‘vj’+1)+v(2xj”+l) (23)
(vl v; v”) i J
- rlil I
_ 1/2 H ( E )+ v(2ri) + NZ:O 2v(2r;) +v(2r!)
+ 2{2v(2ri)} +v(2r§)> (24)

« H <Y§ 21/(25]’.+1)+1/(2s,+1)

i o
J sj—O

+ 3/2] 2v(23j +1) +v(2s]+1) + 21/(2.9/4—1) + V(2xj’.’+]>
=0

(25)
= 1/2]:[(&",)1;[[ (257 +1)]

=2- 412 T[] 25+ 1), (26)

where k is the number of different prime factors p;, g; # 3.
If X¢(p,q) contains at least one odd prime power qusj Y
we have finished. Otherwise we have to take into account
that the sum above includes 2¥! pairs of the form
((m7 n’ n7 n)? (17 O’ 07 O)) Or ((m7 n7 n7 n)7 (07 ]" 17 1))' Hence
a term 2 must be subtracted from the sum above. Thus
there exist

npp =2 -4, — 02k (27)
V4

inequivalent admissible pairs ((m,n,n,n), (m',n',n',n’))
for a fixed Zp(p,q) =3'[[p; with p,=1mod6 and

[
t=0,1. Here 6 =1 if all ¢, are even and 6 = 0 other-
wise.

Next we consider the case ((m,n,n,n),(m’,n’,0,0)),
which is an example where p and ¢ are of different type.
First observe that X(g) may only contain prime factors
p = 1 mod 4, whereas 2(p) may only contain prime fac-
tors p = 1 mod 6 and p = 3, for the latter only the powers
3% and 3' are allowed. Since the pair must be admissible,
the factor p =3 is ruled out and the coincidence index
takes the form Xr(p,q) = H pr H 2 Hq‘v where

p —1m0d6p 7é1mod4
szr’Hq/’

pi = 1 mod4,p; # 1 mod 6,
ge=1mod4,q, = 1mod 6. Hence X(q) =

(p) = H P H g} where 5, =

have to sum over all possible combinations s/,s; and fi-
nally obtain the number ng,; of F-inequivalent admissible
pairs

max (s, s7). Again we

ki +ky gks—1
npay = 28724570 TTsy,
]

(28)

if k; > 1 and k, > 1. Here kj,kp,k; are the number of
different prime factors p;, pj’-, qe. If k| = 0,k # 0 this ex-
pression includes the pairs of type ((m,n,n,n),
(1,0,0,0)), so that a term 2275~1 must be subtracted.
Thus

npy = 2" (4k31 I se— 2k32> : (29)
¢

A similar expression is obtained for k, = 0. Finally, if

ki =k, =0, we get

npyy = 4971 ] sy — 2071, (30)
]

At last, let us consider pairs where at least one quater-
nion is completely general. As an example, we use ((m,n,
n,n),q). In this case, the approach is slightly different from
the previous cases, since we lack a nice formula for the
three-dimensional case. But we can proceed as follows: We
first calculate the number of different admissible pairs
((m,n, n,n),q), where q is a general or a special quatern-
ion. We then subtract the number of all special combina-
tions ((m,n,n,n),q) and finally divide by the number of
equivalent pairs. We first note that Z‘ ((m,n, n,n),q) must be
of the form X = 3’1_[ pi H qj , where p; =1 (mod 6)

and g; # 1 (mod 6) and r > 0 and at least one si > 1. We
have to sum over all palrs with X(m,n,n,n) = 3" le ,

2(q) = 3’le- H qA such that » <1,/ —r(modZ),

s?). For fixed Z(m,n,n,n) and X(q ) we have
1/ H 2 o\ :

equivalent quaternions of type (m,n,n,n) (1f at least one
s; >0, k is the number of different prime factors > 3) and

there are 48 (4.3~ ‘SO'H(p,—i-l)p, 1H(%‘Fl)

21 . . S,
qjtf different (in general not mequlvalent) quaternions g.

Note that the product ranges only over those i for which
s? > 0. If we use Gauss’ symbol [x] in order to denote the
largest integer n < x we may rewrite this as 48 - [4 - 3"1]

< [T+ Vpf 1T g+ g

j
over all i. Hence for fixed X (m, n, n,n) and X(gq) we have
1—

1/2-8~48~1/2H 2

xIL (i +1)p; " g{<q,~+1>qf'f‘%

s; = max (s, s
the following situation: There are 2" !

and take the product

60;; .48 . [4 . 3r71]
(31)

different (in general not inequivalent admissible pairs).
Note that we have added a factor !/, taking into account
that only half of the pairs are admissible. Summing over
all possible combinations of X(m,n,n,n) and X(q) we
get
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Table 7. P-inequivalent admissible pairs. The second column gives the number of inequivalent pairs for odd values of X whereas the third column gives
the same information for even values of 2 . In order to save space we have omitted some pairs. These can be easily obtained by interchanging p and q.

)

# inequiv. pairs Xp = Zr

# inequiv. pairs p = 23F

((1,0,0,0), (1,0,0,0))
1,0,0,0), (1,1,1,1)

m,n7n70 , (m' =2n' ;' + 20" ,m ;"))

(
((1,0,0,0), (m,n,n,n))
((1,0,0,0), (m,n,0,0))
((1,0,0,0), (m —n,m+n,m — n,m+ n))
((1,0,0,0), (m,n,n,0))
((1,0,0,0), (m —2n,m + 2n,m,m))
((1,0,0,0), (m,n,p,q))
((0,1,1,1), (0,1,1,1))
((0,1,1,1), (3,1,1,1))
((0,1,1,1), (m,n,n,n))
((0,1,1,1), (m,n,n,0))
((0,1,1,1), (m — 2n,m + 2n,m,m))
((07 1,1,1), (m,n,p, Q))
((myn,n,n), (m',n',n',n'))
((m,n,n,n), (m',n',0,0))
((myn,n,n), (m',n’,n',0))
((m,n,n,n), (m',n',p',q'))
((m,n,0,0), (m',n',0,0))
((m,n,0,0), (m',0,n',0))
((m,n,0,0), (m' —n';m’' +n';m' —n',m' +n'))
((myn,0,0), (M —n',m' +n',m' +n' ;m —n'))
((m,n,0,0), (m' —n';m' —n',m' +n',m' +n'))
((m,n,0,0), (m',n’,n',0))
((m,n,0,0), (m',0,n",n))
((m,n,0,0), (m —2n',m’' +2n',m',m"))
((m,n,0,0), (—m' —2n',m',m’ — 21", m"))
((myn,0,0), (m —2n',m',m’ + 2n',m"))
((m,n,0,0), (m',n',p',q"))
((m,n,n,0), (m',n’,n',0))
((m,n,n,0), (m'
(( ) (
((m,n,n,0), (—m' —2n',m';m’ —2n',m"))
((m,n,n,0), (m" —2n',m',m" + 2n',m’))
((m,n,n,0), (m',n',p',q"))

((m,n,p,q), (m',n',p',q))

1

nFo2

nFo3

nFo4

nros

nri2

nri4

nris
ngp2
np23
Npoq
ngas
np33

np33

np34

np3q

3ngss
NF44

Np44

3nrss
3ngss

1

2nFp2

nFo3

nFo4
2nFos

2nF1n

nr14

2nps
2npy
2npy3
2npoy

2npas

nF33
nF33

nr33

nF34
nr34
Np34

6nr3s

NF44

NF44

NF44
6nr4s

6nrss

1152mpy = 4 - 1152 - [4 -3
[si/2] .
XH Z 21 80,5, 2‘(p—|—1) 8i—
i \ 4=l
[31 ]
+ Z 2[(pi+ 1) pi

x g +1)q"
J
=4-1152-[4-31]
XH <(S,'+
2t—1

XH(q/+lq I

—24;—1
]

(32)

s;—1
i—1 p —1
Dot 428 )

(33)

different admissible pairs if there is at least one s; is odd.
Otherwise we must exclude the term with ¢; = s;/2 for all
i in the first sum, i.e.

+ 20 11)

mpy =4 -[4-371]
: (34)

1) (pi + 1) pii!

(s
— 0 H(p +1) S")
*I1(@+1)q -

where 0gy = 0, 1 according to whether there exists an odd
s; or not. From this expression we subtract all admissible
pairs with special ¢, divide by the number of equivalent
pairs and obtain the following expression for the number
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of inequivalent admissible quaternions of type ((m,n,
n,n),q):

1 4
Npys = — | mp2 — Y gF2ilpai | - (35)
96 =0
Similar expression are obtained for ngszs and np4s. And
finally we can compute npss by recalling the total number
of different quaternions fr given in Eq. (3):

5

fr= Z 8FijnFij -
ij=0

(36)

Finally let us have a short look on the primitive hyper-
cubic lattice. Similar results can be proved for this case.
The best way to obtain them is to derive them directly
from the previous results. We just have to keep in mind
that the symmetry group Gp is a subgroup of index 3 of
Gp. In particular, the coset decomposition for the corre-
sponding groups of quaternions reads

gF = gP U ((170,070)7 1/2(17 15 17 ]))
x GpU((1,0,0,0), /,(1,—1,-1,-1)) Gp. (37)

If we apply this decomposition to the double cosets
Gr(p,q)Gr, we get the double cosets of Gp, which are
just the P-equivalence classes of admissible pairs,
see Table 5. The corresponding groups Hp(p,q) can now
be inferred from the corresponding groups Hr(p,q). In
particular, we have Hp(p,q) C Hr(p,q) N Gp, which sim-
plifies the determination of Hp(p,q) considerably. The
results are shown in Table 6. Combining these results with
the numbers ngp; of F-inequivalent admissible pairs, we
get the number of P-inequivalent admissible pairs, which
are listed in Table 7.

4. Conclusions and outlook

We have calculated the coincidence index X for both
kinds of four-dimensional hypercubic lattices. Moreover,
we have determined all CSLs and their equivalence classes
as well as the total number of different and inequivalent
CSLs for fixed X. Here, equivalence always means equiva-
lence up to proper rotations. But of course there exist re-
flections that leave the hypercubic lattices invariant and
one can be interested in extending the notion of equiva-
lence to the full symmetry group. We briefly sketch how

one can include the improper rotations. First note that the
special reflection m : ¢ — (qo, —q1, —q2, —q3) just corre-
sponds to quaternion conjugation. Now any symmetry op-
eration is a product of this reflection and a rotation, and it
is sufficient to consider this reflection in detail. Since
mR(p,q) = R(q,p) m, it follows that the admissible pairs
(p,q) and (q,p) are equivalent. Thus we have two situa-
tions: If (p,q) and (gq,p) are not equivalent under proper
rotations, than their equivalence classes merge to form a
single equivalence class. If (p,q) and (g,p) are already
equivalent under proper rotations, than the equivalence
class stays the same and the corresponding symmetry
group H(p,q) contains a symmetry operation which is a
conjugate of m. Thus we know all equivalence classes and
their symmetry groups H(p,q). It is then straightforward
to calculate the number of inequivalent CSLs.
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