

Sommersemester 2010

Mathematik II für NWI/Lineare Algebra

Übungszettel 3

Aufgabe 9: Berechnen Sie die Determinante der Matrix

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 1 & 2 \\ \sqrt{3} & \frac{1}{7} & -1 & \frac{\sqrt{3}}{3} & 7 \\ 2 & 1 & 0 & -2 & 1 \\ 2 & 1 & 0 & -1 & 0 \end{pmatrix}.$$

Ist A invertierbar? (Begründung!)

(3 Punkte)

Aufgabe 10: (a) Berechnen Sie die Determinante von

$$A = \begin{pmatrix} 1 & -1 & 2 \\ -a & -2 & a \\ a & 1 & 3 \end{pmatrix}.$$

(b) Für welche $a \in \mathbb{C}$ ist A invertierbar?

(2+1 Punkte)

Aufgabe 11: (a) Berechnen Sie die komplementäre Matrix von

$$A = \begin{pmatrix} \cos x & -\sin x & 0\\ \sin x & \cos x & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

(b) Ist A invertierbar? Wenn ja, wie lautet A^{-1} ?

(2+1 Punkte)

Aufgabe 12: (a) Zeigen Sie die Cramer'sche Regel, d.h. zeigen Sie, dass die Lösung des Gleichungssystems Ax = b durch

$$x_i = \frac{\det(a_1, \dots, a_{i-1}, b, a_{i+1}, \dots, a_n)}{\det A}$$

gegeben ist, wobei $A = (a_1, \ldots, a_n)$.

Hinweis: Laplace'scher Entwicklungssatz

(b) Zeigen Sie, daß für jede reelle orthogonale Matrix A gilt: det $A \in \{1, -1\}$. Zur Erinnerung: Eine Matrix A heißt orthogonal, wenn $A^{-1} = A^T$ gilt.

(2+2 Punkte)

Aufgabe 13: [Wiederholung algebraische Gleichungen + komplexe Zahlen]

(a) Sei $P_n(z)$ ein Polynom n-ten Grades, mit reellen Koeffizienten. Sei $z=c\in\mathbb{C}$ eine Nullstelle von $P_n(z)$. Zeigen Sie, dass dann auch \bar{c} eine Nullstelle von $P_n(z)$ ist.

Hinweis: $\overline{ab} = \overline{a} \cdot \overline{b}$ und $\overline{a^n} = \overline{a}^n$.

(b) Sei P_n wie oben und n ungerade. Folgern Sie aus (a) dass P_n mindestens eine reelle Nullstelle hat.

(2+1 Punkte)