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A" the quadratic dual of A.
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The Koszul complex:

LA A)E A0 AL ) 5 s AR (A S ASV 5 A0
ARV - QU = avy ® - Quy;

Theorem
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1. The functors F,G
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Hom(A, N) <+ N

form an adjoint pair (hom/tensor adjunction).

e Consider M € C*(A) and N € CT(A") as modules
M =@, M" € A-Mod and N = @, N* € A'-Mod.

e Endow F'M (respectively GN) with bicomplex structures:

differentials d’ from the Koszul complex, and d”’ from the
complex M (respectively N).

e Take total complex to obtain FM € CT(A") (respectively
GN € C*(A)).
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1. The functors F,G

F: A-Mod « A'-Mod : G
M~ A'e M
Hom(A, N) <+ N
form an adjoint pair (hom/tensor adjunction).

e Consider M € C*(A) and N € CT(A") as modules
M =@, M" € A-Mod and N = @, N* € A'-Mod.

e Endow F'M (respectively GN) with bicomplex structures:

differentials d’ from the Koszul complex, and d” from the
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e Take total complex to obtain FM € CT(A") (respectively
GN € C*(A)).
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® Theorem 2.12.6.

® References
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Part 1 of proof: Construction of F' and
G

Proof cont.

” T d,, T ” L
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ko MS? — Al M7T3, —— Ay M) —— ...

—q+1

A
T M ‘ o
,

. d' . d . d’
koMY — Ao ML, —= Abeo ML, —— ..

A
o T o T ” ‘ o

c— s>o0— >0 — >0 — >

. d d .
koM, —> AQ@M ,, —> AAQM , —— ...
& T & T > T &
d d d d
P 0 0 0

Bicomplex bounded from the left because A' is positively
graded.
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CH(A).
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Construction of G is similar: We get a total complex

® Introduction 3 P
O o the (GNP = @ Hom(A ,N)= H A,0N]
Koszul complex

p=i+j,q=l—j p=i+j,q=l—j
® Theorem 2.12.1.

| ! 1
Theorem 2.12.1: — ( ) ) ¢ (2
Statement and - ( (A ))l & Nj
overview
Part 1 of proof:
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and G
— Part 2 of proof: F°
and G are adjoint

F preserves mapping

cones Define diﬂ:erentials

Part 3 of proof: F'
and G induce
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T e d': Hom(A_;, N?) — Hom(A_( 1), N, ) (5)
DTl

;)

o Theorem 2.12.5. f) = (_1)i Z Vo f(Va - -)
)
)

— Theorem 2.12.5:
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G

Proof cont.

Construction of G is similar: We get a total complex

@ Hom(A_l,N;) = @ A, ®N}

p=i+j,q=l—j p=i+j,q=l—j

((AY); ® N;

(GN)Y

The A' ®'(A"))} constitute the Koszul complex of A'. +d’
moves a degree 1 generator from (*(A')); to the A'-module N.
Define differentials

d' : Hom(A_;, N}) — Hom(A_ 11y, N}, ,) (5)
FO = (1Y baf(va )

d” : Hom(A_;, N?) — Hom(A_;, Ni*1) (6)
)= af(0)
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Part 2 of proof: F' and G are adjoint

Proof cont.

Want to show that the adjointness

Hom i (A' ® M, N) = Hom(M,N) = Hom(M,Hom(A, N))
al®amri>n<—>amri>a!n <—>mi>(ar—>a!n)

is compatible with the total complex structure. We need to
check two things:
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. . . - 1
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o References
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Part 2 of proof: F' and G are adjoint

Proof cont.

Af(1@m) = f(d(1 @m)) < df(m)(1) = f(Om)(1).

(if)

f(d(1 ®m)) — 8f(1 ®m)
® (Om) + (=1 " 0o @ vam) — df (m)
(-1) Wsz (vamn —af(m)
—df(m)(1).

This part is similar, see paper.
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F' preserves mapping cones

Recall: For X, Y € C¥(A) and a morphism f: X — Y, the
mapping cone of f is the complex

X[]eY

[1] means the complex is shifted 1 position to the left, and the
differential multiplied by —1
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Now

e [ is additive and clearly commutes with [1]. Hence
F(X[1|@Y)=F(X)[l]®F(Y).

e The total differential is d = d’ + d”, where d’ does not
depend on the differential 9 of the complex, and
d" :a®m > a® Om depends linearly on 9.

e F' commutes with f (since F is a functor).

It follows that F' preserves mapping cones.
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Part 3 of proof: F' and GG induce inverse
equivalences D¥(A) = DT(A")

Proof cont.
This part relies on the theory of spectral sequences.

(i) e We saw that the bicomplex (FM), lives in the 1:st
quadrant, so by Theorem 2.15 of (2), there exist spectral
sequences with first terms

H*(FM,d") and H*(F(GN),d)
respectively that converge to
H*(FM,d) and H*(F(GN),d)

respectively.
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Part 3 of proof: F' and GG induce inverse
equivalences D¥(A) = DT(A")

Proof cont.

e The cone, M, of a quasi-isomorphism, f, is acyclic. Also:

H*(M,8) =0 — H*(FM,d") = 0 "=

H*(FM,d) =0,
so the cone FM of F(f) is acyclic too, so F(f) is a

quasi-isomorphism. Hence F' preserves
quasi-isomorphisms, and induces a functor

DF : DY(A) — DT(AY).

e That we get a functor DG : DT(A') — D+(A) is
analogous.
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Part 3 of proof: F' and GG induce inverse
equivalences D¥(A) = DT(A")

Proof cont.
(i) F'o@ is quasi-isomorphic to idor (a1
e We show that the counit map
F(GN) - N

from the adjunction is a quasi-isomorphism. Over k, the
map splits, and we get the splitting map

¢ : N =k@Hom(k,N) — (P A, ® Hom(A;, N;)
= P Hom(4 @ *(4;), N;) = F(GN),
l

with F(GN) having the bicomplex structure from F,
where

d : f (=1 (fodgk).

22/3C



Part 3 of proof: F' and GG induce inverse
equivalences D*(A) = DT(A
UPPSALA

UNIVERSITET Proof cont.

o Introduction F(GN) @Hom A ® (Afll)).A 5

J
— Notation, and the
Koszul complex

l.f 1)¢tJ .
@ Theorem 2.12.1. d:fe( l) (fodgk).
— Theorem 2.12.1:
Statement and
overview

— Part 1 of proof:
Construction of F'
and G

G F e Because the Koszul complex is a resolution of k (Here we
— Part 2 of proof: .
and G are adjoint use Koszulity of A) we get:

F preserves mapping
cones

Part 3 of proof: F ® " =
and G induce H*(F(GN),d") = N.
inverse equivalences

Dl (A) ~

pTah

® Theorem 2.12.5.

— Theorem 2.12.5:
Statement

— Proof of part (ii)
— Proof of part (iii)
® Theorem 2.12.6.

® References
23/3C



Part 3 of proof: F' and GG induce inverse
equivalences D*(A) = DT(A
UPPSALA

UNIVERSITET Proof cont.

o Introduction F(GN) @Hom A ® (Afll)).A 5

J
— Notation, and the
Koszul complex

lf 1)¢+7 .
® Theorem 2.12.1. d : / = ( l) (/ odg).
Theorem 2.12.1:
Statement and
overview
— Part 1 of proof:
Construction of F' . .
ot e Because the Koszul complex is a resolution of k (Here we
— Part 2 of proof: .
and G are adjoint use Koszulity of A) we get:
F preserves mapping
cones ’
Part 3 of proof: F' ® —
Bl @ e H*(F(GN),d’) = N.
inverse equivalences
Dl (A) ~
pTaly

. TheOﬁ‘m 2-1552-5 e \We may consider the same bicomplex structure on N (via
— ieorem 2. 8N

Statement ), and check that also

— Proof of part (ii)

— Proof of part (iii) H.(N dl) =N

® Theorem 2.12.6. ’ '
® References

23/3C



UPPSALA

UNIVERSITET

® Introduction

Notation, and the
Koszul complex

® Theorem 2.12.1.

Theorem 2.12.1:
Statement and
overview
Part 1 of proof:
Construction of F'
and G
Part 2 of proof: F'
and G are adjoint
F preserves mapping
cones
Part 3 of proof: F'
and G induce
inverse equivalences
Dl (A) ~

Teal
Dl (A%)

® Theorem 2.12.5.

Theorem 2.12.5:
Statement

Proof of part (ii)
Proof of part (iii)

® Theorem 2.12.6.

® References

Part 3 of proof: F' and GG induce inverse
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Proof cont.
e Thus there are spectral sequences with common first term
H*(N,d')= N = H*(F(GN),d")
that converge to
H*(N,d=d +d")= H*(N,0) and H*(F(GN),d)

respectively.
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that converge to
H*(N,d=d +d")= H*(N,0) and H*(F(GN),d)
respectively.

e In fact, the spectral sequences must be the same, since all
terms are determined by the first terms and the boundary
maps, which are the same for both sequences.

e Thus H*(N,0) = H*(F(GN),d), so ¢ is a
quasi-isomorphism.
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that converge to
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Theorem 2.12.5: Statement
We call K := DF the Koszul duality functor.

Theorem
Let A be a left finite Koszul ring over k.

(i) The functor K : D*(A) — DT(A') together with the
obvious canonical isomorphism K(M]|1]) = (KM)[1] is an
equivalence of triangulated categories.

[1] means the complex is shifted 1 position to the left, and
the differential multiplied by —1

We saw in Theorem 2.12.1 that DF is an equivalence and
preserves mapping cones.
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Theorem 2.12.5: Statement
We call K := DF the Koszul duality functor.

Theorem

Let A be a left finite Koszul ring over k.

(i) The functor K : D*(A) — DT(A') together with the
obvious canonical isomorphism K(M]|1]) = (KM)[1] is an
equivalence of triangulated categories.

(i) We have K (M (n)) = (KM)[—n]|{—n), canonically.

(n) means the degrees have been shifted so as to increase
by n.
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Theorem 2.12.5: Statement
We call K := DF the Koszul duality functor.

Theorem
Let A be a left finite Koszul ring over k.

(i) The functor K : D*(A) — DT(A') together with the
obvious canonical isomorphism K(M]|1]) = (KM)[1] is an
equivalence of triangulated categories.

(i) We have K (M (n)) = (KM)[—n]|{—n), canonically.

(iii) For any p € k we have K(Ayp) = A'p and
K(A®p) = Ajp.

Where A® = @,(A®), € A-Gr, with (A®), = (A_;)*, is
the injective hull of k. For the statement to make sense,
we view the modules Agp, A'p, A® and A}p as complexes
concentrated in position zero.
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Proof of part (ii)

(i) We have K(M(n)) = (KM )[—n]{(—n}, canonically.

Proof.

The position/degree components are the same:
(KMm)E= P Ao Mn);
p=itj,q=l—j
= P 4eMm,
p=i+j,q=l—j

&y A @ M;

p=it+j+n,q=l—j—n

= (KM)gin
= ((KM)[=n}(=n))g.
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Proof of part (iii)

(iii) For any p € k we have K(Ayp) = A'p and
K(A®p) = App.

Proof.

K(Aop) = A' @ (Agp) = A' @ p = A'p,

with differential d = d’ + d’ = 0, so again a module.

K(A®p) = A'@ A®p =P A' ® (A4)"p,
l

with differential d = d’ + d” = d’. This is the Koszul

complex (up to sign of the differential) of A', times p.

This is a resolution of AE] =k, times p, hence
quasi-isomorphic to A}p.
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Theorem 2.12.6.

Theorem

Let A be a Koszul ring over k. Suppose A is a finitely
generated generated k-module both from the left and from the
right, so that A; = 0 for i > 0. Suppose in addition that A" is
left noetherian. Then Koszul duality induces an equivalence of
triangulated categories

K : D°(A-gr) — D°(A'-gr).

DY means the bounded derived category. A-gr means the
category of finitely generated graded A-modules.
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