UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References
- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $\underset{\text { cones }}{F}$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Notation, and the Koszul complex

- $k$ : fixed semisimple ring.
- $V$ : $k$-bimodule.
- $T_{k} V$ : $k$-bimodule of tensor products of copies of $V$.
- $R \subset V \otimes V$ : subbimodule. $\leftarrow$ Tensor products and Hom-spaces without subscript are taken w.r.t. $k$
- $A=T_{k} V /(R)$ : quadratic ring (which we assume is left finite, i.e. with each $A_{i}$ finitely $k$-generated).
- $A^{!}$: the quadratic dual of $A$.
- ${ }^{*}\left(A_{i}^{!}\right)=\bigcap_{\nu} V^{\otimes \nu} \otimes R \otimes V^{\otimes i-\nu-2} \subset V^{\otimes i}$.
* $\left(A_{i}^{!}\right)=\operatorname{Hom}\left(A_{i}^{!}, k\right)$.

The Koszul complex:

$$
\begin{aligned}
& \quad \rightarrow A \otimes \otimes^{*}\left(A_{i}^{!}\right) \xrightarrow{d_{K}^{i}} A \otimes \otimes^{*}\left(A_{i-1}^{!}\right) \rightarrow \cdots \rightarrow A \otimes^{*}\left(A_{2}^{!}\right) \rightarrow A \otimes V \rightarrow A \rightarrow 0 \\
& a \otimes v_{1} \otimes \cdots \otimes v_{i} \mapsto a v_{1} \otimes \cdots \otimes v_{i}
\end{aligned}
$$

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $\underset{\text { cones }}{F}$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Notation, and the Koszul complex

- $k$ : fixed semisimple ring.
- $V$ : $k$-bimodule.
- $T_{k} V$ : $k$-bimodule of tensor products of copies of $V$.
- $R \subset V \otimes V$ : subbimodule. $\leftarrow$ Tensor products and Hom-spaces without subscript are taken w.r.t. $k$
- $A=T_{k} V /(R)$ : quadratic ring (which we assume is left finite, i.e. with each $A_{i}$ finitely $k$-generated).
- $A^{!}$: the quadratic dual of $A$.
- ${ }^{*}\left(A_{i}^{!}\right)=\bigcap_{\nu} V^{\otimes \nu} \otimes R \otimes V^{\otimes i-\nu-2} \subset V^{\otimes i}$.
* $\left(A_{i}^{!}\right)=\operatorname{Hom}\left(A_{i}^{!}, k\right)$.

The Koszul complex:

$$
\rightarrow A \otimes^{*}\left(A_{i}^{!}\right) \xrightarrow{d_{K}^{i}} A \otimes^{*}\left(A_{i-1}^{!}\right) \rightarrow \cdots \rightarrow A \otimes^{*}\left(A_{2}^{!}\right) \rightarrow A \otimes V \rightarrow A \rightarrow 0
$$

$a \otimes v_{1} \otimes \cdots \otimes v_{i} \mapsto a v_{1} \otimes \cdots \otimes v_{i}$

## Theorem

$A$ is Koszul $\Leftrightarrow$ the Koszul complex is a resolution of $k$.

## UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Notation, and the Koszul complex

- ${ }^{*}\left(A_{i}^{!}\right)=\bigcap_{\nu} V^{\otimes \nu} \otimes R \otimes V^{\otimes i . \nu-2} \subset V^{\otimes i}$.

The Koszul complex:

$$
\begin{aligned}
& \quad \rightarrow A \otimes^{*}\left(A_{i}^{!}\right) \xrightarrow{d_{K}^{i}} A \otimes^{*}\left(A_{i-1}^{!}\right) \rightarrow \cdots \rightarrow A \otimes V \rightarrow A \rightarrow 0 \\
& a \otimes v_{1} \otimes \cdots \otimes v_{i} \mapsto a v_{1} \otimes \cdots \otimes v_{i}
\end{aligned}
$$

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences

$$
\begin{aligned}
& D^{\downarrow}(A) \cong \\
& D^{\uparrow}\left(A^{!}\right)
\end{aligned}
$$

- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Notation, and the Koszul complex

- ${ }^{*}\left(A_{i}^{!}\right)=\bigcap_{\nu} V^{\otimes \nu} \otimes R \otimes V^{\otimes i . \nu-2} \subset V^{\otimes i}$.

The Koszul complex:

$$
\begin{aligned}
& \quad \rightarrow A \otimes^{*}\left(A_{i}^{!}\right) \xrightarrow{d_{K}^{i}} A \otimes^{*}\left(A_{i-1}^{!}\right) \rightarrow \cdots \rightarrow A \otimes V \rightarrow A \rightarrow 0 \\
& a \otimes v_{1} \otimes \cdots \otimes v_{i} \mapsto a v_{1} \otimes \cdots v_{i} \\
& d_{K}^{i} \text { "moves" the leftmost degree } 1 \text { generators from the } \\
& { }^{*}\left(A_{i}^{!}\right) \text {-part of } A \otimes^{*}\left(A_{i}^{!}\right) \text {to the } A \text {-part. }
\end{aligned}
$$

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Notation, and the Koszul complex

- ${ }^{*}\left(A_{i}^{!}\right)=\bigcap_{\nu} V^{\otimes \nu} \otimes R \otimes V^{\otimes i, \nu-2} \subset V^{\otimes i}$.

The Koszul complex:

$$
\begin{aligned}
& \quad \rightarrow A \otimes^{*}\left(A_{i}^{!}\right) \xrightarrow{d_{K}^{i}} A \otimes^{*}\left(A_{i-1}^{!}\right) \rightarrow \cdots \rightarrow A \otimes V \rightarrow A \rightarrow 0 \\
& a \otimes v_{1} \otimes \cdots \otimes v_{i} \mapsto a v_{1} \otimes \cdots v_{i} \\
& d_{K}^{i} \text { "moves" the leftmost degree } 1 \text { generators from the } \\
& *\left(A_{i}^{!}\right) \text {-part of } A \otimes^{*}\left(A_{i}^{!}\right) \text {to the } A \text {-part. } \\
& \text { Alternative description of the Koszul complex differential: }
\end{aligned}
$$

- Write $\mathrm{id}_{V}=\sum \check{v}_{\alpha} \otimes v_{\alpha}$, where
- $\left\{v_{\alpha}\right\}: k$-generators of $V$, and
- $V^{*} \ni \breve{v}_{\alpha}=\delta_{v_{\alpha}} \leftrightarrow v_{\alpha} \in V$, where $\delta_{v_{\alpha}}$ is the $k$-linear extension of the Kronecker delta.

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Notation, and the Koszul complex

- ${ }^{*}\left(A_{i}^{!}\right)=\bigcap_{\nu} V^{\otimes \nu} \otimes R \otimes V^{\otimes i . \nu-2} \subset V^{\otimes i}$.

The Koszul complex:

$$
\begin{aligned}
& \quad \rightarrow A \otimes^{*}\left(A_{i}^{!}\right) \xrightarrow{d_{K}^{i}} A \otimes^{*}\left(A_{i-1}^{!}\right) \rightarrow \cdots \rightarrow A \otimes V \rightarrow A \rightarrow 0 \\
& a \otimes v_{1} \otimes \cdots \otimes v_{i} \mapsto a v_{1} \otimes \cdots v_{i} \\
& d_{K}^{i} \text { "moves" the leftmost degree } 1 \text { generators from the } \\
& { }^{( }\left(A_{i}^{!}\right) \text {-part of } A \otimes^{*}\left(A_{i}^{!}\right) \text {to the } A \text {-part. } \\
& \text { Alternative description of the Koszul complex differential: }
\end{aligned}
$$

- Write $\mathrm{id}_{V}=\sum \check{v}_{\alpha} \otimes v_{\alpha}$, where
- $\left\{v_{\alpha}\right\}$ : $k$-generators of $V$, and
- $V^{*} \ni \check{v}_{\alpha}=\delta_{v_{\alpha}} \leftrightarrow v_{\alpha} \in V$, where $\delta_{v_{\alpha}}$ is the $k$-linear extension of the Kronecker delta.

Then $d_{k}$ may be written

$$
\begin{aligned}
A \otimes^{*}\left(A_{i}^{!}\right)=\operatorname{Hom}\left(A_{i}^{!}, A\right) & \xrightarrow{d_{K}^{i}} \operatorname{Hom}\left(A_{i-1}^{!}, A\right)=A \otimes^{*}\left(A_{i-1}^{!}\right) \\
f(-) & \mapsto \sum f\left(\check{v}_{\alpha}\right) v_{\alpha}
\end{aligned}
$$

Removing $v_{\alpha}$ from ${ }^{*}\left(A_{i}^{!}\right)$becomes multiplying $\check{v}_{\alpha}$ to $A_{i}^{!}$by contravariance of *.

## Theorem 2.12.1: Statement and overview

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


$$
\text { Location of nonzero } M_{j}^{i} \text {. }
$$

- $B=\bigoplus_{j \geq 0} B_{j}$ : positively graded ring.
- $C(B)$ : homotopy category of complexes in $B$ - Gr. $B$ - Gr means category of graded $B$-modules.
- $C^{\uparrow}(B) \subset C(B)$ : subcategory of objects $M$ satisfying $M_{j}^{i}=0$ if $i \gg 0$ or $i+j \ll 0$. $M_{j}^{i}$ is the degree $j$ part of $M$ at position $i$.
- $C^{\downarrow}(B) \subset C(B)$ : subcategory of objects $M$ satisfying $M_{j}^{i}=0$ if $i \ll 0$ or $i+j \gg 0$.


## Theorem 2.12.1: Statement and overview

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References
- $D^{\uparrow}(B)$ and $D^{\downarrow}(B)$ : localizations of $C^{\uparrow}(B)$ and $C^{\downarrow}(B)$ w.r.t. quasi-isomorphisms.

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Theorem 2.12.1: Statement and overview

- $D^{\uparrow}(B)$ and $D^{\downarrow}(B)$ : localizations of $C^{\uparrow}(B)$ and $C^{\downarrow}(B)$ w.r.t. quasi-isomorphisms.


## Theorem (2.12.1)

Let $A$ be a left finite Koszul ring. Then there exists an equivalence of triangulated categories

$$
D^{\downarrow}(A) \cong D^{\uparrow}\left(A^{!}\right) .
$$

Proof outline:

1. The functors $F, G$

$$
\begin{aligned}
F: A-\operatorname{Mod} & \leftrightarrow A^{!}-\operatorname{Mod}: G \\
M & \mapsto A^{!} \otimes M \\
\operatorname{Hom}(A, N) & \leftrightarrow N
\end{aligned}
$$

form an adjoint pair (hom/tensor adjunction).

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Theorem 2.12.1: Statement and overview

1. The functors $F, G$

$$
\begin{aligned}
F: A-\operatorname{Mod} & \leftrightarrow A^{!}-\operatorname{Mod}: G \\
M & \mapsto A^{!} \otimes M \\
\operatorname{Hom}(A, N) & \leftrightarrow N
\end{aligned}
$$

form an adjoint pair (hom/tensor adjunction).

- Consider $M \in C^{\downarrow}(A)$ and $N \in C^{\uparrow}\left(A^{!}\right)$as modules $M=\bigoplus_{i} M^{i} \in A$ - $\operatorname{Mod}$ and $N=\bigoplus_{i} N^{i} \in A^{\prime}-$ Mod.
- Endow $F M$ (respectively $G N$ ) with bicomplex structures: differentials $d^{\prime}$ from the Koszul complex, and $d^{\prime \prime}$ from the complex $M$ (respectively $N$ ).
- Take total complex to obtain $F M \in C^{\uparrow}\left(A^{!}\right)$(respectively $\left.G N \in C^{\downarrow}(A)\right)$.

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Theorem 2.12.1: Statement and overview

1. The functors $F, G$

$$
\begin{aligned}
F: A-\operatorname{Mod} & \leftrightarrow A^{!}-\operatorname{Mod}: G \\
M & \mapsto A^{!} \otimes M \\
\operatorname{Hom}(A, N) & \leftrightarrow N
\end{aligned}
$$

form an adjoint pair (hom/tensor adjunction).

- Consider $M \in C^{\downarrow}(A)$ and $N \in C^{\uparrow}\left(A^{!}\right)$as modules $M=\bigoplus_{i} M^{i} \in A$ - $\operatorname{Mod}$ and $N=\bigoplus_{i} N^{i} \in A^{\prime}-\operatorname{Mod}$.
- Endow $F M$ (respectively $G N$ ) with bicomplex structures: differentials $d^{\prime}$ from the Koszul complex, and $d^{\prime \prime}$ from the complex $M$ (respectively $N$ ).
- Take total complex to obtain $F M \in C^{\uparrow}\left(A^{!}\right)$(respectively $\left.G N \in C^{\downarrow}(A)\right)$.

2. Check that the $(F, G)$-adjunction is compatible with the complex structure of $F M$ and $G N$.

## Theorem 2.12.1: Statement and overview

UPPSALA UNIVERSITET
3. - Thanks to the shape of $C^{\downarrow}(A)$ and $C^{\uparrow}\left(A^{!}\right)$, the spectral sequences of the bicomplexes $F M$ and $G N$ converge.

- Also $F$ and $G$ preserve mapping cones.
- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$
$D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Theorem 2.12.1: Statement and overview

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

3.     - Thanks to the shape of $C^{\downarrow}(A)$ and $C^{\uparrow}\left(A^{!}\right)$, the spectral sequences of the bicomplexes $F M$ and $G N$ converge.

- Also $F$ and $G$ preserve mapping cones.

It follows that

- $F$ and $G$ commute with quasi-isomorphisms.
and
- Using that the Koszul complex is a resolution of $k$ : The counit $F G \rightarrow \operatorname{id}_{C^{\uparrow}\left(A^{\prime}\right)}$ and unit $G F \rightarrow \mathrm{id}_{C^{\downarrow}(A)}$ from the adjunction are quasi-isomorphisms


## Theorem 2.12.1: Statement and overview

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

3.     - Thanks to the shape of $C^{\downarrow}(A)$ and $C^{\uparrow}\left(A^{!}\right)$, the spectral sequences of the bicomplexes $F M$ and $G N$ converge.

- Also $F$ and $G$ preserve mapping cones.

It follows that

- $F$ and $G$ commute with quasi-isomorphisms.
and
- Using that the Koszul complex is a resolution of $k$ : The counit $F G \rightarrow \operatorname{id}_{C^{\uparrow}\left(A^{!}\right)}$and unit $G F \rightarrow \mathrm{id}_{C^{\downarrow}(A)}$ from the adjunction are quasi-isomorphisms
- Thus $F$ and $G$ induce mutually inverse equivalences of triangulated categories $D F: D^{\downarrow}(A) \leftrightarrow D^{\uparrow}\left(A^{!}\right): D G$.
- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$

$$
D^{\uparrow}\left(A^{!}\right)
$$

- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References
- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


# Part 1 of proof: Construction of $F$ and 

 G Proof.- For $M \in C^{\downarrow}(A)$

$$
\bigoplus_{l, i}(F M)_{l, i}=A^{!} \otimes M=\bigoplus_{l, i} A_{i}^{!} \otimes M^{i}
$$

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References
- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Part 1 of proof: Construction of $F$ and

 GProof.

- For $M \in C^{\downarrow}(A)$

$$
\begin{aligned}
& \bigoplus_{l, i}(F M)_{l, i}=A^{!} \otimes M=\bigoplus_{l, i} A_{l}^{!} \otimes M^{i} \\
& =\bigoplus_{l, i} \operatorname{Hom}\left({ }^{*}\left(A_{l}^{!}\right), M^{i}\right)=\bigoplus_{l, i} \operatorname{Hom}\left(^{*}\left(A_{l}^{!}\right), \operatorname{Hom}_{A}\left(A, M^{i}\right)\right)= \\
& =\bigoplus_{l, i} \operatorname{Hom}_{A}\left(A \otimes^{*}\left(A_{l}^{!}\right), M^{i}\right)
\end{aligned}
$$

The Koszul complex!

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences

$$
D^{\downarrow}(A) \cong
$$

$$
D^{\uparrow}\left(A^{!}\right)
$$

- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Part 1 of proof: Construction of $F$ and

 GProof.

- For $M \in C^{\downarrow}(A)$

$$
\begin{aligned}
& \bigoplus_{l, i}(F M)_{l, i}=A^{!} \otimes M=\bigoplus_{l, i} A_{l}^{!} \otimes M^{i} \\
& =\bigoplus_{l, i} \operatorname{Hom}\left(^{*}\left(A_{l}^{!}\right), M^{i}\right)=\bigoplus_{l, i} \operatorname{Hom}\left(^{*}\left(A_{l}^{!}\right), \operatorname{Hom}_{A}\left(A, M^{i}\right)\right)= \\
& =\bigoplus_{l, i} \operatorname{Hom}_{A}\left(A \otimes^{*}\left(A_{l}^{!}\right), M^{i}\right) \\
& \text { Let " } d^{\prime}= \pm \operatorname{Hom}_{A}\left(d_{K}, M^{i}\right)^{\prime} .
\end{aligned}
$$

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences

$$
D^{\downarrow}(A) \cong
$$

$$
D^{\uparrow}\left(A^{!}\right)
$$

- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)


## Part 1 of proof: Construction of $F$ and

 G
## Proof.

- For $M \in C^{\downarrow}(A)$

$$
\begin{aligned}
& \bigoplus_{l, i}(F M)_{l, i}=A^{!} \otimes M=\bigoplus_{l, i} A_{l}^{!} \otimes M^{i} \\
& =\bigoplus_{l, i} \operatorname{Hom}\left({ }^{*}\left(A_{l}^{!}\right), M^{i}\right)=\bigoplus_{l, i} \operatorname{Hom}\left({ }^{*}\left(A_{l}^{!}\right), \operatorname{Hom}_{A}\left(A, M^{i}\right)\right)= \\
& =\bigoplus_{l, i} \operatorname{Hom}_{A}\left(A \otimes^{*}\left(A_{l}^{!}\right), M^{i}\right)
\end{aligned}
$$

$$
\begin{align*}
d^{\prime}: A_{l}^{!} \otimes M_{j}^{i} & \rightarrow A_{l+1}^{!} \otimes M_{j+1}^{i}  \tag{1}\\
a \otimes m & \mapsto(-1)^{i+j} \sum a \check{v}_{\alpha} \otimes v_{\alpha} m \\
d^{\prime \prime}: A_{l}^{!} \otimes M_{j}^{i} & \rightarrow A_{l}^{!} \otimes M_{j}^{i+1}  \tag{2}\\
a \otimes m & \mapsto a \otimes \partial m
\end{align*}
$$

- Theorem 2.12.6.
- References
- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences

$$
\begin{aligned}
& D^{\downarrow}(A) \cong \\
& D^{\uparrow}\left(A^{!}\right)
\end{aligned}
$$

- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

$$
\begin{align*}
d^{\prime}: A_{i}^{!} \otimes M_{j}^{i} & \rightarrow A_{l+1}^{!} \otimes M_{j+1}^{i}  \tag{3}\\
a \otimes m & \mapsto(-1)^{i+j} \sum a \check{v}_{\alpha} \otimes v_{\alpha} m \\
d^{\prime \prime}: A_{l}^{!} \otimes M_{j}^{i} & \rightarrow A_{l}^{!} \otimes M_{j}^{i+1}  \tag{4}\\
a \otimes m & \mapsto a \otimes \partial m
\end{align*}
$$

The total differential

$$
d=d^{\prime}+d^{\prime \prime}
$$

turns $F M$ into the complex

$$
(F M)_{q}^{p}=\bigoplus_{p=i+j, q=l-j} A_{l}^{!} \otimes M_{j}^{i}
$$

Part 1 of proof: Construction of $F$ and
G

## UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences

$$
\begin{aligned}
& D^{\downarrow}(A) \cong \\
& D^{\uparrow}\left(A^{!}\right)
\end{aligned}
$$

- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References
- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences

$$
D^{\downarrow}(A) \cong
$$

$$
D^{\uparrow}\left(A^{!}\right)
$$

- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Part 1 of proof: Construction of $F$ and

G

## Proof cont.



The
slice lives in the 1 :st quadrant $\Longrightarrow$ At each position the total complex has finitely many summands $\Longrightarrow$ The spectral sequences w.r.t. the $d^{\prime}$ - and $d^{\prime \prime}$-filtrations converge!

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences

$$
\begin{aligned}
& D^{\downarrow}(A) \cong \\
& D^{\uparrow}\left(A^{!}\right)
\end{aligned}
$$

- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Part 1 of proof: Construction of $F$ and

 G
## Proof cont.



Bicomplex bounded from the left because $A^{!}$is positively graded.

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences

$$
\begin{aligned}
& D^{\downarrow}(A) \cong \\
& D^{\uparrow}\left(A^{!}\right)
\end{aligned}
$$

- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Part 1 of proof: Construction of $F$ and

 G
## Proof cont.



Bicomplex bounded from below due to the shape of $C^{\downarrow}(A)$.

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences

$$
\begin{aligned}
& D^{\downarrow}(A) \cong \\
& D^{\uparrow}\left(A^{!}\right)
\end{aligned}
$$

- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References
- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences

$$
\begin{aligned}
& D^{\downarrow}(A) \cong \\
& D^{\uparrow}\left(A^{!}\right)
\end{aligned}
$$

- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References
- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

Part 1 of proof: Construction of $F$ and
G

## Proof cont.

Construction of $G$ is similar: We get a total complex

$$
\begin{aligned}
(G N)_{q}^{p} & =\bigoplus_{p=i+j, q=l-j} \operatorname{Hom}\left(A_{-l}, N_{j}^{i}\right)=\bigoplus_{p=i+j, q=l-j} A_{-l}^{*} \otimes N_{j}^{i}= \\
& =\left(^{!}\left(A^{!}\right)\right)_{l}^{*} \otimes N_{j}^{i}
\end{aligned}
$$

Define differentials

$$
\begin{align*}
d^{\prime}: \operatorname{Hom}\left(A_{-l}, N_{j}^{i}\right) & \rightarrow \operatorname{Hom}\left(A_{-(l+1)}, N_{j+1}^{i}\right)  \tag{5}\\
f(-) & \mapsto(-1)^{i} \sum \check{v}_{\alpha} f\left(v_{\alpha} \cdot-\right) \\
d^{\prime \prime}: \operatorname{Hom}\left(A_{-l}, N_{j}^{i}\right) & \rightarrow \operatorname{Hom}\left(A_{-l}, N_{j}^{i+1}\right)  \tag{6}\\
f(-) & \mapsto \partial f(-)
\end{align*}
$$

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Part 1 of proof: Construction of $F$ and

G

## Proof cont.

Construction of $G$ is similar: We get a total complex

$$
\begin{aligned}
(G N)_{q}^{p} & =\bigoplus_{p=i+j, q=l-j} \operatorname{Hom}\left(A_{-l}, N_{j}^{i}\right)=\bigoplus_{p=i+j, q=l-j} A_{-l}^{*} \otimes N_{j}^{i}= \\
& =\left(^{!}\left(A^{!}\right)\right)_{l}^{*} \otimes N_{j}^{i}
\end{aligned}
$$

The $\left.A^{!} \otimes{ }^{!}\left(A^{!}\right)\right)_{l}^{*}$ constitute the Koszul complex of $A^{!}$. $\pm d^{\prime}$ moves a degree 1 generator from $\left({ }^{!}\left(A^{!}\right)\right)_{l}^{*}$ to the $A^{!}$-module $N$. Define differentials

$$
\begin{align*}
d^{\prime}: \operatorname{Hom}\left(A_{-l}, N_{j}^{i}\right) & \rightarrow \operatorname{Hom}\left(A_{-(l+1)}, N_{j+1}^{i}\right)  \tag{5}\\
f\left({ }_{-}\right) & \mapsto(-1)^{i} \sum \check{v}_{\alpha} f\left(v_{\alpha} \cdot{ }_{-}\right) \\
d^{\prime \prime}: \operatorname{Hom}\left(A_{-l}, N_{j}^{i}\right) & \rightarrow \operatorname{Hom}\left(A_{-l}, N_{j}^{i+1}\right)  \tag{6}\\
f\left(\left(_{-}\right)\right. & \mapsto \partial f\left(\left(_{-}\right)\right.
\end{align*}
$$

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Proof cont.

Want to show that the adjointness

$$
\begin{aligned}
\operatorname{Hom}_{A^{!}}\left(A^{!} \otimes M, N\right) \cong \operatorname{Hom}(M, N) & \cong \operatorname{Hom}_{A}(M, \operatorname{Hom}(A, N)) \\
a^{!} \otimes a m \stackrel{\tilde{f}}{\mapsto} n \leftrightarrow a m \stackrel{f}{\mapsto} a^{!} n & \leftrightarrow m \stackrel{\hat{f}}{\mapsto}\left(a \mapsto a^{!} n\right)
\end{aligned}
$$

is compatible with the total complex structure. We need to check two things:

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Proof cont.

Want to show that the adjointness

$$
\begin{aligned}
\operatorname{Hom}_{A^{!}}\left(A^{!} \otimes M, N\right) \cong \operatorname{Hom}(M, N) & \cong \operatorname{Hom}_{A}(M, \operatorname{Hom}(A, N)) \\
a^{!} \otimes a m \stackrel{\tilde{f}}{\mapsto} n \leftrightarrow a m \stackrel{f}{\mapsto} a^{!} n & \leftrightarrow m \stackrel{\hat{f}}{\mapsto}\left(a \mapsto a^{!} n\right)
\end{aligned}
$$

is compatible with the total complex structure. We need to check two things:

$$
\begin{equation*}
\tilde{f}\left((F M)_{j}^{i}\right) \subset N_{j}^{i} \text { for all } i, j \Longleftrightarrow \hat{f}\left(M_{q}^{p}\right) \subset(G N)_{q}^{p} \text { for all } p, q . \tag{i}
\end{equation*}
$$

Pick $a, a^{!}, m$ and $n$ corresponding to $\tilde{f}$ and $\hat{f}$ and check bidegrees. Omitted.

## Part 2 of proof: $F$ and $G$ are adjoint

## Proof cont.

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

Want to show that the adjointness

$$
\begin{aligned}
\operatorname{Hom}_{A^{!}}\left(A^{!} \otimes M, N\right) \cong \operatorname{Hom}(M, N) & \cong \operatorname{Hom}_{A}(M, \operatorname{Hom}(A, N)) \\
a^{!} \otimes a m \stackrel{\tilde{f}}{\mapsto} n \leftrightarrow a m \stackrel{f}{\mapsto} a^{!} n & \leftrightarrow m \stackrel{\hat{f}}{\mapsto}\left(a \mapsto a^{!} n\right)
\end{aligned}
$$

is compatible with the total complex structure. We need to check two things:
(i)

$$
\tilde{f}\left((F M)_{j}^{i}\right) \subset N_{j}^{i} \text { for all } i, j \Longleftrightarrow \hat{f}\left(M_{q}^{p}\right) \subset(G N)_{q}^{p} \text { for all } p, q \text {. }
$$

Pick $a, a^{!}, m$ and $n$ corresponding to $\tilde{f}$ and $\hat{f}$ and check bidegrees. Omitted.
(ii)

$$
\partial \tilde{f}(1 \otimes m)=\tilde{f}(d(1 \otimes m)) \Longleftrightarrow d \hat{f}(m)(1)=\hat{f}(\partial m)(1)
$$

Since it is sufficient to check at values where $a^{!}=1=a$.

## Part 2 of proof: $F$ and $G$ are adjoint

## UPPSALA

 UNIVERSITET
## Proof cont.

$$
\partial \tilde{f}(1 \otimes m)=\tilde{f}(d(1 \otimes m)) \Longleftrightarrow d \hat{f}(m)(1)=\hat{f}(\partial m)(1) .
$$

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$
$D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

$$
\begin{align*}
& \tilde{f}(d(1 \otimes m))-\partial \tilde{f}(1 \otimes m)  \tag{ii}\\
& =\tilde{f}\left(1 \otimes(\partial m)+(-1)^{i+j} \sum \check{v}_{\alpha} \otimes v_{\alpha} m\right)-\partial f(m) \\
& =f(\partial m)+(-1)^{i+j} \sum \check{v}_{\alpha} f\left(v_{\alpha} m\right)-\partial f(m) \\
& =\hat{f}(\partial m)(1)-d \hat{f}(m)(1) .
\end{align*}
$$

This part is similar, see paper.

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

Recall: For $X, Y \in C^{\downarrow}(A)$ and a morphism $f: X \rightarrow Y$, the mapping cone of $f$ is the complex

$$
X[1] \oplus Y
$$

[1] means the complex is shifted 1 position to the left, and the differential multiplied by -1

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

Recall: For $X, Y \in C^{\downarrow}(A)$ and a morphism $f: X \rightarrow Y$, the mapping cone of $f$ is the complex

$$
X[1] \oplus Y
$$

and differential $\partial_{\text {cone }}$ given by

$$
\begin{aligned}
\partial_{\text {cone } \mid X[1]} & =\partial_{X[1]}+f[1] \\
\partial_{\text {cone } \mid Y} & =\partial_{Y} .
\end{aligned}
$$

## $F$ preserves mapping cones

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## $F$ preserves mapping cones

Recall: For $X, Y \in C^{\downarrow}(A)$ and a morphism $f: X \rightarrow Y$, the mapping cone of $f$ is the complex

$$
X[1] \oplus Y
$$

and differential $\partial_{\text {cone }}$ given by

$$
\begin{aligned}
\partial_{\text {cone } \mid X[1]} & =\partial_{X[1]}+f[1] \\
\partial_{\text {cone } \mid Y} & =\partial_{Y} .
\end{aligned}
$$

Now

- $F$ is additive and clearly commutes with [1]. Hence $F(X[1] \oplus Y)=F(X)[1] \oplus F(Y)$.

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## $F$ preserves mapping cones

Recall: For $X, Y \in C^{\downarrow}(A)$ and a morphism $f: X \rightarrow Y$, the mapping cone of $f$ is the complex

$$
X[1] \oplus Y
$$

and differential $\partial_{\text {cone }}$ given by

$$
\begin{aligned}
\partial_{\text {cone } \mid X[1]} & =\partial_{X[1]}+f[1] \\
\partial_{\text {cone } \mid Y} & =\partial_{Y} .
\end{aligned}
$$

Now

- $F$ is additive and clearly commutes with [1]. Hence $F(X[1] \oplus Y)=F(X)[1] \oplus F(Y)$.
- The total differential is $d=d^{\prime}+d^{\prime \prime}$, where $d^{\prime}$ does not depend on the differential $\partial$ of the complex, and $d^{\prime \prime}: a \otimes m \mapsto a \otimes \partial m$ depends linearly on $\partial$.


## $F$ preserves mapping cones

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

Recall: For $X, Y \in C^{\downarrow}(A)$ and a morphism $f: X \rightarrow Y$, the mapping cone of $f$ is the complex

$$
X[1] \oplus Y
$$

and differential $\partial_{\text {cone }}$ given by

$$
\begin{aligned}
\partial_{\text {cone } \mid X[1]} & =\partial_{X[1]}+f[1] \\
\partial_{\text {cone } \mid Y} & =\partial_{Y}
\end{aligned}
$$

Now

- $F$ is additive and clearly commutes with [1]. Hence $F(X[1] \oplus Y)=F(X)[1] \oplus F(Y)$.
- The total differential is $d=d^{\prime}+d^{\prime \prime}$, where $d^{\prime}$ does not depend on the differential $\partial$ of the complex, and $d^{\prime \prime}: a \otimes m \mapsto a \otimes \partial m$ depends linearly on $\partial$.
- $F$ commutes with $f$ (since $F$ is a functor).


## $F$ preserves mapping cones

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

Recall: For $X, Y \in C^{\downarrow}(A)$ and a morphism $f: X \rightarrow Y$, the mapping cone of $f$ is the complex

$$
X[1] \oplus Y
$$

and differential $\partial_{\text {cone }}$ given by

$$
\begin{aligned}
\partial_{\text {cone } \mid X[1]} & =\partial_{X[1]}+f[1] \\
\partial_{\text {cone } \mid Y} & =\partial_{Y} .
\end{aligned}
$$

Now

- $F$ is additive and clearly commutes with [1]. Hence $F(X[1] \oplus Y)=F(X)[1] \oplus F(Y)$.
- The total differential is $d=d^{\prime}+d^{\prime \prime}$, where $d^{\prime}$ does not depend on the differential $\partial$ of the complex, and $d^{\prime \prime}: a \otimes m \mapsto a \otimes \partial m$ depends linearly on $\partial$.
- $F$ commutes with $f$ (since $F$ is a functor).

It follows that $F$ preserves mapping cones.

Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong D^{\uparrow}\left(A^{!}\right)$

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Proof cont.

This part relies on the theory of spectral sequences.
(i) - We saw that the bicomplex $(F M)_{q}$ lives in the 1 :st quadrant, so by Theorem 2.15 of (2), there exist spectral sequences with first terms

$$
H^{\bullet}\left(F M, d^{\prime \prime}\right) \text { and } H^{\bullet}\left(F(G N), d^{\prime}\right)
$$

respectively that converge to

$$
H^{\bullet}(F M, d) \text { and } H^{\bullet}(F(G N), d)
$$

respectively.

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $\underset{\text { cones }}{F}$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong D^{\uparrow}\left(A^{!}\right)$

## Proof cont.

$$
\begin{aligned}
& F(G N)=\bigoplus_{l} \operatorname{Hom}\left(A_{l} \otimes^{*}\left(A_{p}^{!}\right), N_{j}^{i}\right) \\
& d^{\prime}: f \mapsto(-1)^{i+j}\left(f \circ d_{K}\right) .
\end{aligned}
$$

- Because the Koszul complex is a resolution of $k$ (Here we use Koszulity of $A$ ) we get:

$$
H^{\bullet}\left(F(G N), d^{\prime}\right)=N .
$$

Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong D^{\uparrow}\left(A^{!}\right)$

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Proof cont.

$$
\begin{aligned}
& F(G N)=\bigoplus_{l} \operatorname{Hom}\left(A_{l} \otimes^{*}\left(A_{p}^{!}\right), N_{j}^{i}\right) \\
& d^{\prime}: f \mapsto(-1)^{i+j}\left(f \circ d_{K}\right) .
\end{aligned}
$$

- Because the Koszul complex is a resolution of $k$ (Here we use Koszulity of $A$ ) we get:

$$
H^{\bullet}\left(F(G N), d^{\prime}\right)=N .
$$

- We may consider the same bicomplex structure on $N$ (via $\varphi$ ), and check that also

$$
H^{\bullet}\left(N, d^{\prime}\right)=N .
$$

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong D^{\uparrow}\left(A^{!}\right)$

## Proof cont.

- Thus there are spectral sequences with common first term

$$
H^{\bullet}\left(N, d^{\prime}\right)=N=H^{\bullet}\left(F(G N), d^{\prime}\right)
$$

that converge to

$$
\begin{aligned}
& \qquad H^{\bullet}\left(N, d=d^{\prime}+d^{\prime \prime}\right)=H^{\bullet}(N, \partial) \text { and } H^{\bullet}(F(G N), d) \\
& \text { respectively. }
\end{aligned}
$$

## Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong D^{\uparrow}\left(A^{!}\right)$

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Proof cont.

- Thus there are spectral sequences with common first term

$$
H^{\bullet}\left(N, d^{\prime}\right)=N=H^{\bullet}\left(F(G N), d^{\prime}\right)
$$

that converge to

$$
H^{\bullet}\left(N, d=d^{\prime}+d^{\prime \prime}\right)=H^{\bullet}(N, \partial) \text { and } H^{\bullet}(F(G N), d)
$$

respectively.

- In fact, the spectral sequences must be the same, since all terms are determined by the first terms and the boundary maps, which are the same for both sequences.
- Thus $H^{\bullet}(N, \partial)=H^{\bullet}(F(G N), d)$, so $\varphi$ is a quasi-isomorphism.

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Theorem 2.12.5: Statement

We call $K:=D F$ the Koszul duality functor.

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Theorem 2.12.5: Statement

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

We call $K:=D F$ the Koszul duality functor.

## Theorem

Let $A$ be a left finite Koszul ring over $k$.
(i) The functor $K: D^{\downarrow}(A) \rightarrow D^{\uparrow}\left(A^{!}\right)$together with the obvious canonical isomorphism $K(M[1]) \cong(K M)[1]$ is an equivalence of triangulated categories.
[1] means the complex is shifted 1 position to the left, and the differential multiplied by -1
We saw in Theorem 2.12.1 that DF is an equivalence and preserves mapping cones.

## Theorem 2.12.5: Statement

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

We call $K:=D F$ the Koszul duality functor.

## Theorem

Let $A$ be a left finite Koszul ring over $k$.
(i) The functor $K: D^{\downarrow}(A) \rightarrow D^{\uparrow}\left(A^{!}\right)$together with the obvious canonical isomorphism $K(M[1]) \cong(K M)[1]$ is an equivalence of triangulated categories.
(ii) We have $K(M\langle n\rangle) \cong(K M)[-n]\langle-n\rangle$, canonically.
$\langle n\rangle$ means the degrees have been shifted so as to increase by $n$.

## Theorem 2.12.5: Statement

We call $K:=D F$ the Koszul duality functor.

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Proof of part (ii)

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5 Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References
(ii) We have $K(M\langle n\rangle) \cong(K M)[-n]\langle-n\rangle$, canonically.


## Proof.

The position/degree components are the same:

$$
\begin{aligned}
(K(M\langle n\rangle))_{q}^{p} & =\bigoplus_{p=i+j, q=l-j} A_{l}^{!} \otimes(M\langle n\rangle)_{j}^{i} \\
= & \bigoplus_{p=i+j, q=l-j} A_{l}^{!} \otimes M_{j-n}^{i} \\
= & \bigoplus_{p=i+j+n, q=l-j-n}^{p-n} \\
& =(K M)_{q+n}^{p-n} A_{l}^{!} \otimes M_{j}^{i} \\
& =((K M)[-n]\langle-n\rangle)_{q}^{p}
\end{aligned}
$$

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences

$$
D^{\downarrow}(A) \cong
$$

$$
D^{\uparrow}\left(A^{!}\right)
$$

- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References

$$
\begin{aligned}
d^{\prime}: A_{l}^{!} \otimes M_{j}^{i} & \rightarrow A_{l+1}^{!} \otimes M_{j+1}^{i} \\
a \otimes m & \mapsto(-1)^{i+j} \sum a \check{v}_{\alpha} \otimes v_{\alpha} m
\end{aligned}
$$

$$
d^{\prime \prime}: A_{l}^{!} \otimes M_{j}^{i} \rightarrow A_{l}^{!} \otimes M_{j}^{i+1}
$$

$$
a \otimes m \mapsto a \otimes \partial m
$$

## Proof of part (ii)

(ii) We have $K(M\langle n\rangle) \cong(K M)[-n]\langle-n\rangle$, canonically.

## Proof cont.

Recall that

为

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Proof of part (ii)

(ii) We have $K(M\langle n\rangle) \cong(K M)[-n]\langle-n\rangle$, canonically.

## Proof cont.

Recall that

$$
\begin{aligned}
d^{\prime}: A_{l}^{!} \otimes M_{j}^{i} & \rightarrow A_{l+1}^{!} \otimes M_{j+1}^{i} \\
a \otimes m & \mapsto(-1)^{i+j} \sum^{i+1} a \check{v}_{\alpha} \otimes v_{\alpha} m \\
d^{\prime \prime}: A_{l}^{!} \otimes M_{j}^{i} & \rightarrow A_{l}^{!} \otimes M_{j}^{i+1} \\
a \otimes m & \mapsto a \otimes \partial m .
\end{aligned}
$$

Effect on differentials:

- $K(M\langle n\rangle)$ multiplies $d^{\prime}$ by $(-1)^{n}$.
- $(K M)[-n]\langle-n\rangle$ multiplies $d=d^{\prime}+d^{\prime \prime}$ by $(-1)^{n}$.

To compensate for this discrepancy, we need to multiply every second position $i$ of $M$ by $(-1)^{n}$, i.e. take as isomorphism

$$
(-1)^{i n}: K(M\langle n\rangle) \xrightarrow{\sim}(K M)[-n]\langle-n\rangle .
$$

## Proof of part (iii)

(iii) For any $p \in k$ we have $K\left(A_{0} p\right)=A^{\prime} p$ and $K\left(A^{\circledast} p\right)=A_{0}^{!} p$.

## Proof.

$$
K\left(A_{0} p\right)=A^{!} \otimes\left(A_{0} p\right)=A^{!} \otimes p=A^{!} p
$$

with differential $d=d^{\prime}+d^{\prime \prime}=0$, so again a module.

- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Proof of part (iii)

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences $D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5 Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References
(iii) For any $p \in k$ we have $K\left(A_{0} p\right)=A^{!} p$ and $K\left(A^{\circledast} p\right)=A_{0}^{!} p$.


## Proof.

$$
K\left(A_{0} p\right)=A^{!} \otimes\left(A_{0} p\right)=A^{!} \otimes p=A^{!} p
$$

with differential $d=d^{\prime}+d^{\prime \prime}=0$, so again a module.

$$
K\left(A^{\circledast} p\right)=A^{!} \otimes A^{\circledast} p=\bigoplus_{l} A^{!} \otimes\left(A_{l}\right)^{*} p,
$$

with differential $d=d^{\prime}+d^{\prime \prime}=d^{\prime}$. This is the Koszul complex (up to sign of the differential) of $A^{!}$, times $p$. This is a resolution of $A_{0}^{!}=k$, times $p$, hence quasi-isomorphic to $A_{0}^{!} p$.

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1: Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5:

Statement

- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## Theorem 2.12.6.

## Theorem

Let $A$ be a Koszul ring over $k$. Suppose $A$ is a finitely generated generated $k$-module both from the left and from the right, so that $A_{i}=0$ for $i \gg 0$. Suppose in addition that $A^{!}$is left noetherian. Then Koszul duality induces an equivalence of triangulated categories

$$
K: D^{b}(A-\mathrm{gr}) \rightarrow D^{b}\left(A^{!}-\mathrm{gr}\right) .
$$

$D^{b}$ means the bounded derived category. $A$ - gr means the category of finitely generated graded $A$-modules.

UPPSALA UNIVERSITET

- Introduction
- Notation, and the Koszul complex
- Theorem 2.12.1.
- Theorem 2.12.1 Statement and overview
- Part 1 of proof: Construction of $F$ and $G$
- Part 2 of proof: $F$ and $G$ are adjoint
- $F$ preserves mapping cones
- Part 3 of proof: $F$ and $G$ induce inverse equivalences
$D^{\downarrow}(A) \cong$ $D^{\uparrow}\left(A^{!}\right)$
- Theorem 2.12.5.
- Theorem 2.12.5: Statement
- Proof of part (ii)
- Proof of part (iii)
- Theorem 2.12.6.
- References


## References

[1] Beilinson, A., Ginzburg, V. and Soergel, W., Koszul duality patterns in representation theory. J. Amer. Math. Soc., p. 483-492.
[2] McLeary, J, A user's guide to spectral sequences. Second edition.
[3] Murfet, D., Spectral sequences. http://therisingsea.org/notes/SpectralSequences.pdf

## Thank you!

