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Notation, and the Koszul complex
• k: fixed semisimple ring.

• V : k-bimodule.

• TkV : k-bimodule of tensor products of copies of V .

• R ⊂ V ⊗ V : subbimodule. ← Tensor products and
Hom-spaces without subscript are taken w.r.t. k

• A = TkV/(R): quadratic ring (which we assume is left
finite, i.e. with each Ai finitely k-generated).

• A
!: the quadratic dual of A.

• ∗
(A

!
i) =

�
ν V

⊗ν ⊗R⊗ V
⊗i−ν−2 ⊂ V

⊗i.
∗
(A

!
i) = Hom(A

!
i, k).

The Koszul complex:

→ A⊗ ∗
(A

!
i)

di
K→ A⊗ ∗

(A
!
i−1) → · · · → A⊗ ∗

(A
!
2) → A⊗ V → A → 0

a⊗ v1 ⊗ · · · ⊗ vi �→ av1 ⊗ · · · ⊗ vi

Theorem

A is Koszul ⇔ the Koszul complex is a resolution of k.
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Notation, and the Koszul complex
• ∗

(A
!
i) =

�
ν V

⊗ν ⊗R⊗ V
⊗i.ν−2 ⊂ V

⊗i.

The Koszul complex:

→ A⊗ ∗
(A

!
i)

di
K→ A⊗ ∗

(A
!
i−1) → · · · → A⊗ V → A → 0

a⊗ v1 ⊗ · · · ⊗ vi �→ av1 ⊗ · · · ⊗ vi

d
i
K “moves” the leftmost degree 1 generators from the

∗
(A

!
i)-part of A⊗ ∗

(A
!
i) to the A-part.

Alternative description of the Koszul complex differential:

• Write idV =
�

v̌α ⊗ vα, where

• {vα}: k-generators of V , and

• V
∗ � v̌α = δvα ↔ vα ∈ V , where δvα is the k-linear

extension of the Kronecker delta.

Then dk may be written

A⊗ ∗
(A

!
i) = Hom(A

!
i, A)

di
K→ Hom(A

!
i−1, A) = A⊗ ∗

(A
!
i−1)

f( ) �→
�

f( · v̌α)vα

Removing vα from ∗
(A

!
i) becomes multiplying v̌α to A

!
i by

contravariance of ∗.
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Theorem 2.12.1: Statement and
overview

Location of nonzero M
i
j .

• B =
�

j≥0 Bj : positively graded ring.

• C(B): homotopy category of complexes in B-Gr.
B-Gr means category of graded B-modules.

• C
↑
(B) ⊂ C(B): subcategory of objects M satisfying

M
i
j = 0 if i � 0 or i+ j � 0.

M
i
j is the degree j part of M at position i.

• C
↓
(B) ⊂ C(B): subcategory of objects M satisfying

M
i
j = 0 if i � 0 or i+ j � 0.
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Theorem 2.12.1: Statement and
overview

• D
↑
(B) and D

↓
(B): localizations of C↑

(B) and C
↓
(B)

w.r.t. quasi-isomorphisms.

Theorem (2.12.1)

Let A be a left finite Koszul ring. Then there exists an
equivalence of triangulated categories

D
↓
(A) ∼= D

↑
(A

!
).

Proof outline:

1. The functors F,G

F : A-Mod ↔ A
!-Mod : G

M �→ A
! ⊗M

Hom(A,N) ←� N

form an adjoint pair (hom/tensor adjunction).
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Theorem 2.12.1: Statement and
overview

1. The functors F,G

F : A-Mod ↔ A
!-Mod : G

M �→ A
! ⊗M

Hom(A,N) ←� N

form an adjoint pair (hom/tensor adjunction).

• Consider M ∈ C
↓
(A) and N ∈ C

↑
(A

!
) as modules

M =
�

i M
i ∈ A-Mod and N =

�
i N

i ∈ A
!
-Mod.

• Endow FM (respectively GN) with bicomplex structures:

differentials d
�
from the Koszul complex, and d

��
from the

complex M (respectively N).

• Take total complex to obtain FM ∈ C
↑
(A

!
) (respectively

GN ∈ C
↓
(A)).

2. Check that the (F,G)-adjunction is compatible with the
complex structure of FM and GN .

6/30



• Introduction
− Notation, and the

Koszul complex

• Theorem 2.12.1.
− Theorem 2.12.1:

Statement and
overview

− Part 1 of proof:
Construction of F
and G

− Part 2 of proof: F
and G are adjoint

− F preserves mapping
cones

− Part 3 of proof: F
and G induce
inverse equivalences

D↓(A) ∼=
D↑(A!)

• Theorem 2.12.5.
− Theorem 2.12.5:

Statement

− Proof of part (ii)

− Proof of part (iii)

• Theorem 2.12.6.

• References

• References

Theorem 2.12.1: Statement and
overview

1. The functors F,G

F : A-Mod ↔ A
!-Mod : G

M �→ A
! ⊗M

Hom(A,N) ←� N

form an adjoint pair (hom/tensor adjunction).

• Consider M ∈ C
↓
(A) and N ∈ C

↑
(A

!
) as modules

M =
�

i M
i ∈ A-Mod and N =

�
i N

i ∈ A
!
-Mod.

• Endow FM (respectively GN) with bicomplex structures:

differentials d
�
from the Koszul complex, and d

��
from the

complex M (respectively N).

• Take total complex to obtain FM ∈ C
↑
(A

!
) (respectively

GN ∈ C
↓
(A)).

2. Check that the (F,G)-adjunction is compatible with the
complex structure of FM and GN .

6/30



• Introduction
− Notation, and the

Koszul complex

• Theorem 2.12.1.
− Theorem 2.12.1:

Statement and
overview

− Part 1 of proof:
Construction of F
and G

− Part 2 of proof: F
and G are adjoint

− F preserves mapping
cones

− Part 3 of proof: F
and G induce
inverse equivalences

D↓(A) ∼=
D↑(A!)

• Theorem 2.12.5.
− Theorem 2.12.5:

Statement

− Proof of part (ii)

− Proof of part (iii)

• Theorem 2.12.6.

• References

• References

Theorem 2.12.1: Statement and
overview
3. • Thanks to the shape of C

↓
(A) and C

↑
(A

!
), the spectral

sequences of the bicomplexes FM and GN converge.

• Also F and G preserve mapping cones.

It follows that

• F and G commute with quasi-isomorphisms.

and

• Using that the Koszul complex is a resolution of k: The

counit FG → idC↑(A!) and unit GF → idC↓(A) from the

adjunction are quasi-isomorphisms

• Thus F and G induce mutually inverse equivalences of

triangulated categories DF : D
↓
(A) ↔ D

↑
(A

!
) : DG.
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Part 1 of proof: Construction of F and
G

Proof.

• For M ∈ C
↓
(A)

�

l,i

(

FM

)l,i

= A
! ⊗M

=

�

l,i

A
!
l ⊗M

i

=

�

l,i
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slice lives in the 1:st quadrant =⇒ At each position the total
complex has finitely many summands =⇒ The spectral
sequences w.r.t. the d

�- and d
��-filtrations converge!

11/30



• Introduction
− Notation, and the

Koszul complex

• Theorem 2.12.1.
− Theorem 2.12.1:

Statement and
overview

− Part 1 of proof:
Construction of F
and G

− Part 2 of proof: F
and G are adjoint

− F preserves mapping
cones

− Part 3 of proof: F
and G induce
inverse equivalences

D↓(A) ∼=
D↑(A!)

• Theorem 2.12.5.
− Theorem 2.12.5:

Statement

− Proof of part (ii)

− Proof of part (iii)

• Theorem 2.12.6.

• References

• References

Part 1 of proof: Construction of F and
G

Proof cont.

Bicomplex bounded from the left because A
! is positively

graded.

12/30



• Introduction
− Notation, and the

Koszul complex

• Theorem 2.12.1.
− Theorem 2.12.1:

Statement and
overview

− Part 1 of proof:
Construction of F
and G

− Part 2 of proof: F
and G are adjoint

− F preserves mapping
cones

− Part 3 of proof: F
and G induce
inverse equivalences

D↓(A) ∼=
D↑(A!)

• Theorem 2.12.5.
− Theorem 2.12.5:

Statement

− Proof of part (ii)

− Proof of part (iii)

• Theorem 2.12.6.

• References

• References

Part 1 of proof: Construction of F and
G

Proof cont.

Bicomplex bounded from below due to the shape of
C

↓
(A).

13/30



• Introduction
− Notation, and the

Koszul complex

• Theorem 2.12.1.
− Theorem 2.12.1:

Statement and
overview

− Part 1 of proof:
Construction of F
and G

− Part 2 of proof: F
and G are adjoint

− F preserves mapping
cones

− Part 3 of proof: F
and G induce
inverse equivalences

D↓(A) ∼=
D↑(A!)

• Theorem 2.12.5.
− Theorem 2.12.5:

Statement

− Proof of part (ii)

− Proof of part (iii)

• Theorem 2.12.6.

• References

• References

Part 1 of proof: Construction of F and
G

Proof cont.

14/30



• Introduction
− Notation, and the

Koszul complex

• Theorem 2.12.1.
− Theorem 2.12.1:

Statement and
overview

− Part 1 of proof:
Construction of F
and G

− Part 2 of proof: F
and G are adjoint

− F preserves mapping
cones

− Part 3 of proof: F
and G induce
inverse equivalences

D↓(A) ∼=
D↑(A!)

• Theorem 2.12.5.
− Theorem 2.12.5:

Statement

− Proof of part (ii)

− Proof of part (iii)

• Theorem 2.12.6.

• References

• References

Part 1 of proof: Construction of F and
G

Proof cont.

15/30



• Introduction
− Notation, and the

Koszul complex

• Theorem 2.12.1.
− Theorem 2.12.1:

Statement and
overview

− Part 1 of proof:
Construction of F
and G

− Part 2 of proof: F
and G are adjoint

− F preserves mapping
cones

− Part 3 of proof: F
and G induce
inverse equivalences

D↓(A) ∼=
D↑(A!)

• Theorem 2.12.5.
− Theorem 2.12.5:

Statement

− Proof of part (ii)

− Proof of part (iii)

• Theorem 2.12.6.

• References

• References

Part 1 of proof: Construction of F and
G

Proof cont.

Construction of G is similar: We get a total complex

(GN)
p
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�

p=i+j,q=l−j

Hom(A−l, N
i
j) =

�

p=i+j,q=l−j

A
∗
−l ⊗N

i
j =

= (
!
(A

!
))

∗
l ⊗N

i
j

The A
! ⊗ !

(A
!
))

∗
l constitute the Koszul complex of A!. ±d

�

moves a degree 1 generator from (
!
(A

!
))

∗
l to the A

!-module N .

Define differentials

d
�
: Hom(A−l, N

i
j) → Hom(A−(l+1), N

i
j+1) (5)

f( ) �→ (−1)
i
�

v̌αf(vα · )

d
��
: Hom(A−l, N

i
j) → Hom(A−l, N

i+1
j ) (6)

f( ) �→ ∂f( )
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Part 2 of proof: F and G are adjoint

Proof cont.

Want to show that the adjointness

HomA!(A
! ⊗M,N) ∼= Hom(M,N) ∼= HomA(M,Hom(A,N))

a
! ⊗ am

f̃�→ n ↔ am
f�→ a

!
n ↔ m

f̂�→ (a �→ a
!
n)

is compatible with the total complex structure. We need to
check two things:

(i)

f̃((FM)
i
j) ⊂ N

i
j for all i, j ⇐⇒ f̂(M

p
q ) ⊂ (GN)

p
q for all p, q.

Pick a, a
!
,m and n corresponding to f̃ and f̂ and check

bidegrees . Omitted.

(ii)

∂f̃(1⊗m) = f̃(d(1⊗m)) ⇐⇒ df̂(m)(1) = f̂(∂m)(1).

Since it is sufficient to check at values where a
!
= 1 = a.
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Part 2 of proof: F and G are adjoint

Proof cont.

∂f̃(1⊗m) = f̃(d(1⊗m)) ⇐⇒ df̂(m)(1) = f̂(∂m)(1).

(ii)

f̃(d(1⊗m))− ∂f̃(1⊗m)

= f̃(1⊗ (∂m) + (−1)
i+j

�
v̌α ⊗ vαm)− ∂f(m)

= f(∂m) + (−1)
i+j

�
v̌αf(vαm)− ∂f(m)

= f̂(∂m)(1)− df̂(m)(1).

This part is similar, see paper.
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F preserves mapping cones
Recall: For X,Y ∈ C

↓
(A) and a morphism f : X → Y , the

mapping cone of f is the complex

X[1]⊕ Y

[1] means the complex is shifted 1 position to the left, and the
differential multiplied by −1

and differential ∂cone given by

∂cone|X[1] = ∂X[1] + f [1]

∂cone|Y = ∂Y .

Now

• F is additive and clearly commutes with [1]. Hence
F (X[1]⊕ Y ) = F (X)[1]⊕ F (Y ).

• The total differential is d = d
�
+ d

��, where d
� does not

depend on the differential ∂ of the complex, and
d
��
: a⊗m �→ a⊗ ∂m depends linearly on ∂.

• F commutes with f (since F is a functor).

It follows that F preserves mapping cones.
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(A) and a morphism f : X → Y , the

mapping cone of f is the complex

X[1]⊕ Y

[1] means the complex is shifted 1 position to the left, and the
differential multiplied by −1

and differential ∂cone given by

∂cone|X[1] = ∂X[1] + f [1]

∂cone|Y = ∂Y .

Now

• F is additive and clearly commutes with [1]. Hence
F (X[1]⊕ Y ) = F (X)[1]⊕ F (Y ).

• The total differential is d = d
�
+ d

��, where d
� does not

depend on the differential ∂ of the complex, and
d
��
: a⊗m �→ a⊗ ∂m depends linearly on ∂.

• F commutes with f (since F is a functor).

It follows that F preserves mapping cones.
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Part 3 of proof: F and G induce inverse
equivalences D↓(A) ∼= D↑(A!)

Proof cont.

This part relies on the theory of spectral sequences.

(i) • We saw that the bicomplex (FM)q lives in the 1:st

quadrant, so by Theorem 2.15 of (2), there exist spectral

sequences with first terms

H
•
(FM, d

��
) and H

•
(F (GN), d

�
)

respectively that converge to

H
•
(FM, d) and H

•
(F (GN), d)

respectively.
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Part 3 of proof: F and G induce inverse
equivalences D↓(A) ∼= D↑(A!)

Proof cont.

• The cone, M , of a quasi-isomorphism, f , is acyclic. Also:

H
•
(M,∂) = 0 =⇒ H

•
(FM, d

��
) = 0

Rem 1 of (3)
=⇒

H
•
(FM, d) = 0,

so the cone FM of F (f) is acyclic too, so F (f) is a
quasi-isomorphism. Hence F preserves
quasi-isomorphisms, and induces a functor

DF : D
↓
(A) → D

↑
(A

!
).

• That we get a functor DG : D
↑
(A

!
) → D

↓
(A) is

analogous.
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Part 3 of proof: F and G induce inverse
equivalences D↓(A) ∼= D↑(A!)

Proof cont.

(ii) F ◦G is quasi-isomorphic to idC↑(A!):

• We show that the counit map

F (GN) � N

from the adjunction is a quasi-isomorphism. Over k, the

map splits, and we get the splitting map

ϕ : N = k ⊗Hom(k,N) �→
�

A
!
p ⊗Hom(Al, N

i
j )

=

�

l

Hom(Al ⊗ ∗
(A

!
p), N

i
j ) = F (GN),

with F (GN) having the bicomplex structure from F ,

where

d
�
: f �→ (−1)

i+j
(f ◦ dK).
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Part 3 of proof: F and G induce inverse
equivalences D↓(A) ∼= D↑(A!)

Proof cont.

F (GN) =

�

l

Hom(Al ⊗ ∗
(A

!
p), N

i
j)

d
�
: f �→ (−1)

i+j
(f ◦ dK).

• Because the Koszul complex is a resolution of k (Here we
use Koszulity of A) we get:

H
•
(F (GN), d

�
) = N.

• We may consider the same bicomplex structure on N (via
ϕ), and check that also

H
•
(N, d

�
) = N.
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Part 3 of proof: F and G induce inverse
equivalences D↓(A) ∼= D↑(A!)

Proof cont.

• Thus there are spectral sequences with common first term

H
•
(N, d

�
) = N = H

•
(F (GN), d

�
)

that converge to

H
•
(N, d = d

�
+ d

��
) = H

•
(N, ∂) and H

•
(F (GN), d)

respectively.

• In fact, the spectral sequences must be the same, since all
terms are determined by the first terms and the boundary
maps, which are the same for both sequences.

• Thus H•
(N, ∂) = H

•
(F (GN), d), so ϕ is a

quasi-isomorphism.

• That also G ◦ F is quasi-isomorphic to idC↓(A) is similar.
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Theorem 2.12.5: Statement

We call K := DF the Koszul duality functor.

Theorem

Let A be a left finite Koszul ring over k.

(i) The functor K : D
↓
(A) → D

↑
(A

!
) together with the

obvious canonical isomorphism K(M [1]) ∼= (KM)[1] is an
equivalence of triangulated categories.
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We call K := DF the Koszul duality functor.

Theorem

Let A be a left finite Koszul ring over k.

(i) The functor K : D
↓
(A) → D

↑
(A

!
) together with the

obvious canonical isomorphism K(M [1]) ∼= (KM)[1] is an
equivalence of triangulated categories.

[1] means the complex is shifted 1 position to the left, and
the differential multiplied by −1

We saw in Theorem 2.12.1 that DF is an equivalence and
preserves mapping cones.
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(i) The functor K : D
↓
(A) → D

↑
(A

!
) together with the

obvious canonical isomorphism K(M [1]) ∼= (KM)[1] is an
equivalence of triangulated categories.

(ii) We have K(M�n�) ∼= (KM)[−n]�−n�, canonically.

�n� means the degrees have been shifted so as to increase
by n.
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Theorem

Let A be a left finite Koszul ring over k.

(i) The functor K : D
↓
(A) → D

↑
(A

!
) together with the

obvious canonical isomorphism K(M [1]) ∼= (KM)[1] is an
equivalence of triangulated categories.

(ii) We have K(M�n�) ∼= (KM)[−n]�−n�, canonically.

(iii) For any p ∈ k we have K(A0p) = A
!
p and

K(A
�
p) = A

!
0p.

Where A
�
=

�
l(A

�
)l ∈ A-Gr, with (A

�
)l = (A−l)

∗, is
the injective hull of k. For the statement to make sense,
we view the modules A0p,A

!
p,A

� and A
!
0p as complexes

concentrated in position zero.
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Proof of part (ii)

(ii) We have K(M�n�) ∼= (KM)[−n]�−n�, canonically.

Proof.

The position/degree components are the same:

(K(M�n�))pq =

�

p=i+j,q=l−j

A
!
l ⊗ (M�n�)ij

=

�

p=i+j,q=l−j

A
!
l ⊗M

i
j−n

=

�

p=i+j+n,q=l−j−n

A
!
l ⊗M

i
j

= (KM)
p−n
q+n

= ((KM)[−n]�−n�)pq .
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Proof of part (ii)
(ii) We have K(M�n�) ∼= (KM)[−n]�−n�, canonically.

Proof cont.

Recall that

d
�
: A

!
l ⊗M

i
j → A

!
l+1 ⊗M

i
j+1

a⊗m �→ (−1)
i+j

�
av̌α ⊗ vαm

d
��
: A

!
l ⊗M

i
j → A

!
l ⊗M

i+1
j

a⊗m �→ a⊗ ∂m.

Effect on differentials:

• K(M�n�) multiplies d� by (−1)
n.

• (KM)[−n]�−n� multiplies d = d
�
+ d

�� by (−1)
n.

To compensate for this discrepancy, we need to multiply every
second position i of M by (−1)

n, i.e. take as
isomorphism

(−1)
in

: K(M�n�) ∼−→ (KM)[−n]�−n�.
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Proof of part (iii)

(iii) For any p ∈ k we have K(A0p) = A
!
p and

K(A
�
p) = A

!
0p.

Proof.

•
K(A0p) = A

! ⊗ (A0p) = A
! ⊗ p = A

!
p,

with differential d = d
�
+ d

��
= 0, so again a module.

•

K(A
�
p) = A

! ⊗A
�
p =

�

l

A
! ⊗ (Al)

∗
p,

with differential d = d
�
+ d

��
= d

�. This is the Koszul
complex (up to sign of the differential) of A!, times p.
This is a resolution of A!

0 = k, times p, hence
quasi-isomorphic to A

!
0p.
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Theorem 2.12.6.

Theorem

Let A be a Koszul ring over k. Suppose A is a finitely
generated generated k-module both from the left and from the
right, so that Ai = 0 for i � 0. Suppose in addition that A! is
left noetherian. Then Koszul duality induces an equivalence of
triangulated categories

K : D
b
(A- gr) → D

b
(A

!- gr).

D
b means the bounded derived category. A- gr means the

category of finitely generated graded A-modules.
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