
THE AUSLANDER BUCHSBAUM FORMULA

HANNO BECKER

Abstract. This is the script for my talk about the Auslander-Buchsbaum

formula [AB57, Theorem 3.7] at the Auslander Memorial Workshop, 15th-18th

of November 2014 in Bielefeld.

0. Overview

This talk is about the Auslander-Buchsbaum formula:

Theorem (Auslander-Buchsbaum formula). If R is a commutative local Noether-

ian ring and M a finitely generated R-module of finite projective dimension, then

depthR(R)− depthR(M) = pdimR(M).

The plan of the talk is the following:

– In §1 we recall some basic notions from commutative algebra that go into un-

derstanding, proving and using the Auslander-Buchsbaum formula.

– In §2 we present the classical proof given in [BH93].

– In §4 we ask how new techniques like derived categories may shed new light

on the Auslander-Buchsbaum formula and its proof, and study some of its

generalizations.

Conventions

In the following, we denote R a commutative local Noetherian ring with maximal

ideal m and residue field k := R/m. Further, we denote R -mod the category of

finitely generated left R-modules, and M ∈ R -mod unless otherwise stated.

1. Basic notions

1.1. Regular sequences. We begin by recalling the notion of a regular sequence.

Definition 1.1. Let M be an R-module, x ∈ m and x = (x1, ..., xn) ∈ mn
.

(i) x is called M -regular if M
·x−→ M is injective.

(ii) A sequence x = (x1, ..., xn) is calledM -regular if x1 isM -regular and (x2, ..., xn)

is M/x1M -regular.

If M = R, x resp. x are simply called regular.
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Definition 1.2. Let M be an R-module. The depth of M (as an R-module) is the

maximal length of an M -regular sequence in m. It is denoted depthR(M).

Remark 1.3. Note that a priori it is not clear that depthR(M) < ∞ or that any

two maximal M -regular sequences have the same length. Both however is true and

will be established below in Proposition 1.9.

By definition, the non-regular elements of M are those contained in the union

�

m∈M\{0}

AnnR(m) =

�

I�R
R/I�→M

I =

�

p�R prime
R/p�→M

p,

where for the last equality we used the fact that the ideals maximal among those

of the form AnnR(m) for m ∈ M \ {0} are prime.

Definition 1.4. A prime ideal p � R is called associated prime of M if there

exists an embedding R/p �→ M , i.e. if there exists some m ∈ M \ {0} such that

p = AnnR(m). The set of associated primes of M is denoted AssR(M).

Fact 1.5. For a short exact sequence 0 → M � → M → M �� → 0 of R-modules, we

have AssR(M) ⊂ AssR(M �
) ∪AssR(M ��

).

Proof. If p ∈ AssR(M) and i : R/p �→ M is an embedding, we distinguish between

im(i) ∩M �
= {0} and im(i) ∩M � �= {0}. In the first case, the R/p → M → M ��

is

injective, so p ∈ AssR(M ��
). In the second case, there exists some x ∈ R \ p with

i(x) ∈ M �
, and then R/p

·x−→ R/p → M factors through M �
, so p ∈ AssR(M �

). �

Fact 1.6. For any finitely generated R-module M , AssR(M) is finite.

Proof. Any finitely generated R-module admits a finite filtration 0 = M0 ⊂ M1 ⊂
... ⊂ Mn−1 ⊂ Mn = M such that Mi/Mi−1

∼= R/pi for prime ideals pi � R,

i = 1, 2, ..., n. Then AssR(M) ⊂
�

i AssR(R/pi) = {p1, ..., pn}. �

Fact 1.7. Let M be a finitely generated R-module and I � R an ideal containing

no M -regular element. Then I ⊂ p for some associated prime p ∈ AssR(M) of M .

Proof. By Fact 1.6 there are only finitely many associated primes, and by assump-

tion I is contained in their union. By prime avoidance, the claim follows. �

In the special case I = m we obtain:

Corollary 1.8. Let M be an R-module. Then depthR(M) = 0 if and only if

m ∈ AssR(M), i.e. if and only if HomR(k,M) �= 0.

In fact, this Corollary admits the following very useful generalization giving an

alternative description of the depth of a module:
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Proposition 1.9. For any finitely generated R-module M , we have

depthR(M) = min{i ∈ N≥0 | Ext
i
R(k,M) �= 0} < ∞.

Moreover, any maximal M -regular sequence has length depthR(M).

This follows from Corollary 1.8 and the following Lemma:

Lemma 1.10. Let M,N be R-modules and x1, ..., xn an M -regular sequence in M

contained in AnnR(N). Then there is a canonical isomorphism

Ext
n
R(N,M) ∼= HomR(N,M/(x1, ..., xk)M).

1.2. Geometric considerations. We want to provide some geometric intuition

for regularity and associated primes. For this, recall first that any commutative ring

R can be viewed as the ring of functions on its spectrum Spec(R), with ideals (resp.

prime ideals) of R corresponding to closed (resp. closed and irreducible) subsets of

Spec(R); in particular, the minimal prime ideals p1, ..., pn of R correspond to the

irreducible components Z1, ..., Zn of Spec(R). Now, if x ∈ p1 ∩ ... ∩ pn−1 \ pn, then
intuitively x is nonzero on Zn but vanishes on all the Z1, ..., Zn−1, so should be

annihilated by any y ∈ pn. It turns out, however, that p1∩ ...∩pn is not necessarily

{0}, but consists precisely of the nilpotent elements of R – nevertheless, one can

construct some element x ∈ p1 ∩ ... ∩ pn−1 such that AnnR(x) = pn, and we have:

Fact 1.11. Any minimal prime ideal is associated.

The presence of nilpotent elements is a bit challenging from the elements-as-

functions viewpoint, but one might imagine them as formal Taylor approximations

in some “virtual” direction of Spec(R). The actual subset of Spec(R) they are

“virtually extending” is then given by the zero set of their annihilator, so that we

obtain the following geometric interpretation of associated primes:

Intuition. Any associated prime corresponds either to an irreducible component of

Spec(R) or to an irreducible subset of Spec(R) along which there is some “infini-

tesimal extension”, which one might think of as a “virtual irreducible component”.

Building on this intuition, the regular elements of R can be thought of as those

functions on Spec(R) that do not vanish on any actual or “virtual” irreducible

component.

Example 1.12. Consider R := k�x, y�/(xy), the functions on the union of the two

coordinate axis in the plane. Then R is reduced, and its associated primes are

precisely the minimal primes (x) and (y) corresponding to the y-axis and x-axis,

respectively. Now, passing to the quotient R�
:= R/(y2), geometrically the y-axis

has vanished, but an infinitesimal part of it survives as witnessed by the nilpotent

function y ∈ R�
, based at AnnR�(y) = (x). In other words, R�

is the coordinate ring

of the x-axis with an additional, infinitesimal y-axis attached to it at the origin,

and AssR�(R�
) = {(x, y), (y)}.
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The following fits well with the above intuition:

Proposition 1.13. The following inequalities holds:

depthR(R) ≤ min{dimR/p | p ∈ Ass(R)}(1.1)

≤ max{dimR/p | p ∈ Ass(R)} = dim(R).

Proof. This follows from Ext
i
R(N,M) = 0 for all finitely generated R-modulesN,M

with i < depthR(M)− dim(N) (Ischebeck’s Theorem, see [Mat89, Theorem 17.1]);

note that dim(N) = 0 is essentially the definition of depths, and the general case

is obtained by induction, wlog restricting to the case N = R/p by the argument in

the proof of Fact 1.6. �

Definition 1.14. R is called Cohen-Macaulay if depthR(R) = dim(R).

For example, it follows from Proposition 1.13 that any Cohen-Macaulay ring

is unmixed in the sense that it has no non-minimal associated primes, and all

irreducible components of Spec(R) have the same dimension.

2. Classical Proof

Theorem 2.1 (Auslander Buchsbaum Formula). Let R be a local commutative

Noetherian ring and M a finitely generated R-module with pdimR(M) < ∞. Then

depthR(R)− depthR(M) = pdimR(M).(AB)

Proof. We present the proof given in [BH93, Theorem 1.3.3], which goes by ascend-

ing induction on depthR(R).

If depthR(R) = 0, then Lemma 2.2 tells us that pdimR(M) = 0, hence M is free.

In particular, depthR(M) = depthR(R) = 0, and (AB) holds.

Suppose now that depthR(R) > 0. If pdimR(M) = 0, again (AB) is trivial.

If not, and if depthR(M) = 0, then denoting ΩM a first syzygy of M we have

pdimR(ΩM) = pdimR(M)− 1 while depthR(ΩM) = depthR(M) + 1 by the Depth

lemma 2.3. Hence, the Auslander-Buchsbaum formulas for M and ΩM are equiv-

alent, and we may consequently assume depthR(M) > 0. In this case, we have

m /∈ AssR(M), and since also m /∈ AssR(R), prime avoidance implies that there

exists x ∈ m which is both M - and R-regular. Then

depthR/xR(M/xM) = depthR(M/xM) = depthR(M)− 1,

depthR/xR(R/xR) = depthR(R/xR) = depthR(R)− 1, and

pdimR/xR(M/xM) = pdimR(M),

and the Auslander Buchsbaum formula for R and M follows by induction from the

Auslander Buchsbaum formula for R/xR and M/xM . �

Lemma 2.2. If depthR(R) = 0 and pdimR(M) < ∞, then pdimR(M) = 0.
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Proof. From our assumption depthR(R) = 0 we infer m ∈ AssR(R), i.e. we have

an embedding ι : k �→ R. Then, if ϕ : F → G is a homomorphism between nonzero

free R-modules F and G, we have a commutative diagram of R-modules

F ⊗R k F ⊗R R F

G⊗R k G⊗R R G

idF ⊗ι

idF ⊗ι

∼=

∼=

ϕ⊗ idk ϕ⊗ idR ϕ

If here ϕ is chosen to be minimal in the sense that ϕ ⊗R idk = 0 (i.e. if the

coefficients of ϕ, when written as a matrix, all belong to m), we infer that

im(F ⊗R k
idF ⊗ι−−−−→ F ⊗R R ∼= F ) ⊆ ker(ϕ),

hence in particular ϕ is not injective. However, in a bounded and minimal free

resolution of a non-projective R-module the leftmost non-zero differential would be

a minimal and injective homomorphism between free R-modules, so we infer that

such a resolution cannot exist, as claimed. �

Lemma 2.3 (Depth lemma). Let depthR(M) < depthR(R) and let ΩM be a syzygy

of M . Then depthR(ΩM) = depthR(M) + 1.

Proof. Pick a short exact sequence 0 → ΩM → P → M → 0 with P free. Then the

long exact Ext-sequence shows that for all i ≤ depthR(R) there is a monomorphism

Ext
i−1
R (k,M) �→ Ext

i
R(k,ΩM), which for i < depthR(R) is even an isomorphism.

The claim follows. �

3. An application

Definition 3.1. The finitistic global dimension f. gl. dim(R -mod) is defined as

gl. dim(R -mod) := sup{gl. dimR M | M ∈ R -mod, gl. dimR M < ∞}.

This definition also makes sense if R is not commutative, and an important first

question is to ask whether the finitistic global dimension of some ring is finite.

While for finite-dimensional algebras over fields this seems open, the Auslander-

Buchsbaum formula AB settles the question affirmatively:

Corollary 3.2. For a local (commutative) Noetherian ring R, we have

f. gl. dim(R -mod) ≤ depthR(R) < ∞.

In particular, the finitistic global dimension of R is finite.

Proof. If M is a finitely generated R-module with pdimR M < ∞, the Auslander-

Buchsbaum formula tells us pdimR M = depthR R− depthR M ≤ depthR R. �
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4. New techniques & Generalizations

The key arguments for the results described in this section are contained in

[FI03], in particular [FI03, Theorem 2.4].

4.1. A proof using derived categories. Using derived categories, we can provide

an alternative proof of the Auslander-Buchsbaum formula. We have the following

sequence of isomorphisms in D(R -Mod):

RHomR(k,R)⊗L
k (k ⊗L

R M) ∼= RHomR(k,R)⊗L
R M(4.1)

Θ−→∼= RHomR(k,R⊗L
R M)

∼= RHomR(k,M).

Here, the first isomorphism is an instance of the projection formula, and for the

second isomorphism note that there is always an arrow as indicated, which is an

isomorphism for M = R and hence also for any complex quasi-isomorphic to a

bounded complex of finitely generated projective R-modules.

The Auslander-Buchsbaum formula now follows by looking at the highest degree

in which one has cohomology on both sides of (4.1): for the left hand side, it is

depthR(R) + pdimR(M), while for the right hand side it is depthR(M).

4.2. Generalizations. It is instructive to study the proof (4.1) further: The main

point in it is the isomorphism Θ, which is essentially the reflexivity of M with

respect to (−)
∨
:= RHomR(−, R) and the fact that RHomR(M,N) ∼= M∨ ⊗L

R N

for any perfect M . Namely, we can rewrite Θ as a sequence of isomorphisms

RHomR(k,R)⊗L
R M ∼= RHomR(k,R)⊗L

R M∨∨

∼= RHomR(M
∨,RHomR(k,R))

∼= RHomR(M
∨ ⊗L

R k,R)

∼= RHomR(k,RHomR(M
∨, R))

∼= RHomR(k,M
∨∨

)

∼= RHomR(k,M);

here, it is only the second isomorphism where the perfectness of M actually plays

a role, and only the first and last isomorphism where the reflexivity of M is im-

portant. Moreover, we see that we use nothing particular about R in the above

sequence of isomorphisms, only the assumption that M is reflexive with respect to

RHomR(−, R). Hence, we may summarize:

Proposition 4.1. Let M,ω be complexes of R-modules such that M is reflexive

w.r.t. Dω := RHomR(−, ω). Then there are canonical isomorphisms in D(R -Mod):

RHomR(k,M) ∼= RHomR(DωM,Dωk) ∼= RHomk(k ⊗L
R DωM,Dωk)(4.2)
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If in the situation of Proposition 4.1 the complex DωM is bounded with finitely

generated cohomology, then looking at the lowest degree of cohomology in both

sides of (4.2), we obtain the equality

depthR(M) =: infRHomR(k,M) = inf Dωk − supDωM.(4.3)

Example 4.2. We recover the classical Auslander-Buchsbaum formula if ω := R

and if M is a finitely generated R-module of finite projective dimension, since

Dωk = RHomk(k,R) computes depthR(R) and DωM = RHomR(M,R) computes

pdimR(M) in this case.

Example 4.3. More generally, we say that M is of finite Gorenstein-projective di-

mension if it is reflexive with respect to RHomR(−, R) and if RHomR(M,R)

is cohomologically bounded. In this case, the largest degree of cohomology of

RHomR(M,R) is called the Gorenstein-projective dimension gp-dimR(M) of M ;

see [Chr00], in particular [Chr00, Theorem 2.2.3]. Hence, (4.3) generalizes the

Auslander-Buchsbaum formula to the Auslander-Bridger formula[AB69, Theorem

4.13]: For any finitely generated R-module M of finite Gorenstein-projective di-

mension, we have

gp-dimR(M) = depthR(R)− depthR(M).

The Gorenstein-projective dimension is finite for all finitely generated R-modules

if and only if R is Gorenstein, i.e. of finite injective dimension over itself.

Finally, note there can be no concept of dimension which makes the analogue

of the Auslander-Buchsbaum and Auslander-Bridger formulas valid without any

assumptions on the moduleM , as in general depthR(M) �≤ depthR(R): for example,

taking R := k�x, y�/(xy, y2), we have depthR R = 0 but depthR R/(y) = 1.
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