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Motivic Equivalence of Quadratic Forms
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Abstract. Let X

�

and X

 

be projective quadrics corresponding to qua-

dratic forms � and  over a �eld F . If X

�

is isomorphic to X

 

in the

category of Chow motives, we say that � and  are motivic isomorphic and

write �

m

�  . We show that in the case of odd-dimensional forms the condi-

tion �

m

�  is equivalent to the similarity of � and  . After this, we discuss

the case of even-dimensional forms. In particular, we construct examples of

generalized Albert forms q

1

and q

2

such that q

1

m

� q

2

and q

1

6� q

2

.
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Let F be a �eld of characteristic 6= 2 and � be a quadratic form of dimension

� 3 over F . By X

�

we denote the projective variety given by the equation � = 0. It

is well known that the variety X

�

determines the form � uniquely up to similarity.

More precisely, the condition X

�

' X

 

holds if and only if � ' k for a suitable

element k 2 F

�

. Now, let M : V

F

! C be an arbitrary functor from the category V

F

of smooth projective F -varieties to a category C. Is it possible to say anything speci�c

about � and  if we know that M(X

�

) ' M(X

 

)? Clearly, the answer depends on

the category C and the functor M. In the present paper, we mainly consider the

example of the category C = MV

F

of Chow motives. In this particular case, we

set M(X) = M(X), where M(X) denotes the motive of X in the category of Chow

motives. If M(X

�

) 'M(X

 

), we say that � is motivic equivalent to  (and we write

�

m

�  ).

Recently, Alexander Vishik has proved that �

m

�  i� dim� = dim and

i

W

(�

L

) = i

W

( 

L

) for all extensions L=F (see [27]). His proof uses deep results

concerning the Voevodsky motivic category. In [10], Nikita Karpenko found a new,

more elementary, proof that, in contrast to Vishik's proof, deals only with Chow

motives. In x2, we give an elementary proof of Vishik's theorem in the case of odd-

dimensional forms. In fact, we prove a more precise result. Namely, we show that, in

the case of odd-dimensional forms, the condition �

m

�  is equivalent to the similarity

of the forms � and  (here we do not use any results of the paper of Vishik). In other

words, we prove that the condition M(X

�

) ' M(X

 

) is equivalent to the condition

1
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342 Oleg T. Izhboldin

X

�

' X

 

for the odd-dimensional quadrics X

�

and X

 

. In the proof we use some

results of x1 concerning low dimensional forms belonging to W (F (�)=F ).

In x3, we show that the condition �

m

�  is equivalent to the condition � �  for

all forms of dimension � 7. Besides, we discuss the case of even-dimensional forms

of dimension � 8. This case is much more complicated. For instance, for all n � 3,

there exists an example of anisotropic 2

n

-dimensional forms � and  such that �

m

�  

but � 6�  . In x4, for any n and m such that 0 � m � n� 3, we construct generalized

Albert forms q

1

and q

2

such that dim(q

1

)

an

= dim(q

2

)

an

= 2(2

n

� 2

m

), q

1

m

� q

2

but

q

1

6� q

2

. This example gives a negative answer to a question stated by T. Y. Lam

[18].

Some words about terminology and notation. Mainly we use the same termi-

nology and notation as in the book of T. Y. Lam [17], W. Scharlau [23], and the

fundamental papers of M. Knebusch [11, 12]. However, there exist several di�erences.

We use the notation hha

1

; : : : ; a

n

ii for the P�ster form h1;�a

1

i 
 � � � 
 h1;�a

n

i (in

[17] and [23], hha

1

; : : : ; a

n

ii = h1; a

1

i
 � � �
 h1; a

n

i). We write � �  if there exists an

element k 2 F such that k� '  (i.e., if � is similar to  ). We say that � and  are

half-neighbors if dim� = dim and there exist s; r 2 F such that � = s� ? r is a

P�ster form (see, e.g., [6]). In this case, we will write �

hn

�  and we say that � and  

are half-neighbors of �. Our de�nition di�ers from the original de�nition of Knebusch

[12]. However, we prefer to use the new de�nition since we want to regard any pair �,

 of 2

n

-dimensional similar forms as half-neighbors. We denote by P

n

(F ) the set of

all n-fold P�ster forms. The set of all forms similar to n-fold P�ster forms is denoted

by GP

n

(F ). We also use the notation P

�

(F ) = [

n

P

n

(F ) and GP

�

(F ) = [

n

GP

n

(F ).
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1. Low dimensional forms in W (F (�)=F )

In this section, we give slight generalizations of some results of M. Knebusch.

In fact, we modify some proofs of [12] by using Ho�mann's theorem [5]

2

. We recall

that Ho�mann's theorem asserts that for a pair of anisotropic quadratic forms � and

 satisfying the condition dim� � 2

n

< dim , the form � remains anisotropic over

F ( ).

Proposition 1.1. Let � and  be anisotropic quadratic forms over F such that

dim� � dim . Suppose that the form �

Def

= � ?  belongs to the group W (F (�)=F ).

Then

(1) if � is isotropic, then � is hyperbolic,

(2) if � is anisotropic, then � is similar to a P�ster form.

Proof. (1) Assume that � is isotropic but not hyperbolic. This means that 0 <

dim�

an

< dim�. In the Witt ring W (F ), we have � � � =  . Therefore,

dim(�

an

? ��)

an

= dim � dim� < dim �

an

+ dim� = dim(�

an

? ��):

2

see also [6, Prop. 2.4] and [3, Th. 1.6]
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Consequently, the form �

an

? �� is isotropic. Hence the set D

F

(�

an

) \ D

F

(�) is

nonempty.

Since �

F (�)

is hyperbolic, it follows that ((�)

an

)

F (�)

is also hyperbolic. Since the

set D

F

(�

an

) \D

F

(�) is nonempty, the Cassels{P�ster subform theorem implies that

� � �

an

. Therefore,

dim(�

an

? ��)

an

= dim�

an

� dim� < dim� � dim� = dim :

This contradicts to the relation dim(�

an

? ��)

an

= dim proved above.

(2) Assume that � is not isotropic. To prove that � is similar to a P�ster form,

it su�ces to prove that �

F (�)

is hyperbolic (see [12]).

Let

~

F = F (�), ~� = �

~

F

,

~

� = �

~

F

, and

~

 =  

~

F

. Since dim �

1

2

dim�, Ho�mann's

theorem implies that the form

~

 =  

F (�)

is anisotropic. If we assume that

~

� is

anisotropic, then we can apply item (1) of Proposition 1.1 to the

~

F -forms

~

�,

~

 , and

~�. Then we conclude that ~� is hyperbolic. Now, we assume that

~

� = �

F (�)

is isotropic.

Since �

F (�)

is hyperbolic and �

F (�)

is isotropic, it follows that �

F (�)

is hyperbolic.

Thus, the form �

F (�)

is hyperbolic in any case and the proposition is proved.

Corollary 1.2. (Fitzgerald, [3, Th. 1.6]). Let � be an F -form, and let � 2

W (F (�)=F ) be an anisotropic nonzero form of dimension � 2 dim�. Then � 2

GP

�

(F ) and one of the following conditions holds:

� � is a P�ster neighbor of �,

� � is a half-neighbor of �,

Proof. Since � is anisotropic and �

F (�)

is hyperbolic, the form � is similar to a

subform of �. Multiplying � by a scalar, we may assume that � � �. Let  be

the complement of � in �. Then all hypotheses of Proposition 1.1 hold. Since �

is anisotropic, Proposition 1.1 implies � 2 GP

�

(F ). The rest of the proof is an

immediate consequence of the de�nitions of P�ster neighbors and half-neighbors, and

the Cassels-P�ster subform theorem.

Corollary 1.3. (cf. [12, Th. 8.9]). Let � and � be anisotropic forms such that

dim� � dim � and (�

F (�)

)

an

' (�

F (�)

)

an

. Then either � ' � or � ? �� 2 GP

�

(F ).

Proof. Let  = �� and � = � ? �� = � ?  . All the hypotheses of Proposition 1.1

hold. In the case where � is isotropic, Proposition 1.1 implies that � is hyperbolic.

Then � = � in the Witt ring. Since � and � are anisotropic, we have � ' �. If � is

anisotropic, Proposition 1.1 implies that � ? �� = � 2 GP

�

(F ).

2. Motivic equivalence of odd-dimensional forms

Definition 2.1. To any �eld F , let be assigned an equivalence relation

�

�

F

on the

set of all quadratic forms over F such that the following conditions hold:

(i) If � and  are forms over F such that � �  , then �

�

�

F

 .

(ii) If � and  are forms over F such that �

�

�

F

 , then, for any extension E=F ,

we have �

E

�

�

E

 

E

.

(iii) If � and  are forms over a �eld F such that �

�

�

F

 , then dim� = dim and

i

W

(�) = i

W

( ).

A collection of equivalence relations

�

�

F

satisfying properties (i){(iii) will be

called a good equivalence relation on quadratic forms (over all �elds).
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344 Oleg T. Izhboldin

Below we will drop the index F at

�

�

F

and write simply

�

�.

Definition 2.2. Let � and  be F -forms. We say that the quadratic form � is

equivalent to the quadratic form  in the sense of Vishik if dim� = dim and for

any �eld extension E=F we have i

W

(�

E

) = i

W

( 

E

). In this case, we write �

v

�  .

The following lemma is obvious.

Lemma 2.3. The equivalence relation

v

� is a minimal good equivalence relation. More

precisely,

� The equivalence relation

v

� is a good relation.

� For any good relation

�

�, the condition �

�

�  implies �

v

�  .

Example 2.4. Let X be a smooth variety over F . By M(X) we denote the motive

of X in the category of Chow motives. Let us de�ne the equivalence

m

� of quadratic

forms � and  as follows:

�

m

�  if M(X

�

) 'M(X

 

).

Then

m

� is a good equivalence relation.

Proof. Clearly, conditions (i) and (ii) in De�nition 2.1 are ful�lled. We need to verify

only condition (iii). Let X = X

�

, and let

�

F denote the algebraic closure of F . By [9,

Item (2.2) and Prop. 2.6]

3

� dim � coincides with the largest integer m such that CH

m�2

(X) 6= 0,

� the integer i

W

(�) coincides with the largest integer m satisfying the conditions

m �

1

2

dim� and coker(CH

m�1

(X)! CH

m�1

(X

�

F

)) = 0.

Thus, it su�ces to show that the groups coker(CH

j

(X) ! CH

j

(X

�

F

)) and CH

j

(X)

depend only on the motive of X . This can easily be proved if we observe that the

functor CH

j

is representable in the category of Chow motives. Namely, CH

j

(X) =

Hom

MV

F

(M(pt

F

)(j);M(X)), where M(pt

F

) is the motive of pt

F

= Spec(F ) and the

object M(pt

F

)(j) is de�ned, e.g., in [24]. Thus, CH

j

(X) depends only on the motive

of X . Now, we consider the base change functor � : MV

F

! MV

�

F

. Since the

homomorphism CH

j

(X)! CH

j

(X

�

F

) coincides with the homomorphism

� : Hom

MV

F

(M(pt

F

)(j);M(X))! Hom

MV

�

F

(�(M(pt

F

)(j));�(M(X)));

it follows that the group coker(CH

j

(X)! CH

j

(X

�

F

)) also depends only onM(X).

Theorem 2.5. Let

�

� be a good equivalence relation. Let � and  be odd-dimensional

quadratic forms over a �eld. Then the condition �

�

�  is equivalent to the condition

� �  .

Proof. We start the proof with three lemmas

Lemma 2.6. Let � and  be odd-dimensional anisotropic forms of dimension � 3

such that dim� = dim and (�

F (�)

)

an

' ( 

F (�)

)

an

. Then � '  .

Proof. If � 6'  , Corollary 1.3 shows that � ? � 2 GP

�

(F ). Since dim� = dim ,

we conclude that dim is a power of 2. Since dim � 3, we see that dim is even.

We get a contradiction to the assumption of the lemma.

3

see also [22, Prop. 2] and [25].
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The following lemma is obvious.

Lemma 2.7. Let � and  be odd-dimensional forms such that dim� = dim and

det� = det . Then the condition  � � is equivalent to the condition � ' �.

Lemma 2.8. Let � and  be odd-dimensional forms such that dim�

an

= dim 

an

� 3.

Suppose that �

F (�

an

)

�  

F (�

an

)

. Then � �  .

Proof. Replacing �rst � and  by �

an

and  

an

, respectively, we may assume that �

and  are anisotropic. Replacing then � by

1

det�

� and  by

1

det 

 , we may assume

that det� = 1 = det . Since �

F (�)

�  

F (�)

, Lemma 2.7 implies that �

F (�)

'  

F (�)

.

By Lemma 2.6, we have � '  .

Now, we return to the proof of Theorem 2.5. We use induction on n = dim�

an

=

dim 

an

. The case where n = 1 is obvious. So we may assume that n � 3. Since

�

�

�  , we have �

F (�

an

)

�

�  

F (�

an

)

. By the induction assumption, we have �

F (�

an

)

�

 

F (�

an

)

. Now, Lemma 2.8 implies that � �  .

Corollary 2.9. Let � and  be odd-dimensional quadratic forms over a �eld. Then

�

v

�  i� �

m

�  i� � �  .

3. Even-dimensional forms

In this section, we study the relation

m

� in the case of even-dimensional forms. If

quadratic forms � and  of dimension � 2 satisfy the condition �

v

�  , then �

F ( )

and  

F (�)

are isotropic (because �

F (�)

and  

F ( )

are isotropic).

Proposition 3.1. Let � and  be quadratic forms of dimension < 8. Then

�

v

�  i� �

m

�  i� � �  .

Proof. In view of Corollary 2.9, we may assume that d = dim� = dim is even.

Thus, it su�ces to consider the cases d = 2, 4, and 6. The implications � �  )

�

m

�  ) �

v

�  are obvious. Therefore, we must verify only that �

v

�  implies

� �  . Since �

v

�  , the forms �

F ( )

and  

F (�)

are isotropic. In the case d = 2, this

obviously means that � �  . If d = 4, then � �  by Wadsworth's theorem [28].

Thus, we may assume that d = 6. We need the following assertion concerning the

isotropy of 6-dimensional forms.

Lemma 3.2. (see [4, 13, 16, 21]). Let � and  be anisotropic 6-dimensional forms

such that �

F ( )

is isotropic. Then either � �  or  is a 3-fold P�ster neighbor.

In view of this lemma, we may assume that  is a P�ster neighbor of a 3-fold

P�ster form �. Since  

F (�)

is isotropic, it follows that �

F (�)

is isotropic. Hence � is

a P�ster neighbor of �. Therefore, � � (� � hhd

�

�ii)

an

and  � (� ? �hhd

�

 ii)

an

.

Thus, it su�ces to verify that d

�

� = d

�

 . This is a consequence of the following

chain of equivalent conditions

a = d

�

�, i

W

(�

F (

p

a)

) = 3, i

W

( 

F (

p

a)

) = 3, a = d

�

 

The proof is complete.

Now, we begin to study even-dimensional forms of dimension � 8.

Lemma 3.3. (see, e.g., [27]). Let � and  be half-neighbors. Then �

v

�  .
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346 Oleg T. Izhboldin

For the reader's convenience, we cite the proof (which, in fact, is trivial).

Proof. The condition �

hn

�  means that dim � = dim , and there exist s; r 2 F

�

such that s� ? r = � 2 P

�

(F ). Let L=F be a �eld extension. If both �

L

and  

L

are anisotropic, then i

W

(�

L

) = 0 = i

W

( 

L

). If at least one of the forms �

L

or  

L

is isotropic, then �

L

is also isotropic. Taking into account the condition � 2 P

�

(F ),

we conclude that �

L

is hyperbolic. Therefore, s�

L

= �r 

L

in the Witt ring. Since

dim� = dim , we have s�

L

' �r 

L

. Hence i

W

(�

L

) = i

W

( 

L

).

The following lemma shows that there exist examples of nonsimilar half-

neighbors.

Lemma 3.4. (see [6], [8]). For any n � 3, there exists a �eld F and 2

n

-dimensional

half-neighbors � and  such that � 6�  .

As a consequence of this result, we see that, for any n � 3, there exists a pair of

2

n

dimensional forms � and  such that �

v

�  and � 6�  . In particular, Proposition

3.1 cannot always be generalized for 8-dimensional forms.

Nevertheless, for 8-dimensional forms with trivial determinant, we have the fol-

lowing

Proposition 3.5. Let � and  be 8-dimensional forms with trivial determinant.

Then the following conditions are equivalent:

(1) �

v

�  ;

(2) �

F ( )

and  

F (�)

are isotropic;

(3) � and  are half-neighbors.

Proof. The implications (3))(1))(2) are obvious. The implication (2))(3) follows

immediately from the results of A. Laghribi [16], [15], [14].

4. Generalized Albert forms

In this section, we construct examples of nonsimilar

v

�-equivalent forms based on

the so-called generalized Albert forms.

Definition 4.1. A generalized Albert form (or n-Albert form) is a form of type

q = �

0

? ��

0

, where �

0

and �

0

are pure parts of n-fold P�ster forms � and � .

Remark 4.2. � Any n-Albert form has dimension 2(2

n

� 1).

� Suppose that q is an n-Albert form. By [2, Proof of Prop. 4.4], the anisotropic

part q

an

looks like q

an

= hha

1

; : : : ; a

m

ii q

0

, where q

0

is an anisotropic (n � m)-

Albert form. In particular, dim q

an

has dimension 2

m

�2(2

n�m

�1) = 2(2

n

�2

m

),

where 0 � m � n. We say that m is the linkage number of the n-Albert from q.

� Every 1-Albert form has the form q = hhaii

0

? �hhbii = h�a; bi. Hence any

2-dimensional form is a 1-Albert form.

� Every 2-Albert form has the form

q = hha

1

; a

2

ii

0

? �hhb

1

; b

2

ii

0

= h�a

1

;�a

2

; a

1

a

2

; b

1

; b

2

;�b

1

b

2

i :

Thus, a 2-Albert form is the \classical" 6-dimensional Albert form.
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Motivic Equivalence of Quadratic Forms 347

Our interest in n-Albert forms is motivated by the following observation of A.

Vishik (see [27]): if q

1

and q

2

are n-Albert forms such that q

1

� q

2

(mod I

n+1

(F )),

then q

1

v

� q

2

.

The following question is due to Lam [18, Item (6.6), Page 28].

Question 4.3. Let q

1

and q

2

be n-Albert forms such that q

1

� q

2

(mod I

n+1

(F )).

Is it always true that q

1

� q

2

?

The answer to this question is obviously positive in the case n = 1. In the case

n = 2, the answer is also positive. This is a version of a Jacobson's theorem (see, e.g.,

[19, Prop. 2.4]). In this section, we construct a counterexample to this question for

any n � 3.

Theorem 4.4. There exists a �eld F and anisotropic 3-Albert forms q

1

and q

2

over

F such that q

1

� q

2

(mod I

4

(F )) and q

1

6� q

2

. In particular, the answer to Question

4.3 is negative in the case n = 3.

Proof. We need the following theorem of Ho�mann.

Theorem 4.5. (see [6, Th. 4.3]). There exists a �eld k and anisotropic 8-dimensional

quadratic forms over k,

�

1

= s

1

hha

1

; b

1

ii ? �k

1

hhc

1

; d

1

ii ;

�

2

= s

2

hha

2

; b

2

ii ? �k

2

hhc

2

; d

2

ii

such that �

1

� �

2

(mod I

4

(k)), indC(�

1

) = indC(�

2

) = 4 and �

1

6� �

2

.

Remark 4.6. In fact, the formulation of Theorem 4.3 in [6] di�ers from the one

presented above. In his theorem, Ho�mann has constructed a pair �;  2 I

2

(k) of

8-dimension quadratic forms such that � 6�  and �

hn

�  . Clearly, changing  by

a scalar, we may always assume that � �  (mod I

4

(k)). To obtain Theorem 4.5,

it su�ces to show that we may always take � and  in the form of direct sums of

forms belonging to GP

2

(k). In the proof of [6, Theorem 4.3] it is so for the form �

(the explicit formula for � in [6] shows that � contains a subform a h1; x; y; xyi). The

required statement concerning  is obvious since i

W

( 

k(

p

�x)

) = i

W

(�

k(

p

�x)

) � 2.

Now we return to the proof of Theorem 4.4. Under the conditions of this theorem,

we obviously have (a

1

; b

1

)+ (c

1

; d

1

) = c(�

1

) = c(�

2

) = (a

2

; b

2

)+ (c

2

; d

2

). Hence there

exists an Albert form � (of dimension 6) such that c(�

1

) = c(�

2

) = c(�). Hence

indC(�) = indC(�

1

) = 4. By an Albert's theorem, � is anisotropic (see [1, Th. 3] or

[26, Th. 3]). Since (a

i

; b

i

)+ (c

i

; d

i

) = c(�) for i = 1; 2, there exist r

1

and r

2

such that

hha

1

; b

1

ii

0

? �hhc

1

; d

1

ii

0

' r

1

�;

hha

2

; b

2

ii

0

? �hhc

2

; d

2

ii

0

' r

2

�:

In the Witt ring W (k(t)), we have

t�� �

i

= tr

i

(hha

i

; b

i

ii � hhc

i

; d

i

ii)� (s

i

hha

i

; b

i

ii � k

i

hhc

i

; d

i

ii)

= tr

i

(hha

i

; b

i

ii � tr

i

s

i

hha

i

; b

i

ii)� tr

i

(hhc

i

; d

i

ii � tr

i

k

i

hhc

i

; d

i

ii)

= tr

i

(hha

i

; b

i

; tr

i

s

i

ii � hhc

i

; d

i

; tr

i

k

i

ii):

We set q

i

= hha

i

; b

i

; tr

i

s

i

ii

0

? �hhc

i

; d

i

; tr

i

k

i

ii

0

and F = k(t). Since t���

i

= tr

i

q

i

in the

Witt ringW (F ) and dim(t� ? ��

i

) = 6+8 = 14 = dim q

i

, we have t� ? ��

i

' tr

i

q

i

.

Documenta Mathematica 3 (1998) 341{351



348 Oleg T. Izhboldin

Since � and �

i

are anisotropic, q

i

is also anisotropic by Springer's theorem (see [17,

Ch. 6, Th. 1.4] or [23, Ch. 6, Cor. 2.6]).

Now, we need the following obvious assertion.

Lemma 4.7. (see, e.g., [6, Lemma 3.1]). Let �

1

; �

2

; �

1

; �

2

be anisotropic quadratic

forms over k. Suppose that the form �

1

? t�

1

is similar to �

2

? t�

2

over the �eld of

rational functions k(t). Then

� either �

1

� �

2

and �

1

� �

2

,

� or �

1

� �

2

and �

1

� �

2

.

Since �

1

6� �

2

and dim � < dim �

1

= dim �

2

, Lemma 4.7 shows that (t� ?

��

1

) 6� (t� ? ��

2

). Hence q

1

6� q

2

. On the other hand, the conditions q

1

; q

2

2 I

3

(F )

and �

1

� �

2

(mod I

4

(F )) imply that

q

1

� tr

1

q

1

� (t� ? ��

1

) � (t� ? ��

2

) � tr

2

q

2

� q

2

(mod I

4

(F )):

Thus, we have proved that q

1

and q

2

are anisotropic 3-Albert forms such that q

1

� q

2

(mod I

4

(F )) and q

1

6� q

2

. The theorem is proved.

Corollary 4.8. For any n � 3, there exists a �eld E and n-Albert forms 

1

and 

2

over E such that 

1

� 

2

(mod I

n+1

(E)) and 

1

6� 

2

. In other words, the answer

to Question 4.3 is negative for any n � 3.

Proof. Let q

1

, q

2

and F be as in Theorem 4.4. We write q

1

and q

2

in the form q

1

=

�

0

1

? ��

0

1

, q

2

= �

0

2

? ��

0

2

with �

1

; �

2

; �

1

; �

2

2 P

3

(F ) and put E = F (x

1

; : : : ; x

n�3

)

and



1

= (�

1

hhx

1

; : : : ; x

n�3

ii)

0

? �(�

1

hhx

1

; : : : ; x

n�3

ii)

0

;



2

= (�

2

hhx

1

; : : : ; x

n�3

ii)

0

? �(�

2

hhx

1

; : : : ; x

n�3

ii)

0

:

Obviously, 

i

= q

i

hhx

1

; : : : ; x

n�3

ii in the Witt ringW (E). Since q

1

� q

2

(mod I

4

(F )),

we have 

1

� 

2

(mod I

n+1

(E)). Since q

1

6� q

2

, we have q

1

hhx

1

; : : : ; x

n�3

ii 6�

q

2

hhx

1

; : : : ; x

n�3

ii (see, e.g., Lemma 4.7). Hence 

1

6� 

2

.

We have constructed a pair of n-Albert forms 

1

and 

2

such that 

1

m

� 

2

and



1

6� 

2

. Obviously, in our example, we have dim(

i

)

an

= 2

n�3

� 14 = 2

n�3

(2

3

� 2) =

2(2

n

� 2

n�3

). In other words, both n-Albert forms 

1

and 

2

are (n� 3)-linked. We

can generalize this example as follows.

Theorem 4.9. For any n � 3 and m such that 0 � m � n� 3, there exists a �eld F

and n-Albert forms q

1

and q

2

over F such that q

1

� q

2

(mod I

n+1

(F )), q

1

6� q

2

, and

dim(q

1

)

an

= dim(q

2

)

an

= 2(2

n

� 2

m

).

Here we only outline the proof of the theorem.

Step 1. It su�ces to prove this theorem only in the case m = 0 (this means that

q

1

and q

2

are anisotropic). After this, the general case can be obtained in the same

way as Corollary 4.8.

Step 2. Consider a �eld E and n-Albert forms 

1

and 

2

as in Corollary 4.8.

Since 

1

� 

2

(mod I

n+1

(E)), there exist �

1

; : : : ; �

N

2 P

n+1

(E) for some integer N
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such that 

1

� 

2

=

P

N

i=1

�

i

. We consider the quadratic forms

~q

1

= hhx

1

; : : : ; x

n

ii

0

? �hhy

1

; : : : ; y

n

ii

0

;

~q

2

= hhz

1

; : : : ; z

n

ii

0

? �hht

1

; : : : ; t

n

ii

0

;

� =?

N

i=1

hhu

i;1

; : : : ; u

i;n+1

ii :

over the �eld of rational functions

~

E = E(x

1

; : : : ; x

n

; y

1

; : : : ; y

n

; z

1

; : : : ; z

n

; t

1

; : : : ; t

n

; u

1;1

; : : : ; u

N;n+1

):

Obviously there exists a place ~s :

~

E ! E such that ~q

1

7! 

1

, ~q

2

7! 

2

, and

hhu

i;1

; : : : ; u

i;n+1

ii 7! �

i

for all i = 1; : : : ; N . Since 

1

� 

2

=

P

N

i=1

�

i

, the form

~s

�

(~q

1

? �~q

2

? ��) is hyperbolic.

Step 3. We de�ne the �eld F as a \generic" extension F=

~

E such that (~q

1

)

F

�

(~q

2

)

F

= �

F

. More precisely, we set F =

~

E

h

, where

~

E

0

;

~

E

1

; : : : ;

~

E

h

is the generic

splitting tower for the

~

E-form ~q

1

? �~q

2

? �� . We claim that the F -forms q

1

Def

= (~q

1

)

F

and q

2

Def

= (~q

1

)

F

satisfy the hypotheses of Theorem 4.9. Since q

1

� q

2

= �

F

, we have

q

1

� q

2

(mod I

n+1

(F )). Thus, it su�ces to verify that q

1

and q

2

are anisotropic and

q

1

6� q

1

.

Step 4. Using properties of generic splitting �elds (see [23, Ch. 4, Cor. 6.10] or

[11, Th. 5.1]), we can extend ~s :

~

E ! E to a place s : F ! E. Obviously, s

�

(q

1

) = 

1

and s

�

(q

2

) = 

2

. Therefore, the condition 

1

6� 

2

implies q

1

6� q

2

.

Step 5. To prove that q

1

and q

2

are anisotropic, it su�ces to construct a �eld

extension K=

~

E with the same key property as F (i.e., (~q

1

)

K

� (~q

2

)

K

= �

K

) and

such that (~q

1

)

K

and (~q

2

)

K

are anisotropic. Since F=

~

E is a \generic" extension,

we necessarily get that q

1

= (~q

1

)

F

and q

2

= (~q

2

)

F

are anisotropic. The following

extension K=

~

E has the required properties:

K =

~

E(

r

x

1

z

1

; : : : ;

r

x

n

z

n

;

r

y

1

t

1

; : : : ;

r

y

n

t

n

;

p

u

1;1

; : : : ;

p

u

N;1

):

The \sketch" of the proof is complete. In fact, Steps 4 and 5 are the most di�cult

points. We refer the reader to the paper [7, Proof of Lemma 2.2], where similar

arguments (as in Step 5) are presented with complete proofs.

Corollary 4.10. For any m and n such that 0 � m � n � 3, there exists a �eld

F and anisotropic 2(2

n

� 2

m

)-dimensional forms q

1

and q

2

over F such that q

1

v

� q

2

and q

1

6� q

2

.

5. Open questions

Obviously, Theorem 4.9 cannot be generalized to the cases m = n�1 and m = n

because in these cases the anisotropic parts of n-Albert forms either belong to GP

n

(F )

or are zero. There is only one case, where we cannot say anything de�nite. Namely,

m = n� 2. For this reason, we propose the following modi�cation of Lam's Question

4.3.

Conjecture 5.1. Let q

1

and q

2

be Albert forms (i.e., 6-dimensional forms with triv-

ial discriminants). Let �

1

= hha

1

; : : : ; a

k

ii q

1

and �

2

= hhb

1

; : : : ; b

k

ii q

2

. Suppose that

�

1

� �

2

(mod I

k+3

(F )). Then �

1

� �

2

.
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We note that, in this conjecture, we always may assume that a

i

= b

i

for i =

1; : : : ; k. Indeed, putting � = hha

1

; : : : ; a

k

ii, we obtain (�

2

)

F (�)

� (�

1

)

F (�)

= 0

(mod I

k+1

(F (�))). By the Arason{P�ster theorem, we conclude that �

2

is hyperbolic

over the �eld F (�). Hence �

2

has the form �

2

= �q

0

2

= hha

1

; : : : ; a

k

ii q

0

2

. Comparing

dimensions, we get dim q

0

2

= 6. Let us write q

0

2

in the form q

0

2

= hc

1

; : : : ; c

6

i and

set q

00

2

= hc

1

; : : : ; c

5

; c

0

6

i, where c

0

6

= �c

1

: : : c

5

. We have � hc

6

;�c

0

6

i = �q

0

2

� �q

00

2

=

�

2

��q

00

2

2 I

k+2

(F )+ I

k

(F ) � I

2

(F ) = I

k+2

(F ). Since dim� hc

6

;�c

0

6

i = 2

k

� 2 < 2

k+2

,

the Arason{P�ster theorem shows that � hc

6

;�c

0

6

i is hyperbolic. Hence �q

0

2

= �q

00

2

.

Therefore, �

2

= �q

00

2

= hha

1

; : : : ; a

k

ii q

00

2

. Since q

00

2

is an Albert form, we have proved,

that the conjecture reduces to the case where b

i

= a

i

.

Another question concerning the

v

�-equivalence is motivated by the results of x3

and x4. First of all, in view of Lemma 3.4 and Corollary 4.10, we have the following

assertion.

Proposition 5.2. Let d be an integer belonging to the set

f2

n

jn � 3g [ f2

i

(2

j

� 1)ji � 1; j � 3g

Then there exist anisotropic d-dimensional quadratic forms � and  over a suitable

�eld such that �

v

�  and � 6�  .

Here we state the following

Problem 5.3. Describe the set VE of all integers d for which there exist anisotropic

d-dimensional quadratic forms � and  over a suitable �eld such that �

v

�  and

� 6�  .

We know almost the full answer to this problem. The results of the previous

sections imply that VE � f8; 10; 12; : : : ; 2i; : : : g. Besides, we can prove that any even

integer � 8 (except possibly 12) belongs to VE .
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