Motivic Equivalence of Quadratic Forms

Oleg T. Izhboldin ${ }^{1}$
Received: December 21, 1998

Communicated by Ulf Rehmann

Abstract

Let X_{ϕ} and X_{ψ} be projective quadrics corresponding to quadratic forms ϕ and ψ over a field F. If X_{ϕ} is isomorphic to X_{ψ} in the category of Chow motives, we say that ϕ and ψ are motivic isomorphic and write $\phi \stackrel{m}{\sim} \psi$. We show that in the case of odd-dimensional forms the condition $\phi \stackrel{m}{\sim} \psi$ is equivalent to the similarity of ϕ and ψ. After this, we discuss the case of even-dimensional forms. In particular, we construct examples of generalized Albert forms q_{1} and q_{2} such that $q_{1} \stackrel{m}{\sim} q_{2}$ and $q_{1} \nsim q_{2}$.

Keywords and Phrases: Quadratic form, quadric, Pfister form, Chow motives 1991 Mathematics Subject Classification: Primary 11E81; Secondary 19E15

Let F be a field of characteristic $\neq 2$ and ϕ be a quadratic form of dimension ≥ 3 over F. By X_{ϕ} we denote the projective variety given by the equation $\phi=0$. It is well known that the variety X_{ϕ} determines the form ϕ uniquely up to similarity. More precisely, the condition $X_{\phi} \simeq X_{\psi}$ holds if and only if $\phi \simeq k \psi$ for a suitable element $k \in F^{*}$. Now, let $\mathcal{M}: \mathcal{V}_{F} \rightarrow \mathcal{C}$ be an arbitrary functor from the category \mathcal{V}_{F} of smooth projective F-varieties to a category \mathcal{C}. Is it possible to say anything specific about ϕ and ψ if we know that $\mathcal{M}\left(X_{\phi}\right) \simeq \mathcal{M}\left(X_{\psi}\right)$? Clearly, the answer depends on the category \mathcal{C} and the functor \mathcal{M}. In the present paper, we mainly consider the example of the category $\mathcal{C}=\mathcal{M} \mathcal{V}_{F}$ of Chow motives. In this particular case, we set $\mathcal{M}(X)=M(X)$, where $M(X)$ denotes the motive of X in the category of Chow motives. If $M\left(X_{\phi}\right) \simeq M\left(X_{\psi}\right)$, we say that ϕ is motivic equivalent to ψ (and we write $\phi \stackrel{m}{\sim} \psi)$.

Recently, Alexander Vishik has proved that $\phi \stackrel{m}{\sim} \psi$ iff $\operatorname{dim} \phi=\operatorname{dim} \psi$ and $i_{W}\left(\phi_{L}\right)=i_{W}\left(\psi_{L}\right)$ for all extensions L / F (see [27]). His proof uses deep results concerning the Voevodsky motivic category. In [10], Nikita Karpenko found a new, more elementary, proof that, in contrast to Vishik's proof, deals only with Chow motives. In $\S 2$, we give an elementary proof of Vishik's theorem in the case of odddimensional forms. In fact, we prove a more precise result. Namely, we show that, in the case of odd-dimensional forms, the condition $\phi \stackrel{m}{\sim} \psi$ is equivalent to the similarity of the forms ϕ and ψ (here we do not use any results of the paper of Vishik). In other words, we prove that the condition $M\left(X_{\phi}\right) \simeq M\left(X_{\psi}\right)$ is equivalent to the condition

[^0]$X_{\phi} \simeq X_{\psi}$ for the odd-dimensional quadrics X_{ϕ} and X_{ψ}. In the proof we use some results of $\S 1$ concerning low dimensional forms belonging to $W(F(\phi) / F)$.

In $\S 3$, we show that the condition $\phi \stackrel{m}{\sim} \psi$ is equivalent to the condition $\phi \sim \psi$ for all forms of dimension ≤ 7. Besides, we discuss the case of even-dimensional forms of dimension ≥ 8. This case is much more complicated. For instance, for all $n \geq 3$, there exists an example of anisotropic 2^{n}-dimensional forms ϕ and ψ such that $\phi \stackrel{\bar{m}}{\sim} \psi$ but $\phi \nsim \psi$. In $\S 4$, for any n and m such that $0 \leq m \leq n-3$, we construct generalized Albert forms q_{1} and q_{2} such that $\operatorname{dim}\left(q_{1}\right)_{a n}=\operatorname{dim}\left(q_{2}\right)_{a n}=2\left(2^{n}-2^{m}\right), q_{1} \stackrel{m}{\sim} q_{2}$ but $q_{1} \nsim q_{2}$. This example gives a negative answer to a question stated by T. Y. Lam [18].

Some words about terminology and notation. Mainly we use the same terminology and notation as in the book of T. Y. Lam [17], W. Scharlau [23], and the fundamental papers of M. Knebusch [11, 12]. However, there exist several differences. We use the notation $\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle$ for the Pfister form $\left\langle 1,-a_{1}\right\rangle \otimes \cdots \otimes\left\langle 1,-a_{n}\right\rangle$ (in [17] and [23], $\left.\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle=\left\langle 1, a_{1}\right\rangle \otimes \cdots \otimes\left\langle 1, a_{n}\right\rangle\right)$. We write $\phi \sim \psi$ if there exists an element $k \in F$ such that $k \phi \simeq \psi$ (i.e., if ϕ is similar to ψ). We say that ϕ and ψ are half-neighbors if $\operatorname{dim} \phi=\operatorname{dim} \psi$ and there exist $s, r \in F$ such that $\pi=s \phi \perp r \psi$ is a Pfister form (see, e.g., [6]). In this case, we will write $\phi \stackrel{h n}{\sim} \psi$ and we say that ϕ and ψ are half-neighbors of π. Our definition differs from the original definition of Knebusch [12]. However, we prefer to use the new definition since we want to regard any pair ϕ, ψ of 2^{n}-dimensional similar forms as half-neighbors. We denote by $P_{n}(F)$ the set of all n-fold Pfister forms. The set of all forms similar to n-fold Pfister forms is denoted by $G P_{n}(F)$. We also use the notation $P_{*}(F)=\cup_{n} P_{n}(F)$ and $G P_{*}(F)=\cup_{n} G P_{n}(F)$.

Acknowledgments. This work was supported by TMR-Network Project ERB FMRX CT-97-0107. Also, the author would like to thank the Universität Bielefeld, and the Université de Franche-Comté for their hospitality and support. The author wishes to thank Nikita Karpenko for useful discussions.

1. Low dimensional forms in $W(F(\phi) / F)$

In this section, we give slight generalizations of some results of M. Knebusch. In fact, we modify some proofs of [12] by using Hoffmann's theorem [5] ${ }^{2}$. We recall that Hoffmann's theorem asserts that for a pair of anisotropic quadratic forms ϕ and ψ satisfying the condition $\operatorname{dim} \phi \leq 2^{n}<\operatorname{dim} \psi$, the form ϕ remains anisotropic over $F(\psi)$.

Proposition 1.1. Let ϕ and ψ be anisotropic quadratic forms over F such that $\operatorname{dim} \phi \geq \operatorname{dim} \psi$. Suppose that the form $\pi \stackrel{\text { Def }}{=} \phi \perp \psi$ belongs to the group $W(F(\phi) / F)$. Then
(1) if π is isotropic, then π is hyperbolic,
(2) if π is anisotropic, then π is similar to a Pfister form.

Proof. (1) Assume that π is isotropic but not hyperbolic. This means that $0<$ $\operatorname{dim} \pi_{a n}<\operatorname{dim} \pi$. In the Witt ring $W(F)$, we have $\pi-\phi=\psi$. Therefore,

$$
\operatorname{dim}\left(\pi_{a n} \perp-\phi\right)_{a n}=\operatorname{dim} \psi \leq \operatorname{dim} \phi<\operatorname{dim} \pi_{a n}+\operatorname{dim} \phi=\operatorname{dim}\left(\pi_{a n} \perp-\phi\right)
$$

[^1]Consequently, the form $\pi_{a n} \perp-\phi$ is isotropic. Hence the set $D_{F}\left(\pi_{a n}\right) \cap D_{F}(\phi)$ is nonempty.

Since $\pi_{F(\phi)}$ is hyperbolic, it follows that $\left((\pi)_{a n}\right)_{F(\phi)}$ is also hyperbolic. Since the set $D_{F}\left(\pi_{a n}\right) \cap D_{F}(\phi)$ is nonempty, the Cassels-Pfister subform theorem implies that $\phi \subset \pi_{a n}$. Therefore,

$$
\operatorname{dim}\left(\pi_{a n} \perp-\phi\right)_{a n}=\operatorname{dim} \pi_{a n}-\operatorname{dim} \phi<\operatorname{dim} \pi-\operatorname{dim} \phi=\operatorname{dim} \psi .
$$

This contradicts to the relation $\operatorname{dim}\left(\pi_{a n} \perp-\phi\right)_{a n}=\operatorname{dim} \psi$ proved above.
(2) Assume that π is not isotropic. To prove that π is similar to a Pfister form, it suffices to prove that $\pi_{F(\pi)}$ is hyperbolic (see [12]).

Let $\tilde{F}=F(\pi), \tilde{\pi}=\pi_{\tilde{F}}, \tilde{\phi}=\phi_{\tilde{F}}$, and $\tilde{\psi}=\psi_{\tilde{F}}$. Since $\operatorname{dim} \psi \leq \frac{1}{2} \operatorname{dim} \pi$, Hoffmann's theorem implies that the form $\tilde{\psi}=\psi_{F(\pi)}$ is anisotropic. If we assume that $\tilde{\phi}$ is anisotropic, then we can apply item (1) of Proposition 1.1 to the \tilde{F}-forms $\tilde{\phi}, \tilde{\psi}$, and $\tilde{\pi}$. Then we conclude that $\tilde{\pi}$ is hyperbolic. Now, we assume that $\tilde{\phi}=\phi_{F(\pi)}$ is isotropic. Since $\pi_{F(\phi)}$ is hyperbolic and $\phi_{F(\pi)}$ is isotropic, it follows that $\pi_{F(\pi)}$ is hyperbolic. Thus, the form $\pi_{F(\pi)}$ is hyperbolic in any case and the proposition is proved.

Corollary 1.2. (Fitzgerald, [3, Th. 1.6]). Let ϕ be an F-form, and let $\pi \in$ $W(F(\phi) / F)$ be an anisotropic nonzero form of dimension $\leq 2 \operatorname{dim} \phi$. Then $\pi \in$ $G P_{*}(F)$ and one of the following conditions holds:

- ϕ is a Pfister neighbor of π,
- ϕ is a half-neighbor of π,

Proof. Since π is anisotropic and $\pi_{F(\phi)}$ is hyperbolic, the form ϕ is similar to a subform of π. Multiplying ϕ by a scalar, we may assume that $\phi \subset \pi$. Let ψ be the complement of ϕ in π. Then all hypotheses of Proposition 1.1 hold. Since π is anisotropic, Proposition 1.1 implies $\pi \in G P_{*}(F)$. The rest of the proof is an immediate consequence of the definitions of Pfister neighbors and half-neighbors, and the Cassels-Pfister subform theorem.

Corollary 1.3. (cf. [12, Th. 8.9]). Let ϕ and η be anisotropic forms such that $\operatorname{dim} \phi \geq \operatorname{dim} \eta$ and $\left(\phi_{F(\phi)}\right)_{\text {an }} \simeq\left(\eta_{F(\phi)}\right)_{\text {an }}$. Then either $\phi \simeq \eta$ or $\phi \perp-\eta \in G P_{*}(F)$.
Proof. Let $\psi=-\eta$ and $\pi=\phi \perp-\eta=\phi \perp \psi$. All the hypotheses of Proposition 1.1 hold. In the case where π is isotropic, Proposition 1.1 implies that π is hyperbolic. Then $\phi=\eta$ in the Witt ring. Since ϕ and η are anisotropic, we have $\phi \simeq \eta$. If π is anisotropic, Proposition 1.1 implies that $\phi \perp-\eta=\pi \in G P_{*}(F)$.

2. Motivic equivalence of odd-dimensional forms

Definition 2.1. To any field F, let be assigned an equivalence relation $\stackrel{*}{\sim}_{F}$ on the set of all quadratic forms over F such that the following conditions hold:
(i) If ϕ and ψ are forms over F such that $\phi \sim \psi$, then $\phi \stackrel{*}{\sim}_{F} \psi$.
(ii) If ϕ and ψ are forms over F such that $\phi \stackrel{*}{\sim}_{F} \psi$, then, for any extension E / F, we have $\phi_{E} \stackrel{*}{\sim}_{E} \psi_{E}$.
(iii) If ϕ and ψ are forms over a field F such that $\phi \stackrel{*}{\sim}_{F} \psi$, then $\operatorname{dim} \phi=\operatorname{dim} \psi$ and $i_{W}(\phi)=i_{W}(\psi)$.
A collection of equivalence relations $\stackrel{*}{\sim}_{F}$ satisfying properties (i)-(iii) will be called a good equivalence relation on quadratic forms (over all fields).

Below we will drop the index F at $\stackrel{*}{\sim}_{F}$ and write simply $\stackrel{*}{\sim}$.
Definition 2.2. Let ϕ and ψ be F-forms. We say that the quadratic form ϕ is equivalent to the quadratic form ψ in the sense of Vishik if $\operatorname{dim} \phi=\operatorname{dim} \psi$ and for any field extension E / F we have $i_{W}\left(\phi_{E}\right)=i_{W}\left(\psi_{E}\right)$. In this case, we write $\phi \stackrel{v}{\sim} \psi$.

The following lemma is obvious.
LEMMA 2.3. The equivalence relation $\stackrel{v}{\sim}$ is a minimal good equivalence relation. More precisely,

- The equivalence relation $\stackrel{v}{\sim}$ is a good relation.
- For any good relation $\stackrel{*}{\sim}$, the condition $\phi \stackrel{*}{\sim} \psi$ implies $\phi \stackrel{v}{\sim} \psi$.

EXAMPLE 2.4. Let X be a smooth variety over F. By $M(X)$ we denote the motive of X in the category of Chow motives. Let us define the equivalence $\stackrel{m}{\sim}$ of quadratic forms ϕ and ψ as follows:

$$
\phi \stackrel{m}{\sim} \psi \quad \text { if } \quad M\left(X_{\phi}\right) \simeq M\left(X_{\psi}\right) .
$$

Then $\stackrel{m}{\sim}$ is a good equivalence relation.
Proof. Clearly, conditions (i) and (ii) in Definition 2.1 are fulfilled. We need to verify only condition (iii). Let $X=X_{\phi}$, and let \bar{F} denote the algebraic closure of F. By [9, Item (2.2) and Prop. 2.6] ${ }^{3}$

- $\operatorname{dim} \phi$ coincides with the largest integer m such that $\mathrm{CH}_{m-2}(X) \neq 0$,
- the integer $i_{W}(\phi)$ coincides with the largest integer m satisfying the conditions $m \leq \frac{1}{2} \operatorname{dim} \phi$ and $\operatorname{coker}\left(\mathrm{CH}_{m-1}(X) \rightarrow \mathrm{CH}_{m-1}\left(X_{\bar{F}}\right)\right)=0$.
Thus, it suffices to show that the groups coker $\left(\mathrm{CH}^{j}(X) \rightarrow \mathrm{CH}^{j}\left(X_{\bar{F}}\right)\right)$ and $\mathrm{CH}^{j}(X)$ depend only on the motive of X. This can easily be proved if we observe that the functor CH^{j} is representable in the category of Chow motives. Namely, $\mathrm{CH}^{j}(X)=$ $\operatorname{Hom}_{\mathcal{M} \mathcal{V}_{F}}\left(M\left(p t_{F}\right)(j), M(X)\right)$, where $M\left(p t_{F}\right)$ is the motive of $p t_{F}=\operatorname{Spec}(F)$ and the object $M\left(p t_{F}\right)(j)$ is defined, e.g., in [24]. Thus, $\mathrm{CH}^{j}(X)$ depends only on the motive of X. Now, we consider the base change functor $\Phi: \mathcal{M} \mathcal{V}_{F} \rightarrow \mathcal{M} \mathcal{V}_{\bar{F}}$. Since the homomorphism $\mathrm{CH}^{j}(X) \rightarrow \mathrm{CH}^{j}\left(X_{\bar{F}}\right)$ coincides with the homomorphism

$$
\Phi: \underset{\mathcal{M} \mathcal{V}_{F}}{\operatorname{Hom}}\left(M\left(p t_{F}\right)(j), M(X)\right) \rightarrow \underset{\mathcal{M}_{\bar{F}}}{\operatorname{Hom}}\left(\Phi\left(M\left(p t_{F}\right)(j)\right), \Phi(M(X))\right),
$$

it follows that the group coker $\left(\mathrm{CH}^{j}(X) \rightarrow \mathrm{CH}^{j}\left(X_{\bar{F}}\right)\right)$ also depends only on $M(X)$.
THEOREM 2.5. Let $\stackrel{*}{\sim}$ be a good equivalence relation. Let ϕ and ψ be odd-dimensional quadratic forms over a field. Then the condition $\phi \stackrel{*}{\sim} \psi$ is equivalent to the condition $\phi \sim \psi$.
Proof. We start the proof with three lemmas
Lemma 2.6. Let ϕ and ψ be odd-dimensional anisotropic forms of dimension ≥ 3 such that $\operatorname{dim} \phi=\operatorname{dim} \psi$ and $\left(\phi_{F(\phi)}\right)_{a n} \simeq\left(\psi_{F(\phi)}\right)_{a n}$. Then $\phi \simeq \psi$.

Proof. If $\phi \not 千 \psi$, Corollary 1.3 shows that $\phi \perp-\psi \in G P_{*}(F)$. Since $\operatorname{dim} \phi=\operatorname{dim} \psi$, we conclude that $\operatorname{dim} \psi$ is a power of 2 . Since $\operatorname{dim} \psi \geq 3$, we see that $\operatorname{dim} \psi$ is even. We get a contradiction to the assumption of the lemma.

[^2]The following lemma is obvious.
Lemma 2.7. Let ϕ and ψ be odd-dimensional forms such that $\operatorname{dim} \phi=\operatorname{dim} \psi$ and $\operatorname{det} \phi=\operatorname{det} \psi$. Then the condition $\psi \sim \phi$ is equivalent to the condition $\phi \simeq \phi$.

Lemma 2.8. Let ϕ and ψ be odd-dimensional forms such that $\operatorname{dim} \phi_{a n}=\operatorname{dim} \psi_{a n} \geq 3$. Suppose that $\phi_{F\left(\phi_{a n}\right)} \sim \psi_{F\left(\phi_{a n}\right)}$. Then $\phi \sim \psi$.
Proof. Replacing first ϕ and ψ by $\phi_{a n}$ and $\psi_{a n}$, respectively, we may assume that ϕ and ψ are anisotropic. Replacing then ϕ by $\frac{1}{\operatorname{det} \phi} \phi$ and ψ by $\frac{1}{\operatorname{det} \psi} \psi$, we may assume that $\operatorname{det} \phi=1=\operatorname{det} \psi$. Since $\phi_{F(\phi)} \sim \psi_{F(\phi)}$, Lemma 2.7 implies that $\phi_{F(\phi)} \simeq \psi_{F(\phi)}$. By Lemma 2.6, we have $\phi \simeq \psi$.

Now, we return to the proof of Theorem 2.5. We use induction on $n=\operatorname{dim} \phi_{a n}=$ $\operatorname{dim} \psi_{a n}$. The case where $n=1$ is obvious. So we may assume that $n \geq 3$. Since $\phi \stackrel{*}{\sim} \psi$, we have $\phi_{F\left(\phi_{a n}\right)} \stackrel{*}{\sim} \psi_{F\left(\phi_{a n}\right)}$. By the induction assumption, we have $\phi_{F\left(\phi_{a n}\right)}^{\sim}$ $\psi_{F\left(\phi_{a n}\right)}$. Now, Lemma 2.8 implies that $\phi \sim \psi$.
Corollary 2.9. Let ϕ and ψ be odd-dimensional quadratic forms over a field. Then $\phi \stackrel{v}{\sim} \psi \quad$ iff $\quad \phi \stackrel{m}{\sim} \psi \quad$ iff $\quad \phi \sim \psi$.

3. Even-dimensional forms

In this section, we study the relation $\stackrel{m}{\sim}$ in the case of even-dimensional forms. If quadratic forms ϕ and ψ of dimension ≥ 2 satisfy the condition $\phi \stackrel{v}{\sim} \psi$, then $\phi_{F(\psi)}$ and $\psi_{F(\phi)}$ are isotropic (because $\phi_{F(\phi)}$ and $\psi_{F(\psi)}$ are isotropic).
Proposition 3.1. Let ϕ and ψ be quadratic forms of dimension <8. Then

$$
\phi \stackrel{\rightharpoonup}{\sim} \psi \quad \text { iff } \quad \phi \stackrel{m}{\sim} \psi \quad \text { iff } \quad \phi \sim \psi .
$$

Proof. In view of Corollary 2.9, we may assume that $d=\operatorname{dim} \phi=\operatorname{dim} \psi$ is even. Thus, it suffices to consider the cases $d=2,4$, and 6 . The implications $\phi \sim \psi \Rightarrow$ $\phi \stackrel{m}{\sim} \psi \Rightarrow \phi \stackrel{v}{\sim} \psi$ are obvious. Therefore, we must verify only that $\phi \stackrel{v}{\sim} \psi$ implies $\phi \sim \psi$. Since $\phi \stackrel{v}{\sim} \psi$, the forms $\phi_{F(\psi)}$ and $\psi_{F(\phi)}$ are isotropic. In the case $d=2$, this obviously means that $\phi \sim \psi$. If $d=4$, then $\phi \sim \psi$ by Wadsworth's theorem [28]. Thus, we may assume that $d=6$. We need the following assertion concerning the isotropy of 6 -dimensional forms.

Lemma 3.2. (see [4, 13, 16, 21]). Let ϕ and ψ be anisotropic 6-dimensional forms such that $\phi_{F(\psi)}$ is isotropic. Then either $\phi \sim \psi$ or ψ is a 3-fold Pfister neighbor.

In view of this lemma, we may assume that ψ is a Pfister neighbor of a 3 -fold Pfister form π. Since $\psi_{F(\phi)}$ is isotropic, it follows that $\pi_{F(\phi)}$ is isotropic. Hence ϕ is a Pfister neighbor of π. Therefore, $\phi \sim\left(\pi-\left\langle\left\langle d_{ \pm} \phi\right\rangle\right\rangle\right)_{\text {an }}$ and $\psi \sim\left(\pi \perp-\left\langle\left\langle d_{ \pm} \psi\right\rangle\right\rangle\right)_{\text {an }}$. Thus, it suffices to verify that $d_{ \pm} \phi=d_{ \pm} \psi$. This is a consequence of the following chain of equivalent conditions

$$
a=d_{ \pm} \phi \Leftrightarrow i_{W}\left(\phi_{F(\sqrt{a})}\right)=3 \Leftrightarrow i_{W}\left(\psi_{F(\sqrt{a})}\right)=3 \Leftrightarrow a=d_{ \pm} \psi
$$

The proof is complete.
Now, we begin to study even-dimensional forms of dimension ≥ 8.
Lemma 3.3. (see, e.g., [27]). Let ϕ and ψ be half-neighbors. Then $\phi \stackrel{v}{\sim} \psi$.

For the reader's convenience, we cite the proof (which, in fact, is trivial).
Proof. The condition $\phi \stackrel{h n}{\sim} \psi$ means that $\operatorname{dim} \phi=\operatorname{dim} \psi$, and there exist $s, r \in F^{*}$ such that $s \phi \perp r \psi=\pi \in P_{*}(F)$. Let L / F be a field extension. If both ϕ_{L} and ψ_{L} are anisotropic, then $i_{W}\left(\phi_{L}\right)=0=i_{W}\left(\psi_{L}\right)$. If at least one of the forms ϕ_{L} or ψ_{L} is isotropic, then π_{L} is also isotropic. Taking into account the condition $\pi \in P_{*}(F)$, we conclude that π_{L} is hyperbolic. Therefore, $s \phi_{L}=-r \psi_{L}$ in the Witt ring. Since $\operatorname{dim} \phi=\operatorname{dim} \psi$, we have $s \phi_{L} \simeq-r \psi_{L}$. Hence $i_{W}\left(\phi_{L}\right)=i_{W}\left(\psi_{L}\right)$.

The following lemma shows that there exist examples of nonsimilar halfneighbors.

Lemma 3.4. (see [6], [8]). For any $n \geq 3$, there exists a field F and 2^{n}-dimensional half-neighbors ϕ and ψ such that $\phi \nsim \bar{\psi}$.

As a consequence of this result, we see that, for any $n \geq 3$, there exists a pair of 2^{n} dimensional forms ϕ and ψ such that $\phi \stackrel{v}{\sim} \psi$ and $\phi \nsim \psi$. In particular, Proposition 3.1 cannot always be generalized for 8 -dimensional forms.

Nevertheless, for 8 -dimensional forms with trivial determinant, we have the following

Proposition 3.5. Let ϕ and ψ be 8-dimensional forms with trivial determinant. Then the following conditions are equivalent:
(1) $\phi \stackrel{v}{\sim} \psi$;
(2) $\phi_{F(\psi)}$ and $\psi_{F(\phi)}$ are isotropic;
(3) ϕ and ψ are half-neighbors.

Proof. The implications $(3) \Rightarrow(1) \Rightarrow(2)$ are obvious. The implication $(2) \Rightarrow(3)$ follows immediately from the results of A. Laghribi [16], [15], [14].

4. Generalized Albert forms

In this section, we construct examples of nonsimilar $\stackrel{v}{\sim}$-equivalent forms based on the so-called generalized Albert forms.

Definition 4.1. A generalized Albert form (or n-Albert form) is a form of type $q=\pi^{\prime} \perp-\tau^{\prime}$, where π^{\prime} and τ^{\prime} are pure parts of n-fold Pfister forms π and τ.

Remark 4.2. - Any n-Albert form has dimension $2\left(2^{n}-1\right)$.

- Suppose that q is an n-Albert form. By [2, Proof of Prop. 4.4], the anisotropic part $q_{a n}$ looks like $q_{a n}=\left\langle\left\langle a_{1}, \ldots, a_{m}\right\rangle\right\rangle q^{\prime}$, where q^{\prime} is an anisotropic $(n-m)$ Albert form. In particular, $\operatorname{dim} q_{a n}$ has dimension $2^{m} \cdot 2\left(2^{n-m}-1\right)=2\left(2^{n}-2^{m}\right)$, where $0 \leq m \leq n$. We say that m is the linkage number of the n-Albert from q.
- Every 1-Albert form has the form $q=\langle\langle a\rangle\rangle^{\prime} \perp-\langle\langle b\rangle\rangle=\langle-a, b\rangle$. Hence any 2 -dimensional form is a 1 -Albert form.
- Every 2-Albert form has the form

$$
q=\left\langle\left\langle a_{1}, a_{2}\right\rangle\right\rangle^{\prime} \perp-\left\langle\left\langle b_{1}, b_{2}\right\rangle\right\rangle^{\prime}=\left\langle-a_{1},-a_{2}, a_{1} a_{2}, b_{1}, b_{2},-b_{1} b_{2}\right\rangle .
$$

Thus, a 2-Albert form is the "classical" 6-dimensional Albert form.

Our interest in n-Albert forms is motivated by the following observation of A. Vishik (see [27]): if q_{1} and q_{2} are n-Albert forms such that $q_{1} \equiv q_{2}\left(\bmod I^{n+1}(F)\right)$, then $q_{1} \stackrel{v}{\sim} q_{2}$.

The following question is due to Lam [18, Item (6.6), Page 28].
Question 4.3. Let q_{1} and q_{2} be n-Albert forms such that $q_{1} \equiv q_{2}\left(\bmod I^{n+1}(F)\right)$. Is it always true that $q_{1} \sim q_{2}$?

The answer to this question is obviously positive in the case $n=1$. In the case $n=2$, the answer is also positive. This is a version of a Jacobson's theorem (see, e.g., [19, Prop. 2.4]). In this section, we construct a counterexample to this question for any $n \geq 3$.
ThEOREM 4.4. There exists a field F and anisotropic 3 -Albert forms q_{1} and q_{2} over F such that $q_{1} \equiv q_{2}\left(\bmod I^{4}(F)\right)$ and $q_{1} \nsim q_{2}$. In particular, the answer to Question 4.3 is negative in the case $n=3$.

Proof. We need the following theorem of Hoffmann.
Theorem 4.5. (see [6, Th. 4.3]). There exists a field k and anisotropic 8-dimensional quadratic forms over k,

$$
\begin{aligned}
& \phi_{1}=s_{1}\left\langle\left\langle a_{1}, b_{1}\right\rangle\right\rangle \perp-k_{1}\left\langle\left\langle c_{1}, d_{1}\right\rangle\right\rangle, \\
& \phi_{2}=s_{2}\left\langle\left\langle a_{2}, b_{2}\right\rangle\right\rangle \perp-k_{2}\left\langle\left\langle c_{2}, d_{2}\right\rangle\right\rangle
\end{aligned}
$$

such that $\phi_{1} \equiv \phi_{2}\left(\bmod I^{4}(k)\right)$, ind $C\left(\phi_{1}\right)=\operatorname{ind} C\left(\phi_{2}\right)=4$ and $\phi_{1} \nsim \phi_{2}$.
Remark 4.6. In fact, the formulation of Theorem 4.3 in [6] differs from the one presented above. In his theorem, Hoffmann has constructed a pair $\phi, \psi \in I^{2}(k)$ of 8 -dimension quadratic forms such that $\phi \nsim \psi$ and $\phi \stackrel{h n}{\sim} \psi$. Clearly, changing ψ by a scalar, we may always assume that $\phi \equiv \psi\left(\bmod I^{4}(k)\right)$. To obtain Theorem 4.5, it suffices to show that we may always take ϕ and ψ in the form of direct sums of forms belonging to $G P_{2}(k)$. In the proof of [6, Theorem 4.3] it is so for the form ϕ (the explicit formula for ϕ in [6] shows that ϕ contains a subform $a\langle 1, x, y, x y\rangle$). The required statement concerning ψ is obvious since $i_{W}\left(\psi_{k(\sqrt{-x})}\right)=i_{W}\left(\phi_{k(\sqrt{-x})}\right) \geq 2$.

Now we return to the proof of Theorem 4.4. Under the conditions of this theorem, we obviously have $\left(a_{1}, b_{1}\right)+\left(c_{1}, d_{1}\right)=c\left(\phi_{1}\right)=c\left(\phi_{2}\right)=\left(a_{2}, b_{2}\right)+\left(c_{2}, d_{2}\right)$. Hence there exists an Albert form ρ (of dimension 6) such that $c\left(\phi_{1}\right)=c\left(\phi_{2}\right)=c(\rho)$. Hence ind $C(\rho)=$ ind $C\left(\phi_{1}\right)=4$. By an Albert's theorem, ρ is anisotropic (see [1, Th. 3] or [26, Th. 3]). Since $\left(a_{i}, b_{i}\right)+\left(c_{i}, d_{i}\right)=c(\rho)$ for $i=1,2$, there exist r_{1} and r_{2} such that

$$
\begin{aligned}
& \left\langle\left\langle a_{1}, b_{1}\right\rangle\right\rangle^{\prime} \perp-\left\langle\left\langle c_{1}, d_{1}\right\rangle\right\rangle^{\prime} \simeq r_{1} \rho, \\
& \left\langle\left\langle a_{2}, b_{2}\right\rangle\right\rangle^{\prime} \perp-\left\langle\left\langle c_{2}, d_{2}\right\rangle\right\rangle^{\prime} \simeq r_{2} \rho .
\end{aligned}
$$

In the Witt ring $W(k(t))$, we have

$$
\begin{aligned}
\operatorname{t\rho }-\phi_{i} & =\operatorname{tr}_{i}\left(\left\langle\left\langle a_{i}, b_{i}\right\rangle\right\rangle-\left\langle\left\langle c_{i}, d_{i}\right\rangle\right\rangle\right)-\left(s_{i}\left\langle\left\langle a_{i}, b_{i}\right\rangle\right\rangle-k_{i}\left\langle\left\langle c_{i}, d_{i}\right\rangle\right\rangle\right) \\
& =\operatorname{tr}_{i}\left(\left\langle\left\langle a_{i}, b_{i}\right\rangle\right\rangle-\operatorname{tr}_{i} s_{i}\left\langle\left\langle a_{i}, b_{i}\right\rangle\right\rangle\right)-\operatorname{tr}_{i}\left(\left\langle\left\langle c_{i}, d_{i}\right\rangle\right\rangle-\operatorname{tr}_{i} k_{i}\left\langle\left\langle c_{i}, d_{i}\right\rangle\right\rangle\right) \\
& =\operatorname{tr}_{i}\left(\left\langle\left\langle a_{i}, b_{i}, t r_{i} s_{i}\right\rangle\right\rangle-\left\langle\left\langle c_{i}, d_{i}, t r_{i} k_{i}\right\rangle\right\rangle\right)
\end{aligned}
$$

We set $q_{i}=\left\langle\left\langle a_{i}, b_{i}, \operatorname{tr}_{i} s_{i}\right\rangle\right\rangle^{\prime} \perp-\left\langle\left\langle c_{i}, d_{i}, t r_{i} k_{i}\right\rangle\right\rangle^{\prime}$ and $F=k(t)$. Since $t \rho-\phi_{i}=\operatorname{tr}_{i} q_{i}$ in the Witt ring $W(F)$ and $\operatorname{dim}\left(t \rho \perp-\phi_{i}\right)=6+8=14=\operatorname{dim} q_{i}$, we have $t \rho \perp-\phi_{i} \simeq t r_{i} q_{i}$.

Since ρ and ϕ_{i} are anisotropic, q_{i} is also anisotropic by Springer's theorem (see [17, Ch. 6, Th. 1.4] or [23, Ch. 6, Cor. 2.6]).

Now, we need the following obvious assertion.
Lemma 4.7. (see, e.g., [6, Lemma 3.1]). Let $\mu_{1}, \mu_{2}, \nu_{1}, \nu_{2}$ be anisotropic quadratic forms over k. Suppose that the form $\mu_{1} \perp t \nu_{1}$ is similar to $\mu_{2} \perp t \nu_{2}$ over the field of rational functions $k(t)$. Then

- either $\mu_{1} \sim \mu_{2}$ and $\nu_{1} \sim \nu_{2}$,
- or $\mu_{1} \sim \nu_{2}$ and $\nu_{1} \sim \mu_{2}$.

Since $\phi_{1} \nsim \phi_{2}$ and $\operatorname{dim} \rho<\operatorname{dim} \phi_{1}=\operatorname{dim} \phi_{2}$, Lemma 4.7 shows that $(t \rho \perp$ $\left.-\phi_{1}\right) \nsim\left(t \rho \perp-\phi_{2}\right)$. Hence $q_{1} \nsim q_{2}$. On the other hand, the conditions $q_{1}, q_{2} \in I^{3}(F)$ and $\phi_{1} \equiv \phi_{2}\left(\bmod I^{4}(F)\right)$ imply that

$$
q_{1} \equiv t r_{1} q_{1} \equiv\left(t \rho \perp-\phi_{1}\right) \equiv\left(t \rho \perp-\phi_{2}\right) \equiv t r_{2} q_{2} \equiv q_{2} \quad\left(\bmod I^{4}(F)\right)
$$

Thus, we have proved that q_{1} and q_{2} are anisotropic 3 -Albert forms such that $q_{1} \equiv q_{2}$ $\left(\bmod I^{4}(F)\right)$ and $q_{1} \nsim q_{2}$. The theorem is proved.

Corollary 4.8. For any $n \geq 3$, there exists a field E and n-Albert forms γ_{1} and γ_{2} over E such that $\gamma_{1} \equiv \gamma_{2}\left(\bmod I^{n+1}(E)\right)$ and $\gamma_{1} \nsim \gamma_{2}$. In other words, the answer to Question 4.3 is negative for any $n \geq 3$.

Proof. Let q_{1}, q_{2} and F be as in Theorem 4.4. We write q_{1} and q_{2} in the form $q_{1}=$ $\pi_{1}^{\prime} \perp-\tau_{1}^{\prime}, q_{2}=\pi_{2}^{\prime} \perp-\tau_{2}^{\prime}$ with $\pi_{1}, \pi_{2}, \tau_{1}, \tau_{2} \in P_{3}(F)$ and put $E=F\left(x_{1}, \ldots, x_{n-3}\right)$ and

$$
\begin{aligned}
& \gamma_{1}=\left(\pi_{1}\left\langle\left\langle x_{1}, \ldots, x_{n-3}\right\rangle\right\rangle\right)^{\prime} \perp-\left(\tau_{1}\left\langle\left\langle x_{1}, \ldots, x_{n-3}\right\rangle\right\rangle\right)^{\prime}, \\
& \gamma_{2}=\left(\pi_{2}\left\langle\left\langle x_{1}, \ldots, x_{n-3}\right\rangle\right\rangle\right)^{\prime} \perp-\left(\tau_{2}\left\langle\left\langle x_{1}, \ldots, x_{n-3}\right\rangle\right\rangle\right)^{\prime} .
\end{aligned}
$$

Obviously, $\gamma_{i}=q_{i}\left\langle\left\langle x_{1}, \ldots, x_{n-3}\right\rangle\right\rangle$ in the Witt ring $W(E)$. Since $q_{1} \equiv q_{2}\left(\bmod I^{4}(F)\right)$, we have $\gamma_{1} \equiv \gamma_{2}\left(\bmod I^{n+1}(E)\right)$. Since $q_{1} \nsim q_{2}$, we have $q_{1}\left\langle\left\langle x_{1}, \ldots, x_{n-3}\right\rangle \nsucc\right.$ $q_{2}\left\langle\left\langle x_{1}, \ldots, x_{n-3}\right\rangle\right\rangle$ (see, e.g., Lemma 4.7). Hence $\gamma_{1} \nsim \gamma_{2}$.

We have constructed a pair of n-Albert forms γ_{1} and γ_{2} such that $\gamma_{1} \stackrel{m}{\sim} \gamma_{2}$ and $\gamma_{1} \nsim \gamma_{2}$. Obviously, in our example, we have $\operatorname{dim}\left(\gamma_{i}\right)_{a n}=2^{n-3} \cdot 14=2^{n-3}\left(2^{3}-2\right)=$ $2\left(2^{n}-2^{n-3}\right)$. In other words, both n-Albert forms γ_{1} and γ_{2} are $(n-3)$-linked. We can generalize this example as follows.

Theorem 4.9. For any $n \geq 3$ and m such that $0 \leq m \leq n-3$, there exists a field F and n-Albert forms q_{1} and q_{2} over F such that $q_{1} \equiv q_{2}\left(\bmod I^{n+1}(F)\right), q_{1} \nsim q_{2}$, and $\operatorname{dim}\left(q_{1}\right)_{a n}=\operatorname{dim}\left(q_{2}\right)_{a n}=2\left(2^{n}-2^{m}\right)$.

Here we only outline the proof of the theorem.
Step 1. It suffices to prove this theorem only in the case $m=0$ (this means that q_{1} and q_{2} are anisotropic). After this, the general case can be obtained in the same way as Corollary 4.8.

Step 2. Consider a field E and n-Albert forms γ_{1} and γ_{2} as in Corollary 4.8. Since $\gamma_{1} \equiv \gamma_{2}\left(\bmod I^{n+1}(E)\right)$, there exist $\pi_{1}, \ldots, \pi_{N} \in P_{n+1}(E)$ for some integer N
such that $\gamma_{1}-\gamma_{2}=\sum_{i=1}^{N} \pi_{i}$. We consider the quadratic forms

$$
\begin{aligned}
\tilde{q}_{1} & =\left\langle\left\langle x_{1}, \ldots, x_{n}\right\rangle\right\rangle^{\prime} \perp-\left\langle\left\langle y_{1}, \ldots, y_{n}\right\rangle\right\rangle^{\prime} \\
\tilde{q}_{2} & =\left\langle\left\langle z_{1}, \ldots, z_{n}\right\rangle\right\rangle^{\prime} \perp-\left\langle\left\langle t_{1}, \ldots, t_{n}\right\rangle\right\rangle^{\prime} \\
\tau & =\perp_{i=1}^{N}\left\langle\left\langle u_{i, 1}, \ldots, u_{i, n+1}\right\rangle\right\rangle .
\end{aligned}
$$

over the field of rational functions

$$
\tilde{E}=E\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}, t_{1}, \ldots, t_{n}, u_{1,1}, \ldots, u_{N, n+1}\right)
$$

Obviously there exists a place $\tilde{s}: \tilde{E} \rightarrow E$ such that $\tilde{q}_{1} \mapsto \gamma_{1}, \tilde{q}_{2} \mapsto \gamma_{2}$, and $\left\langle\left\langle u_{i, 1}, \ldots, u_{i, n+1}\right\rangle\right\rangle \mapsto \pi_{i}$ for all $i=1, \ldots, N$. Since $\gamma_{1}-\gamma_{2}=\sum_{i=1}^{N} \pi_{i}$, the form $\tilde{s}_{*}\left(\tilde{q}_{1} \perp-\tilde{q}_{2} \perp-\tau\right)$ is hyperbolic.

Step 3. We define the field F as a "generic" extension F / \tilde{E} such that $\left(\tilde{q}_{1}\right)_{F}-$ $\left(\tilde{q}_{2}\right)_{F}=\tau_{F}$. More precisely, we set $F=\tilde{E}_{h}$, where $\tilde{E}_{0}, \tilde{E}_{1}, \ldots, \tilde{E}_{h}$ is the generic splitting tower for the \tilde{E}-form $\tilde{q}_{1} \perp-\tilde{q}_{2} \perp-\tau$. We claim that the F-forms $q_{1} \stackrel{\text { Def }}{=}\left(\tilde{q}_{1}\right)_{F}$ and $q_{2} \stackrel{\text { Def }}{=}\left(\tilde{q}_{1}\right)_{F}$ satisfy the hypotheses of Theorem 4.9. Since $q_{1}-q_{2}=\tau_{F}$, we have $q_{1} \equiv q_{2}\left(\bmod I^{n+1}(F)\right)$. Thus, it suffices to verify that q_{1} and q_{2} are anisotropic and $q_{1} \nsim q_{1}$.

Step 4. Using properties of generic splitting fields (see [23, Ch. 4, Cor. 6.10] or [11, Th. 5.1]), we can extend $\tilde{s}: \tilde{E} \rightarrow E$ to a place $s: F \rightarrow E$. Obviously, $s_{*}\left(q_{1}\right)=\gamma_{1}$ and $s_{*}\left(q_{2}\right)=\gamma_{2}$. Therefore, the condition $\gamma_{1} \nsim \gamma_{2}$ implies $q_{1} \nsim q_{2}$.

Step 5. To prove that q_{1} and q_{2} are anisotropic, it suffices to construct a field extension K / \tilde{E} with the same key property as F (i.e., $\left(\tilde{q}_{1}\right)_{K}-\left(\tilde{q}_{2}\right)_{K}=\tau_{K}$) and such that $\left(\tilde{q}_{1}\right)_{K}$ and $\left(\tilde{q}_{2}\right)_{K}$ are anisotropic. Since F / \tilde{E} is a "generic" extension, we necessarily get that $q_{1}=\left(\tilde{q}_{1}\right)_{F}$ and $q_{2}=\left(\tilde{q}_{2}\right)_{F}$ are anisotropic. The following extension K / \tilde{E} has the required properties:

$$
K=\tilde{E}\left(\sqrt{\frac{x_{1}}{z_{1}}}, \ldots, \sqrt{\frac{x_{n}}{z_{n}}}, \sqrt{\frac{y_{1}}{t_{1}}}, \ldots, \sqrt{\frac{y_{n}}{t_{n}}}, \sqrt{u_{1,1}}, \ldots, \sqrt{u_{N, 1}}\right) .
$$

The "sketch" of the proof is complete. In fact, Steps 4 and 5 are the most difficult points. We refer the reader to the paper [7, Proof of Lemma 2.2], where similar arguments (as in Step 5) are presented with complete proofs.

Corollary 4.10. For any m and n such that $0 \leq m \leq n-3$, there exists a field F and anisotropic $2\left(2^{n}-2^{m}\right)$-dimensional forms q_{1} and q_{2} over F such that $q_{1} \stackrel{v}{\sim} q_{2}$ and $q_{1} \nsim q_{2}$.

5. Open questions

Obviously, Theorem 4.9 cannot be generalized to the cases $m=n-1$ and $m=n$ because in these cases the anisotropic parts of n-Albert forms either belong to $G P_{n}(F)$ or are zero. There is only one case, where we cannot say anything definite. Namely, $m=n-2$. For this reason, we propose the following modification of Lam's Question 4.3.

Conjecture 5.1. Let q_{1} and q_{2} be Albert forms (i.e., 6-dimensional forms with trivial discriminants). Let $\phi_{1}=\left\langle\left\langle a_{1}, \ldots, a_{k}\right\rangle\right\rangle q_{1}$ and $\phi_{2}=\left\langle\left\langle b_{1}, \ldots, b_{k}\right\rangle\right\rangle q_{2}$. Suppose that $\phi_{1} \equiv \phi_{2}\left(\bmod I^{k+3}(F)\right)$. Then $\phi_{1} \sim \phi_{2}$.

We note that, in this conjecture, we always may assume that $a_{i}=b_{i}$ for $i=$ $1, \ldots, k$. Indeed, putting $\pi=\left\langle\left\langle a_{1}, \ldots, a_{k}\right\rangle\right\rangle$, we obtain $\left(\phi_{2}\right)_{F(\pi)} \equiv\left(\phi_{1}\right)_{F(\pi)}=0$ $\left(\bmod I^{k+1}(F(\pi))\right)$. By the Arason-Pfister theorem, we conclude that ϕ_{2} is hyperbolic over the field $F(\pi)$. Hence ϕ_{2} has the form $\phi_{2}=\pi q_{2}^{\prime}=\left\langle\left\langle a_{1}, \ldots, a_{k}\right\rangle\right\rangle q_{2}^{\prime}$. Comparing dimensions, we get $\operatorname{dim} q_{2}^{\prime}=6$. Let us write q_{2}^{\prime} in the form $q_{2}^{\prime}=\left\langle c_{1}, \ldots, c_{6}\right\rangle$ and set $q_{2}^{\prime \prime}=\left\langle c_{1}, \ldots, c_{5}, c_{6}^{\prime}\right\rangle$, where $c_{6}^{\prime}=-c_{1} \ldots c_{5}$. We have $\pi\left\langle c_{6},-c_{6}^{\prime}\right\rangle=\pi q_{2}^{\prime}-\pi q_{2}^{\prime \prime}=$ $\phi_{2}-\pi q_{2}^{\prime \prime} \in I^{k+2}(F)+I^{k}(F) \cdot I^{2}(F)=I^{k+2}(F)$. Since $\operatorname{dim} \pi\left\langle c_{6},-c_{6}^{\prime}\right\rangle=2^{k} \cdot 2<2^{k+2}$, the Arason-Pfister theorem shows that $\pi\left\langle c_{6},-c_{6}^{\prime}\right\rangle$ is hyperbolic. Hence $\pi q_{2}^{\prime}=\pi q_{2}^{\prime \prime}$. Therefore, $\phi_{2}=\pi q_{2}^{\prime \prime}=\left\langle\left\langle a_{1}, \ldots, a_{k}\right\rangle\right\rangle q_{2}^{\prime \prime}$. Since $q_{2}^{\prime \prime}$ is an Albert form, we have proved, that the conjecture reduces to the case where $b_{i}=a_{i}$.

Another question concerning the $\stackrel{v}{\sim}$-equivalence is motivated by the results of $\S 3$ and $\S 4$. First of all, in view of Lemma 3.4 and Corollary 4.10, we have the following assertion.

Proposition 5.2. Let d be an integer belonging to the set

$$
\left\{2^{n} \mid n \geq 3\right\} \cup\left\{2^{i}\left(2^{j}-1\right) \mid i \geq 1, j \geq 3\right\}
$$

Then there exist anisotropic d-dimensional quadratic forms ϕ and ψ over a suitable field such that $\phi \stackrel{v}{\sim} \psi$ and $\phi \nsim \psi$.

Here we state the following
Problem 5.3. Describe the set $\mathcal{V E}$ of all integers d for which there exist anisotropic d-dimensional quadratic forms ϕ and ψ over a suitable field such that $\phi \stackrel{v}{\sim} \psi$ and $\phi \nsim \psi$ 。

We know almost the full answer to this problem. The results of the previous sections imply that $\mathcal{V E} \subset\{8,10,12, \ldots, 2 i, \ldots\}$. Besides, we can prove that any even integer ≥ 8 (except possibly 12) belongs to $\mathcal{V E}$.

References

[1] Albert, A. A., On the Wedderburn norm condition for cyclic algebras. Bull. Amer. Math. Soc. 37 (1931), 301-312.
[2] Elman, R., Lam, T. Y. Pfister forms and K-theory of fields. J. Algebra 23 (1972), 181-213.
[3] Fitzgerald, R. W., Function fields of quadratic forms. Math. Z. 178 (1981), 63106.
[4] Hoffmann, D. W. On 6-dimensional quadratic forms isotropic over the function field of a quadric. Comm. Alg. 22 (1994), 1999-2014.
[5] Hoffmann, D. W. Isotropy of quadratic forms over the function field of a quadric. Math. Z. 220 (1995), 461-476.
[6] Hoffmann, D. W. Similarity of quadratic forms and half-neighbors. J. Algebra 204 (1998), 255-280.
[7] Izhboldin, O. T. On the nonexcellence of field extensions $F(\pi) / F$. Doc. Math. 1 (1996), 127-136.
[8] Izhboldin, O. T. Nontrivial example of conjugated forms. preprint, 1996.
[9] Karpenko, N. A. Algebro-geometric invariants of quadratic forms. Algebra i Analiz 2 (1991), no. 1, 141-162 (in Russian). Engl. transl.: Leningrad (St. Petersburg) Math. J. 2 (1991), no. 1, 119-138.
[10] Karpenko, N. A. Vishik's criterion of motivic isomorphism for projective quadrics. Preprint 1998.
[11] Knebusch, M. Generic splitting of quadratic forms, I. Proc. London Math. Soc 33 (1976), 65-93.
[12] Knebusch, M. Generic splitting of quadratic forms, II. Proc. London Math. Soc 34 (1977), 1-31.
[13] Laghribi, A. Formes quadratiques de dimension 6. Math. Nach., to appear.
[14] Laghribi, A. Isotropie de certaines formes quadratiques de dimension 7 et 8 sur le corps des fonctions d'une quadrique. Duke Math. J. 85 (1996) no. 2, 397-410.
[15] Laghribi, A. Formes quadratiques en 8 variables dont l'algèbre de Clifford est d'indice 8. K-Theory 12 (1997), 371-383.
[16] Laghribi, A. Isotropie d'une forme quadratique de dimension ≤ 8 sur le corps des fonctions d'une quadrique. C. R. Acad. Sci. Paris 323 (1996), sér. I, 495-499.
[17] Lam, T. Y. The Algebraic Theory of Quadratic Forms. Massachusetts: Benjamin 1973 (revised printing: 1980).
[18] Lam, T. Y. Fields with u-invariant 6 after A. Merkurev. Israel Math. Conf. Proc. Vol. 1. (L. Rowen ed.) Ring Theory, 1989 (in honor of Amitsur) Weizmann Science Press, 1989, 12-31.
[19] Mamone, P., Shapiro, D. B. The Albert quadratic form for an algebra of degree four. Proc. Amer. Mah. Soc. 105 (1989), 525-530.
[20] Merkurjev, A. S. On the norm residue symbol of degree 2. Dokl. Akad. Nauk SSSR 261 (1981), 542-547. English translation: Soviet Math. Dokl. 24 (1981), 546-551.
[21] Merkurjev, A. S. Kaplansky conjecture in the theory of quadratic forms. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova (Russian) 175 (1989), 75-89. English translation: J. Sov. Math. 57 (1991), no. 6, 3489-3497.
[22] Rost, M. The motive of a Pfister form. Preprint, 1998 (Internet: http://www.physik.uni-regensburg.de/ rom03516)
[23] Scharlau, W. Quadratic and Hermitian Forms Springer, Berlin, Heidelberg, New York, Tokyo (1985).
[24] Scholl, A. J. Classical motives. Proc. Symp. Pure Math. 55.1 (1994) 163-187.
[25] Swan, R. G. Zero cycles on quadric hypersurfaces. Proc. Amer. Math. Soc. 107 (1998) no. 1, 43-46.
[26] Tamagawa, T., On quadratic forms and pfaffians. J. Fac. Sci. Tokyo 24 (1977), 213-219.
[27] Vishik, A. Integral motives of quadrics. Max Planck Institut für Mathematik, Bonn, preprint MPI-1998-13, 1-82.
[28] Wadsworth, A. R. Similarity of quadratic forms and isomorphism of their function fields. Trans. Amer. Math. Soc. 208 (1975), 352-358.

Oleg Izhboldin
Department of Mathematics and Mechanics
St.-Petersburg State University
Petrodvorets, 198904
Russia
oleg@mathematik.uni-bielefeld.de

[^0]: ${ }^{1}$ Supported by TMR-Network Project ERB FMRX CT-97-0107

[^1]: ${ }^{2}$ see also [6, Prop. 2.4] and [3, Th. 1.6]

[^2]: ${ }^{3}$ see also [22, Prop. 2] and [25].

