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Stability of Matter for the Hartree-Fock Functional

of the Relativistic Electron-Positron Field
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Abstract. We investigate stability of matter of the Hartree-Fock functional

of the relativistic electron-positron �eld { in suitable second quantization {

interacting via a second quantized Coulomb �eld and a classical magnetic

�eld. We are able to show that stability holds for a range of nuclear charges

Z

1

; ::; Z

K

� Z and �ne structure constants � that include the physical value

of � and elements up to holmium (Z = 67).

Keywords and Phrases: Dirac operator, stability of matter, QED, general-
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1 Introduction

Electrons and positrons can be described just interacting with themselves and the

electromagnetic �eld. However, in many interesting applications these particles do not

exist separated from the rest of the world but interact with nuclei, in fact very often

with many nuclei. It is therefore of interest, to investigate the stability of quantum

electrodynamics, the basic theory describing relativistic electrons and positrons, when

coupled to many nuclei. A standard model to incorporate nuclei is to assume them as

external sources of the electric �eld and minimize the energy over all possible pairwise

distinct nuclear positions. This is known as the Born-Oppenheimer approximation.

Stability in the context of �eld theory means, that the energy is bounded from

below by a multiple of the number operator of the electron-positron �eld plus a

constant times the number of nuclei involved. In fact, we would like to show positivity

of the energy.

The purpose of this paper is to make a step towards this direction. Based on

paper of Chaix et al. [4] we showed [2] that the Hartree-Fock functional of the vacuum

1
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and of atoms with su�ciently small nuclear charge is nonnegative (with or without

self-generated magnetic �eld) provided the Sommerfeld �ne structure constant � = e

2

is also small where e is the elementary charge unit. These results included the physical

value � � 1=137 and atoms with atomic number up to 67 (holmium). Here we show

that positivity even holds when the number of nuclei is no longer restricted, in fact

without any essential loss: it holds again up to holmium for the physical value of �.

Our paper is organized as follows: For the readers convenience we �x some nota-

tions in Section 2 and Appendix B. Some inequalities used in the proof are collected

in Appendix A. Section 3 contains our positivity result for the Hartree-Fock func-

tional disregarding the magnetic �eld. Section 4 extends this to the case when the

self-generated magnetic �eld of the particle is taken into account on a classical level.

2 Definition of the Problem

Before stating our problem precisely, we �x our notations following [2]. (See also

Appendix B for additional notations.)

Dirac Operator The operator for a particle of charge �e, in magnetic �eld r�A,

and interacting with K nuclei of same charge is

D

A;V

:= � � (

1

i

r+ eA) +m� + e

2

V;

acting in the four components vector space H = L

2

(R

3

)
C

4

. The 4�4 matrices

� and � are the Dirac matrices in the standard representation [14]. The vector

potential A is assumed to be such that the magnetic induction B = r �A is

square integrable. The multiplication operator �eV is the electric potential of

K nuclei with charge eZ located at R

1

; : : : ;R

K

, i.e.,

V (x) := �

K

X

k=1

Z

jx�R

k

j

: (1)

Note that D

A;V

is self-adjoint with form domain H

1=2

(R

3

) 
 C

4

under the

assumption on e and Z stated in Theorems 1 and 2.

Energy of a State We de�ne D to be the set of all states � with �nite kinetic en-

ergy, i.e.,

P

i;j2Z

(D

0;0

)

i;j

�( : 	

�

i

	

j

: ) converges absolutely where colons denote

normal ordering where we �xed an orthonormal basis such that all basis vectors

e

i

are inH

1=2

(R

3

)
C

4

. We denote by (D

A;V

)

i;j

= (e

i

; D

A;V

e

j

), and byW

i;j;k;l

,

the matrix elements of the two-body Coulomb potential W (x;y) = 1=jx � yj,

i.e.,

W

i;j;k;l

= (e

i


 e

j

; We

k


 e

l

) =

Z

G

dx

Z

G

dy

e

i

(x)e

j

(y)e

k

(x)e

l

(y)

jx� yj

where dx denotes the product measure (Lebesgue measure in the �rst factor and

counting measure in the second factor) of G := R

3

� f1; 2; 3; 4g. The energy of
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a state � 2 D is thus

E

A;V;�

(�) =

X

i;j2Z

(D

A;V

)

i;j

�( : 	

�

i

	

j

: ) + �U

+

�

2

X

i;j;k;l2Z

W

i;j;k;l

�( : 	

�

i

	

�

j

	

l

	

k

: ) +

1

8�

Z

R

3

B

2

; (2)

with U :=

P

1��<k�K

Z

2

=jR

�

�R

k

j describing the energy of the nuclei.

Energy of Generalized Hartree-Fock States Following the proof of Theo-

rem 1 in [2], we can show that for all generalized Hartree-Fock states � 2 D

HF

(see Appendix B), the energy (2) can be rewritten as a functional of �

�

, the

1-pdm of �:

E

A;V;�

(�) = E

HF

A;V;�

(�

�

) := tr(D

A;V

) + �U +

�

2

Z

dxdy

j�(x; y)j

2

jx� yj

+ �D(�



; �



)

�

�

2

Z

dxdy

j(x; y)j

2

jx� yj

+

1

8�

Z

R

3

B

2

;

(3)

where D(f; g) := (1=2)

R

R

6

dxdyf(x)g(y)jx � yj

�1

is the Coulomb scalar prod-

uct, �(x; y) :=

P

i;j2Z

(e

i

; �e

j

)e

i

(x)e

j

(y), (x; y) :=

P

i;j2Z

(e

i

; e

j

)e

i

(x)e

j

(y)

(note the di�erence to �), and �



(x) :=

P

4

�=1

(x; x). (We use the notation

x := (x; �) 2 R

3

� f1; : : : ; 4g.) We also remind the reader that � = e

2

.

The main goal of this paper is to show positivity of E

A;V;�

(�) for quasi-free

states.

More notations can be found in Appendix B.

3 Stability of Relativistic Matter without Magnetic Field

We prove here, in the case A = 0, that the energy functional E

A;V;�

de�ned in (2) is

positive on generalized Hartree-Fock states for suitable choice of the electron subspace

and � and Z small enough. More precisely, H

+

:= [�

[0;1)

(D

0;V

eff

)](H) is the positive

spectral subspace associated to D

0;0

+ �V

e�

, where

V

e�

:= �Z

K

X

k=1

�

�

k

(x)

jx�R

k

j

: (4)

Here �

�

:= fx 2 R

3

: jx�R

�

j � jx�R

k

j;8k = 1; : : : ;Kg denotes the �-th Voronoi

cell and �

M

is the characteristic function of the set M . Our �rst result is

Theorem 1. Pick H

+

:= [�

[0;1)

(D

0;V

eff

)](H) as electron subspace. Let L

1=2;3

be the

constant in the Lieb-Thirring inequality

2

for moments of order 1=2. If � 2 (0; 1),

� 2 [0; 4=�] and Z 2 [0;1) are such that

1� �� �

2

�

2

=16� 4(1=�� 1)�

2

Z

2

> 0;

2

See Appendix A.
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Figure 1: The plain curve gives an estimate from below of the critical value of the

pair (�; �Z), for which the energy E

0;V;�

is positive. For the physical value � �

1=137:0359895 we obtain �Z � 0:489576, i.e., Z � 67:089649. The dashed curve is

the one obtained in [2] in the case of a single nucleus of atomic number Z

and

26296�L

1=2;3

(1=�� 1)

2

105(1� �� �

2

�

2

=16� 4(1=�� 1)�

2

Z

2

)

3=2

�

3

Z

2

� 1;

then E

0;V;�

is nonnegative on D

HF

.

Remark that we do not assume that 0 is not in the spectrum of D

0;V

eff

. This

means in particular that H

+

includes the null space of D

0;V

eff

. Note also that � is a

free parameter that we can use to optimize the value of � and Z. Instead of giving a

cumbersome analytic formula, Figure 1 gives the result when picking � suitably.

The proof of the theorem consists of �ve steps:

� Replace the Dirac operator D

0;V

by D

0;V

eff

which is done by reducing the

Coulomb potential V in each Voronoi cell to a one-nucleus/electron Coulomb

potential V

e�

.

� Dominate the exchange energy W

X

by the kinetic energy.

� Control the di�erence of the kinetic energy and the energy of the modi�ed Dirac

operator D

0;V

eff

by applying the Birman-Koplienko-Solomyak inequality [3] to

obtain a Schr�odinger like operator.

� Estimate the resulting expression by a localized Hardy inequality of Lieb and

Yau [12] going back to Dyson and Lenard [5].

� Apply the Lieb-Thirring inequality [10] for moment 1=2 to estimate the trace.

Proof. Set d

k

to be half the distance of the k-th nucleus to its nearest neighbor, then

the electrostatic inequality of Lieb and Yau [12], p. 196, Formula (4.4), implies with
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d�(x) := �(x)dx

E

0;V;�

� tr(D

0;V

) + �U + �D(�



; �



)�

�

2

Z

dxdy

j(x; y)j

2

jx� yj

� tr(D

0;V

eff

) +

�Z

2

8

K

X

k=1

d

�1

k

�

�

2

Z

dxdy

j(x; y)j

2

jx� yj

: (5)

Using Kato's inequality (see Appendix A) and then Inequalities (22) and (23) we get

2

�

4

X

s;t=1

Z

j(x; y)j

2

jx� yj

dxdy � tr[(jrj 
 1)

2

] � tr(jD

0;0

j

2

)

� tr(jD

0;0

j(

++

� 

��

)): (6)

So far we have not used the choice of the subspaces H

+

and H

�

speci�ed in the

hypothesis. In order to control the trace in (6) with the trace on the right hand

side of (5), we now use that H

+

is the positive spectral subspace of D

0;V

eff

, i.e.,

H

+

:=

�

�

[0;1)

(D

0;V

eff

)

�

(H). This implies tr(D

0;V

eff

) = tr(jD

0;V

eff

j(

++

� 

��

)),

and thus

E

0;V;�

� tr

h�

jD

0;V

eff

j �

��

4

jD

0;0

j

�

(

++

� 

��

)

i

+

�Z

2

8

K

X

k=1

d

�1

k

: (7)

If we bound below the trace on the right hand side of (7) by using the Birman-

Koplienko-Solomyak inequality [3] (see also Appendix A), and noting that 0 � 

++

�



��

� 1, we obtain

tr

��

jD

0;V

eff

j � ��jD

0;0

=4j

�

(

++

� 

��

)

�

� � tr

�

jD

0;V

eff

j � ��jD

0;0

j=4

�

�

� � tr

n

�

(D

0;V

eff

)

2

� �

2

�

2

(D

0;0

)

2

=16

�

1=2

�

o

� � tr

n

�

(1� �� �

2

�

2

=16)(D

0;0

)

2

� (1=�� 1)�

2

V

2

e�

�

1=2

�

o

(8)

where the subscript minus denotes the negative part (jAj � A)=2 of the operator A.

To bound the trace on the right hand side of (8) from below, we use the localized

Hardy inequality of Lieb and Yau [12, Formula (5.2)] (see also Appendix A), K times

with k = 1; : : : ;K and B

k

:= B

d

k

(R

k

), we have

Z

R

3

jrf(x)j

2

dx �

K

X

k=1

�

Z

B

k

�

1

4jx�R

k

j

2

�

1

d

2

k

(1 +

jx�R

k

j

2

4d

2

k

)

�

jf(x)j

2

dx

�

: (9)

Inequality (9) together with (8) gives

E

0;V;�

� � tr

("

�

1� �� �

2

�

2

=16� 4(1=�� 1)�

2

Z

2

�

(D

0;0

)

2

� (1=�� 1)�

2

Z

2

K

X

k=1

�

�

�

k

nB

k

(x)

jx�R

k

j

2

�

4

d

2

k

(1+

jx�R

k

j

2

4d

2

k

)�

B

k

(x)

�

#

1

2

�

)

+

�Z

2

8

K

X

k=1

d

�1

k

:

(10)
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Using the Lieb-Thirring inequality (see Appendix A) for the exponent 1=2 in (10)

implies

E

0;V;�

�

�L

1=2;3

(

1

�

� 1)

2

�

4

Z

4

(1� �� �

2

�

2

=16� 4(1=�� 1)�

2

Z

2

)

3=2

(

K

X

k=1

Z

�

k

nB

k

1

jx�R

k

j

4

dx

+16

K

X

k=1

Z

B

k

1

d

4

k

�

1 +

jx�R

k

j

2

4d

2

k

�

2

dx

)

+

�Z

2

8

K

X

k=1

d

�1

k

(11)

�

0

@

�Z

2

8

�

�(3 + 64(1=3+ 1=10 + 1=112)L

1=2;3

(1=�� 1)

2

�

4

Z

4

�

1� ��

�

2

�

2

16

� 4(1=�� 1)�

2

Z

2

�

3

2

1

A

K

X

k=1

d

�1

k

:

Note that the numerical value of the Lieb-Thirring constant L

1=2;3

does not exceed

0:06003. In (11), we have estimated the �rst term in the parenthesis with Inequality

(4.6) in [8].

4 Inclusion of the Magnetic Field

We now consider the whole energy functional E

A;V;�

given in (3), i.e., we include also

magnetic �elds B := r�A of �nite �eld energy.

Theorem 2. Take H

+

:= [�

[0;1)

(D

A;V

eff

)](H). If � 2 (0; 1), �

0

2 (0;1), � 2 [0; 4=�]

and Z 2 [0;1) verify

1� �� �

2

�

2

=16� 4(1=�� 1)�

2

Z

2

> 0; (12)

26296�L

1=2;3

(1=�� 1)

2

(1 + �

0

)

105(1� �� �

2

�

2

=16� 4(1=�� 1)�

2

Z

2

)

3=2

�

3

Z

2

� 1; (13)

and

8�L

1=2;3

(1� �)

2

(1 + 1=�

0

)

(1� �� �

2

�

2

=16� 4(1=�� 1)�

2

Z

2

)

3=2

� � 1 (14)

then E

A;V;�

is nonnegative on D

HF

.

Again, note that � and �

0

are free parameters that can be picked arbitrarily

within the given ranges. However, we refrain to give cumbersome optimal expressions.

Instead we { once again { optimize numerically, insert, and show the result in Figure

2.

Proof. By the (relativistic) diamagnetic inequality (see, e.g., the appendix of [8], see

also Appendix A)

�

2

Z

dx

Z

dyj(x; y)j

2

=jx� yj �

��

4

tr(

�

j � ir+

p

�Aj): (15)
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Figure 2: The plain curve gives an estimate from below of the critical value of the

pair (�; �Z), for which the energy E

A;V;�

is positive. For the physical value � �

1=137:0359895 we obtain �Z � 0:48899985, i.e., Z � 67:0105779. The dashed curve

shows the critical curve obtained in [2] in the case of a single nucleus. The numerical

value where both curves cut the abscissa is �

0

� 0:5235.

Now, following the proof of Theorem 1 using (5) to (8) and (15), we obtain for

H

+

:= [�

[0;1)

(D

A;V

eff

)](H) and for any � 2 (0; 1)

T := tr((D

A;0

+ �V

e�

))�

�

2

Z

j(x; y)j

2

jx� yj

dxdy

� � tr

(

�

(1� �)(D

A;0

)

2

� (

1

�

� 1)�

2

V

e�

2

�

�

2

�

2

16

j � ir+

p

�Aj

2

�

1

2

�

)

� � tr

(

�

(1� ��

�

2

�

2

16

)j � ir+

p

�Aj

2

� (

1

�

� 1)�

2

V

e�

2

� (1� �)

p

�jBj

�

1

2

�

)

:

Combining �rst (9) with the nonrelativistic diamagnetic inequality for Schr�odinger

operators (Simon [13], see also Appendix A) gives

Z

R

3

j(�ir+

p

�A)f(x)j

2

dx

�

K

X

k=1

�

Z

B

k

�

1

4jx�R

k

j

2

�

1

d

2

k

(1 +

jx�R

k

j

2

4d

2

k

)

�

jf(x)j

2

dx

�

: (16)

Using this inequality we are able to control the jx � R

k

j

�2

singularities for V

2

e�

in

balls of radius d

k

around R

k

by a piece of (�ir+

p

�A)

2

. This gives

T � � tr

("

�

1� ��

�

2

�

2

16

� 4(

1

�

� 1)�

2

Z

2

�

j � ir+

p

�Aj

2

� (1� �)

p

�jBj

�(

1

�

� 1)�

2

Z

2

K

X

k=1

�

�

�

k

nB

k

(x)

jx�R

k

j

2

�

4

d

2

k

(1 +

jx�R

k

j

2

4d

2

k

)�

B

k

(x)

�

#

1

2

�

)

Documenta Mathematica 3 (1998) 353{364



360 Bach, Barbaroux, Helffer, Siedentop

The Lieb-Thirring inequality for the moment 1=2 implies

T �

�L

1=2;3

�

1� ��

�

2

�

2

16

� 4(

1

�

� 1)�

2

Z

2

�

3=2

Z

R

3

(

(

1

�

� 1)�

2

Z

2

�

K

X

k=1

�

�

k

nB

k

(x)

jx�R

k

j

2

+4

K

X

k=1

1

d

2

k

�

1 +

jx�R

k

j

2

4d

2

k

�

�

B

k

(x)

�

+

p

�(1� �)jBj

)

2

dx

�

�L

1=2;3

�

1� ��

�

2

�

2

16

� 4(

1

�

� 1)�

2

Z

2

�

3=2

(

(1 + �

0

)(

1

�

� 1)

2

�

4

Z

4

�

�

K

X

k=1

Z

R

3

�

�

k

nB

k

(x)

jx�R

k

j

4

dx+ 16

K

X

k=1

1

d

4

k

Z

R

3

�

1 +

jx�R

k

j

2

4d

2

k

�

2

�

B

k

(x)

dx

�

+(1 +

1

�

0

)(1� �)

2

�

Z

R

3

B

2

dx

)

:

Collecting all terms and using the previous inequality gives with � := 3 + 64(1=3 +

1=10+ 1=112) { for any �

0

2 (0;1) and under assumptions (12)-(14) {

E

A;V;�

� tr

�

(D

A;0

+ �V

e�

)

�

�

�

2

Z

j(x; y)j

2

jx� yj

dxdy +

�Z

2

8

K

X

k=1

d

�1

k

+

Z

R

3

B

2

�

�Z

2

8

2

4

1�

8��L

1=2;3

(

1

�

� 1)

2

(1 + �

0

)�

3

Z

2

�

1� ��

�

2

�

2

16

� 4(

1

�

� 1)�

2

Z

2

�

3=2

3

5

K

X

k=1

d

�1

k

+

1

8�

2

4

1�

8�L

1=2;3

(1� �)

2

(1 +

1

�

0

)�

�

1� ��

�

2

�

2

16

� 4(

1

�

� 1)�

2

Z

2

�

3=2

3

5

Z

R

3

B

2

:

A Inequalities

BKS Inequality Let p � 1 and consider two non-negative self-adjoint linear oper-

ators C and D such that [C

p

� D

p

]

1=p

�

is trace class. Then [C � D]

�

is trace

class

tr[C �D]

�

� tr[C

p

�D

p

]

1=p

�

(Birman, Koplienko, and Solomyak [3], see also [9]).

Diamagnetic Inequalities LetA 2 L

2

loc

(R

3

;R

3

), then, for all u with juj 2 H

1

(R

3

)

Z

R

3

(rjuj)

2

�

Z

R

3

j(�ir�A)uj

2

(Simon [13]) and for all u 2 D(jpj)

(juj; jpj juj) � (u; jp+Aju)

(see [8, Formula (5.7)]). (Note that we allow for the right side to be in�nite.)
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Electrostatic Inequality Let � be any bounded Borel measure on R

3

, then with

the notations of Theorem 1 we have [12, Lemma 1]

�

2

Z

R

3

Z

R

3

d�(x)d�(y)

jx� yj

� �

Z

R

3

(V (x) � V

e�

(x))d�(x) + �U �

�Z

2

8

K

X

k=1

1

d

k

:

Kato's Inequality Let H

0

be the closure of the essentially self-adjoint operator

�� on C

1

0

(R

3

). Then for u 2 D(H

1=2

0

) and a 2 R

3

, ([7, chap. V, x5, Formula

(5.33)])

Z

R

3

jx� aj

�1

ju(x)j

2

dx �

�

2

Z

R

3

jkj jû(k)j

2

dk �

�

2

(jH

0

ju; u):

Localized Hardy Inequality Let R be any point in R

3

and d any positive real

number. If B

d

(R) denotes the ball in R

3

with center R and radius d, then, for

any f 2 L

2

(B

d

(R)) such that rf 2 L

2

(B

d

(R)) we have [12, Formula (5.2)]

Z

B

d

(R)

jrf(x)j

2

dx �

1

d

2

Z

B

d

(R)

�

d

2

4jx�Rj

2

� (1 +

jx�Rj

2

4d

2

)

�

jf(x)j

2

dx:

Lieb-Thirring Inequality (d = 3,  = 1=2) Given a positive constant �, a real

vector �eld A with square integrable gradients, and a real valued function V in

L

2

(R

3

), we have for V

+

:= (jV j+ V )=2

tr

n

�

(�i�r�A)

2

� V

�

1=2

�

o

�

L

1=2;3

�

3

Z

R

3

V

2

+

(see Lieb and Thirring [11] for the case A = 0 and Avron, Herbst, and Simon

[1] for the general case).

B Notations

We collect some additional notation that was already used in [2]:

Fock Space and Field Operators For a given orthogonal decomposition

L

2

(R

3

) 
 R

4

= H

+

� H

�

into the one-particle electron and positron sub-

space, one constructs, following [14] (see also [6] and [2]), the Fock space F. We

denote the orthogonal projections onto H

+

and H

�

are denoted by P

H

+

and

P

H

�

respectively. For any f 2 H, we also denote the particle annihilation (re-

spectively creation) operator by a(f) (respectively a

�

(f)) and the antiparticle

annihilation (respectively creation) operator by b(f) (respectively b

�

(f)). (Note

that { according to the convention used in [6] and also here { a(f) = a(P

H

+

f)

and b(f) = b(P

H

�

f).) They ful�ll the canonical anticommutation relations for

all f and g in H

fa(f); a(g)g = fa

�

(f); a

�

(g)g = fb(f); b(g)g = fb

�

(f); b

�

(g)g = 0; (17)

fa(f); a

�

(g)g = (f; P

H

+

g) ; fb

�

(f); b(g)g = (f; P

H

�

g) (18)
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where f ; g denotes the anticommutator.

For any f 2 H, the �eld operator is the antilinear bounded operator

	(f) := a(f) + b

�

(f)

acting in F. Its adjoint is linear and equal to 	

�

(f) = a

�

(f) + b(f). Given an

orthonormal basis f: : : ; e

�2

; e

�1

; e

0

; e

1

; : : : g of H, where vectors with negative

indices are in H

�

and vectors with nonnegative indices are in H

+

, we denote

a

i

:= a(e

i

), a

�

i

:= a

�

(e

i

), b

i

:= b(e

i

), b

�

i

:= b

�

(e

i

), 	

i

:= a

i

+b

�

i

and 	

�

i

:= a

�

i

+b

i

.

One-Particle Density Matrix A trace class operator � on H�H is called a one-

particle density operator (1-pdm), if

� � = �

�

and �1 � � � 1.

�

� =

�

 �

�

�

�

�

(19)

with



�

=  and �

t

= �� (20)

where the superscript t refers to transposition, i.e., given our basis �xed

initially, the matrix elements of B

t

are (B

t

)

i;j

:= B

j;i

.

Since the Hilbert space H is the orthogonal sum of H

+

and H

�

, we can write

� =

0

B

B

@



++



+�

�

++

�

+�



�+



��

�

�+

�

��

�

�

++

�

�

�+

��

++

��

+�

�

�

+�

�

�

��

��

�+

��

��

1

C

C

A

with 

++

:= P

H

+

P

H

+

, 

+�

:= P

H

+

P

H

�

, 

�+

:= P

H

�

P

H

+

= 

�

+�

, and



��

:= P

H

�

P

H

�

appropriately restricted. Similarly �

++

:= P

H

+

�P

H

+

,

�

+�

:= P

H

+

�P

H

�

, �

�+

:= P

H

�

�P

H

+

= ��

t

+�

, and �

��

:= P

H

�

�P

H

�

also

appropriately restricted.

For each state � 2 D, we de�ne the associated 1-pdm �

�

by its matrix elements

as

(h; �

�

g) = �

�

: [	

�

(g

1

) + 	(~g

2

)][	(h

1

) + 	

�

(

~

h

2

)] :

�

(21)

where h := (h

1

; h

2

) 2 H

2

, g := (g

1

; g

2

) 2 H

2

and given f =

P

k2Z

�

k

e

k

, we

de�ne

~

f =

P

k2Z

�

k

e

k

. The colons denote normal ordering, i.e., anticommuting

all stared operators to the left ignoring the anticommutators. Note that for a

�xed basis, �

�

is uniquely de�ned. The matrix elements of �

�

are thus 

i;j

=

�( : 	

�

j

	

i

: ), (

++

)

i;j

= �(a

�

j

a

i

), (

+�

)

i;j

= �(b

j

a

i

), (

��

)

i;j

= ��(b

�

i

b

j

) and

�

i;j

= �( : 	

j

	

i

: ), (�

++

)

i;j

= �(a

j

a

i

), (�

+�

)

i;j

= �(b

�

j

a

i

), (�

��

)

i;j

= �(b

�

j

b

�

i

).
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We also recall that



2

++

+ 

+�



�+

� 

++

; (22)



�+



+�

+ 

2

��

� �

��

: (23)

holds [2].

States { Generalized Hartree-Fock States A state is a bounded positive lin-

ear form � on the space of bounded operators on F with �(1) = 1. The set of

generalized Hartree-Fock states (or quasi-free states with �nite particle number)

is the set of states � that ful�ll

i) For all �nite sequences of operators d

1

; d

2

; � � � ; d

2K

, where d

i

stands for

a(f), a

�

(f), b(f), or b

�

(f), we have �(d

1

d

2

� � � d

2K�1

) = 0 and

�(d

1

d

2

� � � d

2K

) =

X

�2S

sgn(�)�(d

�(1)

d

�(2)

) � � � �(d

�(2K�1)

d

�(2K)

)

where S is the set of permutations � such that �(1) < �(3) < � � � <

�(2K � 1) and �(2i � 1) < �(2i) for all 1 � i � K. This implies in

particular

�(d

1

d

2

d

3

d

4

) = �(d

1

d

2

)�(d

3

d

4

)� �(d

1

d

3

)�(d

2

d

4

) + �(d

1

d

4

)�(d

2

d

3

): (24)

ii) The state � has a �nite particle number, i.e., if N :=

P

i2Z

(a

�

i

a

i

+ b

�

i

b

i

)

denotes the particle number operator, we have �(N) <1, or equivalently,

written in terms of the one-particle density matrix, tr(

++

� 

��

) <1.

We write D

HF

for the set of all generalized Hartree-Fock states � with �nite

kinetic energy, i.e.,

P

i;j2Z

(D

0;0

)

i;j

�( : 	

�

i

	

j

: ) is absolutely convergent.

References

[1] J. Avron, I. Herbst, and B. Simon. Schr�odinger operators with magnetic �elds.

I. General interactions. Duke Math. J., 45(4):847{833, December 1978.

[2] Volker Bach, Jean-Marie Barbaroux, Bernard Hel�er, and Heinz Siedentop. On

the stability of the relativistic electron-positron �eld. Commun. Math. Phys.,

1999.

[3] M. Sh. Birman, L. S. Koplienko, and M. Z. Solomyak. Estimates for the spec-

trum of the di�erence between fractional powers of two self-adjoint operators.

Soviet Mathematics, 19(3):1{6, 1975. Translation of Izv. Vys�s. U�cebn. Zaved.

Matematika.

[4] P. Chaix, D. Iracane, and P. L. Lions. From quantum electrodynamics to mean-

�eld theory: II. Variational stability of the vacuum of quantum electrodynamics

in the mean-�eld approximation. J. Phys. B., 22(23):3815{3828, December 1989.

[5] Freeman J. Dyson and Andrew Lenard. Stability of matter I. J. Math. Phys.,

8:423{434, 1967.

Documenta Mathematica 3 (1998) 353{364



364 Bach, Barbaroux, Helffer, Siedentop

[6] Bernard Hel�er and Heinz Siedentop. Form perturbations of the second quantized

Dirac �eld. Mathematical Physics Electronic Journal, Accepted for publication.

[7] Tosio Kato. Perturbation Theory for Linear Operators, volume 132 of

Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 1 edi-

tion, 1966.

[8] Elliott H. Lieb, Michael Loss, and Heinz Siedentop. Stability of relativistic matter

via Thomas-Fermi theory. Helv. Phys. Acta, 69(5/6):974{984, December 1996.

[9] Elliott H. Lieb, Heinz Siedentop, and Jan Philip Solovej. Stability and Instabil-

ity of Relativistic Electrons in Classical Electromagnetic Fields. J. Stat. Phys.,

89(1/2):37{59, 1997.

[10] Elliott H. Lieb and Walter E. Thirring. Bound for the kinetic energy of Fermions

which proves the stability of matter. Phys. Rev. Lett., 35(11):687{689, September

1975. Erratum: Phys. Rev. Lett., 35(16):1116, October 1975.

[11] Elliott H. Lieb and Walter E. Thirring. Inequalities for the moments of the eigen-

values of the Schr�odinger Hamiltonian and their relation to Sobolev inequalities.

In Elliott H. Lieb, Barry Simon, and Arthur S. Wightman, editors, Studies in

Mathematical Physics: Essays in Honor of Valentine Bargmann. Princeton Uni-

versity Press, Princeton, 1976.

[12] Elliott H. Lieb and Horng-Tzer Yau. The stability and instability of relativistic

matter. Commun. Math. Phys., 118:177{213, 1988.

[13] Barry Simon. Kato's inequality and the comparison of semigroups. J. Funct.

Anal., 32(1):97{101, 1979.

[14] Bernd Thaller. The Dirac Equation. Texts and Monographs in Physics. Springer-

Verlag, Berlin, 1 edition, 1992.

Volker Bach

Fachbereich Mathematik

Technische Universit�at Berlin

D-10623 Berlin

Germany

Jean-Marie Barbaroux

Lehrstuhl f�ur Mathematik I

Universit�at Regensburg

D-93040 Regensburg

Germany

Bernard Hel�er

D�epartement de math�ematiques

Bâtiment 425

Universit�e Paris-Sud

F-91405 Orsay C�edex

France

Heinz Siedentop

Lehrstuhl f�ur Mathematik I

Universit�at Regensburg

D-93040 Regensburg

Germany

Documenta Mathematica 3 (1998) 353{364


