Visibility of Mordell-Weil Groups

William A. Stein ${ }^{1}$

Received: March 8, 2005
Revised: August 21, 2007
Communicated by Stephen Lichtenbaum

Abstract

We introduce a notion of visibility for Mordell-Weil groups, make a conjecture about visibility, and support it with theoretical evidence and data. These results shed new light on relations between Mordell-Weil and Shafarevich-Tate groups.

11G05, 11G10, 11G18, 11Y40
Keywords and Phrases: Elliptic Curves, Abelian Varieties, MordellWeil Groups, Shafarevich-Tate Groups, Visibility

1 Introduction

Consider an exact sequence $0 \rightarrow C \rightarrow B \rightarrow A \rightarrow 0$ of abelian varieties over a number field K. We say that the covering $B \rightarrow A$ is optimal since its kernel C is connected. As introduced in [LT58], there is a corresponding long exact sequence of Galois cohomology

$$
0 \rightarrow C(K) \rightarrow B(K) \rightarrow A(K) \xrightarrow{\delta} \mathrm{H}^{1}(K, C) \rightarrow \mathrm{H}^{1}(K, B) \rightarrow \mathrm{H}^{1}(K, A) \rightarrow \cdots
$$

The study of the Mordell-Weil group $A(K)$ is central in arithmetic geometry. For example, the Birch and Swinnerton-Dyer conjecture (BSD conjecture) of [Bir71, Tat66]), which is one of the Clay Math Problems [Wil00], asserts that the rank r of $A(K)$ equals the ordering vanishing of $L(A, s)$ at $s=1$, and also gives a conjectural formula for $L^{(r)}(A, 1)$ in terms of the invariants of A.

The group $\mathrm{H}^{1}(K, A)$ is also of interest in connection with the BSD conjecture, because it contains the Shafarevich-Tate group

$$
\amalg(A / K)=\operatorname{Ker}\left(\mathrm{H}^{1}(K, A) \rightarrow \bigoplus_{v} \mathrm{H}^{1}\left(K_{v}, A\right)\right),
$$

which is the most mysterious object appearing in the BSD conjecture.

[^0]Definition 1.0.1 (Visibility). The visible subgroup of $\mathrm{H}^{1}(K, C)$ relative to the embedding $C \hookrightarrow B$ is

$$
\begin{aligned}
\operatorname{Vis}_{B} \mathrm{H}^{1}(K, C) & =\operatorname{Ker}\left(\mathrm{H}^{1}(K, C) \rightarrow \mathrm{H}^{1}(K, B)\right) \\
& \cong \operatorname{Coker}(B(K) \rightarrow A(K)) .
\end{aligned}
$$

The visible quotient of $A(K)$ relative to the optimal covering $B \rightarrow A$ is

$$
\begin{aligned}
\operatorname{Vis}^{B}(A(K)) & =\operatorname{Coker}(B(K) \rightarrow A(K)) \\
& \cong \operatorname{Vis}_{B} \mathrm{H}^{1}(K, C)
\end{aligned}
$$

We say an abelian variety over \mathbb{Q} is modular if it is a quotient of the modular Jacobian $J_{1}(N)=\operatorname{Jac}\left(X_{1}(N)\right)$, for some N. For example, every elliptic curve over \mathbb{Q} is modular [BCDT01].

This paper gives evidence toward the following conjecture that Mordell-Weil groups should give rise to many visible Shafarevich-Tate groups.

Conjecture 1.0.2. Let A be an abelian variety over a number field K. For every integer m, there is an exact sequence $0 \rightarrow C \rightarrow B \rightarrow A \rightarrow 0$ such that:

1. The image of $B(K)$ in $A(K)$ is contained in $m A(K)$, so $A(K) / m A(K)$ is a quotient of $\operatorname{Vis}^{B}(A(K))$.
2. If $K=\mathbb{Q}$ and A is modular, then B is modular.
3. The rank of C is zero.
4. We have $\operatorname{Coker}(B(K) \rightarrow A(K)) \subset \amalg(C / K)$, via the connecting homomorphism.

In [Ste04] we give the following computational evidence for this conjecture.
Theorem 1.0.3. Let E be the rank 1 elliptic curve $y^{2}+y=x^{3}-x$ of conductor 37. Then Conjecture 1.0.2 is true for all primes $m=p<25000$ with $p \neq 2,37$.

Let $f=\sum a_{n} q^{n}$ be the newform associated to the elliptic curve E of Theorem 1.0.3. Suppose p is one of the primes in the theorem. Then there is an $\ell \equiv 1(\bmod p)$ and a surjective Dirichlet character $\chi:(\mathbb{Z} / \ell \mathbb{Z})^{*} \rightarrow \mu_{p}$ such that $L(f \otimes \chi, 1) \neq 0$. The C of the theorem belongs to the isogeny class of abelian varieties associated to f^{χ} and C has dimension $p-1$.

In general, we expect the construction of [Ste04] to work for any elliptic curve and any odd prime p of good reduction. The main obstruction to proving that it does work is proving a nonvanishing result for the special values $L\left(f^{\chi}, 1\right)$. In [Ste04], we verified this hypothesis using modular symbols for $p<25000$.

A surprising observation that comes out of the construction of [Ste04] is that $\# \amalg(C)=p \cdot n^{2}$, where n^{2} is an integer square. We thus obtained the first ever examples of abelian varieties whose Shafarevich-Tate groups have order neither a square nor twice a square.

1.1 Contents

In Section 2, we give a brief review of results about visibility of ShafarevichTate groups. In Section 3, we give evidence for Conjecture 1.0 .2 using results of Kato, Lichtenbaum and Mazur. Section 4 is about bounding the dimension of the abelian varieties in which Mordell-Weil groups are visible. We prove that every Mordell-Weil group is 2-visible relative to an abelian surface. In Section 5, we describe how to construct visible quotients of Mordell-Weil groups, and carry out a computational study of relations between Mordell-Weil groups of elliptic curves and the arithmetic of rank 0 factors of $J_{0}(N)$.

1.2 Acknowledgement

The author had extremely helpful conversations with Barry Mazur and Grigor Grigorov. Proposition 3.0.3 was proved jointly with Ken Ribet. The author was supported by NSF grant DMS-0400386. He used MAGMA [BCP97] and SAGE [Sage07] for computing the data in Section 5.

2 Review of Visibility of Galois Cohomology

In this section, we briefly review visibility of elements of $\mathrm{H}^{1}(K, A)$, as first introduced by Mazur in [CM00, Maz99], and later developed by Agashe and Stein in [Aga99a, AS05, AS02]. We describe two basic results about visibility, and in Section 2.2 we discuss modularity of elements of $\mathrm{H}^{1}(K, A)$.

Consider an exact sequence of abelian varieties

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

over a number field K. Elements of $\mathrm{H}^{0}(K, C)$ are points, so they are relatively easy to "visualize", but elements of $\mathrm{H}^{1}(K, A)$ are mysterious.

There is a geometric way to view elements of $\mathrm{H}^{1}(K, A)$. The Weil-Chatalet group $\mathrm{WC}(A / K)$ of A over K is the group of isomorphism classes of principal homogeneous spaces for A, where a principal homogeneous space is a variety X and a simply-transitive action $A \times X \rightarrow X$. Thus X is a twist of A as a variety, but $X(K)=\emptyset$, unless X is isomorphic to A. Also, the elements of $\amalg(A)$ correspond to the classes of X that have a K_{v}-rational point for all places v. By [LT58, Prop. 4], there is an isomorphism between $\mathrm{H}^{1}(K, A)$ and $\mathrm{WC}(A / K)$.

In [CM00], Mazur introduced the visible subgroup of H^{1} as in Definition 1.0 .1 in order to help unify diverse constructions of principal homogeneous spaces. Many papers were subsequently written about visibility, including [Aga99b, Maz99, Kle01, AS02, MO03, DWS03, AS05, Dum01].
Remark 2.0.1. Note that $\operatorname{Vis}_{B} \mathrm{H}^{1}(K, A)$ depends on the embedding of A into B. For example, if $B=B_{1} \times A$, then there could be nonzero visible elements if A is embedded into the first factor, but there will be no nonzero visible elements if A is embedded into the second factor.

A connection between visibility and $\mathrm{WC}(A / K)$ is as follows. Suppose

$$
0 \rightarrow A \rightarrow B \xrightarrow{\pi} C \rightarrow 0
$$

is an exact sequence of abelian varieties and that $c \in \mathrm{H}^{1}(K, A)$ is visible in B. Thus there exists $x \in C(K)$ such that $\delta(x)=c$, where $\delta: C(K) \rightarrow \mathrm{H}^{1}(K, A)$ is the connecting homomorphism. Then $X=\pi^{-1}(x) \subset B$ is a translate of A in B, so the group law on B gives X the structure of principal homogeneous space for A, and this homogeneous space in $\mathrm{WC}(A / K)$ corresponds to c.

2.1 BASIC FACTS

Two basic facts about visibility are that the visible subgroup of $\mathrm{H}^{1}(K, A)$ in B is finite, and that each element of $\mathrm{H}^{1}(K, A)$ is visible in some B.
Lemma 2.1.1. The group $\operatorname{Vis}_{B} \mathrm{H}^{1}(K, A)$ is finite.
Proof. Let $C=B / A$. By the Mordell-Weil theorem $C(K)$ is finitely generated. The group $\operatorname{Vis}_{B} \mathrm{H}^{1}(K, A)$ is a homomorphic image of $C(K)$ so it is finitely generated. On the other hand, it is a subgroup of $\mathrm{H}^{1}(K, A)$, so it is a torsion group. But a finitely generated torsion abelian group is finite.

Proposition 2.1.2. Let $c \in \mathrm{H}^{1}(K, A)$. Then there exists an abelian variety B and an embedding $A \hookrightarrow B$ such that c is visible in B. Moreover, B can be chosen to be a twist of a power of A.
Proof. See [AS02, Prop. 1.3] for a cohomological proof or [JS05, §5] for an equivalent geometric proof. Johan de Jong also proved that everything is visible somewhere in the special case $\operatorname{dim}(A)=1$ using Azumaya algebras, Néron models, and étale cohomology, as explained in [CM00, pg. 17-18], but his proof gives no (obvious) specific information about the structure of B.

2.2 Modularity

Usually one focuses on visibility of elements in $\amalg(A) \subset \mathrm{H}^{1}(K, A)$. The papers [CM00, AS02, AS05] contain a number of results about visibility in various special cases, and tables involving elliptic curves and modular abelian varieties.

For example, if $A \subset J_{0}(389)$ is the 20 -dimensional simple newform abelian variety, then we show that

$$
\mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \cong E(\mathbb{Q}) / 5 E(\mathbb{Q}) \subset \amalg(A)
$$

where E is the elliptic curve of conductor 389 . The divisibility $5^{2} \mid \# Ш(A)$ is as predicted by the BSD conjecture. The paper [AS05] contains a few dozen other examples like this; in most cases, explicit computational construction of the Shafarevich-Tate group seems hopeless using any other known techniques.

The author has conjectured that if A is a modular abelian variety, then every element of $\amalg(A)$ is modular, i.e., visible in a modular abelian variety. It is a theorem that if $c \in \amalg(A)$ has order either 2 or 3 and A is an elliptic curve, then c is modular (see [JS05]).

3 Results Toward Conjecture 1.0.2

The main result of this section is a proof of parts 1 and 2 of Conjecture 1.0.2 for elliptic curves over \mathbb{Q}. We prove more generally that Mazur's conjecture on finite generatedness of Mordell-Weil groups over cyclotomic \mathbb{Z}_{p}-extensions implies part 1 of Conjecture 1.0.2. Then we observe that for elliptic curves over \mathbb{Q}, Mazur's conjecture is known, and prove that the abelian varieties that appear in our visibility construction are modular, so parts 1 and 2 of Conjecture 1.0.2 are true for elliptic curves over \mathbb{Q}.

For a prime p, the cyclotomic \mathbb{Z}_{p}-extension of \mathbb{Q} is an extension $\mathbb{Q}_{p} \infty$ of \mathbb{Q} with Galois group \mathbb{Z}_{p}; also $\mathbb{Q}_{p^{\infty}}$ is contained in the cyclotomic field $\mathbb{Q}\left(\mu_{p^{\infty}}\right)$. We let $\mathbb{Q}_{p^{n}}$ denote the unique subfield of $\mathbb{Q}_{p^{\infty}}$ of degree p^{n} over \mathbb{Q}. If K is an arbitrary number field, the cyclotomic \mathbb{Z}_{p}-extension of K is $K_{p \infty}=K \cdot \mathbb{Q}_{p \infty}$. We denote by $K_{p^{n}}$ the unique subfield of $K_{p \infty}$ of degree p^{n} over K. The extension $K_{p \infty}$ of K decomposes as a tower

$$
K=K_{p^{0}} \subset K_{p^{1}} \subset \cdots \subset K_{p^{n}} \subset \cdots \subset K_{p^{\infty}}=\bigcup_{n=0}^{\infty} K_{p^{n}}
$$

Mazur hints at the following conjecture in [Maz78] and [RM05, §3]:
Conjecture 3.0.1 (Mazur). If A is an abelian variety over a number field K and p is a prime, then $A\left(K_{p \infty}\right)$ is a finitely generated abelian group.

Let L / K be a finite extension of number fields and A an abelian variety over K. In much of the rest of this paper we will use the restriction of scalars $R=\operatorname{Res}_{L / K}\left(A_{L}\right)$ of A viewed as an abelian variety over L. Thus R is an abelian variety over K of dimension $[L: K]$, and R represents the following functor on the category of K-schemes:

$$
S \mapsto E_{L}\left(S_{L}\right)
$$

If L / K is Galois, then we have an isomorphism of $\operatorname{Gal}(\overline{\mathbb{Q}} / K)$-modules

$$
R(\overline{\mathbb{Q}})=A(\overline{\mathbb{Q}}) \otimes_{\mathbb{Z}} \mathbb{Z}[\operatorname{Gal}(L / K)]
$$

where $\tau \in \operatorname{Gal}(\overline{\mathbb{Q}} / K)$ acts on $\sum P_{\sigma} \otimes \sigma$ by

$$
\tau\left(\sum P_{\sigma} \otimes \sigma\right)=\sum \tau\left(P_{\sigma}\right) \otimes \tau_{\mid L} \cdot \sigma
$$

where $\tau_{\mid L}$ is the image of τ in $\operatorname{Gal}(L / K)$.
Theorem 3.0.2. Conjecture 3.0.1 implies part 1 of Conjecture 1.0.2. More precisely, if A / K is an abelian variety, m is a positive integer, and $A\left(K_{p^{\infty}}\right)$ is finitely generated for each $p \mid m$, then there is an optimal covering of the form $B=\operatorname{Res}_{L / K}\left(A_{L}\right) \rightarrow A$ such that L is abelian over K and the image of $B(K)$ in $A(K)$ is contained in $m A(K)$.

Proof. Fix a prime $p \mid m$. Let $M=K_{p \infty}$. Because $A(M)$ is finitely generated, some finite set of generators must be in a single sufficiently large $A\left(K_{p^{n}}\right)$, and for this n we have $A(M)=A\left(K_{p^{n}}\right)$. For any integer $j>0$ let

$$
R_{j}=\operatorname{Res}_{K_{p j} / K}\left(A_{K_{p} j}\right)
$$

Then, as explained in [Ste04], the trace map induces an exact sequence

$$
0 \rightarrow B_{j} \rightarrow R_{j} \xrightarrow{\pi_{j}} A \rightarrow 0
$$

with B_{j} an abelian variety. Then for any $j \geq n, A\left(K_{p^{j}}\right)=A\left(K_{p^{n}}\right)$, so

$$
\begin{aligned}
\operatorname{Vis}^{B_{j}}(A(K)) & \cong A(K) / \pi_{j}\left(R_{j}(K)\right) \\
& =A(K) / \operatorname{Tr}_{K_{p^{j}} / K}\left(A\left(K_{p^{j}}\right)\right) \\
& =A(K) / \operatorname{Tr}_{K_{p^{n}} / K}\left(\operatorname{Tr}_{K_{p^{j}} / K_{p^{n}}}\left(A\left(K_{p^{j}}\right)\right)\right) \\
& =A(K) / \operatorname{Tr}_{K_{p^{n}} / K}\left(\operatorname{Tr}_{K_{p^{j}} / K_{p^{n}}}\left(A\left(K_{p^{n}}\right)\right)\right) \\
& =A(K) / \operatorname{Tr}_{K_{p^{n}} / K}\left(p^{j-n} A\left(K_{p^{n}}\right)\right) \\
& =A(K) / p^{j-n} \operatorname{Tr}_{K_{p^{n}} / K}\left(A\left(K_{p^{n}}\right)\right) \\
& \rightarrow A(K) / p^{j-n} A(K),
\end{aligned}
$$

where the last map is surjective since

$$
\operatorname{Tr}_{K_{p^{n}} / K}\left(A\left(K_{p^{n}}\right)\right) \subset A(K)
$$

Arguing as above, for each prime $p \mid m$, we find an extension L_{p} of K of degree a power of p such that $\operatorname{Tr}_{L_{p} / K}\left(A\left(L_{p}\right)\right) \subset p^{\nu_{p}} A(K)$, where $\nu_{p}=\operatorname{ord}_{p}(m)$. Let L be the compositum of the fields L_{p}. Then for each $p \mid m$,

$$
\operatorname{Tr}_{L / K}(A(L))=\operatorname{Tr}_{L_{p} / K}\left(\operatorname{Tr}_{L / L_{p}}(A(L))\right) \subset \operatorname{Tr}_{L_{p} / K}\left(A\left(L_{p}\right)\right) \subset p^{\nu_{p}} A(K)
$$

Thus

$$
\begin{equation*}
\operatorname{Tr}_{L / K}(A(L)) \subset \bigcap_{p \mid m} p^{\nu_{p}} A(K)=m A(K) \tag{1}
\end{equation*}
$$

where for the last equality we view $A(K)$ as a finite direct sum of cyclic groups.
Let $R=\operatorname{Res}_{L / K}\left(A_{L}\right)$. Then trace induces an optimal cover $R \rightarrow A$, and (1) implies that we have the required surjective map

$$
\operatorname{Vis}^{R}(A(K))=A(K) / \operatorname{Tr}_{L / K}(A(L)) \rightarrow A(K) / m A(K) .
$$

We will next prove parts 1 and 2 of Conjecture 1.0 .2 for elliptic curves over \mathbb{Q} by observing that Conjecture 3.0 .1 is a theorem of Kato in this case. We first prove a modularity property for restriction of scalars. Recall that a modular abelian variety is a quotient of $J_{1}(N)$.

Proposition 3.0.3. If A is a modular abelian variety over \mathbb{Q} and K is an abelian extension of \mathbb{Q}, then $\operatorname{Res}_{K / \mathbb{Q}}\left(A_{K}\right)$ is also a modular abelian variety.

Proof. Since A is modular, A is isogenous to a product of abelian varieties A_{f} attached to newforms in $S_{2}\left(\Gamma_{1}(N)\right)$, for various N. Since the formation of restriction of scalars commutes with products, it suffices to prove the proposition under the hypothesis that $A=A_{f}$ for some newform f. Let $R=\operatorname{Res}_{K / \mathbb{Q}}\left(A_{f}\right)$. As discussed in [Mil72, pg. 178], for any prime p there is an isomorphism of \mathbb{Q}_{p}-adic Tate modules

$$
V_{p}(R) \cong \operatorname{Ind}_{G_{K}}^{G_{Q}} V_{p}\left(A_{K}\right)
$$

The induced representation on the right is the direct sum of twists of $V_{p}\left(A_{K}\right)$ by characters of $\operatorname{Gal}(K / \mathbb{Q})$. This is isomorphic to the \mathbb{Q}_{p}-adic Tate module of some abelian variety $P=\prod_{\chi} A_{g \chi}$, where χ runs through certain Dirichlet characters corresponding to the abelian extension K / \mathbb{Q}, and g runs through certain $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-conjugates of f, and g^{χ} denotes the twist of g by χ. Falting's theorem (see e.g., $[$ Fal86, §5]) then gives us the desired isogeny $R \rightarrow P$.

It is not necessary to use the full power of Falting's theorem to prove this proposition, since Ribet [Rib80] gave a more elementary proof of Falting's theorem in the case of modular abelian varieties. However, we must work some to apply Ribet's theorem, since we do not know yet that R is modular.

Let R and P be as above. Over $\overline{\mathbb{Q}}$, the abelian variety A is isogenous to a power of a simple abelian variety B, since if more than one non-isogenous simple occurred in the decomposition of $A / \overline{\mathbb{Q}}$, then $\operatorname{End}(A / \overline{\mathbb{Q}})$ would not be a matrix ring over a (possibly skew) field (see [Rib92, §5]). For any character χ, by the $(3) \Longrightarrow(2)$ assertion of [Rib80, Thm. 4.7], the abelian varieties A_{f} and $A_{f \times}$ are isogenous over $\overline{\mathbb{Q}}$ to powers of the same abelian variety A^{\prime}, hence to powers of the simple B. A basic property of restriction of scalars is that R_{K} is isomorphic to a power of $\left(A_{f}\right)_{K}$, hence R_{K} is isogenous over $\overline{\mathbb{Q}}$ to a power of B. Thus R and P are both isogenous over $\overline{\mathbb{Q}}$ to a power of B, so R is isogenous to P over $\overline{\mathbb{Q}}$, since they have the same dimension, as their Tate modules are isomorphic. Let L be a Galois number field over which such an isogeny is defined. Consider the natural $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-equivariant inclusion

$$
\begin{equation*}
\operatorname{Hom}\left(R_{\mathbb{Q}}, P_{\mathbb{Q}}\right) \otimes \mathbb{Q}_{p} \hookrightarrow \operatorname{Hom}_{\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})}\left(V_{p}(R), V_{p}(P)\right) . \tag{2}
\end{equation*}
$$

By Ribet's proof of the Tate conjecture for modular abelian varieties [Rib80], the inclusion

$$
\begin{equation*}
\operatorname{Hom}\left(R_{L}, P_{L}\right) \otimes \mathbb{Q}_{p} \hookrightarrow \operatorname{Hom}_{\operatorname{Gal}(\overline{\mathbb{Q}} / L)}\left(V_{p}(R), V_{p}(P)\right) \tag{3}
\end{equation*}
$$

is an isomorphism, since there is an isogeny $P_{L} \rightarrow R_{L}$ and P is modular. But then (2) must also be an isomorphism, since (2) is the result of taking $\operatorname{Gal}(L / \mathbb{Q})$-invariants of both sides of (3).

By construction of P, there is an isomorphism $V_{p}(R) \cong V_{p}(P)$ of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ modules, so by (2) there is an isomorphism in $\operatorname{Hom}\left(R_{\mathbb{Q}}, P_{\mathbb{Q}}\right) \otimes \mathbb{Q}_{p}$. Thus there is
a \mathbb{Q}_{p}-linear combination of elements of $\operatorname{Hom}\left(R_{\mathbb{Q}}, P_{\mathbb{Q}}\right)$ that has nonzero determinant. However, if a \mathbb{Q}_{p}-linear combination of matrices has nonzero determinant, then some \mathbb{Q}-linear combination does, since the determinant is a polynomial function of the coefficients and \mathbb{Q} is dense in \mathbb{Q}_{p}. Thus there is an isogeny $R \rightarrow P$ defined over \mathbb{Q}, so R is modular.

Corollary 3.0.4. Parts 1 and 2 of Conjecture 1.0.2 are true for every elliptic curve E over \mathbb{Q}.

Proof. Suppose p is a prime, and let $\mathbb{Q}_{p \infty}$ be the cyclotomic \mathbb{Z}_{p} extension of \mathbb{Q}. By [BCDT01], E is a modular elliptic curve, so work of Rohrlich [Roh84], Kato [Kat04, Sch98], and Serre [Ser72] implies that $E\left(\mathbb{Q}_{p^{\infty}}\right)$ is finitely generated (see [Rub98, Cor. 8.2]). Theorem 3.0.2 implies that if $x \in E(\mathbb{Q})$ and $m \mid$ order (x), then x is m-visible relative to an optimal cover of E by a restriction of scalars B from an abelian extension. Then Proposition 3.0 .3 implies that B is modular.

4 The Visibility Dimension

The visibility dimension is analogous to the visibility dimension for elements of $\mathrm{H}^{1}(K, A)$ introduced in [AS02, §2]. We prove below that elements of order 2 in Mordell-Weil groups of elliptic curves over \mathbb{Q} are 2 -visible relative to an abelian surface. Along the way, we make a general conjecture about stability of rank and show that it implies a general bound on the visibility dimension.

Definition 4.0.5 (Visibility Dimension). Let A be an abelian variety over a number field K and suppose m is an integer. Then A has m-visibility dimension n if there is an optimal cover $B \rightarrow A$ with $n=\operatorname{dim}(B)$ and the image of $B(K)$ in $A(K)$ is contained in $m A(K)$, so $A(K) / m A(K)$ is a quotient of $\operatorname{Vis}^{B}(A(K))$.

The following rank-stability conjecture is motivated by its usefulness for proving a result about m-visibility.

Conjecture 4.0.6. Suppose A is an abelian variety over a number field K, that L is a finite extension of K, and $m>0$ is an integer. Then there is an extension M of K of degree m such that $\operatorname{rank}(A(K))=\operatorname{rank}(A(M))$ and $M \cap L=K$.

The following proposition describes how Conjecture 4.0 .6 can be used to find an extension where the index of $A(K)$ in $A(M)$ is coprime to m.

Proposition 4.0.7. Let A be an abelian variety over a number field K and suppose m is a positive integer. If Conjecture 4.0 .6 is true for A and m, then there is an extension M of K of degree m such that $A(M) / A(K)$ is of order coprime to m.

Proof. Choose a finite set P_{1}, \ldots, P_{n} of generators for $A(K)$. Let

$$
L=K\left(\frac{1}{m} P_{1}, \ldots, \frac{1}{m} P_{n}\right)
$$

be the extension of K generated by all m th roots of each P_{i}. Since the set of m th roots of a point is closed under the action of $\operatorname{Gal}(\bar{K} / K)$, the extension L / K is Galois. Note also that the m torsion of A is defined over L, since the differences of conjugates of a given $\frac{1}{m} P_{i}$ are exactly the elements of $A[m]$. Let S be the set of primes of K that ramify in L.

By our hypothesis that Conjecture 4.0.6 is true for A and m, there is an extension M of K of degree m such that

$$
\operatorname{rank}(A(K))=\operatorname{rank}(A(M))
$$

and $M \cap L=K$. In particular, $C=A(M) / A(K)$ is a finite group. Suppose, for the sake of contradiction, that $\operatorname{gcd}(m, \# C) \neq 1$, so there is some prime divisor $p \mid m$ and an element $[Q] \in C$ of exact order p. Here $Q \in A(M)$ is such that $p Q \in A(K)$ but $Q \notin A(K)$. Because P_{1}, \ldots, P_{n} generate $A(K)$ and $p Q \in A(K)$, there are integers $a_{1}, \ldots a_{n}$ such that

$$
p Q=\sum_{i=1}^{n} a_{i} P_{i} .
$$

Then for any fixed choice of the $\frac{1}{p} P_{i}$, we have

$$
Q-\sum_{i=1}^{n} a_{i} \cdot \frac{1}{p} P_{i} \in A[p],
$$

since

$$
p\left(Q-\sum_{i=1}^{n} a_{i} \cdot \frac{1}{p} P_{i}\right)=p Q-\sum_{i=1}^{n} a_{i} \cdot P_{i}=0 .
$$

Thus $Q \in A(L)$. But then since $L \cap M=K$, so we obtain a contradiction from

$$
Q \in A(L) \cap A(M)=A(K) .
$$

With Proposition 4.0.7 in hand, we show that Conjecture 4.0.6 bounds the visibility dimension of Mordell-Weil groups. In particular, we see that Conjecture 4.0 .6 implies that for any abelian variety A over a number field K, and any m, there is an embedding $A(K) / m A(K) \hookrightarrow \mathrm{H}^{1}(K, C)$ coming from a δ map, where C is an abelian variety over K of rank 0 .

Theorem 4.0.8. Let A be an abelian variety over a number field K and suppose m is a positive integer. If Conjecture 4.0.6 is true for A and m, then there is an optimal covering $B \rightarrow A$ with B of dimension m such that

$$
\operatorname{Vis}^{B}(A(K)) \cong A(K) / m A(K) .
$$

Proof. By Proposition 4.0.7, there is an extension M of K of degree m such that the quotient $A(M) / A(K)$ is finite of order coprime to m. Then, as in [Ste04], the restriction of scalars $B=\operatorname{Res}_{M / K}\left(A_{M}\right)$ is an optimal cover of A and

$$
\operatorname{Vis}^{B}(A(K)) \cong A(K) / \operatorname{Tr}(A(M))
$$

However, there is also an inclusion $A \hookrightarrow B$ from which one sees that

$$
m A(K) \subset \operatorname{Tr}(A(M))
$$

so $\mathrm{Vis}^{B}(A(K))$ is an m-torsion group.
We have

$$
[\operatorname{Tr}(A(M)): \operatorname{Tr}(A(K))] \mid[A(M): A(K)]
$$

We showed above that $\operatorname{gcd}([A(M): A(K)], m)=1$, so since

$$
\operatorname{Tr}(A(M)) / \operatorname{Tr}(A(K))
$$

is killed by m, it follows that $\operatorname{Tr}(A(M))=\operatorname{Tr}(A(K))$. We conclude that

$$
\operatorname{Vis}^{B}(A(K))=A(K) / m A(K)
$$

Proposition 4.0.9. If E is an elliptic curve over \mathbb{Q} and $m=2$, then Conjecture 4.0.6 is true for E and m.

Proof. Let L be as in Conjecture 4.0.6, so L is an extension of \mathbb{Q} of possibly large degree. Let D be the discriminant of L. By [MM97, BFH90] there are infinitely many quadratic imaginary extensions M of \mathbb{Q} such that $L\left(E^{M}, 1\right) \neq 0$, where E^{M} is the quadratic twist of E by M. By [Kol91, Kol88] all these curves have rank 0 . Since there are only finitely many quadratic fields ramified only at the primes that divide D, there must be some field M that is ramified at a prime $p \nmid D$. If M is contained in L, then all the primes that ramify in M divide D, so M is not contained in L. Since M is quadratic, it follows that $M \cap L=\mathbb{Q}$, as required. Since the image of $E(\mathbb{Q})+E^{M}(\mathbb{Q})$ in $E(M)$ has finite index, it follows that $E(M) / E(\mathbb{Q})$ is finite.

Corollary 4.0.10. If E is an elliptic curve over \mathbb{Q}, then there is an optimal cover $B \rightarrow E$, with B a 2-dimension modular abelian variety, such that

$$
\operatorname{Vis}^{B}(E(\mathbb{Q})) \cong E(\mathbb{Q}) / 2 E(\mathbb{Q})
$$

Proof. Combine Proposition 4.0.9 with Theorem4.0.8. Also B is modular since it is isogenous to $E \times E^{\prime}$, where E^{\prime} is a quadratic twist of E.

Note that the B of Corollary 4.0.10 is isomorphic to $\left(E \times E^{D}\right) / \Phi$, where E^{D} is a rank 0 quadratic imaginary twist of E and $\Phi \cong E[2]$ is embedded antidiagonally in $E \times E^{D}$. Note that E^{D} also has analytic rank 0 , since it was constructed using the theorems of [Kol91, Kol88] and [MM97, BFH90]. Thus our construction is compatible with the one of Proposition 5.1.1 below.

5 Some Data About Visibility and Modularity

This section contains a computational investigation of modularity of MordellWeil groups of elliptic curves relative to abelian varieties that are quotients of $J_{0}(N)$. One reason that we restrict to $J_{0}(N)$ is so that computations are more tractable. Also, for $m>2$, the twisting constructions that we have given in previous sections are no longer allowed since they take place in $J_{1}(N)$. Furthermore, the work of [KL89] suggests that we understand the arithmetic of $J_{0}(N)$ better than that of $J_{1}(N)$.

5.1 A Visibility Construction for Mordell-Weil Groups

The following proposition is an analogue of [AS02, Thm. 3.1] but for visibility of Mordell-Weil groups (compare also [CM00, pg. 19]).

Proposition 5.1.1. Let E be an elliptic curve over a number field K, and let $\Phi=E[m]$ as a $\operatorname{Gal}(\bar{K} / K)$-module. Suppose A is an abelian variety over K such that $\Phi \subset A$, as $G_{\mathbb{Q}}$-modules. Let $B=(A \times E) / \Phi$, where Φ is embedded anti-diagonally. Then there is an exact sequence

$$
0 \rightarrow B(K) /(A(K)+E(K)) \rightarrow E(K) / m E(K) \rightarrow \operatorname{Vis}^{B}(E(K)) \rightarrow 0
$$

Moreover, if $(A / E[m])(K)$ is finite of order coprime to m, then the first term of the sequence is 0 , so

$$
\operatorname{Vis}^{B}(E(K)) \cong E(K) / m E(K)
$$

Proof. Using the definition of B and multiplication by m on E, we obtain the following commutative diagram, whose rows and columns are exact:

Taking K-rational points we arrive at the following diagram with exact rows
and columns:

The snake lemma and the fact that the middle vertical map is an isomorphism implies that the right vertical map is a surjection with kernel isomorphic to $B(K) /(A(K)+E(K))$. Thus we obtain an exact sequence

$$
0 \rightarrow B(K) /(A(K)+E(K)) \rightarrow E(K) / m E(K) \rightarrow \operatorname{Vis}^{B}(E(K)) \rightarrow 0
$$

This proves the first statement of the proposition. For the second, note that we have an exact sequence $0 \rightarrow E \rightarrow B \rightarrow A / E[m] \rightarrow 0$. Taking Galois cohomology yields an exact sequence

$$
0 \rightarrow E(K) \rightarrow B(K) \rightarrow(A / E[m])(K) \rightarrow \cdots
$$

so \#(B(K)/E(K))|\#(A/E[m])(K). If $(A / E[m])(K)$ is finite of order coprime to m, then $B(K) /(A(K)+E(K))$ has order dividing $\#(A / E[m])(K)$, so the quotient $B(K) /(A(K)+E(K))$ is trivial, since it injects into $E(K) / m E(K)$.

5.2 Tables

The data in this section suggests the following conjecture.
Conjecture 5.2.1. Suppose E is an elliptic curve over \mathbb{Q} and p is a prime such that $E[p]$ is irreducible. Then there exists infinitely many newforms $g \in$ $S_{2}\left(\Gamma_{0}(N)\right)$, for various integers N, such that $L(g, 1) \neq 0$ and $E[p] \subset A_{g}$ and $\operatorname{Vis}^{B}(E(\mathbb{Q}))=E(\mathbb{Q}) / p E(\mathbb{Q})$, where $B=\left(A_{g} \times E\right) / E[p]$.

Let E be the elliptic curve $y^{2}+y=x^{3}-x$. This curve has conductor 37 and Mordell-Weil group free of rank 1. According to [Cre97], E is isolated in its isogeny class, so each $E[p]$ is irreducible.

Table 1 gives for each N the odd primes p such that there is a $\bmod p$ congruence between f_{E} and some newform g in $S_{2}\left(\Gamma_{0}(37 N)\right)$ such that A_{g} has rank 0 and the isogeny class of A_{g} contains no abelian variety with rational p torsion. The first time a p occurs, it is in bold. We bound the torsion in the isogeny class using the algorithm from [AS05, §3.5] with primes up to 17. Thus by Proposition 5.1.1, the Mordell-Weil group of E is p-modular of level $37 N$. A - means there are no such p. Table 2, which was derived directly from Table 1, gives for a prime p, all integers N such that $E(\mathbb{Q})$ is p-modular of level $37 N$.

Table 1: Visibility of Mordell-Weil for $y^{2}+y=x^{3}-x$

N	$p^{\prime} s$	N	p^{\prime} s										
2	5	19	5	36	-	53	53	70	-	87	-	104	-
3	7	20	-	37	-	54	-	71	3,7	88	-	105	-
4	-	21	7	38	5	55	-	72	-	89	43	106	5
5	-	22	-	39	-	56	-	73	3,5	90	-	107	3,5
6	-	23	11	40	-	57	-	74	-	91	3	108	-
7	3	24	-	41	3, 17	58	-	75	-	92	-	109	3,7
8	-	25	-	42	-	59	13	76	-	93	7	110	-
9	-	26	-	43	7	60	-	77	-	94	-	111	-
10	-	27	3	44	-	61	5,7	78	-	95	-	112	-
11	17	28	-	45	-	62	-	79	-	96	-	113	3, 11
12	-	29	3	46	-	63	3	80	-	97	47	114	-
13	-	30	-	47	3	64	-	81	3	98	-	115	-
14	-	31	3	48	-	65	-	82	-	99	-	116	-
15	-	32	-	49	-	66	-	83	3,11	100	-	117	-
16	-	33	7	50	5	67	3,5	84	-	101	3, 11	118	-
17	3	34	-	51	-	68	-	85	-	102	-	119	3
18	-	35	-	52	-	69	-	86	-	103	43	120	-

N	$p^{\prime} s$										
121	-	138	-	155	-	172	-	189	3	206	-
122	-	139	17	156	-	173	$3,5,11$	190	-	207	-
123	-	140	-	157	3,5	174	-	191	7	208	-
124	-	141	-	158	-	175	-	192	-	209	-
125	5	142	-	159	-	176	-	193	5,11		
126	-	143	-	160	-	177	-	194	-		
127	$\mathbf{1 2 7}$	144	-	161	-	178	-	195	-		
128	-	145	-	162	-	179	3	196	-		
129	-	146	-	163	7,13	180	-	197	$3,5,13$		
130	-	147	7	164	-	181	$3, \mathbf{5 9}$	198	-		
131	3	148	-	165	-	182	-	199	3,11		
132	-	149	$5, \mathbf{3 1}$	166	-	183	-	200	-		
133	-	150	-	167	3,5	184	-	201	-		
134	-	151	17	168	-	185	-	202	5		
135	-	152	-	169	-	186	-	203	3		
136	-	153	3	170	-	187	-	204	-		
137	3	154	-	171	-	188	-	205	-		

Table 2: Levels Where Mordell-Weil is p-Visible for $y^{2}+y=x^{3}-x$

p	N such that $37 N$ is a level of p-modularity of $E(\mathbb{Q})$
	$7,17,27,29,31,41,47,63,67,71,73,81,83,91,101,107$, $109,113,119,131,137,153,157,167,173,179,181,189$, $197,199,203$
5	$2,19,38,50,61,67,73,106,107,125,149,157,167,173$, $193,197,202$
7	$3,21,33,43,61,71,93,109,147,163,191$
11	$23,83,101,113,173,193,199$
13	$59,163,197$
17	$11,41,139,151$
$19-29$	-
31	149
$37-41$	-
43	89,103
47	97
53	53
59	181
$61-113$	-
127	127

Ribet's level raising theorem [Rib90] gives necessary and sufficient conditions on a prime N for there to be a newform g of level $37 N$ that is congruent to f_{E} modulo p. Note that the form g is new rather than just p-new since 37 is prime and there are no modular forms of level 1 and weight 2. If, moreover, we impose the condition $L(g, 1) \neq 0$, then Ribet's condition requires that p divides $N+1+\varepsilon a_{N}$, where ε is the root number of E. Since E has odd analytic rank, in this case $\varepsilon=-1$. For each primes $p \leq 127$ and each $N \leq 203$, we find the levels of such g. If f is a newform, the torsion multiple of f is a positive integer that is a multiple of the order of the rational torsion subgroup of any abelian variety attached to f, as computed by the algorithm in [AS05]. The only cases in which we don't already find a congruence level already listed in Table 2 corresponding to a newform with torsion multiple coprime to p are

$$
p=3, \quad N=43 \quad \text { and } \quad p=19, \quad N=47,79
$$

In all other cases in which Ribet's theorem produces a congruent g with $\operatorname{ord}_{s=1} L(g, s)$ even (hence possibly 0), we actually find a g with $L(g, 1) \neq 0$ and can show that $\# A_{g}(\mathbb{Q})_{\text {tor }}$ is coprime to p.

For $p=3$ and $N=43$ we find a unique newform $g \in S_{2}\left(\Gamma_{0}(1591)\right)$ that is congruent to f_{E} modulo 3 . This form is attached to the elliptic curve $y^{2}+y=$ $x^{3}-71 x+552$ of conductor 1591 , which has Mordell-Weil groups $\mathbb{Z} \oplus \mathbb{Z}$. Thus this is an example of a congruence relating a rank 1 curve to a rank 2 curve. For $p=19$ and $N=47$, the newform g has degree 43, so A_{g} has dimension 43, we have $L(g, 1) \neq 0$, but the torsion multiple is $76=19 \cdot 4$, which is divisible by 19 . For $p=19$ and $N=79$, the A_{g} has dimension 57 , we have $L(g, 1) \neq 0$, but the torsion multiple is 76 again.

Tables $3-4$ are the analogues of Tables $1-2$ but for the elliptic curve $y^{2}+y=$ $x^{3}+x^{2}$ of conductor 43. This elliptic curve also has rank 1 and all $\bmod p$ representations are irreducible. The primes p and N such that Ribet's theorem produces a congruent g with $\operatorname{ord}_{s=1} L(g, s)$ even, yet we do not find one with $L(g, 1) \neq 0$ and the torsion multiple coprime to p are

$$
p=3, \quad N=31,61 \quad \text { and } \quad p=11, \quad N=19,31,47,79
$$

The situation for $p=11$ is interesting since in this case all the g with $\operatorname{ord}_{s=1} L(g, s)$ even fail to satisfy our hypothesis. At level $19 \cdot 43$ we find that g has degree 18 and $L(g, 1) \neq 0$, but the torsion multiple is divisible by 11 .

Let E be the elliptic curve $y^{2}+y=x^{3}+x^{2}-2 x$ of conductor 389. This curve has Mordell-Weil group free of rank 2. Tables $5-6$ are the analogues of Tables $1-2$ but for E. The primes p and N such that Ribet's theorem produces a congruent g with $\operatorname{ord}_{s=1} L(g, s)$ even, yet we do not find one with $L(g, 1) \neq 0$ and the torsion multiple coprime to p are

$$
p=3, \quad N=17 \quad \text { and } \quad p=5, \quad N=19
$$

For $p=3$, there is a unique g of level $6613=37 \cdot 17$ with $\operatorname{ord}_{s=1} L(g, s)$ even and $E[3] \subset A_{g}$. This form has degree 5 and $L(g, 1)=0$, so this is another

Table 3: Visibility of Mordell-Weil for $y^{2}+y=x^{3}+x^{2}$

N	$p^{\prime} s$												
2	5	17	3, 7	32	-	47	-	62	-	77	-	92	-
3	3	18	-	33	3	48	-	63	-	78	-	93	-
4	-	19	-	34	5	49	-	64	-	79	-	94	-
5	5	20	-	35	-	50	5	65	-	80	-	95	-
6	-	21	-	36	-	51	3	66	-	81	3	96	-
7	-	22	5	37	19	52	-	67	71	82	-	97	7,13
8	-	23	5	38	-	53	59	68	-	83	3,23	98	-
9	-	24	-	39	3	54	-	69	-	84	-	99	3
10	-	25	-	40	-	55	5	70	-	85	5	100	-
11	3	26	-	41	37	56	-	71	5,7	86	-		
12	-	27	3	42	-	57	3	72	-	87	3		
13	19	28	-	43	-	58	-	73	3	88	-		
14	-	29	3	44	-	59	3	74	-	89	47		
15	-	30	-	45	-	60	-	75	-	90	-		
16	-	31	-	46	-	61	5	76	-	91	-		

Table 4: Levels Where Mordell-Weil is p-Visible for $y^{2}+y=x^{3}+x^{2}$

p	N such that $43 N$ is a level of p-modularity of $E(\mathbb{Q})$
3	$3,11,17,27,29,33,39,51,57,59,73,81,83,87,99$
5	$2,5,22,23,34,50,55,61,71,85$
7	$17,71,97$
11	-
13	97
17	-
19	13,37
23	83
29,31	-
37	41
41,43	-
47	89
53	-
59	53
61,67	-
71	67

Table 5: Visibility of Mordell-Weil for $y^{2}+y=x^{3}+x^{2}-2 x$

N	$p^{\prime} s$								
1	5	7	3	13	11	19	-	25	-
2	-	8	-	14	-	20	-	26	-
3	-	9	3	15	3	21	-	27	3
4	-	10	-	16	-	22	-	28	-
5	3	11	-	17	-	23	5	29	3
6	-	12	-	18	-	24	-		

Table 6: Levels Where Mordell-Weil is p-Visible for $y^{2}+y=x^{3}+x^{2}-2 x$

p	N such that $389 N$ is a level of p-modularity of $E(\mathbb{Q})$
3	$5,7,9,15,27,29$
5	1,23
7	-
11	13

example where the rank 0 hypothesis of Proposition 5.1.1 is not satisfied. Note that the torsion multiple in this case is 1 . For $p=5$, there is a unique g of level $7391=37 \cdot 19$, with $\operatorname{ord}_{s=1} L(g, s)$ even and $E[5] \subset A_{g}$. This form has degree 4 and $L(g, 1) \neq 0$, but the torsion multiple is divisible by 5 .

References

[Aga99a] A. Agashe, On invisible elements of the Tate-Shafarevich group, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 5, 369-374. MR 1 678131
[Aga99b] Amod Agashé, On invisible elements of the Tate-Shafarevich group, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 5, 369-374. MR 2000e:11083
[AS02] A. Agashe and W.A. Stein, Visibility of Shafarevich-Tate groups of abelian varieties, J. Number Theory 97 (2002), no. 1, 171-185. MR 2003h:11070
[AS05] A. Agashe and W. Stein, Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Comp. 74 (2005), no. 249, 455-484 (electronic), With an appendix by J. Cremona and B. Mazur. MR 2085902
[BCDT01] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over \mathbf{Q} : wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843-939 (electronic). MR 2002d:11058
[BCP97] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235265, Computational algebra and number theory (London, 1993). MR 1484478
[BFH90] D. Bump, S. Friedberg, and J. Hoffstein, Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic Lfunctions and their derivatives, Ann. of Math. (2) 131 (1990), no. 1, 53-127.
[Bir71] B. J. Birch, Elliptic curves over Q: A progress report, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), Amer. Math. Soc., Providence, R.I., 1971, pp. 396-400.
[CM00] J.E. Cremona and B. Mazur, Visualizing elements in the Shafarevich-Tate group, Experiment. Math. 9 (2000), no. 1, 13-28. MR 1758797
[Cre97] J.E. Cremona, Algorithms for modular elliptic curves, second ed., Cambridge University Press, Cambridge, 1997, http://www.maths.nott.ac.uk/personal/jec/book/.
[Dum01] N. Dummigan, Congruences of modular forms and Selmer groups, Math. Res. Lett. 8 (2001), no. 4, 479-494. MR MR1849264 (2002k:11064)
[DWS03] N. Dummigan, M. Watkins, and W.A. Stein, Constructing Elements in Shafarevich-Tate Groups of Modular Motives, Number theory and algebraic geometry, ed. by Miles Reid and Alexei Skorobogatov 303 (2003), 91-118.
[Fal86] G. Faltings, Finiteness theorems for abelian varieties over number fields, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, Translated from the German original [Invent. Math. 73 (1983), no. 3, 349-366; ibid. 75 (1984), no. 2, 381; MR 85g:11026ab] by Edward Shipz, pp. 9-27. MR 861971
[JS05] D. Jetchev and W. Stein, Visibility of Shafarevich-Tate Groups at Higher Level, in preparation.
[Kat04] Kazuya Kato, p-adic Hodge theory and values of zeta functions of modular forms, Astérisque (2004), no. 295, ix, 117-290, Cohomologies p-adiques et applications arithmétiques. III. MR MR2104361
[KL89] V.A. Kolyvagin and D. Y. Logachev, Finiteness of the ShafarevichTate group and the group of rational points for some modular abelian varieties, Algebra i Analiz 1 (1989), no. 5, 171-196.
[Kle01] T. Klenke, Modular Varieties and Visibility, Ph.D. thesis, Harvard University (2001).
[Kol88] V. A. Kolyvagin, Finiteness of $E(\mathbf{Q})$ and $\amalg(E, \mathbf{Q})$ for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522-540, 670-671. MR 89m:11056
[Kol91] V.A. Kolyvagin, On the Mordell-Weil group and the ShafarevichTate group of modular elliptic curves, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) (Tokyo), Math. Soc. Japan, 1991, pp. 429-436. MR 93c:11046
[LT58] S. Lang and J. Tate, Principal homogeneous spaces over abelian varieties, Amer. J. Math. 80 (1958), 659-684.
[Maz78] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129-162.
[Maz99] , Visualizing elements of order three in the Shafarevich-Tate group, Asian J. Math. 3 (1999), no. 1, 221-232, Sir Michael Atiyah: a great mathematician of the twentieth century. MR 2000g:11048
[Mil72] J.S. Milne, On the arithmetic of abelian varieties, Invent. Math. 17 (1972), 177-190. MR 48 \#8512
[MM97] M. R. Murty and V.K. Murty, Non-vanishing of L-functions and applications, Birkhäuser Verlag, Basel, 1997.
[MO03] William J. McGraw and Ken Ono, Modular form congruences and Selmer groups, J. London Math. Soc. (2) 67 (2003), no. 2, 302-318. MR MR1956137 (2004d:11033)
[Rib80] K. A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), no. 1, 43-62. MR 82e:10043
[Rib90] , Raising the levels of modular representations, Séminaire de Théorie des Nombres, Paris 1987-88, Birkhäuser Boston, Boston, MA, 1990, pp. 259-271.
[Rib92] , Abelian varieties over \mathbf{Q} and modular forms, Algebra and topology 1992 (Taejŏn), Korea Adv. Inst. Sci. Tech., Taejŏn, 1992, pp. 53-79. MR 94g:11042
[RM05] K. Rubin and B. Mazur, Finding large selmer groups, in preparation.
[Roh84] D.E. Rohrlich, On L-functions of elliptic curves and cyclotomic towers, Invent. Math. 75 (1984), no. 3, 409-423. MR 86g:11038b
[Rub98] K. Rubin, Euler systems and modular elliptic curves, Galois representations in arithmetic algebraic geometry (Durham, 1996), Cambridge Univ. Press, Cambridge, 1998, pp. 351-367. MR 2001a:11106
[Sch98] A. J. Scholl, An introduction to Kato's Euler systems, Galois Representations in Arithmetic Algebraic Geometry, Cambridge University Press, 1998, pp. 379-460.
[Ser72] J-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259-331.
[Sage07] W. Stein, SAGE: Software for Algebra and Geometry Experimentation, http://www.sagemath.org/.
[Ste04] W. Stein, Shafarevich-Tate Groups of Nonsquare Order, Modular Curves and Abelian Varieties, Progress of Mathematics (2004), 277289.
[Tat66] J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1965/66, pp. Exp. No. 306, 415-440.
[Wil00] A.J. Wiles, The Birch and Swinnerton-Dyer Conjecture, http://www.claymath.org/prize_problems/birchsd.htm.

William A. Stein
Department of Mathematics University of Washington Seattle, WA 98195-4350
wstein@math.washington.edu

[^0]: ${ }^{1}$ This material is based upon work supported by the National Science Foundation under Grant No. 0555776.

