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Abstract. We prove the vanishing modulo torsion of the higher
direct images of the sheaf of Witt vectors (and the Witt canonical
sheaf) for a purely inseparable projective alteration between normal
finite quotients over a perfect field. For this, we show that the relative
Hodge-Witt cohomology admits an action of correspondences. As an
application we define Witt-rational singularities which form a broader
class than rational singularities. In particular, finite quotients have
Witt-rational singularities. In addition, we prove that the torsion
part of the Witt vector cohomology of a smooth, proper scheme is a
birational invariant.
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Introduction

An important class of singularities over fields of characteristic zero are the
rational singularities. For example, quotient singularities and log terminal sin-
gularities are rational singularities (see e.g. [KM98]). Over fields with positive
characteristic the situation is more subtle. The definition of rational singulari-
ties requires resolution of singularities which is not yet available in all dimen-
sions. Moreover, quotient singularities are only rational singularities under a
further tameness condition, but in general fail to be rational singularities.
The purpose of this paper is to define a broader class of singularities in positive
characteristic, which we call Witt-rational singularities. The main idea is that
we replace the structure sheaf OX and the canonical sheaf ωX by the Witt
sheaves WOX,Q and WωX,Q. One important difference is that multiplication
with p is invertible inWOX,Q andWωX,Q. Instead of resolution of singularities
we can use alterations.
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Witt-rational singularities have been first introduced by Blickle and Esnault
[BE08]. In this paper we use a slightly different and more restrictive definition,
which seems to be more accessible. Conjecturally, our definition agrees with the
one of Blickle-Esnault by using a Grauert-Riemenschneider vanishing theorem
for the Witt canonical sheaf WωX,Q. We hope to say more about this in the
future.

0.1. Let k be a perfect field of positive characteristic. We denote by W =
W (k) the ring of Witt vectors and by K0 = Frac(W ) the field of fractions. For
a smooth proper k-scheme the crystalline cohomology H∗

crys(X/W ) has, by the
work of Bloch and Deligne-Illusie, a natural interpretation as hypercohomology
of the de Rham-Witt complex WΩ•

X ,

H∗
crys(X/W ) ∼= H∗(X,WΩ•

X).

After inverting p, the slope spectral sequence degenerates which yields a de-
composition

Hn(X/K0) =
⊕

i+j=n

Hj(X,WΩiX)⊗W K0.

The de Rham-Witt complex is the limit of a pro-complex (WnΩ
•
X)n, and for

us WnOX and WnωX = WnΩ
dimX
X will be most important. The sheaf WnOX

is the sheaf of Witt vectors of length n, and defines a scheme structure WnX
on the topological space X . The structure map π : X −→ Spec (k) induces a
morphism Wn(π) : WnX → SpecWn(k), but Wn(π) is almost never flat. By
the work of Ekedahl (see [Eke84]) WnωX equals Wn(π)

!Wn[− dimX ], hence
WnωX is a dualizing sheaf for WnX .
The main technical problem in order to define Witt-rational singularities is to
prove the independence of the chosen alteration. Our approach is to use the
action of algebraic cycles in a similar way as in [CR09]. For this, we have to
extend the work of Gros [Gro85] on the de Rham-Witt complex in Theorem 1
below.
For a k-scheme S we denote by CS the category whose objects are S-schemes
which are smooth and quasi-projective over k. For two objects f : X → S
and g : Y → S in CS , the morphisms HomS(f : X → S, g : Y → S) are
defined by lim−→Z

CH(Z), where the limit is taken over all proper correspondences

over S between X and Y , i.e. closed subschemes Z ⊂ X ×S Y such that the
projection to Y is proper (CH(Z) = ⊕dimZ

i=0 CHi(Z) denotes the Chow group).
The composition of two morphisms is defined using Fulton’s refined intersection
product. The following theorem on the action of proper correspondences on
relative Hodge-Witt cohomology is the main technical tool of the article.

Theorem 1 (cf. Proposition 3.5.4). There is a functor

Ĥ(?/S) : CS → (WOS −modules),

Ĥ(f : X → S/S) =
⊕

i,j

Rif∗WΩjX ,

with the following properties.
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If h : X → Y is an S-morphism between two smooth k-schemes and Γth ⊂
Y ×S X denotes the transpose of its graph, then Ĥ([Γth]/S) is the natural pull-

back. If in addition h is projective then Ĥ([Γh]/S) is the pushforward defined
by Gros in [Gro85] using Ekedahl’s duality theory [Eke84].

For a morphism α ∈ HomCS (X/S, Y/S) in CS, the map Ĥ(α/S) is compatible
with Frobenius, Verschiebung and the differential.

0.2. We say that an integral normal k-scheme X is a finite quotient if there
exists a finite and surjective morphism from a smooth k-scheme Y → X (e.g.
X = Y/G for some finite group G acting on Y .) We say that a normal integral
scheme X is a topological finite quotient if there exists a finite, surjective and
purely inseparable morphism u : X → X ′, where X ′ is a finite quotient. The
morphism u is in fact a universal homeomorphism. Finally we say that a
morphism f : X → Y between two integral k-schemes is a quasi-resolution
of Y if X is a topologically finite quotient and the morphism f is surjective,
projective, generically finite and purely inseparable. (In characteristic zero
these conditions imply that X is a finite quotient and f is projective and
birational.) By a result of de Jong (see [dJ96], [dJ97]) quasi-resolutions always
exist. When working with Q-coefficients the notion of quasi-resolutions suffices
to define an analog of rational singularities. This follows from the following
theorem.

Theorem 2 (Theorem 4.3.3). Let Y be a topological finite quotient and f :
X → Y a quasi-resolution. Then

Rf∗WOX,Q ∼=WOY,Q.

If X and Y are smooth and f is birational, this is a direct consequence of
Theorem 1 and the vanishing Lemmas 3.6.1 and 3.6.2. Indeed, in CH(X×Y X)
the diagonal ∆X ⊂ X ×Y X can be written as [Γtf ] ◦ [Γf ] + E, where E is a
cycle whose projections to X have at least codimension ≥ 1. Thus E acts as
zero on the WO part and hence [Γtf ]◦ [Γf ] acts as the identity on Rif∗WOX,Q,
but it factors over 0 for i > 0; this will prove the theorem in case X and Y is
smooth. Because the Frobenius is invertible when working with Q-coefficients
we can neglect all purely inseparable phenomena. Therefore the main point in
the general case is to realize the higher direct images of Rif∗WOX,Q (and also
for Y ) as certain direct factors in the relative cohomology of smooth schemes,
which is possible since X and Y are topological finite quotients.

0.3. Before explaining our definition of Witt-rational singularities we need to
introduce some notations. If X is a k-scheme of pure dimension d and with
structure map π : X → Spec k, then we define the Witt canonical sheaf of
length n by

WnωX := H−d(Wn(π)
!Wn).

It follows from the duality theory developed by Ekedahl in [Eke84], that these
sheaves form a projective system W•ωX with Frobenius, Verschiebung and
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Cartier morphisms. Further properties are (the first two are due to Ekedahl,
see [Eke84] and Proposition 4.1.4)

(1) If X is smooth, then W•ωX ∼=W•Ω
d
X .

(2) If X is Cohen-Macaulay, then WnωX [d] ∼= Wn(π)
!Wn, in particular

WnωX is dualizing.
(3) If f : X → Y is a proper morphism between k-schemes of the same

pure dimension, then there is a W•OY -linear morphism

f∗ : f∗W•ωX →W•ωY ,

which is compatible with composition and localization.

We define WωX := lim←−W•ωX .

We say that an integral k-scheme S has Witt-rational singularities (Defini-
tion 4.4.4) if for any quasi-resolution f : X → S the following conditions are
satisfied:

(1) f∗ :WOS,Q ≃−→ f∗WOX,Q is an isomorphism,
(2) Rif∗WOX,Q = 0, for all i ≥ 1,
(3) Rif∗WωX,Q = 0, for all i ≥ 1.

In case only the first two properties are satisfied we say that S hasWO-rational
singularities. Condition (1) is satisfied provided that S is normal.
Our main example for varieties with Witt-rational singularities are topologi-
cally finite quotients, because the vanishing property in Theorem 2 also holds
for Wω.

Theorem 3 (Corollary 4.4.7). Topological finite quotient have Witt-rational
singularities.

A particular case are normalizations of smooth schemes X in a purely in-
separable finite field extension of the function field of X . More generally, if
u : Y −→ X is a universal homeomorphism between normal schemes then Y
has Witt-rational singularities if and only if X has Witt-rational singularities
(Proposition 4.4.9).
Every scheme with rational singularities has Witt-rational singularities, but
varieties with Witt-rational singularities form a broader class. For example,
finite quotients may fail to be Cohen-Macaulay and thus are in general not
rational singularities.
A different definition of Witt-rational singularities has been introduced by
Blickle and Esnault as follows. Let S be an integral k-scheme and f : X −→ S
a generically étale alteration with X a smooth k-scheme. We say that S has
BE-Witt-rational singularities if the natural morphism

WOS,Q −→ Rf∗WOX,Q
admits a splitting in the derived category of sheaves of abelian groups on X .
A scheme with Witt-rational singularities in our sense has BE-Witt-rational
singularities (Proposition 4.4.17). We conjecture that the converse is also true.
The existence of quasi-resolutions implies the following corollary.
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Corollary 1 (Corollary 4.4.11). Let S be a k-scheme and X and Y two
integral S-schemes. Suppose that there exists a commutative diagram

Z
πX

~~||
||

πY

  A
AA

A

X

f   @
@@

@ Y

g��~~
~~

S,

with πX and πY quasi-resolutions. Suppose that X,Y have Witt-rational sin-
gularities. Then we get induced isomorphisms in Db(WOS)
(1) Rf∗WOX,Q ∼= Rg∗WOY,Q, Rf∗WωX,Q ∼= Rg∗WωY,Q.

The isomorphisms are compatible with the action of the Frobenius and the Ver-
schiebung.

If f : X −→ S and g : Y −→ S are quasi-resolutions then the isomorphisms in
(1) are independent of the choice of Z (Corollary 4.5.1). In this way we obtain
natural complexes

WS0,S := Rf∗WOX,Q, WSdim(S),S := Rf∗WωS,Q,

(Definition 4.5.2).

0.4. By using the work of Berthelot-Bloch-Esnault Corollary 1 yields congru-
ences for the number of rational points over finite fields.

Corollary 2 (Corollary 4.4.16). Let S = Spec k be a finite field. Let X and
Y be as in Corollary 1, and suppose that X,Y are proper. Then for any finite
field extension k′ of k we have

|X(k′)| ≡ |Y (k′)| mod |k′|.
If X,Y are smooth this is a theorem due to Ekedahl [Eke83].
For a normal integral scheme S with an isolated singularity s ∈ S we can give a
criterion for theWO-rationality of S, provided that a resolution of singularities
f : X −→ S exists such that f : f−1(S\{s}) −→ S\{s} is an isomorphism; we
denote by E := f−1(s) the fibre over s. Then S has WO-rational singularities
if and only if

(2) Hi(E,WOE,Q) = 0 for all i > 0,

(Corollary 4.6.4). This implies that a normal surface has WO-rational singu-
larities if and only if the exceptional divisor is a tree of smooth rational curves.
For cones C of smooth projective schemesX , we obtain that C hasWO-rational
singularities if and only if Hi(X,WOX,Q) = 0 for i > 0. We can show that
C has Witt-rational singularities provided that Kodaira vanishing holds for X
(Section 4.7). We expect that this assumption can be dropped; in general, a
Grauert-Riemenschneider type vanishing theorem for Wω should imply that
WO-rationality is equivalent to Witt-rationality.

Documenta Mathematica 17 (2012) 663–781



Hodge-Witt Cohomology . . . 669

Over a finite field k we use a weight argument to refine the criterion (2) if E
is a strict normal crossing divisor. Let Ei be the irreducible components of E,
via the restriction maps we obtain for all t ≥ 0 a complex Ct(E):

⊕

ı0

Ht(Eı0 ,WOEı0 ,Q
)

︸ ︷︷ ︸
deg=0

−→
⊕

ı0<ı1

Ht(Eı0 ∩ Eı1 ,WOEı0∩Eı1 ,Q
) −→ . . .

Theorem 4 (Theorem 4.6.7). Let k be a finite field. In the above situation, S
has WO-rational singularities if and only if

Hi(Ct(E)) = 0 for all (i, t) 6= (0, 0).

Theorem 4 is inspired by the results of Kerz-Saito [Sai10, Theorem 8.2] on the
weight homology of the exceptional divisor.
For morphisms with generically smooth fibre with trivial Chow group of zero
cycles we can show the following vanishing theorem.

Theorem 5 (Theorem 4.8.1). Let X be an integral scheme with Witt-rational
singularities. Let f : X −→ Y be a projective morphism to an integral, normal
and quasi-projective scheme Y . We denote by η the generic point of Y , and
Xη denotes the generic fibre of f . Suppose that Xη is smooth and for every
field extension L ⊃ k(η) the degree map

CH0(Xη ×k(η) L)⊗Z Q −→ Q

is an isomorphism. Then, for all i > 0,

Rif∗WOX,Q ∼= Hi(WS0,Y ), Rif∗WωX,Q ∼= Hi(WSdim(Y ),Y ).

In particular, if Y has Witt-rational singularities then

Rif∗WOX,Q = 0, Rif∗WωX,Q = 0, for all i > 0.

0.5. For smooth schemes we can show the following result which takes the
torsion into account.

Theorem 6 (Theorem 5.1.10). Let S be a k-scheme. Let f : X → S and
g : Y → S be two S-schemes which are integral and smooth over k and have
dimension N . Assume X and Y are properly birational over S, i.e. there exists
a closed integral subscheme Z ⊂ X×S Y , such that the projections Z → X and
Z → Y are proper and birational. There are isomorphisms in Db(S,W (k)):

Rf∗WOX ∼= Rg∗WOY , Rf∗WΩNX
∼= Rg∗WΩNY .

Taking cohomology we obtain isomorphisms of WOS-modules which are com-
patible with Frobenius and Verschiebung:

Rif∗WOX ∼= Rig∗WOY , Rif∗WΩNX
∼= Rig∗WΩNY , for all i ≥ 0.

If X and Y are tame finite quotients and there exists a proper and birational
morphism h : X −→ Y then a similar statement holds (see Theorem 5.1.13).
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If X and Y are two smooth and proper k-schemes, which are birational and of
pure dimension N . Then we obtain isomorphisms of W (k)[F, V ]-modules

Hi(X,WOX) ∼= Hi(Y,WOY ), Hi(X,WΩNX) ∼= Hi(Y,WΩNY ), for all i ≥ 0.

Modulo torsion the statement for WO is a theorem due to Ekedahl (see
[Eke83]).

0.6. We give a brief overview of the content of each section. In Section 1
we introduce the category dRWX of de Rham-Witt systems on a k-scheme X .
In the language of Ekedahl [Eke84] an object in dRWX is both, a direct and
an inverse de Rham-Witt system at the same time. Furthermore, we intro-
duce the derived pushforward, derived cohomology with supports and R lim←− on

Db(dRWX). We recall the definition of Witt-dualizing systems from [Eke84]
in 1.6, and some facts about residual complexes in 1.7. In particular, we ob-
serve that if f : X → Y is a morphism between k-schemes, which is proper
along a family of supports Φ on X , then for any residual complex K on Y the
trace morphism f∗f

∆K → K, which always exists as a map of graded sheaves,
induces a morphism of complexes f∗ΓΦf

∆K → K. In 1.8 we show that for
any π : X → Spec k the residual complexes Wnπ

∆Wn(k) form a projective
system KX , which is term-wise a Witt-dualizing system. In 1.9 we define the
functor DX = Hom(−,KX) on D(dRWX,qc)

o. (It is only defined on complexes
of quasi-coherent de Rham-Witt systems.) In 1.10 we recall the results of
Ekedahl in the smooth case relating KX to W•Ω

dimX
X , and in 1.11 we calculate

the trace morphism for a regular closed immersion. A similar description is
given in [Gro85], but it refers to work in progress by Ekedahl, which we could
not find in the literature, therefore we give another argument.
In Section 2 we introduce relative Hodge-Witt cohomology with supports on
smooth and quasi-projective k-schemes, which are defined over some base
scheme S. We define a pullback for arbitrary morphisms and using the trace
map from Section 1 also a pushforward for morphisms which are proper along
a family of supports. Then in 2.4 we give an explicit description of the push-
forward in the case of a regular closed immersion and also for the projection
PnX → X , where X is a smooth scheme X . From this description we deduce
the expected compatibility between pushforward and pullback with respect to
maps in a certain cartesian diagram.
In Section 3 we collect and prove the remaining facts, which we need to show
that (X,Φ) 7→ ⊕i,jHi

Φ(X,WΩjX) is a weak cohomology theory with supports
in the sense of [CR09]. In particular, we need the cycle class constructed by
Gros in [Gro85]. ¿From this we deduce Theorem 1 above. In 3.6 we prove the
two vanishing Lemmas, which give a criterion for certain correspondences to
act as zero on certain parts of the Hodge-Witt cohomology. In 3.7 we introduce
the notation dRWX,Q, which is the Q-linearization of dRWX . In general, for
M ∈ dRWX the notation MQ means the image of M in dRWX,Q (which is not
the same as M ⊗Z Q).
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In Section 4 we introduce the Witt canonical system W•ωX for a pure-
dimensional k-scheme X and prove some of its properties. Moreover we show
in 4.2 that the cohomology of WO and Wω for a topological finite quotient is
a direct summand of the Hodge-Witt cohomology of a certain smooth scheme.
Then we prove Theorem 2 and define Witt rational singularities. It follows
some elaboration on this notion, in particular the Theorems 3, 4, 5.
Finally in Section 5 we prove some results on torsion, as in Theorem 6. In order
to do this, we show that a correspondence actually gives rise to a morphism in
the derived category of modules over the Cartier-Dieudonné-Raynaud ring and
then use Ekedahl’s Nakayama Lemma to deduce the statement from [CR09].
We advise the reader who is mostly interested in the geometric application
to start for a first time reading with Section 1.1 and 1.2 to get some basic
notations and then jump directly to Section 4.

0.7. Notation and general conventions. We are working over a perfect
ground field k of characteristic p > 0. We denote by Wn = Wn(k) the ring of
Witt vectors of length n over k and by W = W (k) the ring of infinite Witt
vectors. By a k-scheme we always mean a scheme X , which is separated and
of finite type over k. If X and Y are k-schemes, then a morphism X → Y is
always assumed to be a k-morphism.

1. De Rham-Witt systems after Ekedahl

1.1. Witt schemes. For the following facts see e.g. [Ill79, 0.1.5], [LZ04, Ap-
pendix A]. Let X be a k-scheme. For n ≥ 1, we denote

WnX = (|X |,WnOX) = SpecWnOX ,
whereWnOX is the sheaf of rings of Witt vectors of length n. This construction
yields a functor from the category of k-schemes to the category of separated,
finite type Wn-schemes. If f : X → Y is a separated (resp. finite type, proper
or étale) morphism of k-schemes, then Wnf : WnX → WnY is a separated
(resp. finite type, proper or étale) morphism of Wn-schemes. If f is an open
(resp. closed) immersion, so is Wnf . We denote by in : Wn−1X →֒ WnX
(or sometimes by in,X) the nilimmersion induced by the restriction WnOX →
Wn−1OX . We will write π :WnOX → in∗Wn−1OX instead of i∗n. The absolute
Frobenius on X is denoted by FX : X → X . The morphismWn(FX) :WnX →
WnX is finite for all n. With this notation the Frobenius and Verschiebung
morphisms on the Witt vectors become morphisms of WnOX -modules

F =Wn(FX)∗ ◦ π :WnOX → (Wn(FX)in)∗Wn−1OX ,
V : (Wn(FX)in)∗Wn−1OX →WnOX .

Further “lift and multiply by p ” induces a morphism of WnOX -modules

p : in∗Wn−1OX →WnOX .
If f : X → Y is a morphism of k-schemes, then we have Wn(f)in,X =
in,YWn−1(f) and Wn(f)Wn(FX) = Wn(FY )Wn(f). If f : X → Y is étale,
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then the following diagrams are cartesian:

(1.1.1) Wn−1X
� � in //

Wn−1f

��

WnX

Wnf

��
Wn−1Y

� � in // WnY,

WnX
Wn(FX )//

Wnf

��

WnX

Wnf

��
WnY

Wn(FY )// WnY.

1.2. De Rham-Witt systems.

Definition 1.2.1. For an integer n ≥ 1 we denote by Cn the category of Z-
graded WnOX -modules on X . We define

CN :=
∏

n∈Z,n≥1

Cn.

For an object M ∈ CN and n ≥ 1 we denote by Mn the n-th component. An
object M in CN is (quasi-)coherent, if all Mn are (quasi-)coherent Wn(OX)-
modules. We denote by CN,qc (resp. CN,c) the full subcategory of (quasi-
)coherent objects of CN. There are two natural endo-functors:

i∗ : CN −→ CN

(i∗M)n :=

{
in∗Mn−1 if n > 1,

0 if n = 1,

σ : CN −→ CN
(σ∗M)n :=Wn(FX)∗Mn

The two functors commute

(1.2.1) σ∗i∗ = i∗σ∗,

since Wn(FX)∗in∗ = in∗Wn−1(FX)∗.
We will also need the following functor:

Σ∗ : CN −→ CN
(Σ∗M)n :=Wn(FX)n∗Mn.

We have the equalities

(1.2.2) σ∗i∗Σ∗ = Σ∗i∗, σ∗Σ∗ = Σ∗σ∗.

Furthermore, since the components of M ∈ CN are Z-graded we can define for
all i ∈ Z the shift functor

(1.2.3) M(i)n :=Mn(i).

The shift functor commutes in an obvious way with i∗, σ∗,Σ∗.

Definition 1.2.2. A graded Witt system (M,F, V, π, p) on X is an object M
in CN equipped with morphisms in CN:

F :M −→ σ∗i∗M, V : σ∗i∗M −→M, π :M −→ i∗M, p : i∗M −→M,

such that

(a) V ◦ F is multiplication with p,
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(b) F ◦ V is multiplication with p,
(c) σ∗i∗(π) ◦ F = i∗(F ) ◦ π,
(d) π ◦ V = i∗(V ◦ σ∗(π)),
(e) i∗(σ∗(p) ◦ F ) = F ◦ p,
(f) V ◦ σ∗i∗(p) = p ◦ i∗(V ),

(g) i∗(p ◦ π) = π ◦ p.
Graded Witt systems form in the obvious way a category which we denote by
WX . It is straightforward to check that WX is abelian.

We have an obvious forgetful functor WX −→ CN. We say that (M,F, V, π, p) is
(quasi-)coherent if Mn is (quasi-)coherent for every n.

Remark 1.2.3. One should memorise (c) as “π ◦ F = F ◦ π”, (d) as “π ◦ V =
V ◦π”, (e) as “p ◦F = F ◦ p”, (f) as “V ◦ p = p ◦V ”, and (g) as “p ◦π = π ◦ p”.
Definition 1.2.4. A de Rham-Witt system (M,d) is a graded Witt system M
together with a morphism in WX :

d : Σ∗M −→ Σ∗M(1),

such that the following conditions are satisfied:

(a) Σ∗F (1) ◦ d ◦ Σ∗V = σ2
∗i∗d (we used 1.2.2),

(b) Σ∗π(1) ◦ d = σ∗i∗d ◦ Σ∗(π) (we used 1.2.2),
(c) d ◦ Σ∗(p) = Σ(p) ◦ σ∗i∗d (again, we used 1.2.2).

(d) d(1) ◦ d = 0.

De Rham Witt systems form in the obvious way a category which we de-
note by dRWX . We say that a de Rham-Witt system is (quasi-)coherent
if the underlying graded Witt system is. We denote the category of (quasi-
)coherent de Rham-Witt systems by dRWX,qc (resp. dRWX,c). It is straight-
forward to check that dRWX , dRWX,qc and dRWX,c are abelian. We denote
by D+(dRWX), D+(dRWX,qc) and D+(dRWX,c) the corresponding derived
categories of bounded below complexes.

Remark 1.2.5. One should memorise (a) as “F ◦d◦V = d”, (b) as “π◦d = d◦π”,
and (c) as “d ◦ p = p ◦ d”.
Definition 1.2.6. A de Rham-Witt module (M,F, V, d) is a graded WOX -
module M together with morphisms of WOX -modules

F :M −→W (FX)∗M, V :W (FX)∗M −→M

and a morphism of W (k)-modules

d :M →M(1)

such that

(a) F ◦ V is multiplication with p,
(b) V ◦ F is multiplication with p,
(c) F ◦ d ◦ V = d,
(d) d(1) ◦ d = 0.
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De Rham-Witt modules form in the obvious way a category which we denote

by d̂RWX . It is straightforward to check that d̂RWX is abelian. We denote

by D+(d̂RWX) the derived category of bounded below complexes of de Rham-
Witt modules.

Example 1.2.7. Let X be a k-scheme

(1) The sheaves of Witt vectors of finite length on X define a coherent
graded Witt system

W•OX = ({WnOX}n≥1, π, F, V, p),

which is concentrated in degree 0. If X = Spec k, we simply write W•

instead of W•k.
(2) The de Rham Witt complex of Bloch-Deligne-Illusie W•ΩX is a coher-

ent de Rham-Witt system (see [Ill79]) and WΩX = lim←−nWnΩX is a de

Rham-Witt module.
(3) Let M be a de Rham-Witt system on X and i ∈ Z. Then we define

M(i) := ({Mn(i)}n≥1, πM , FM , VM , (−1)idM , pM ) ∈ dRWX .

1.3. Direct image, inverse image and inverse limit.

1.3.1. Let f : X → Y be a morphism between k-schemes. We get an induced
functor

f∗ : CN,X −→ CN,Y , (Mn) 7→ (Wn(f)∗Mn)

which commutes in the obvious way with i∗, σ,Σ∗. We thus obtain a functor

f∗ : dRWX −→ dRWY .

1.3.2. Let f : X → Y be an étale morphism between k-schemes. We get an
induced functor

f∗ : CN,Y −→ CN,X , (Mn) 7→ (Wn(f)
∗Mn)

which by (1.1.1) commutes with i∗, σ,Σ∗. We thus obtain a functor

f∗ : dRWY −→ dRWX .

1.3.3. Let (M,F, V, π, p, d) be a de Rham Witt system. Then (M,π) forms
naturally a projective system of WOX -modules, F and V induce morphisms
of projective systems of WOX -modules F : (M,π)→ (W (FX)∗M,W (FX)∗π),
V : (W (FX)∗M,W (FX)∗π) → (M,π) and induces a morphism of projective
systems ofW (k)-modules d : (M,π)→ (M(1), π(1)). We thus obtain a functor

lim←− : dRWX → d̂RWX .

Documenta Mathematica 17 (2012) 663–781



Hodge-Witt Cohomology . . . 675

1.4. Global sections with support.

Definition 1.4.1. A family of supports Φ on X is a non-empty set of closed
subsets of X such that the following holds:

(i) The union of two elements in Φ is contained in Φ.
(ii) Every closed subset of an element in Φ is contained in Φ.

Let A be any set of closed subsets of X . The smallest family of supports ΦA
which contains A is given by

(1.4.1) ΦA := {
n⋃

i=1

Z ′
i ; Z

′
i ⊂
closed

Zi ∈ A}.

For a closed subset Z ⊂ X we write ΦZ for Φ{Z}.

Notation 1.4.2. Let f : X −→ Y be a morphism of schemes and Φ resp. Ψ a
family of supports of X resp. Y .

(1) We denote by f−1(Ψ) the smallest family of supports on X which
contains {f−1(Z);Z ∈ Ψ}.

(2) We say that f | Φ is proper if f | Z is proper for every Z ∈ Φ. If f | Φ
is proper then f(Φ) is a family of supports on Y .

(3) If Φ1,Φ2 are two families of supports then Φ1 ∩ Φ2 is a family of sup-
ports.

(4) If Φ resp. Ψ is a family of supports of X resp. Y then we denote
by Φ × Ψ the smallest family of supports on X ×k Y which contains
{Z1 × Z2;Z1 ∈ Φ, Z2 ∈ Ψ}.

1.4.3. Let Φ be a family of supports on X . We consider the sections-with-
support-in-Φ functor (see e.g. [Har66, IV, §1])

ΓΦ : CN,X −→ CN,X , (Mn) 7→ (ΓΦ(Mn)).

Since ΓΦ commutes in the obvious way with i∗, σ,Σ∗ we obtain

ΓΦ : dRWX −→ dRWX .

For a closed subset Z ⊂ X we also write ΓZ instead of ΓΦZ
.

If f : X → Y is a morphism and Ψ a family of supports on Y , then

(1.4.2) ΓΨf∗ = f∗Γf−1(Ψ).

If f : X → Y is a morphism and Φ is a family of supports on X , then we define

fΦ := f∗ ◦ ΓΦ : dRWX → dRWY ,(1.4.3)

f̂Φ := lim←−◦fΦ : dRWX → d̂RWY .(1.4.4)

Notice that if Φ = ΦZ , with Z a closed subset of X , then

(1.4.5) f̂ΦZ = f∗ ◦ ΓΦZ ◦ lim←− .
This relation does not hold for arbitrary families of support on X .
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1.5. Derived functors.

Lemma 1.5.1. Let (X,OX) be a ringed space and E = (En) a projective system
of OX-modules (indexed by integers n ≥ 1). Let B be a basis of the topology of
X. We consider the following two conditions:

a) For all U ∈ B, Hi(U,En) = 0 for all i, n ≥ 1.
b) For all U ∈ B, the projective system (H0(U,En))n≥1 satisfies the

Mittag-Leffler condition.

Then

(1) If E satisfies condition a), then Ri lim←−nEn = 0, for all i ≥ 2.

(2) If E satisfies the conditions a) and b), then Ri lim←−nEn = 0, for all

i ≥ 1, i.e. E is lim←−-acyclic.

Proof. It is a basic fact that there are sufficiently many injective OX -modules.
Notice that a projective system of OX -modules I = (In) is injective if and only
if each In is an injective OX -module and the transition maps In+1 → In are
split surjective. (The “if” direction is easy, as well as I injective implies each In
is injective. If I is injective, let J be the projective system with Jn = I1⊕. . .⊕In
and projections as transition maps. We have an obvious inclusion of projective
systems I →֒ J , hence a surjection Hom(J, I) → Hom(I, I). Now a lift of the
identity on I together with the split surjectivity of the transition maps of J
gives the splitting of the transition maps of I.)
Now let E → I• be an injective resolution (which always exist). The transition
maps of the projective system (of abelian groups) (Γ(U, Iqn))n are surjective
(since split) for all q ≥ 0 and all open subsets U ⊂ X . Hence they satisfy the
Mittag-Leffler condition and are lim←−-acyclic.
On the other hand, lim←−n I

q
n is an injective OX -module for every q. Indeed,

since the transition maps Iqn+1 −→ Iqn are surjective and split, we may write
Iqn
∼= ⊕ni=1I

′
i for I

′
i = ker(Iqi −→ Iqi−1). The OX -modules I ′n are injective for all

n, and the transition maps

⊕n+1
i=1 I

′
i
∼= Iqn+1 −→ Iqn

∼= ⊕ni=1I
′
i

are the obvious projections. Thus lim←−n I
q
n =

∏
i≥1 I

′
n is injective.

By using lim←−◦ΓU = ΓU ◦ lim←− we obtain a spectral sequence

Ri lim←−H
j(U,En) =⇒ Hi+j(U,R lim←−En),

where R lim←−En = lim←−n I
•
n. If U ∈ B, condition a) implies Ri lim←−H

0(U,En) =

Hi(U,R lim←−En) = Hi(lim←− I
•(U)). We know that Ri lim←−H

0(U,En) is zero for

all i ≥ 2 (see e.g. [Wei, Cor. 3.5.4]) and - in case condition b) is satisfied - also
for all i ≥ 1. Now the assertion follows from

lim←−
U∈B,U∋x

Hi(U,R lim←−En) = lim←−
U∈B,U∋x

Hi(lim←− I
•(U)) = (Ri lim←−En)x,

for all x ∈ X . �
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Lemma 1.5.2. Let A be a sheaf of abelian groups on a noetherian topological
space X. If A is flasque, so is ΓΦ(A) for all families of supports Φ on X.

Proof. Let Y and Z be two closed subsets of X . Since ΓZ(I) is injective if I is

([SGA2, Exp. I, Cor. 1.4]), there exists a spectral sequence Hi
Y (X,HjZ(A)) =⇒

Hi+j
Y ∩Z(X,A). Now assume A is flasque, thenHjZ(A) = 0 for j 6= 0. In particular

H1
Y (X,ΓZ(A)) = H1

Y ∩Z(X,A) = 0. Thus ΓZ(A) is flasque. The space X is
noetherian and therefore ΓΦ(A) = lim−→Z∈Φ

ΓZ(A) is also flasque. �

Definition 1.5.3. We say that a de Rham-Witt system M on a k-scheme X
is flasque, if for all n

0→ Kn →Mn
π−→Mn−1 → 0

is an exact sequence of flasque abelian sheaves on X , where Kn = Ker(π :
Mn →Mn−1).

Lemma 1.5.4. Let X be a k-scheme.

(1) Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of de Rham-
Witt systems on X and assume that M ′ is flasque. Then M is flasque
iff M ′′ is.

(2) Let Φ be a family of supports on X. Then ΓΦ restricts to an exact
endo-functor on the full subcategory of flasque de Rham-Witt systems.

(3) Let f : X → Y be a morphism. Then f∗ restricts to an exact functor
between the full subcategories of flasque de Rham-Witt systems on X
and Y .

(4) The functor lim←− : dRWX → d̂RWX restricts to an exact functor from
the full subcategory of flasque de Rham-Witt systems to the full subcat-
egory of flasque de Rham-Witt modules (i.e. de Rham-Witt modules,
which are flasque as abelian sheaves on X).

Proof. The proof of (1) is straightforward. (2) follows from Lemma 1.5.2. (3)
is clear. Finally (4). It follows directly from the definition, that the transition
maps on the sections over any open U ⊂ X of a flasque de Rham-Witt systems
are surjective. The exactness of lim←− on the category of flasque de Rham-Witt

systems, thus follows from Lemma 1.5.1, (2). Now let M be a flasque de
Rham-Witt system. It remains to show that lim←−M is flasque again. For this

let U ⊂ X be open and define Ln = Ker(Γ(X,Mn) → Γ(U,Mn)). Thus we
have an exact sequence

(1.5.1) lim←−Γ(X,M)→ lim←−Γ(U,M)→ R1 lim←−
n

Ln.
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Consider the following diagram:

0

��

0

��
Γ(X,Kn)

��

// Γ(U,Kn)

��

// 0

0 // Ln
a
��

// Γ(X,Mn)

��

// Γ(U,Mn)

��

// 0

0 // Ln−1
// Γ(X,Mn−1)

��

// Γ(U,Mn−1)

��

// 0

0 0.

All rows and columns are exact, since M is flasque. Now it follows from an
easy diagram chase that a is surjective. Therefore R1 lim←−n Ln = 0 and the

flasqueness of lim←−M follows from (1.5.1). �

Lemma 1.5.5. The categories dRWX and d̂RWX have enough flasque objects,

i.e. any M in dRWX (or in d̂RWX) admits an injection into a flasque object.

Proof. For the de Rham-Witt modules this is just the usual Godement con-
struction. For the de Rham-Witt systems this has to be refined as follows: Let
M be a de Rham-Witt system. Denote by G(Mn) the WnOX -module given by

G(Mn)(U) =
∏

x∈U

Mn,x, U ⊂ X open,

with the restriction maps given by projection. These sheaves fit together to
form a de Rham-Witt system G(M) = {G(Mn)}n≥1, such that the natural
map M → G(M) is a morphism of de Rham-Witt systems.
For m < n we denote by im,n : WmX →֒ WnX the closed immersion induced
by the restriction WnOX →WmOX , in particular in−1,n = in. We set

G̃n(M) := i1,n∗G(M1)⊕ . . .⊕ in−1,n∗G(Mn−1)⊕G(Mn).

Then G̃n(M) is a graded WnOX -module. We define WnOX -linear maps π, F ,
d, V , p, as follows

π : G̃n → in∗G̃n−1, (m1, . . . ,mn) 7→ (m1, . . . ,mn−1),

F : G̃n → (Wn(FX)in)∗G̃n−1, (m1, . . . ,mn) 7→ (Fm2, . . . , Fmn),

d : Wn(F
n
X)∗G̃n → Wn(F

n
X)∗G̃n(1), (m1, . . . ,mn) 7→ (dm1, . . . , dmn),

V : (Wn(FX)in)∗G̃n−1 → G̃n, (m1, . . . ,mn−1) 7→ (0, V m1, . . . , V mn−1),

p : in∗G̃n−1 → G̃n, (m1, . . . ,mn−1) 7→ (0, pm1, . . . , pmn−1).

It is straightforward to check that G̃(M) = ({G̃n(M)}n≥1, π, F, d, V, p) be-
comes a de Rham-Witt system and it is flasque by its definition. Also, the
inclusion M →֒ G(M) induces an inclusion

Mn →֒ G̃n(M), m 7→ (πn−1(m), . . . , π(m),m).
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By definition this yields an inclusion of de Rham-Witt systems M →֒ G̃(M)
and we are done. �

Proposition 1.5.6. Let f : X → Y be a morphism between k-schemes and Φ
a family of supports on X. Then the right derived functors

RΓΦ : D+(dRWX)→ D+(dRWX),

Rf∗ : D+(dRWX)→ D+(dRWY ),

R lim←− : D+(dRWX)→ D+(d̂RWX)

RfΦ : D+(dRWX)→ D+(dRWY ),

Rf̂Φ : D+(dRWX)→ D+(d̂RWY ),

exist. Furthermore there are the following natural isomorphisms:

(1) Let f : X → Y and g : Y → Z morphisms, then Rg∗Rf∗ = R(g ◦ f)∗.
(2) Let Φ and Ψ be two families of supports on X, then RΓΦRΓΨ =

RΓΦ∩Ψ.
(3) Let f : X → Y be a morphism and Ψ a family of supports on Y , then

RΓΨRf∗ = Rf∗RΓf−1(Ψ).

(4) Let f : X → Y be a morphism, then R lim←−Rf∗ = Rf∗R lim←−.
(5) Let f : X → Y be a morphism and Φ a family of supports on X. Then

RfΦ = Rf∗RΓΦ and Rf̂Φ = R lim←−RfΦ. If Z is a closed subset of X

and Φ = ΦZ , then also Rf̂ΦZ = Rf∗RΓZR lim←−.
Proof. The existence follows from [Har66, I, Cor. 5.3, β] (take P there to be the
flasque objects) together with the Lemmas 1.5.5 and 1.5.4. The compatibility
isomorphisms follow from [Har66, I, Cor 5.5] and Lemma 1.5.4, (2)-(4). �

Remark 1.5.7. Let f : X → Y be an étale morphism between k-schemes. Then
Wn(f) is étale and thus Wn(f)

∗ is exact on the category of Wn(OY )-modules.
Therefore f∗ : dRWY → dRWX is exact and thus extends to

f∗ : D+(dRWY )→ D+(dRWX).

In case j : U →֒ X is an open immersion we write M|U instead of j∗M for

M ∈ D+(dRWX).

1.5.8. Cousin-complex for de Rham-Witt systems. Let X be a k-scheme and
Z• the codimension filtration of X , i.e. Zq is the family of supports on X
consisting of all closed subsets of X whose codimension is at least q. Let M
be a de Rham-Witt system on X . Take a complex of flasque de Rham-Witt
systems G on X , which is a resolution of M , i.e. there is a quasi-isomorphism
M [0]→ G. The filtration of complexes of de Rham-Witt systems

G ⊃ ΓZ1(G) ⊃ . . . ⊃ ΓZq (G) ⊃ . . .
defines a spectral sequence of de Rham-Witt systems

Ei,j1 = Hi+jZi/Zi+1 (M) =⇒ Hi+j(M),
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where we put Hi+jZi/Zi+1(M) = Hi+j(ΓZi(G)/ΓZi+1(G)). We define the Cousin

complex of M (with respect to the codimension filtration) E(M) to be the

complex E•,0
1 coming from this spectral sequence, i.e. it is the complex of de

Rham-Witt systems

E(M) : H0
Z0/Z1(M)

d0,01−−→ H1
Z1/Z0(M)

d1,01−−→ . . . −→ HiZi/Zi+1(M)
di,01−−→ . . . .

It satisfies the following properties:

(1) (E(M))n = E(Mn) is the usual Cousin complex associated to Mn (see
e.g. [Har66, IV, §2] or [Con00, p. 107-109]).

(2)

Ei(M) = HiZi/Zi+1(M) =
⊕

x∈X(i)

ix∗H
i
x(M),

where Hi
x(M) = (lim−→U∋x

Hi
{x}∩U

(U,Mn))n, which is a de Rham-Witt

system on SpecOX,x supported in the closed point x, ix : SpecOX,x →
X is the natural map and X(i) is the set of points x of codimension i
in X (i.e. dimOX,x = i).

(3) The natural augmentationM → E(M) is a resolution ofM if and only
if Hi

x(Mn) = 0 for all x ∈ X(j) with j 6= i and for all n ≥ 1.

((1) holds since each Gn is a flasque resolution of Mn; (2) follows from (1) and
[Har66, IV, §1, Var. 8, Motif F]; (3) follows from (1) and [Har66, IV, Prop.
2.6, (iii)⇐⇒(iv)] and [Har66, IV, §1, Var. 8, Motif F].)

Lemma 1.5.9. Let X be a smooth k-scheme. Then E(W•ΩX) is a flasque
resolution of quasi-coherent de Rham-Witt systems of the coherent de Rham-
Witt system W•ΩX .

Proof. By [Ill79, I, Cor. 3.9] the graded pieces of the standard filtration on
WnΩ

q
X are extensions of locally free OX -modules. Thus

(1.5.2) Hi
x(WnΩ

q
X) = 0 for all x ∈ X(j), with j 6= i, and all q, n ≥ 1.

Thus E(W•ΩX) is a quasi-coherent resolution of W•ΩX . Next we claim, that
the transition morphisms

(1.5.3) Hi
x(WnΩ

q
X)→ Hi

x(Wn−1Ω
q
X)

are surjective for all x ∈ X(i) and n ≥ 2. Indeed, for x ∈ X(i) we can always
find an open affine neighborhood U = SpecA of x and sections t1, . . . , ti such
that {x}∩U = V (t1, . . . , ti). This also implies for all n ≥ 1,Wn({x})∩WnU =
V ([t1], . . . , [ti]) ⊂WnU , where [t] ∈WnA is the Teichmüller lift of t ∈ A. Then
by [SGA2, Exp. II, Prop. 5]

Hi
{x}∩U

(U,WnΩX) = lim−→
r

Γ(U,WnΩX)

([t1]r, . . . , [ti]r)Γ(U,WnΩX)
.

In particular the transition maps (1.5.3) are surjective. If we denote the kernel
of the restriction morphism WnΩX → Wn−1ΩX by Kn, then this and (1.5.2)
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implies, that the sequence

0→ Ei(Kn)→ Ei(WnΩX)→ Ei(Wn−1ΩX)→ 0

is an exact sequence of flasque abelian sheaves on X and this proves the lemma.
�

1.6. Witt-dualizing systems.

1.6.1. Let f : X → Y be a finite morphism between two finite dimensional
noetherian schemes. Using the notation from [Har66, III, §6] we denote by
f ♭ : D+(OY )→ D+(OX), the functor which sends a complex C to

f ♭(C) = f−1RHomOY (f∗OX , C)⊗f−1f∗OX
OX .

Evaluation by 1 induces the finite trace morphism on D+
qc(OY ) (see [Har66, III,

Prop. 6.5])

(1.6.1) Trf : f∗f
♭ → idD+

qc(OY )

and composition with the natural map

(1.6.2) ǫf : f∗RHomX(−,−)→ RHomY (f∗(−), f∗(−))
induces an isomorphism for any A ∈ D−

qc(OX), B ∈ D+
qc(OY )

(1.6.3) θf = Trff ◦ ǫf : f∗RHomX(A, f ♭B)
≃−→ RHomY (f∗A,B).

In particular, we see that for any morphism ϕ : f∗A→ B in Dqc(OY ) , with A
bounded above and B bounded below there exists a morphism aϕ : A → f ♭B
in Dqc(OX), such that ϕ equals the composition

f∗A
f∗(

aϕ)−−−−→ f∗f
♭B

Trff−−−→ B.

We call aϕ the adjoint of ϕ.

1.6.2. Let X be a k-scheme and denote by D(CN,X) =
∏
n≥1D(Cn,X) the

derived category of CN. Since the morphisms in and Wn(FX) are finite for all
n, the functors i∗, σ∗, Σ∗ are exact and extend to functors on D(CN), which
still satisfy the identities (1.2.1), (1.2.2). On D+

qc(CN) we define i♭, σ♭, Σ♭ as
follows:

(i♭M)n := i♭n+1Mn+1, (σ♭M)n :=Wn(FX)♭Mn, (Σ♭M)n =Wn(F
n
X)♭Mn.

There is an obvious way to define Trfi, Trfσ, TrfΣ, ǫi, ǫσ, ǫΣ such that the
compositions

i∗RHom(M, i♭N)
ǫi−→ RHom(i∗M, i∗i

♭N)
Trfi−−→ RHom(i∗M,N),

σ∗RHom(M,σ♭N)
ǫσ−→ RHom(σ∗M,σ∗σ

♭N)
Trfσ−−−→ RHom(σ∗M,N),

Σ∗RHom(M,Σ♭N)
ǫΣ−→ RHom(Σ∗M,Σ∗Σ

♭N)
TrfΣ−−−→ RHom(Σ∗M,N)

are isomorphisms for M ∈ D−
qc(CN) and N ∈ D+

qc(CN).
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Definition 1.6.3 ([Eke84, III, Def. 2.2]). A Witt quasi-dualizing system on X
is a collection (Q, p, C, V ) where Q is an object in CN,qc and

p : i∗Q −→ Q, C : Σ∗Q −→ Q, V : σ∗i∗Q −→ Q

are morphisms in CN such that the following holds:

(a) V ◦ σ∗i∗C = C ◦ Σ∗p,
(b) p ◦ i∗V = V ◦ σ∗i∗p.

A Witt dualizing system is a Witt quasi-dualizing system, which has the addi-
tional property, that the adjoints

(1.6.4) ap : Q
≃−→ i♭Q, aC : Q

≃−→ Σ♭Q, aV : Q
≃−→ i♭σ♭Q

are quasi-isomorphisms.
A morphism ϕ between Witt (quasi-) dualizing systems is a morphism in CN
commuting with p, V, and C.

A Witt (quasi-) dualizing system (Q, p, C, V ) on X is called coherent if Qn is
coherent for all n ≥ 1.

Example 1.6.4. (1) The system

W•ω := ({Wn}n≥1, p, C := {Wn(FSpeck)
−n}, V := {Wn(FSpec k)

−1p})
is a Witt dualizing system on Spec k, where p is the usual map “lift and
multiply by p”, which is concentrated degree 0. For this, first notice
that Wn is an injective Wn-module for all n ≥ 1. Then one easily
checks that the following maps are isomorphisms and adjoint to p, C
and V respectively:

W•
≃−→ i♭W• = HomW•

(i∗W•,W•), a 7→ (b 7→ pab),

W•
≃−→ Σ♭W• = HomW•

((Σ∗W•),W•), a 7→ (b 7→ Cab),

W•
≃−→ i♭σ♭W• = HomW•

(σ∗i∗W•,W•), a 7→ (b 7→ V ab).

(2) Let X be a smooth k-scheme of pure dimension N . Then

W•ωX := ({WnΩ
N
X}n≥1, p, C, V )

is a Witt dualizing system which by definition is concentrated in degree
N . Here p is “lift and multiply by p” and V is the Verschiebung. On
the n-th level C is defined as the composition:

Cn : (Σ∗W•Ω
N
X)n → (Σ∗W•Ω

N
X/d(W•Ω

N−1
X ))n

(C−n)−1

−−−−−−→WnΩ
N
X ,

where C−n : WnΩ
N
X

≃−→ Wn(F
n
X)∗WnΩ

N
X/d(WnΩ

N−1
X ) is the inverse

Cartier isomorphism from [IR83, III, Prop. (1.4).]. One easily checks
that p, Cn and V satisfy the relations (a), (b) in Definition (1.6.3). The
condition on the adjoints (1.6.4) is harder and follows from Ekedahl’s
result WnΩ

N
X = Wn(f)

!Wn, with f : X → Spec k the structure map,
see [Eke84, I and II, Ex. 2.2.1.]. Notice that W•ωSpeck =W•ω.

Documenta Mathematica 17 (2012) 663–781



Hodge-Witt Cohomology . . . 683

1.6.5. Let (Q, p, C, V ) be a Witt dualizing system on X . We may express the
equalities in (1.6.4) as

H0(aϕ) : Q
≃−→ H0(f ♭Q) and H0(f ♭Q)[0] ∼= f ♭Q,

where (f, ϕ) ∈ {(i, p), (σ, V ), (Σ, C)}. Therefore by the definition of the ad-
joints, p, C and V factor as follows:

p : i∗Q
≃, H0(ap)
−−−−−−→ i∗H

0(i♭Q)
H0(Trfi)−−−−−−→ Q,

C : Σ∗Q
≃, H0(aC)−−−−−−−→ Σ∗H

0(Σ♭Q)
H0(TrΣ)−−−−−→ Q,

V : σ∗i∗Q
≃, H0(aV )−−−−−−−→ σ∗i∗H

0(i♭σ♭Q)
H0(Trσi)−−−−−−→ Q.

Furthermore it follows from 1.6.2, that the natural transformations

p ◦ ǫi : i∗HomCN
((−), Q) −→ HomCN

(i∗(−), Q),

C ◦ ǫΣ : Σ∗HomCN
((−), Q) −→ HomCN

(Σ∗(−), Q),

V ◦ ǫσi : σ∗i∗HomCN
((−), Q) −→ HomCN

(σ∗i∗(−), Q)

are isomorphisms when restricted to the category CN,qc.

1.6.6. Let M be a quasi-coherent de Rham-Witt system and Q a Witt du-
alizing system on X . Then we may define maps π, F , V , d and p on
HomCN

(M,Q) ∈ CN as follows:

π : Hom(M,Q)
◦p
−→ Hom(i∗M,Q)

(p◦ǫi)
−1

−−−−−→ i∗Hom(M,Q),

F : Hom(M,Q)
◦V−−→ Hom(σ∗i∗M,Q)

(V ◦ǫσi)
−1

−−−−−−→ σ∗i∗Hom(M,Q),

V : σ∗i∗Hom(M,Q)
(V ◦ǫσi)−−−−−→ Hom(σ∗i∗M,Q)

◦F−−→ Hom(M,Q),

p : i∗Hom(M,Q)
p◦ǫi−−→ Hom(i∗M,Q)

◦π−→ Hom(M,Q),

d : Σ∗Hom(M,Q)
(C◦ǫΣ)−−−−→ Hom(Σ∗M,Q)

◦d−→ Hom(Σ∗M(−1), Q)

≃, α−−−→ Hom(Σ∗M,Q)(1)
(C◦ǫΣ)−1

−−−−−−→ Σ∗Hom(M,Q)(1),

where the isomorphism α : Hom(Σ∗M(−1), Q)
≃−→ Hom(Σ∗M,Q)(1) is given

by multiplication with (−1)q+1 in degree q.

Proposition 1.6.7 ([Eke84, III, 2.]). The above construction yields a functor

Hom(−, Q) : (dRWX,qc)
o −→ dRWX ,

which has the following properties

(1) A morphism of Witt dualizing systems Q→ Q′ induces a natural trans-
formation of functors Hom(−, Q)→ Hom(−, Q′).

(2) The functor Hom(−, Q) restricts to a functor (dRWX,c)
o → dRWX,qc

and if Q is coherent, then also to (dRWX,c)
o → dRWX,c.
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(3) For all M ∈ dRWX,qc and all m ∈ Z there is a natural isomorphism

Hom(M(m), Q) ≃ Hom(M,Q)(−m),

given by multiplication with (−1)qm+m(m−1)
2 in degree q and a natural

isomorphism

Hom(M,Q(m)) ≃ Hom(M,Q)(m)

given by the identity in each degree. (There is some freedom in defining
these isomorphisms; our choice is compatible with the sign convention
for complexes in [Con00].)

Proof. It is straightforward to check the relations in Definition 1.2.4. �

1.7. Residual complexes and traces. In this section A will always be a
regular local ring, all schemes are of finite type over A and all morphisms will
be A-morphisms. The results of this section will be applied in the next sections
in the case A =W and schemes of finite type over Wn, some n.

1.7.1. Review of residual complexes. The general references for residual com-
plexes are [Har66, VI], [Con00, 3.2]. Let X be an A-scheme. A residual complex
on X is a bounded complex K of quasi-coherent and injective OX -modules,
which has coherent cohomology and such that there exists an isomorphism of
OX -modules

⊕
q∈ZK

q ∼=
⊕

x∈X ix∗J(x), where ix : SpecOX,x →֒ X is the

inclusion and J(x) is an injective hull of k(x) in OX,x (i.e. it is an injective
OX,x-module which contains k(x) and such that, for any 0 6= a ∈ J(x) ex-
ists a b ∈ OX,x with 0 6= ba ∈ k(x)). It follows that ix∗J(x) is supported in

{x}. The codimension function on X associated to K is the unique function
dK : |X | → Z such that Kq =

⊕
dK•(x)=q ix∗J(x) for all q. If x0 is an imme-

diate specialization of x ∈ X (i.e. x0 is a point of codimension 1 in {x}), then
dK(x0) = dK(x) + 1. The filtration . . . ⊂ ZqK ⊂ Zq−1

K ⊂ . . . ⊂ X associated to
K is defined by ZqK := {x ∈ X | dK(x) ≥ q}. On each irreducible component
of X this filtration equals the shifted codimension filtration.
If R ∈ Db

c(X) is a dualizing complex with associated codimension filtration
Z• (see [Con00, 3.1] for these notions), then the Cousin complex EZ•(R) of
R with respect to Z• is a residual complex with associated filtration also Z•.
In Db

c(X) we have R ∼= EZ•(R) (since a dualizing complex is Gorenstein).
Particular examples of dualizing complexes are Wn on X = SpecWn, OX [0] in
case X is regular, ωX [N ] = ΩNX/A[N ] in case X is smooth of pure dimension N

and more general f !R ∈ Db
c(X

′), where f : X ′ → X is a finite type morphism
and R is a dualizing complex on X .
On the other hand any residual complex on X is a dualizing complex when
viewed as a complex in Db

c(X). Furthermore, if K is a residual complex on Y
with filtration Z•, then we have an equality of complexes EZ•

(K) = K.

Documenta Mathematica 17 (2012) 663–781



Hodge-Witt Cohomology . . . 685

1.7.2. (−)! for residual complexes. Let f : X → Y be a finite type morphism
between A-schemes and K a residual complex on Y with associated filtration
Z•
K =: Z• (which exists by the above). Then there is a functor f∆ from

the category of residual complexes with filtration Z• on Y to the category of
residual complexes on X with a fixed filtration denoted by f∆Z•, having the
following properties:

(1) For two finite type morphisms f : X → Y and g : Y → Z of A-schemes,

there is an isomorphism cf,g : (gf)∆
≃−→ f∆g∆, which is compatible

with triple compositions and such that cid,f = id = cf,id.
(2) If f : X → Y is smooth and separated of relative dimension r, then

there is an isomorphism

ϕf : f∆K
≃−→ Ef−1Z•[r](Ω

r
X/Y [r]⊗ f∗K).

Here Ef−1Z•[r](Ω
r
X/Y [r] ⊗ f∗K) is the Cousin complex associated to

the complex ΩrX/Y [r] ⊗ f∗K and the filtration f−1Z•[r]. If we have

two smooth separated maps of some fixed relative dimension f and g
as in (1), then cf,g is compatible with the natural map on the right.

(3) If f : X → Y is finite, then there is an isomorphism

ψf : f∆K
≃−→ Ef−1Z•(f̄∗RHomOY (f∗OX ,K)) = f̄∗HomOY (f∗OX ,K),

where we set f̄∗(−) := f−1(−)⊗f−1f∗OX
OX (which is an exact func-

tor). If we have two finite maps f and g as in (1), then cf,g is compatible
with the natural map on the right of the above isomorphism.

(4) Let

XU
u′

//

f ′

��

h

!!B
BB

BB
BB

B
X

f

��
U

u // Y

be a cartesian diagram of A-schemes with u étale. Then there is an
isomorphism

du,f : f ′∆u∗
≃−→ u′

∗
f∆,

which is compatible with compositions in u and f and with the iso-
morphisms in (2) and (3). Furthermore, by (2) we have u∗ ∼= u∆ and

u′
∗ ∼= u′

∆
and the following diagram commutes

f ′∆u∗
du,f //

≃

��

u′
∗
f∆

≃

��
f ′∆u∆ h∆

cf′,uoo
cu′,f // u′∆f∆.

(To prove this commutativity one may assume that f factors as X
i−→

P
π−→ Y , with i a closed immersion and π smooth and then use (2)
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and (3), cf. [Con00, (3.3.34)].) Finally if f and g are étale, then cf,g :
(gf)∆ ∼= f∆g∆ corresponds to the natural isomorphism (gf)∗ ∼= f∗g∗.

In fact f∆ is defined by locally factoring f : X → Y into a closed immersion
followed by a smooth morphism and then use (2) and (3) and glue (and then
show that what you obtain is independent of all the choices). In Db

c(X) we
have f∆K ∼= f !K. For details, as well as more compatibilities, see [Har66, VI]
and [Con00, 3.2].

1.7.3. The Trace for residual complexes. The reference for this section is
[Har66, VI, 4,5, VII, 2] and [Con00, 3.4]. Let f : X → Y be a finite type
morphism between A-schemes. Let K be a residual complex on Y . Then there
exists a morphism of graded sheaves (in general not of complexes, which we
indicate by the dotted arrow)

Trf : f∗f
∆K // K,

which satisfies the following properties (and is also uniquely determined by the
first three of them):

(1) Trf is functorial with respect to maps between residual complexes with
same associated filtration and Trid = id.

(2) If g : Y → Z is another morphism of finite type between A-schemes,
then

Trgf = Trg ◦ g∗(Trf ) ◦ (gf)∗cf,g.
(3) If f is finite, then Trf is a morphism of complexes and equals the

composition

Trf : f∗f
∆K

≃, ψf−−−→ HomOY (f∗OX ,K)
ev. at 1−−−−−→ K.

(4) Trf is compatible with étale base change (using the maps du,f from
1.7.2, (4)).

(5) If f : X → Y is proper, then Trf : f∗f
∆K → K is a morphism of

complexes.
(6) If f : PnX → X is the projection, then Trf is the composition (inDb

c(X))

Trf : f∗f
∆K

≃, ϕf−−−→ Rf∗(Ω
n
Pn
X/X

[n])⊗K ≃ K,
where for the first isomorphism we used 1.7.2, (2) and the projection
formula, the second isomorphism is induced by base change from the
isomorphism

Z
≃−→ Hn(PnZ,Ω

n
Pn
Z
/Z) = Ȟn(U,ΩnPn

Z
/Z), 1 7→ (−1)n(n+1)

2
dt1 ∧ . . . ∧ dtn

t1 · · · tn
,

where U = {U0, . . . , Un} is the standard covering of PnZ and the ti’s are
the coordinate functions on U0.

(7) (Grothendieck-Serre duality, special case) If f : X → Y is proper, then
for any C ∈ D−

qc(X) the composition

Rf∗RHomX(C, f∆K)
ǫf−→ RHomY (Rf∗C, f∗f

∆K)
Trf−−→ RHomY (Rf∗C,K)
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is an isomorphism. It is compatible with étale base change.

Definition 1.7.4. We denote by SchA,∗ the category with objects given by
pairs (X,Φ), where X is a scheme of finite type over A and Φ is a family of
supports on X , and the morphisms f : (X,Φ)→ (Y,Ψ) are given by separated
A-morphisms f : X → Y , whose restriction to Φ is proper and which satisfy
f(Φ) ⊂ Ψ.

Remark 1.7.5. Let (X,Φ) be an object in SchA,∗ and K a residual complex on
X . Then ΓΦK is a direct summand of K and is a complex of quasi-coherent
and injective OX -modules. Indeed the isomorphism

⊕
q∈ZK

q ∼=
⊕

x∈X ix∗J(x)

(see 1.7.1) implies
⊕

q∈Z ΓΦK
q ∼=

⊕
{x}∈Φ ix∗J(x).

Corollary 1.7.6. Let f : (X,Φ)→ (Y,Ψ) be a morphism in SchA,∗ and K a
residual complex on Y , then there exists a morphism of complexes

Trf : fΦf
∆K → ΓΨ(K),

where we set fΦ := f∗ ◦ ΓΦ, which satisfies the following properties:

(1) Trf is functorial with respect to maps between residual complexes with
same associated filtration and Trid = id.

(2) The following diagram commutes

fΦf
∆K

��

Trf // ΓΨ(K)

��
f∗f

∆K
Trf // K,

where the vertical maps are the natural ones and the lower horizontal
map is the trace from 1.7.3, which is only a map of graded sheaves (vi-
sualized by the dotted arrow). By abuse of notation we write f for both,
the morphism (X,Φ)→ (Y,Ψ) in SchA,∗ and the underlying morphism
of schemes X → Y .

(3) If g : (Y,Ψ)→ (Z,Ξ) is another morphism in SchA,∗, then

Trgf = Trg ◦ g∗(Trf ) ◦ (gf)∗cf,g :

(gf)Φ(gf)
∆K

cf,g−−→ gΨfΦf
∆g∆K

Trf−−→ gΨg
∆K

Trg−−→ ΓΞ(K).

(4) Trf is compatible with étale base change in the following sense: Let

XU
u′

//

f ′

��

X

f

��
U

u // Y

be a cartesian square of finite type A-schemes with u étale; let Φ, Ψ,
Φ′ and Ψ′ be families of supports on X, Y , XU and U , such that
f : (X,Φ) → (Y,Ψ) and f ′ : (XU ,Φ

′) → (U,Ψ′) are in SchA,∗ and
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additionally u−1(Ψ) ⊂ Ψ′, u′
−1

(Φ) ⊂ Φ′. Then u∗K ≃ u∆K is a
residual complex and the following diagram commutes:

u∗fΦf
∆K

u∗(Trf ) //

��

u∗ΓΨK

��
f ′
Φ′f ′∆u∗K

Trf′
// ΓΨ′u∗K.

Here the vertical maps are given as follows: First, the composition
ΓΨ → ΓΨu∗u

∗ ≃ u∗Γu−1(Ψ)u
∗ → u∗ΓΨ′u∗ gives by adjunction a map

u∗ΓΨ → ΓΨ′u∗, yielding the vertical map on the right in the diagram;
similar we have a map u′

∗
ΓΦ → ΓΦ′u′

∗
inducing a map u∗fΦ → f ′

Φ′u′
∗
;

the vertical map on the left in the diagram is then given by the compo-

sition u∗fΦf
∆ → f ′

Φ′u′
∗
f∆

d−1
u,f−−−→ f ′

Φ′f ′∆u∗, where du,f is the map from
1.7.2, (4).

(5) Let j : U → X be an open immersion such that Φ is contained in U .
Then j : (U,Φ) →֒ (X,Φ) is a morphism in SchA,∗ and Trj : jΦj

∆K →
ΓΦK is the excision isomorphism, more precisely: Trj is given by the
composition

(1.7.1) Trj : jΦj
∆K = Γ(X,Φ)j∗j

∆K ≃ Γ(X,Φ)j∗j
∗K

exc.
= Γ(X,Φ)K.

Proof. We define Trf : fΦf
∆K → ΓΨK to be the following composition

(1.7.2) fΦf
∆K → f∗Γf−1(Ψ)f

∆K ≃ ΓΨf∗f
∆K

1.7.3 // ΓΨK .

A priori this is only a map of graded sheaves. But we already observe, that the
properties 1)- 4) follow immediately from the definition and the corresponding
properties in 1.7.3. If j : (U,Φ) →֒ (X,Φ) is an open immersion as in (5),
we may apply the excision identity Γ(X,Φ) = Γ(X,Φ)j∗j

∗ to the map of graded

sheaves Trj : j∗j
∆(−) // (−) to obtain a commutative diagram

jΦj
∆K = Γ(X,Φ)j∗j

∆K
Trj // Γ(X,Φ)K

Γ(X,Φ)j∗j
∗(j∗j

∆K)
j∗j

∗(Trj)// Γ(X,Φ)j∗j
∗K.

Now using the compatibility with base change as in (4) (in the situation j =
u = f) implies that going around the diagram from the top left corner to the
top right corner counterclockwise is the isomorphism (of complexes) (1.7.1).
This gives (5) and in particular Trj is a morphism of complexes.
It remains to show that Trf as defined in (1.7.2) is in fact a morphism of
complexes. For this we factor f : X → Y into an open immersion j : X →֒ X̄
followed by a proper A-morphism f̄ : X̄ → Y (Nagata compactification). Since
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the restriction of f to Φ is proper, it follows that Φ also defines a family of
supports on X̄. We consider the following diagram

fΦf
∆K

≃

��

// ΓΨf∗f
∆K

Trf //

Trj◦cf̄,j

��

ΓΨ(K)

f̄Φf̄
∆K // ΓΨf̄∗f̄

∆K,

Trf̄

99rrrrrrrrrr

where the vertical isomorphism on the left is a morphism of complexes, which
is given by

f∗Γ(X,Φ)f
∆K = f̄∗Γ(X̄,Φ)j∗f

∆K
cf̄,j
−−→ f̄∗Γ(X̄,Φ)j∗j

∆f̄∆K
Trj , (5)
−−−−−→ f̄∗Γ(X̄,Φ)f̄

∆K.

Further Trf̄ is a morphism of complexes by (1.7.3, (5)). The diagram is
commutative by 1.7.3, 2) and hence Trf as defined in (1.7.2) is a morphism of
complexes. �

1.7.7. Let X be a finite type A-scheme and ∅ = Zr ⊂ . . . ⊂ Zq+1 ⊂ Zq ⊂
. . . ⊂ Zs = X be a filtration with r > s ∈ Z and such that Zq is stable
under specialization and any y ∈ Zq \ Zq+1 is not a specialization of any
other point in Zq. Recall that a Cousin complex on X with respect to Z• is
a complex C• of quasi-coherent OX -modules, such that for all q the terms Cq

are supported in the Zq/Zq+1-skeleton, i.e. Cq ∼=
⊕

x∈Zq\Zq+1 ix∗Mx, where

ix : SpecOX,x →֒ X is the inclusion and Mx is a quasi-coherent sheaf on
SpecOX,x supported only in the closed point x. Notice that ix∗Mx is the

extension by zero of the constant sheaf Mx on {x}. Any residual complex with
associated filtration Z• is in particular a Cousin complex with respect to Z•.
If G is any complex of quasi-coherent OX -modules, then EZ•(G) is a Cousin
complex with respect to Z•.

Lemma 1.7.8. If f : X → Y is finite and D is a Cousin complex on X with
respect to f−1Z• (Z• as above), then f∗D is a Cousin complex on Y with
respect to Z•.

Proof. Write Dq ∼=
⊕

x∈f−1Zq\f−1Zq+1 ix∗Nx as above, in particular Nx is sup-

ported in x. Then

f∗D
q ∼=

⊕

y∈Zq\Zq+1

iy∗My, with My := f|X(y)∗

⊕

x∈f−1(y)

ix,f−1(y)∗Nx,

where ix,f−1(y) : SpecOX,x →֒ X(y) = X ×Y SpecOY,y is the inclusion. My is
supported in y and this gives the claim. �

Corollary 1.7.9. Let f : X → Y be a finite morphism between finite-type
A-schemes and K a residual complex on Y with filtration Z• and C a Cousin
complex on X with respect to f−1Z•. Then the isomorphism of 1.7.3, (7)
induces an isomorphism

HomX(C, f∆K) ∼= HomY (f∗C,K).
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This isomorphism is compatible with étale base change and is concretely in-
duced by sending a morphism of complexes ϕ : C → f∆K to the composition

f∗C
f∗(ϕ)−−−→ f∗f

∆K
Trf−−→ K.

Proof. Since K and f∆K are complexes of injectives and f is finite, 1.7.3, (7)
immediately gives (for all C)

HomX(C, f∆K)/homotopy ∼= HomY (f∗C,K)/homotopy.

By Lemma 1.7.8 above f∗C
q is supported in the Zq/Zq+1-skeleton, which by

definition also holds for Kq, for all q. Thus there is only the trivial homotopy
between f∗C

• and K. Similar with f∆K and C. �

Lemma 1.7.10. Let f : X → Y be a finite morphism between finite type A-
schemes and K a residual complex on Y with associated filtration Z•. Then
for all q ∈ Z the following equality holds in Db

qc(X)

(f∆K)q ∼= f̄∗HomY (f∗OX ,Kq) ∼= f ♭(Kq) ∼=
⊕

x∈f−1(Zq)\f−1(Zq+1)

ix∗J(x),

where f̄∗(−) := f−1(−) ⊗f−1f∗OX
OX , ix : SpecOX,x →֒ X is the inclusion

and J(y′) is an injective hull of k(y′) in OY ′,y′ .

Proof. The first isomorphism follows from 1.7.2, (3), the second holds since Kq

is injective and the third is [Har66, VI, Lem. 4.1]. �

1.8. Witt residual complexes. Let X be a k-scheme.

1.8.1. Let C(CN) be the category of complexes of CN. Recall that it is equipped
with endo-functors i∗, σ∗,Σ∗.

Notation 1.8.2. We say that a complex K in C(CN) is a residual complex if
Kn is a residual complex on Wn(X) for all n and the associated filtrations on
|X | = |Wn(X)| are all the same.
We say that a complex C in C(CN) is a Cousin complex if Cn is a Cousin
complex for all n with respect to the same filtration.

For a residual complex K ∈ C(CN) we define

(i∆K)n := i∆n+1Kn+1

(σ∆K)n :=Wn(FX)∆Kn

(Σ∆K)n :=Wn(F
n
X)∆Kn.

This yields endo-functors on the full subcategory of residual complexes with
some fixed filtration of C(CN).
In view of Corollary 1.7.9 we get

HomC(CN)(i∗C,K) = HomC(CN)(C, i
∆K)

HomC(CN)(σ∗C,K) = HomC(CN)(C, σ
∆K)

HomC(CN)(Σ∗C,K) = HomC(CN)(C,Σ
∆K)

(1.8.1)

if C is a Cousin complex with respect to the filtration of K.
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Definition 1.8.3. Let X be a k-scheme. A Witt residual complex on X is a
collection (K, p, C, V ) where K ∈ C(CN) is a complex and

p : i∗K → K, C : Σ∗K → K, V : σ∗i∗K → K,

are morphisms of complexes such that:

(a) K a residual complex,
(b) the morphisms p, C, V , satisfy the relations

V ◦ σ∗i∗C = C ◦ Σ∗p, p ◦ i∗V = V ◦ σ∗i∗p,
and the adjoints of p, C and V under (1.8.1)

ap : K
≃−→ i∆K, aC : K

≃−→ Σ∆K, aV : K
≃−→ i∆σ∆K

are isomorphisms of complexes.

A morphism between Witt residual complexes is a morphism in C(CN) which
is compatible with p, C, V in the obvious sense.

Remark 1.8.4. One should memorise the relations in (b) above as V C = Cp
and V p = pV .

Remark 1.8.5. It follows from Lemma 1.7.10, that if (K, p, C, V ) is a Witt

residual complex on X , then for all q ∈ Z the systems ({Kq
n}n≥1, p

q, Cq, V q)
are Witt dualizing systems. Furthermore, if Z• is the filtration of K1, then

Kq
n =

⊕

x∈Zq\Zq+1

iWn(x)∗Jn(x),

where iWn(x) : SpecWnOX,x →֒WnX is the inclusion and Jn(x) is an injective
hull of k(x) in WnOX,x.
1.8.6. By extending the notions from 1.7.2 and Corollary 1.7.6 term by term
to C(CN) we obtain: For any finite-type morphism f : X → Y between k-
schemes a functor f∆ of residual complexes in C(CN,Y ) with associated filtra-
tion Z• to residual complexes in C(CN,X) with filtration f∆Z•. For g : Y → Z
another morphism a canonical isomorphism cf,g : (g ◦ f)∆ ∼= f∆g∆ of nat-
ural transformations on the category of residual complexes on C(CN,Z). For
f : (X,Φ) → (Y,Ψ) a morphism in Schk,∗ (see Definition 1.7.4) a natural
transformation Trf : fΦf

∆ → ΓΨ on the category of residual complexes with
fixed filtration in C(CN,Y ). And these data satisfies the compatibilities from
1.7.2 and Corollary 1.7.6.

1.8.7. Let f : X → Y be a finite-type morphism between k-schemes. Let K
be a Witt residual complex. We use (1.8.1) to define morphisms of complexes

p : i∗f
∆K → f∆K, C : Σ∗f

∆K → f∆K, V : σ∗i∗f
∆K → f∆K,

as adjoints of the compositions

f∆K
f∆(ap

K
),≃

−−−−−−−→ f∆i∆K ∼= i∆f∆K

f∆K
f∆(aCK),≃−−−−−−−−→ f∆Σ∆K ∼= Σ∆f∆K,
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f∆K
f∆(aVK),≃−−−−−−−−→ f∆i∆σ∆K ∼= i∆σ∆f∆K.

Here p
K
, CK and VK denote the corresponding morphisms for K and the

isomorphisms on the right are induced by the isomorphisms cWnf,in,Y etc. from
1.7.2, (1).

Proposition 1.8.8. Let f : X → Y be a finite-type morphism between k-
schemes and K a Witt residual complex on Y . Then the system

(f∆K, p, C, V )

defined above is a Witt residual complex on X. Furthermore, if g : Y → Z
is another finite-type morphism of k-schemes, then the isomorphism cf,g :
(g ◦ f)∆K ∼= f∆g∆K from 1.8.6 defines an isomorphism of Witt residual com-
plexes, which is compatible with triple compositions.
If f : X → Y is étale, then f∗K is isomorphic to f∆K. If f : X → Y and
g : Y → Z are étale, then the isomorphism (gf)∆ ∼= f∆g∆ is induced by the
isomorphisms (gf)∗ ∼= f∗g∗.

Proof. First notice that if K and L are two residual complexes, then their
associated filtrations are the same iff their associated codimension functions
(see 1.7.1) are the same. Since the codimension functions of the Kn’s are the
same by assumption we obtain (using the formula of [Con00, (3.2.4)]) for any
x ∈ |X | = |WnX |

d(Wnf)∆Kn
(x) = dKn(Wnf(x))− trdeg(k(x)/k(Wnf(x)))

= dK1(f(x))− trdeg(k(x)/k(f(x)))

= df∆K1
(x).

Thus the (Wnf)
∆Kn are residual complexes and all have the same associated

filtration. The condition on the adjoints of p, C and V holds by definition. It
remains to check the relations V C = Cp and V p = pV , which are equivalent
to aV aC = aC ap and aV ap = ap aV . To prove the first equality consider the
following diagram

f∆K

ap
K //

aCK

��

f∆i∆K
≃ //

aCK

��

i∆f∆K

aCK

��
f∆Σ∆K

aVK //

≃

��

f∆i∆Σ∆K
≃ //

≃

��

i∆f∆(Σ)∆K

≃

��
Σ∆f∆K

aVK // Σ∆f∆i∆σ∆K
≃ // i∆Σ∆f∆K.

Here all arrows labeled by ≃ are induced by compositions of the isomorphisms
cf,g and their inverses with f, g appropriate and also in the two arrows labeled
by aVK there is such an isomorphism involved. (We also need the relation
(1.2.2).) The square in the upper left commutes since K is a Witt residual
complex, all other squares commute because of the functoriality of the cf,g’s
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and their compatibility with compositions. Thus going around the diagram
from the top left corner to the lower right corner clockwise is the same as going
around counter clockwise, which yields aC ap = aV aC. The other relation is

proved by drawing a similar diagram. Thus f∆K is a Witt residual complex.
The second statement amounts to prove that cg,f is compatible with p, Cn

and V . This follows again from the functoriality of the c(−,−)’s and their
compatibility with compositions by drawing diagrams as above, which we omit.
Finally, the statement about étale morphisms follows from 1.7.2, (4). �

Lemma 1.8.9. Let (X,Φ) → (Y,Ψ) be a morphism in Schk,∗ and K a Witt
residual complex on Y . Then the complex fΦf

∆K, with fΦ := f∗ ◦ ΓΦ, is a
complex of Witt quasi-dualizing systems (see Definition 1.6.3) and each term
(fΦf

∆K)n is a bounded complex of quasi-coherent, flasque sheaves. Further-
more

Trf : fΦf
∆K −→ ΓΨK,

is a morphism of complexes of Witt quasi-dualizing systems, which is compatible
with composition and étale base change, as in Corollary 1.7.6, (3) and (4),
and it is functorial with respect to maps between Witt residual complexes with
the same associated filtration (e.g. isomorphisms). Finally, if f is an open
immersion and Ψ = Φ, then Trf is the excision isomorphism as in Corollary
1.7.6, (5).

Proof. We define the maps p, C and V on fΦf
∆K to be the following compo-

sitions

p : i∗fΦf
∆K ∼= fΦi∗f

∆K
p
f∆K−−−−→ fΦf

∆K,

C : Σ∗fΦf
∆K ∼= fΦΣ∗f

∆K
Cf∆K−−−−→ fΦf

∆K,

V : σ∗i∗fΦf
∆K ∼= fΦσ∗i∗f

∆K
V
f∆−−−→ fΦf

∆K.

These maps obviously make fΦf
∆K into a complex of Witt quasi-dualizing

systems. Also the (f∆K)n are bounded complexes of quasi-coherent injec-
tive WnOX -modules (since the (f∆K)n are residual complexes), thus all the
(fΦf

∆K)n are complexes of quasi-coherent and flasque sheaves. It remains to
check, that the trace morphism commutes with p, Cn and V . We will prove

(1.8.2) Trf ◦ p = p ◦ i∗(Trf ).
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For this, we consider the following diagram:

i∗fΦf
∆K

≃ //

ap

��

Trf

xxqqqqqqqqqq
fΦi∗f

∆K

ap

��
i∗ΓΨK

ap &&MMMMMMMMMM
i∗fΦf

∆i∆K

Trf

��

≃ // fΦi∗f∆i∆K

≃

��
i∗ΓΨi

∆K

Tri

��

fΦi∗i
∆f∆K

Tri

��
ΓΨK fΦf

∆K.
Trfoo

The triangle in the upper left (which should be a square) commutes by the func-
toriality of Trf (Corollary 1.7.6, (1)), the upper square in the middle commutes
by the functoriality of the isomorphism i∗fΦ ∼= fΦi∗ and the big square in the
middle commutes by Corollary 1.7.6, (3). Thus going around the diagram from
the upper left to the lower left corner clockwise, which is Trf ◦p, is the same as

going around counterclockwise, which is p◦ i∗(Trf ). This gives (1.8.2). Similar
diagrams prove the relations Trf ◦C ∼= C◦Σ∗(Trf ) and V ◦σ∗i∗(Trf ) ∼= Trf ◦V .
The compatibility of Trf with composition and étale base change follows di-
rectly from Corollary 1.7.6, (3) and (4). The functoriality statement follows
from the corresponding statement in 1.7.6, (1). If f is an open immersion, then
so is Wnf for all n and hence the last statement follows from 1.7.6, (5). �

1.9. The dualizing functor.

1.9.1. Let X be a k-scheme and K a Witt residual complex on X . If M is
a complex of quasi-coherent de Rham-Witt systems on X , then by Proposi-
tion 1.6.7 and Remark 1.8.5, we have de Rham-Witt systems Hom(M i,Kj) ∈
dRWX for all i, j. Thus we obtain a complex of de Rham-Witt systems on X ,
Hom(M,K) ∈ C(dRWX) which is defined by

Homq(M,K) :=
∏

i∈Z

Hom(M i,Ki+q),

dqHom((f
i)) := (di+qK ◦ f i + (−1)q+1f i+1 ◦ diM ).

In this way we clearly obtain a functor

DK : C(dRWX,qc)
o → C(dRWX), M 7→ Hom(M,K),

It restricts to a functor DK : C(dRWX,c)
o → C(dRWX,qc). Since Kn is a

bounded complex of injective WnOX -modules for each n ≥ 1, Hom(M,K) is
acyclic, whenever M is ([Har66, II, Lem. 3.1]). Thus DK preserves quasi-
isomorphisms and therefore induces functors

DK : D(dRWX,qc)
o → D(dRWX), DK : D(dRWX,c)

o → D(dRWX,qc).
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A morphism K → L of Witt residual complexes clearly induces a natural
transformation of functors

(1.9.1) DK → DL.

Notation 1.9.2. Let X be a k-scheme with structure map ρX : X → Spec k.
Then we denote by KX the Witt residual complex ρ∆XW•ω and write

DX = DKX = Hom(−,KX).

Notice that KX is concentrated in degree 0, since W•ω is.

Remark 1.9.3. Let X be a scheme, Φ a family of supports on X and K a Witt
residual complex. Then we have the following equalities on C(CN,qc)

ΓΦDK(−) = ΓΦHom(−,K) = Hom(−,ΓΦK).

Therefore, if M is a complex of quasi-coherent de Rham-Witt systems on X ,
then Hom(M,ΓΦK) inherits the structure of a complex of de Rham-Witt sys-
tems from ΓΦDK(M). Furthermore ΓΦ(K)n is a complex of injectives (by
Remark1.7.5),

Hom(−,ΓΦK) : D(dRWX,qc)
o → D(dRWX).

Proposition 1.9.4. Let f : (X,Φ) → (Y,Ψ) be a morphism in Schk,∗, K a
Witt residual complex on Y and M a bounded above complex of quasi-coherent
de Rham-Witt systems on X. Let

ϑf : fΦDf∆K(M)→ ΓΨDK(f∗M)

be the composition

fΦHom(M, f∆K)
nat.−−→ Hom(f∗M, fΦf

∆K)
Trf−−→ Hom(f∗M,ΓΨK).

Then ϑf is a morphism of complexes of de Rham-Witt systems on Y and it has
the following properties:

(1) It defines a natural transformation between the bifunctors
fΦHom(−, f∆−) and Hom(f∗−,ΓΨ(−)) defined on the product of
the category C−(dRWX,qc) with the category of Witt residual com-
plexes with the same associated filtration.

(2) It is compatible with composition, i.e. if g : (Y,Ψ)→ (Z,Ξ) is another
morphism in Schk,∗, then ϑgf ∼= ϑg ◦ g∗(ϑf ) ◦ cf,g.

(3) It is compatible with étale base change as in Corollary 1.7.6, (4).
(4) Let j : U →֒ X be an open immersion, such that Φ is contained in

U , then ϑj : jΦHom(−, j∆K)
≃−→ Hom(j∗(−),ΓΦK) is the excision

isomorphism (cf. Corollary 1.7.6, (5)).

Proof. We have to show, that ϑf commutes with π, F, d, V, p. Recall from 1.6.6,

how the de Rham-Witt system structure on Hom(M,Q) is defined, where M
is a de Rham-Witt - and Q a Witt dualizing system. For example the map
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π is uniquely determined by the property that it makes the following diagram
commutative:

Hom(M,Q)
◦p

M //

π

��

Hom(i∗M,Q)

i∗Hom(M,Q)
ǫi // Hom(i∗M, i∗Q).

p
Q

OO

The maps F, d, V, p are defined uniquely by making similar diagrams commu-
tative. Using these diagrams, the second part of 1.6.5 and Lemma 1.8.9 it is
straightforward to check the compatibility of ϑf with the de Rham-Witt system
structure. (Notice, that ϑf factors over Hom(f∗M, fΦf

∆K), which in general
will not be a de Rham-Witt system, since fΦf

∆K will not be a complex of
Witt dualizing systems. But it is a complex of Witt quasi-dualizing systems,
which is sufficient to conclude.) Thus ϑf gives a morphism of complexes of de
Rham-Witt systems. The functoriality of ϑf in M is clear and in K follows
from the functoriality of Trf : fΦf

∆ → id (see Lemma 1.8.9). The properties
(2)-(4) follow from the corresponding properties of Trf , see Lemma 1.8.9.

�

1.10. Ekedahl’s results.

Theorem 1.10.1 ([Eke84, II, Thm 2.2 and III, Prop. 2.4]). Let X be a smooth
k-scheme of pure dimension N . Then the morphism induced by multiplication

W•ΩX
≃−→ Hom(W•ΩX ,W•ωX), α 7→ (β 7→ αβ).

is an isomorphism of de Rham-Witt systems. Furthermore

ExtiWnOX
(WnΩX ,WnωX) = 0, for all i, n ≥ 1.

Proof. This is all due to Ekedahl. Let us just point out thatW•ωX sits in degree
N , hence the multiplication map is a graded morphism; and that Cnd = 0 gives
the equality

Cn(xdy) = (−1)q+1Cn(d(x)y), for all x ∈WnΩ
q
X , y ∈ WnΩ

N−q
X

and this together with the sign α introduced in the definition of d in 1.6.6
(which is missing in [Eke84]) gives the compatibility with d. �

Lemma 1.10.2 ([BER10, Prop. 8.4, (ii)]). Let X ′ be a smooth Wn-scheme and

denote by X its reduction modulo p. Let ϕ : WnΩX
≃−→ σn∗H•

DR(X
′/Wn), with

σ = Wn(FSpeck), be the canonical isomorphism of graded Wn-algebras from
[IR83, III, (1.5)]. Then ϕ is the unique morphism, which makes the following
diagram commutative

Wn+1ΩX′/Wn

��

Fn
// ZΩX′/Wn

��
WnΩX

ϕ // H•
DR(X

′/Wn).
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Here Wn+1ΩX′/Wn
is the relative de Rham-Witt complex defined in [LZ04] and

the vertical maps are the natural surjections. In particular we have

(1.10.1) ϕ(
n−1∑

i=0

V i([ai])) =
n−1∑

i=0

FnV i([ãi]) = ãp
n

0 + pãp
n−1

1 + . . .+ pn−1ãpn−1

and
(1.10.2)

ϕ(

n−1∑

i=0

dV i([ai])) =

n−1∑

i=0

FndV i([ãi]) = ãp
n−1

0 dã0+ã
pn−1−1
1 dã1+. . .+ã

p−1
n−1dãn−1,

where the ãi are any liftings of ai ∈ OX to OX′ .

Theorem 1.10.3 (Ekedahl). Let X be a smooth k-scheme of pure dimension
N with structure map ρX : X → Spec k. Then (WnρX)!Wn ∈ Db

c(WnX) is
concentrated in degree −N , for all n ≥ 1 and there is a quasi-isomorphism of
complexes of Witt dualizing systems (see Example 1.6.4, (1) and (2))

τ :W•ωX(N)[N ]
qis−−→ KX = ρ∆XW•ω,

such that

(1) The map τ1 : ΩNX [N ]
qis−−→ ρ∆Xk is the classical (ungraded) quasi-

isomorphism, i.e. it is the composition of the natural quasi-
isomorphism ΩNX [N ] → EZ•[N ](Ω

N
X [N ]) with the inverse of 1.7.2, (2).

Here Z•[N ] is the shifted codimension filtration of X and EZ•[N ] the
Cousin functor.

(2) τ is compatible with étale pullback, i.e. if f : U → X is étale, then the
following diagram commutes

f∗W•ωX(N)[N ]

≃

��

τX // f∗KX = f∗ρ∆XW•ω

≃

��
W•ωU (N)[N ]

τU // KU = ρ∆UW•ω,

where ρU : U → Spec k is the structure morphism of U , the vertical
isomorphism on the right is induced by f∗ρ∆X

∼= f∆ρ∆X
∼= ρ∆U and the

isomorphism on the left is induced by (Wnf)
∗WnΩ

N
X = WnΩ

N
U , n ≥ 1

(see [Ill79, I, Prop. 1.14]).

Proof. We do not write the shift (N) in the following (the statement about
the grading being obvious). In [Eke84, I,Thm. 4.1] it is proven that one has

an isomorphism τn : WnΩ
N
X

≃−→ (WnρX)!Wn[−N ] in Db
c(WnX). (We give

a sketch of the construction in case X admits a smooth lift over Wn in the
remark below.) Let Z• be the filtration by codimension on WnX . For C any
complex let EZ•(C) be the associated Cousin complex. Then EZ• induces
an equivalence from the category of dualizing complexes with filtration Z• in
Db
c(WnX) and the category of residual complexes with associated filtration Z•
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on WnX with quasi inverse the natural localization functor (see [Con00, Lem.
3.2.1]). Thus we obtain an isomorphism of residual complexes

EZ•(WnΩ
N
X)

≃−→ EZ•((WnρX)!Wn[−N ]) ∼= (WnρX)∆Wn[−N ].

By Lemma 1.5.9 the natural mapWnΩ
N
X → EZ•(WnΩ

N
X) is a resolution, for all

n ≥ 1 (by [Har66, IV, Prop. 2.6.]). Therefore we obtain a quasi-isomorphism
(by abuse of notation again denoted by τn)

τn :WnΩ
N
X [N ]

qis−−→ (Wnρ)
∆Wn.

It follows from [Eke84, I, Lem 3.3 and II, Lem. 2.1], that the τn, n ≥ 1, are
compatible with p, Cn, V and hence induce a morphism of complexes of Witt

dualizing systems as in the statement. The property (1) is proved at the end of
the proof of [Eke84, I, Thm. 4.1, p. 198 ] and (2) follows from the construction
of τn in [Eke84, I, 2.] (see in particular the second paragraph on page 194). �

Remark 1.10.4. Let us sketch for later purposes how the isomorphism τn :
WnωX → (WnρX)!Wn[−N ] is constructed in case X admits a smooth lifting
ρX′ : X ′ → SpecWn. For details see [Eke84, I, 2.]. Let

(1.10.3) ϕ :WnΩX
≃−→ σn∗H•

DR(X
′/Wn)

be the canonical isomorphism of graded Wn-algebras of [IR83, III, (1.5)] (see

Lemma 1.10.2). The composition WnOX ϕ0

−→ σn∗H0
DR(X

′/Wn) → OX′ defines
a finite morphism ǫ : X ′ →WnX , which fits into a commutative diagram

X ′ ǫ //

ρX′

��

WnX

WnρX

��
SpecWn

σn
// SpecWn.

It follows that ϕ becomes an isomorphism WnΩX
≃−→ ǫ∗H•

DR(X
′/Wn). (Here

we abuse the notation ǫ∗ to indicate where the WnOX -module structure
on the Wn-module H•

DR(X
′/Wn) is coming from, which is of course not

an OX′ -module.) Since ρX′ is smooth we have a canonical isomorphism

τX′ : ωX′/Wn

≃−→ ρ!X′Wn[−N ]. Now Ekedahl shows, that the composition

ǫ∗ωX′/Wn

τX′−−→ ǫ∗ρ
!
X′Wn[−N ] ≃ ǫ∗ρ!X′σn

!Wn[−N ]

≃ ǫ∗ǫ!(WnρX)!Wn[−N ]
Trǫ−−→ (WnρX)!Wn[−N ]

factors over ǫ∗HNDR(X
′/Wn). Then τn is defined as the composition

WnωX
ϕ,≃−−−→ ǫ∗HNDR(X

′/Wn)→ (WnρX)!Wn[−N ].

Corollary 1.10.5. Let X be a smooth k-scheme of pure dimension N . De-
note by E(W•ωX) the Cousin complex associated to W•ωX with respect to the
codimension filtration on X (cf. 1.5.8). Then the maps p, Cn , V on W•ωX
induce morphisms of complexes on the system {E(WnωX)(N)[N ]}n; this de-
fines a Witt residual complex E(W•ωX)(N)[N ], which is isomorphic as Witt
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residual complex to KX (see Notation 1.9.2). This isomorphism is compatible
with étale base change.

Corollary 1.10.6. Let the notations be as above. Then there is an isomor-
phism in Cb(dRWX,qc)

µ : E(W•ΩX)
≃−→ DX(W•ΩX)(−N)[−N ],

given by the composition

E(W•ΩX)
E(1.10.1),≃−−−−−−−−−→ E(Hom(W•ΩX ,W•ωX))

≃−→

Hom(W•ΩX , E(W•ωX))
Cor. 1.10.5,≃−−−−−−−−−→ Hom(W•ΩX ,KX)(−N)[−N ].

The map µ is compatible with étale base change.

1.11. The trace morphism for a regular closed immersion.

1.11.1. Local Cohomology. Let X = SpecA be an affine Cohen-Macaulay
scheme and Z ⊂ X a closed subscheme of pure codimension c, defined by the
ideal I ⊂ A. Let t = t1, . . . , tc ∈ I be an A-regular sequence with

√
(t) =

√
I,

here (t) denotes the ideal (t1, . . . , tc) ⊂ A. (After shrinking X such a sequence
always exists.) We denote by K•(t) the Koszul complex of the sequence t, i.e.
K−q(t) = Kq(t) =

∧q
Ac, q = 0, . . . , c, and if {e1, . . . , ec} is the standard basis

of Ac and ei1,...,iq := ei1 ∧ . . . ∧ eiq , then the differential is given by

d−qK•(ei1,...,iq ) = dK•
q (ei1,...,iq ) =

q∑

j=1

(−1)j+1tijei1,...,îj ,...iq .

We define the complex

K•(t,M) := HomA(K
−•(t),M),

and denote its n-th cohomology by Hn(t,M). The map

HomA(

c∧
Ac,M)→M/(t)M, ϕ 7→ ϕ(e1,...,c)

induces a canonical isomorphism Hc(t,M) ≃M/(t)M .
If t and t′ are two sequences as above with (t′) ⊂ (t), then there exists a c× c-
matrix T with coefficients in A such that t′ = T t and T induces a morphism of
complexes K•(t′) → K•(t), which is the unique (up to homotopy) morphism
lifting the natural map A/(t′)→ A/(t). Furthermore we observe that, for any
pair of sequences t, t′ as above there exists an N ≥ 0 such that (tN ) ⊂ (t′),
where tN denotes the sequence tN1 , . . . , t

N
c . Thus the sequences t form a directed

set and Hc(t,M) → Hc(t′,M), (t′) ⊂ (t), becomes a direct system. It follows
from [SGA2, Exp. II, Prop. 5], that we have an isomorphism

(1.11.1) lim−→
t

M/(t)M = lim−→
t

Hc(t,M) ∼= Hc
Z(X, M̃),

where the limit is over all A-regular sequences t = t1, . . . , tc with V ((t)) = Z

and M̃ is the sheaf associated to M . In fact it is enough to take the limit
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over the powers tn = tn1 , . . . , t
n
c , n ≥ 1, of just one regular sequence t with

V ((t)) = Z. We denote by [
m

t

]

the image of m ∈M under the composition

M →M/(t)M → Hc(t,M)→ Hc
Z(X, M̃).

It is a consequence of the above explanations that we have the following prop-
erties:

(1) Let t and t′ be two sequences as above with (t′) ⊂ (t). Let T be a
c× c-matrix with t′ = T t, then

[
det(T )m

t′

]
=

[
m

t

]
.

(2) [
m+m′

t

]
=

[
m

t

]
+

[
m′

t

]
,

[
tim

t

]
= 0 all i.

(3) If M is any A-module, then

Hc
Z(X,OX)⊗AM ≃−→ Hc

Z(X, M̃),

[
a

t

]
⊗m 7→

[
am

t

]

is an isomorphism.

Remark 1.11.2. Since for an A-regular sequence t as above K•(t)→ A/(t) is a
free resolution, we have an isomorphism

Extn(A/(t),M) ≃ Hom•
A(K

•(t),M).

Notice that we also have an isomorphism

Hom•
A(K

•(t),M) ≃ K•(t,M),

which is multiplication with (−1)n(n+1)/2 in degree n (see [Con00, (1.3.28)]).
We obtain an isomorphism

ψt,M : Extc(A/(t),M)
≃−→ Hc(t,M) =M/(t)M,

which has the sign (−1)c(c+1)/2 in it. In particular under the composition

Extc(A/(t),M)
ψt,M−−−→M/(t)M → Hc

Z(X, M̃)

the class of a map ϕ ∈ HomA(
∧c

Ac,M) is sent to

(−1)c(c+1)/2

[
ϕ(e1,...,c)

t

]
.

Remark 1.11.3. If X = SpecA is a k-scheme and t = t1, . . . , tc is a regular
sequence of sections of OX , then for any n the sequence [t] = [t1], . . . , [tc] of
sections of WnOX is a regular sequence. Here [ti] denotes the Teichmüller lift
of ti. Indeed the sequence [t] is regular iff its Koszul complex is a resolution
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of WnA/([t]) and thus the statement follows by induction from the short exact
sequence

0→ K•([t]
p,Wn−1A)

V−→ K•([t],WnA)→ K•(t, A)→ 0.

Proposition 1.11.4. Let i : Z →֒ X be a closed immersion between smooth
k-schemes of pure dimension NZ , NX and structure maps ρZ , ρX and let c be
the codimension of Z in X, i.e. c = NX − NZ . Then we have the following
isomorphism in Db

qc(WnOX),

(1.11.2) RΓZ(WnωX) ∼= HcZ(WnωX)[−c]
Assume furthermore, that the ideal sheaf of Z is generated by a regular sequence
t = t1, . . . , tc of global sections of OX and define a morphism ıZ,n by

ıZ,n : (Wni)∗WnωZ −→ HcZ(WnωX), α 7→ (−1)c
[
d[t]α̃

[t]

]
,

with α̃ ∈ WnΩ
NZ

X any lift of α, and d[t] = d[t1] · . . . · d[tc]. Then the following
diagram in Db

qc(WnOX) is commutative

(Wni)∗(WnρZ)
∆Wn

cWni,WnρX// (Wni)∗(Wni)
∆(WnρX)∆Wn

TrWni // RΓZ(WnρX)∆Wn

(Wni)∗WnωZ [NZ ]

τZ,n ≃

OO

ıZ,n // Hc
Z(WnωX)[NZ ]

≃ // RΓZ(WnωX)[NX ]

τX,n≃

OO

where TrWni is the n-th level of the trace morphism from Lemma 1.8.9.

Proof. We write in = Wni, ρX,n = WnρX and WnρZ = ρZ,n. By (1.5.2) we
have HiZ(WnωX) = 0 for i < c. Furthermore HiZ(WnωX) = 0 for i > c,

by Čech considerations. (Locally the ideal of Z is generated by a regular se-
quence of length c and thus U \ Z may locally be covered by c affine open
subschemes.) This gives the isomorphism (1.11.2). To prove the commutativ-
ity of the diagram in the statement of the proposition we have to show that
two elements in HomWnOX (in∗WnωZ ,HcZ(WnωX)) are equal. This is a local
question. We may thus assume, that the closed immersion i lifts to a closed
immersion i′ : Z ′ →֒ X ′ between smooth Wn-schemes and that there exists
a regular sequence t′ = t′1, . . . , t

′
c in OX′ which generates the ideal of Z ′ and

reduces modulo p to t. As in Remark 1.10.4 we obtain a commutative diagram

Z ′
ǫZ //

� _

i′

��
ρZ′

��

WnZ� _

in

��
ρZ,n

��

X ′
ǫX //

ρX′

��

WnX

ρX,n

��
SpecWn

σn
// SpecWn,

where we write σn instead of Wn(F
n
Speck).
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Consider the following diagram, in which we set Λ := Wn[−NZ ] and write (−)!
instead of (−)∆:
(1.11.3)

in∗ǫZ∗ωZ′/Wn

��

≃ // in∗ǫZ∗ρ
!
Z′Λ

��

≃ // ǫX∗i
′
∗i

′!ρ!
X′Λ

��

Tr
i′ // ǫX∗RΓZρ!

X′Λ

��

ǫX∗RΓZωX′/Wn
[c]

��

≃oo

in∗ǫZ∗H
NZ
DR

(Z′)
∃ // in∗ρ

!
Z,nΛ

≃ // in∗i
!
nρ!X,nΛ

Trin // RΓZρ!X,nΛ ǫX∗RΓZH
NX
DR

(X′)[c]
∃oo

in∗WnωZ

≃

OO
τZ,n

55llllllll
RΓZ(WnωX)[c]

≃

OO
τX,n

jjTTTTTTTT

Hc
Z(WnωX ).

≃

OO

We give some explanations: We have Λ = σn!Λ (see Example 1.6.4, (1)) and
the three vertical maps in the middle are the compositions

in∗ǫZ∗ρ
!
Z′Λ ∼= in∗ǫZ∗ρ

!
Z′σn

!Λ ∼= in∗ǫZ∗ǫ
!
Zρ

!
Z,nΛ

TrǫZ−−−→ in∗ρ
!
Z,nΛ,

ǫX∗i
′
∗i

′!ρ!X′Λ ∼= in∗ǫZ∗i
′!ρ!X′σn

!Λ ∼= in∗ǫZ∗i
′!ǫ!Xρ

!
X,nΛ

≃−→ in∗ǫZ∗ǫ
!
Zin

!ρ!X,nΛ
TrǫZ−−−→ in∗i

!
nρ

!
X,nΛ,

ǫX∗RΓZρ
!
X′Λ ∼= RΓZǫX∗ρ

!
X′σn

!Λ ∼= RΓZǫX∗ǫ
!
Xρ

!
X,nΛ

TrǫX−−−→ RΓZρ
!
X,nΛ.

Now one easily checks that the two squares in the middle commute. In fact,
to see that the first of the two middle squares commute, one only needs, that

c(f,g) : (gf)!
≃−→ f !g! is a natural transformation, which is compatible with

triple compositions (see [Con00, p.139, (VAR1)]) and that TrǫZ : ǫZ∗ǫ
!
Z → id is

a natural transformation. For the commutativity of the second middle square

we need the naturality of Tri′ : i′∗i
′! → id and the formula (see [Con00, Lem

3.4.3, (TRA1)])

Trin ◦ in∗(TrǫZ ) ◦ (inǫZ)∗(cǫZ ,in) = TrinǫZ

= TrǫXi′ = TrǫX ◦ ǫX∗(Tri′) ◦ (ǫX i′)∗(ci′,ǫX ).

That there exist two unique dotted arrows, which make the two outer diagrams
commutative was proved by Ekedahl, see Remark 1.10.4. The two vertical maps
in the two lower triangles are the isomorphisms from Lemma 1.10.2. Thus the
two triangles commute by definition of τZ,n and τX,n, see Remark 1.10.4. It
follows that the whole diagram commutes.
Let σZ and σX be the following compositions

σZ : ǫZ∗ωZ′/Wn
→ ǫZ∗HNZ

DR(Z
′/WN )

≃−→WnωZ ,

σX : ǫX∗HcZ(ωX′/Wn
)→ ǫX∗HcZ(HNX

DR (X ′/Wn))
≃−→ HcZ(WnωX).
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We obtain maps
(1.11.4)

Hom(ǫX∗in∗ωZ′/Wn
, ǫX∗HcZ(ωX′/Wn

))

σX

��
Hom(in∗WnωZ ,HcZ(WnωX)) �

� D(σZ ) // Hom(ǫX∗in∗ωZ′/Wn
,HcZ(WnωX)),

with the horizontal map being injective (since σZ is surjective). We denote by
a the following composition

a := H0(τX,n)
−1 ◦H0(Trin ◦ cin,ρX,n ◦ τZ,n) ∈ Hom(in∗WnωZ ,HcZ(WnωX)).

The commutativity of the diagram in the statement of the proposition means,
that a equals ıZ,n. Thus it is enough to show

(1.11.5) D(σZ)(a) = D(σZ)(ıZ,n) in Hom(ǫX∗in∗ωZ′/Wn
,HcZ(WnωX)).

We define a′ ∈ Hom(i′∗ωZ′/Wn
,HcZ(ωX/Wn

)) to be the following composition

a′ : H0

(

i′∗ωZ′/Wn ≃ i′∗ρ
!
Z′Λ ≃ i′∗i

′!ρ!X′Λ
Tri′−−→ RΓZ(ρ

!
X′Λ) ≃ RΓZ(ωX′/Wn)[c]

)

.

Then diagram (1.11.3) says

(1.11.6) D(σZ )(a) = σX(ǫX∗(a
′)).

We define ıZ′ by

ıZ′ : iZ′∗ωZ′/Wn
→ HcZ(ωX′/Wn

), β 7→ (−1)c
[
dt′β̃

t′

]
,

with β̃ ∈ ΩNZ

X′/Wn
a lift of β. We have

(1.11.7) D(σZ)(ıZ,n) = σX(ǫX∗(ıZ′)).

Indeed, this follows from the concrete description of σX and σZ given by Lemma
1.10.2 and from the fact that by 1.11.1, 1) the following equality holds for all

γ ∈Wn+1Ω
NZ

X′/Wn

[
dt′Fn(γ)

t′

]
=

[
t′
pn−1

dt′Fn(γ)

t′p
n

]
= Fn

([
d[t′]γ

[t′]

])
,

where we set t′p
n−1 := t′1

pn−1 · · · t′cp
n−1. By (1.11.6) and (1.11.7) we are thus

reduced to show

ıZ′ = a′ in Hom(i′∗ωZ′/Wn
,HcZ(ωX′/Wn

)),

which is well-known (see e.g. [CR09, Lemma A.2.2]). �

2. Pushforward and pullback for Hodge-Witt cohomology with

supports

In this section all schemes are assumed to be quasi-projective over k. We fix a
k-scheme S.
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2.1. Relative Hodge-Witt cohomology with supports.

Definition 2.1.1. We denote by (Sm∗/S) and (Sm∗/S) the following two
categories: Both have as objects pairs (X,Φ) with X an S-scheme, which is
smooth and quasi-projective over k (for short we will say X is a smooth k-
scheme over S) and Φ a family of supports on X and the morphisms are given
by

HomSm∗
((X,Φ), (Y,Ψ)) = {f ∈ HomS(X,Y ) | f|Φ is proper and f(Φ) ⊂ Ψ}

and

HomSm∗((X,Φ), (Y,Ψ)) = {f ∈ HomS(X,Y ) | f−1(Ψ) ⊂ Φ}.

If X is a smooth k-scheme over S and Z ⊂ X a closed subset, we write (X,Z) =
(X,ΦZ) and X = (X,X) = (X,ΦX) ∈ Obj(Sm∗) = Obj(Sm∗) (see Definition
1.4.1 for the notation).
We will say that a morphism f : (X,Φ) → (Y,Ψ) in (Sm∗/S) or (Sm∗/S) is
étale, flat, smooth, etc. if the corresponding property holds for the underlying
morphism of schemes X → Y . We will say that a diagram

(X ′,Φ′) //

��

(Y ′,Ψ′)

��
(X,Φ) // (Y,Ψ)

is cartesian, if the underlying diagram of schemes is cartesian.

2.1.2. For (X,Φ) ∈ obj(Sm∗/S) = obj(Sm∗/S), with structure map a : X →
S we denote by H((X,Φ)/S) the de Rham-Witt system

H((X,Φ)/S) :=
⊕

i≥0

RiaΦW•ΩX ∈ dRWS

and its level n part by Hn((X,Φ)/S). We denote by Ĥ((X,Φ)/S) the de
Rham-Witt module

Ĥ((X,Φ)/S) :=
⊕

i≥0

RiâΦW•ΩX ∈ d̂RWS .

We write

Hi,q((X,Φ)/S) := RiaΦW•Ω
q
X , Ĥi,q((X,Φ)/S) := RiâΦW•Ω

q
X .

By definition we have:

(1) If Z ⊂ X is closed then, Ĥ((X,Z)/S) =⊕RiaZWΩX . In particular

Ĥ((X,Z)/X) =
⊕HiZ(WΩX), in particular Ĥ(X/X) =WΩX .

(2) Let U ⊂ S be open and set XU := X ×S U and ΦU = Φ ∩XU . Then

H((X,Φ)/S)|U = H((XU ,ΦU )/U), Ĥ((X,Φ)/S)|U = Ĥ((XU ,ΦU )/U).
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2.2. Pullback.

Definition 2.2.1. Let f : (X,Φ) → (Y,Ψ) be a morphism in (Sm∗/S).
Then applying RΓΨ to the functoriality morphism W•ΩY → Rf∗W•ΩX
in D+(dRWY ) and composing it with the natural map RΓΨRf∗ =
Rf∗RΓf−1(Ψ) → Rf∗RΓΦ yields a morphism in D+(dRWY )

(2.2.1)
RΓΨ(W•ΩY )→ RΓΨRf∗W•ΩX = Rf∗RΓf−1(Ψ)W•ΩX → Rf∗RΓΦW•ΩX .

Let a : Y → S be the structure morphism. Then we define

f∗ :=
⊕

i

Hi(Ra∗(2.2.1)) : H((Y,Ψ)/S)→ H((X,Φ)/S) in dRWS

and

f∗ :=
⊕

i

Hi(R lim←−Ra∗(2.2.1)) : Ĥ((Y,Ψ)/S)→ Ĥ((X,Φ)/S) in d̂RWS .

We call these morphisms the pullback morphisms. Notice that by definition f∗

always factors as

f∗ : H((Y,Ψ)/S)→ H((X, f−1(Ψ)/S))
nat.−−→ H((X,Φ)/S),

same with Ĥ.
Proposition 2.2.2. The assignments

H : (Sm∗/S)o → dRWS , (X,Φ) 7→ H((X,Φ)/S)
and

Ĥ : (Sm∗/S)o → d̂RWS , (X,Φ) 7→ Ĥ((X,Φ)/S)
define functors, where we set H(f) = f∗ and Ĥ(f) = f∗, for a morphism
f : (X,Φ)→ (Y,Ψ) in (Sm∗/S).
Furthermore, if U ⊂ S is open and fU : (XU ,ΦU ) → (YU ,ΨU ) is the pull-
back of f : (X,Φ) → (Y,Ψ) over U , then f∗

U = (f∗)|U on H((YU ,ΨU )/U) =

H((Y,Ψ)/S)|U (resp. on Ĥ).
Proof. This is all straightforward. �

2.3. Pushforward. Let X be a smooth k-scheme of pure dimension N with
structure map ρ : X → Spec k. Recall that we set KX = ρ∆XW•ω and that this
is isomorphic to E(W•ωX)(N)[N ], where E denotes the Cousin complex with
respect to the codimension filtration (see Corollary 1.10.5). Furthermore we
have the dualizing functor

DX(−) = Hom(−,KX)

(see 1.6.6), which we may view as a functor from C(dRWX,qc)
o to C(dRWX)

or from D(dRWX,qc)
o to D(dRWX).

For any morphism f : (X,Φ) → (Y,Ψ) in (Sm∗/S) the composition of the
isomorphism KX ≃ f∆KY (see Proposition 1.8.8) with ϑf from Proposition
1.9.4, defines a natural transformation of functors on C(dRWX,qc)

o

(2.3.1) θf : fΦDX(−)→ ΓΨDY (f∗(−)).
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The map θf is compatible with compositions and étale base change. Fur-

thermore, recall that the multiplication pairing W•Ω
i
X ⊗W W•Ω

j
X → W•Ω

i+j
X

induces an isomorphism in Cb(dRWX,qc) (see Corollary 1.10.6)

(2.3.2) µX : E(W•ΩX)
≃−→ DX(W•ΩX)(−N)[−N ].

The map µX is compatible with étale base change.

Definition 2.3.1. Let f : (X,Φ) → (Y,Ψ) be a morphism in (Sm∗/S). We
assume thatX and Y are of pure dimensionNX andNY . Consider the following
composition of morphisms of complexes of de Rham-Witt systems on Y

(2.3.3) fΦE(W•ΩX)(NX)[NX ]
µX−−→ fΦDX(W•ΩX)

θf−→ ΓΨDY (f∗W•ΩX)

D(f∗)−−−−→ ΓΨDY (W•ΩY )
µ−1
Y−−→ ΓΨE(W•ΩY )(NY )[NY ].

By Lemma 1.5.9 this induces a morphism in Db(dRWY )

(2.3.4) RfΦW•ΩX → RΓΨW•ΩY (−r)[−r],
where r = NX −NY is the relative dimension.
Let a : Y → S be the structure morphism. Then we define

f∗ :=
⊕

i

Hi(Ra∗(2.3.4)) : H((X,Φ)/S)→ H((Y,Ψ)/S)(−r) in dRWS

and

f∗ :=
⊕

i

Hi(R lim←−Ra∗(2.3.4)) : Ĥ((X,Φ)/S)→ Ĥ((Y,Ψ)/S)(−r) in d̂RWS .

We extend these definitions additively to all morphisms f : (X,Φ)→ (Y,Ψ) in
(Sm∗/S) (where X and Y don’t need to be pure dimensional). We call these
morphisms the push-forward morphisms. Notice, that since f|Φ is proper, f(Φ)
is a family of supports on Y and f∗ always factors as

f∗ : H((X,Φ)/S)→ H((Y, f(Φ))/S)(−r) nat.−−→ H((Y,Ψ)/S)(−r),
same with Ĥ.
Remark 2.3.2. Without supports and for a proper morphism between smooth
k-schemes a similar push-forward was already defined in [Gro85, II, Def. 1.2.1].
(Although the verification, that it is compatible with F , V , d and π was omit-
ted.)

Proposition 2.3.3. The assignments

H : (Sm∗/S)→ dRWS , (X,Φ) 7→ H((X,Φ)/S)
and

Ĥ : (Sm∗/S)→ d̂RWS , (X,Φ) 7→ Ĥ((X,Φ)/S)
define functors, where we set H(f) = f∗ and Ĥ(f) = f∗, for f : (X,Φ)→ (Y,Ψ)
a morphism in (Sm∗/S).
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Furthermore: (1) If U ⊂ S is open and fU : (XU ,ΦU ) → (YU ,ΨU ) is the
pullback of f : (X,Φ)→ (Y,Ψ) over U , then fU∗ = (f∗)|U on H((YU ,ΨU )/U) =

H((Y,Ψ)/S)|U (resp. on Ĥ). (2) If j : (U,Φ) →֒ (X,Φ) is an open immersion
in (Sm∗/S), then j∗ is the excision isomorphism.

Proof. This follows from the corresponding properties of (2.3.3), which follow
from Proposition 1.9.4 and Corollary 1.10.6. �

For later use we record:

Proposition 2.3.4 ([Gro85, II, Prop. 4.2.9]). Let f : X → Y be a finite
morphism between two connected smooth k-schemes. We may view f as a
morphism in (Sm∗/Y ) or as a morphism in (Sm∗/Y ). Then the composition

f∗ ◦ f∗ :W•ΩY →W•ΩY

equals multiplication with the degree of f .

2.4. Compatibility of pushforward and pullback.

Proposition 2.4.1 (Gros). Let i : Z →֒ (X,Z) be a closed immersion of pure
codimension c in (Sm∗/S). Then

RΓZW•ΩX [c] ∼= HcZ(W•ΩX) in D+(dRWX).

Suppose further the ideal sheaf of Z in OX is generated by a regular sequence
t = t1, . . . , tc of global sections of X, then the projection of i∗ : H(Z/X) →
H((X,Z)/X) to the n-th level is given by

(2.4.1) Wn(i)∗WnΩZ → HcZ(WnΩX)(c), α 7→ (−1)c
[
d[t]α̃

[t]

]
,

where we set [t] := [t1], . . . , [tc] and d[t] := d[t1] · · · d[tc] ∈ WnΩ
c
X , with [ti] ∈

WnOX the Teichmüller lift of ti, and α̃ is any lift of α ∈ Wn(i)∗WnΩZ to
WnΩX .

The above proposition is proved in [Gro85, II, 3.4], but since the proof uses a
result by Ekedahl, which is referred to as work in progress and which we could
not find in the literature we reprove the above proposition (using Proposition
1.11.4, instead of a comparison of Ekedahl’s trace with Berthelot’s trace in
crystalline cohomology as Gros does).

Proof. The first statement is proven as in (1.11.2). It remains to prove the
explicit description (2.4.1). Let ρZ,n : WnZ → SpecWn and ρX,n : WnX →
SpecWn be the structure maps, in :=Wn(i) : WnZ →֒WnX the closed immer-
sion (for this proof we don’t use the in defined in 1.1) and write dimX = NX ,
dimZ = NZ . By Definition 2.3.1 the projection to the n-th level of i∗ is given
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by the following composition in Db
qc(CX,n)

in∗WnΩZ(NZ)[NZ ]
µZ,n,≃−−−−−→ in∗RHom(WnΩZ ,KZ,n)

θin−−→ RΓZRHom(in∗WnΩZ ,KX,n)

D(i∗n)−−−−→ RHom(WnΩX ,ΓZKX,n)

µ−1
X,n,≃−−−−−→ RΓZ(WnΩX)(NX)[NX ].

Here µZ,n, µX,n and θin are images in the derived category of the projections
to the n-th level of the corresponding maps from 2.3. We denote by ıZ,n the
following morphism

ıZ,n : (Wni)∗WnωZ −→ HcZ(WnωX)(c), α 7→ (−1)c
[
d[t]α̃

[t]

]
,

with α̃ ∈ WnΩ
NZ

X any lift of α. Then it follows from Proposition 1.11.4, that
in the derived category (i∗)n equals

in∗WnΩZ(NZ)[NZ ]
multipl.−−−−−→ Hom(in∗WnΩZ , in∗WnωZ(NZ)[NZ ])
ıZ,n−−→ Hom(in∗WnΩZ ,HcZ(WnωX)(NX)[NZ ])

D(i∗n)−−−−→ Hom(WnΩX ,HcZ(WnωX)(NX)[NZ ])

≃, (∗)−−−−→ HcZ(WnΩX)(NX)[−c][NX ]
≃−→ RΓZ(WnΩX)(NX)[NX ].

Here the isomorphism (∗) is the inverse of

HcZ(WnΩX)(NX)
≃−→ Hom(WnΩX ,HcZ(WnωX)),

[
α

tn

]
7→
(
β 7→

[
αβ

tn

])
.

It is straightforward to check, that taking H−NZ (−) of this composition gives
(2.4.1) and hence the claim. �

Corollary 2.4.2. Let i : Y →֒ X be a closed immersion between smooth
affine k-schemes and assume that the ideal of Y in X is generated by a reg-
ular sequence t1, . . . , tc. Let Z ⊂ Y be a closed subset which is equal to the
vanishing set V (f1, . . . fi) of global sections f1, . . . , fi ∈ Γ(Y,OY ). Denote by
iZ : (Y, Z) →֒ (X,Z) the morphism in (Sm∗/Spec k) induced by i. Then the
projection to the n-th level of iZ∗ is given by

iZ∗,n : Hi
Z(Y,WnΩY )→ Hi+c

Z (X,WnΩX)(c),

[
α

[f ]

]
7→ (−1)c

[
d[t]α̃

[t], [f ]

]
,

where α ∈ Γ(Y,WnΩY ), α̃ ∈ Γ(X,WnΩX) is some lift, [f ] = [f1], . . . , [fi] and
[t], d[t] as in in Lemma 2.4.1.

Proof. Choose f̃1, . . . , f̃i ∈ Γ(X,OX) lifts of f1, . . . , fi and define the set Z̃ ⊂ X
as the vanishing locus of these f̃i’s. Denote by iY/X the closed immersion
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Y →֒ (X,Y ) viewed as a morphism in (Sm∗/X). Then it follows from the first
part of Proposition 2.4.1 that iZ∗,n equals

Hi
Z̃
(X, iY/X∗,n) : H

i
Z(Y,WnΩY ) ∼= Hi

Z̃
(X, i∗WnΩY )

−→ Hi
Z̃
(X,HcY (WnΩX)) ∼= Hi+c

Z (X,WnΩX)[c].

Now denote by [t] = [t1], . . . , [tc] and [f̃ ] = [f̃1], . . . , [f̃i] the Teichmüller lifts

of the sequences t and f to Γ(X,WnOX) and by K([t]) and K([f̃ ]) the corre-
sponding sheafified Koszul complexes. We define a morphism of complexes

ϕ :WnΩX [0]→ Hom(K−•([t]),WnΩX(c))[c], α 7→ (e1∧. . .∧ec 7→ (−1)cd[t]α)
where e1, . . . , ec is the standard basis of (WnOX)c. Then the second part of
Proposition 2.4.1 maybe rephrased by saying that the diagram

WnΩX

i∗

��

ϕ // Hom(K−•([t]),WnΩX(c))[c]

(1.11.1)

��
i∗WnΩY

iY/X∗ // HcY (WnΩX)(c)

commutes. This yields the following commutative diagram of complexes (in
which the lower square is concentrated in degree 0):

Hom(K−•([f̃ ]),WnΩX)[i]
ϕ //

(1.11.1)

��

Hom(K−•([f̃ ]),Hom(K−•([t]),WnΩX (c))[c])[i]

(1.11.1)

��
Hi

Z̃
(X,WnΩX)

i∗

��

ϕ // Hi
Z̃
(X,Hom(K−•([t]),WnΩX(c))[c])

(1.11.1)

��
Hi

Z̃
(X, i∗WnΩY )

iY/X∗ // Hi
Z̃
(X,Hc

Y (WnΩX)(c)).

Now the claim follows from K([t])⊗WnOX K([f̃ ]) = K([t], [f̃ ]) and the commutativity
of the following diagram, in which we denote WnΩX (c) simply by Λ

Hom(K−•([f̃ ]),Hom(K−•([t]),Λ)[c])[i]

��

≃ // Hom(K−•([t], [f̃ ]),Λ)[c+ i]

��
Hi

Z̃
(X,Hc

Y (Λ))
≃ // Hi+c

Z (X,Λ).

�

Lemma 2.4.3. Let Y be a smooth k-scheme, f : X = PrY → Y the projection
and Ψ a family of supports on Y . We denote by fΨ/S : (X, f−1(Ψ)) → (Y,Ψ)
the morphism in (Sm∗/S) induced by f and by

fΨ/S∗ : H((X, f−1(Ψ))/S)→ H((Y,Ψ)/S)(−r)
the corresponding push-forward (same for Ĥ). Let a : Y → S be the structure
morphism. Then:
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(1) The higher direct images Rif∗W•ΩX vanish for i ≥ r + 1. Therefore
there is a natural morphism in D+(dRWY )

e : Rf∗W•ΩX → Rrf∗W•ΩX [−r]
and the push-forward fΨ/S∗ factors as

⊕

i

Hi(RaΨRf∗W•ΩX)
e
−→
⊕

i

Ri−raΨ(R
rf∗W•ΩX )

fY/Y ∗
−−−−→

⊕

i

Rai−r
Ψ W•ΩY (−r).

Similar for Ĥ (replace aΨ by âΨ in the above formula).
(2) The push-forward fY/Y ∗ : H(X/Y ) → H(Y/Y )(−r) induces an iso-

morphism

fY/Y ∗ : Rrf∗W•ΩX
≃−→W•ΩY (−r),

with inverse induced by the push-forward i∗ : H•(Y/Y )(−r) →
H•(X/Y ), where i : Y → X is any section of f .

Proof. First of all observe that it suffices to prove the statements on each finite
level n separately.
(1) By [Gro85, I, Cor 4.1.12] we have an isomorphism in D(WnΩY −dga) (with
WnΩY − dga the category of differential graded WnΩY -modules)

(2.4.2) Rf∗WnΩX ≃
r⊕

i=0

WnΩY (−i)[−i].

This gives the first statement of (1) and in particular an isomorphism in
D(WnΩY − dga)

(2.4.3) Rf∗WnΩX ≃
r⊕

i=0

Rif∗WnΩX [−i]

and the morphism e from (1) is the projection to the r-th summand. On the
other hand (fY/Y ∗)n is induced by a derived category morphism (2.3.4)

(2.4.4) Rf∗WnΩX →WnΩY (−r)[−r].
Since the composition

Rif∗WnΩX [−i] via (2.4.3)−−−−−−→ Rf∗WnΩX
(2.4.4)−−−−→WnΩY (−r)[−r]

is an element in Exti−r(Rif∗WnΩX ,WnΩY (−r)), this composition is zero for
all i < r. Thus the morphism (2.4.4) factors over e. This implies the second
statement of (1).
(2) It suffices to check that fY/Y ∗ induces an isomorphism; i∗ will then auto-
matically be the inverse for any section i of f . (Notice that by (2.4.2) we know
Rrf∗W•ΩX ≃W•ΩY (−r) but we don’t know that this isomorphism is induced
by fY/Y ∗.) To this end, let R be the Cartier-Dieudonné-Raynaud ring of k, see
[IR83, I]. (R is a graded (non-commutative) W -algebra generated by symbols
F and V in degree 0 and d in degree 1, satisfying the obvious relations). Set
Rn := R/V nR+ dV nR. We denote by Db(Y,R) the bounded derived category
of R-modules. Any de Rham-Witt module is in particular an R-module. Thus
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we may view Rif̂∗W•ΩX = Rif∗WΩX , i ≥ 1, as an object in Db(Y,R). In
Db(Y,R) we have the following isomorphisms

Rn ⊗LR Rif∗WΩX ≃ Rn ⊗LRWΩY (−i) ≃WnΩY (−i) ≃ Rif∗WnΩX ,

where the first and the last isomorphism follow from [Gro85, I, Thm. 4.1.11,
Cor. 4.1.12] and the second isomorphism is [IR83, II, Thm (1.2)]. Since fY/Y ∗

is clearly a morphism of R-modules it follows that the projection of fY/Y ∗ to
the n-th level, identifies with

Rn ⊗LR fY/Y ∗ : Rn ⊗LR Rrf∗WΩX → Rn ⊗LRWΩY (−r).

We thus have to show that this is an isomorphism for all n. Now Ekedahl’s
version of Nakayama’s Lemma [Eke85, I, Prop. 1.1, Cor. 1.1.3] (also [Ill83,
Prop. 2.3.7]) implies that it is in fact enough to prove that the projection of
fY/Y ∗ to level 1 - in the following simply denoted by f∗ - is an isomorphism,
i.e. we have to show (for all q ≥ 0)

f∗ : Rrf∗Ω
q
X

≃−→ Ωq−rY .

In fact, f∗ is given by Hr of the following morphism in Db
c(OY )

Rf∗Ω
q
X ≃ Rf∗RHom(ΩNX−q

X , ωX) ≃ RHom(Rf∗Ω
NX−q
X , ωY )[−r]

D(f∗)[−r]−−−−−−→ RHom(ΩNX−q
Y , ωY )[−r] ≃ Ωq−rY [−r],

with NX = dimX . Thus it is enough to show that Hr(D(f∗)[−r]) =
H0(D(f∗)) is an isomorphism. This follows from the well-known formula

Rf∗Ω
NX−q
X ≃

r⊕

i=0

ΩNX−q−i
Y [−i],

which might be proved using the Künneth decomposition ΩqX =

⊕i+j=qf∗ΩiY ⊗OX ΩjX/Y and [SGA7(2), Exp. XI, Thm 1.1, (ii)]. �

Proposition 2.4.4. Let

(X ′,Φ′)
f ′

//

gX

��

(Y ′,Ψ′)

gY

��
(X,Φ)

f // (Y,Ψ)

be a cartesian diagram, with f, f ′ morphisms in (Sm∗/S) and gX , gY mor-
phisms in (Sm∗/S). Assume that one of the following conditions is satisfied

(1) gY is flat, or
(2) gY is a closed immersion and f is transversal to gY (i.e. f ′∗NY ′/Y =
NX′/X).
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Then the following diagram commutes

(2.4.5) H((X ′,Φ′)/S)
f ′
∗ // H((Y ′,Ψ′)/S)

H((X,Φ)/S)

g∗X

OO

f∗ // H((Y,Ψ)/S)

g∗Y

OO

and also with H replaced by Ĥ.
In [Gro85, II, Prop. 2.3.2 and p.49 ] a version of this Proposition (in the derived
category) is proved in the case without supports with f a closed immersion and
gY transversal to f . (This case is also covered here by factoring gY as a closed
immersion followed by a smooth projection.)

Proof. We distinguish two cases.
1. case: f is a closed immersion and gY is either flat or transversal to f .
Since Φ and Φ′ are also families of supports on Y and Y ′ the push-forward
f∗ factors over H((Y,Φ)/S) and f ′

∗ factors over H((Y ′,Φ′)/S). Hence we may
assume Ψ = Φ and Ψ′ = Φ′. Furthermore by Definition 2.2.1, the pull-back g∗X
factors over H((X ′, g−1

X (Φ))/S) and g∗Y factors over H((Y ′, g−1
Y (Φ))/S). Hence

we may assume that in the diagram (2.4.5) we have Ψ = Φ, Φ′ = g−1
X (Φ),

Ψ′ = g−1
Y (Φ). We may further assume, that X,X ′, Y, Y ′ are equidimensional

and set c := dimY − dimX = dim Y ′ − dimX ′ and h := f ◦ gX = gY ◦ f ′.
We consider the following diagram in D+(dRWY )

(2.4.6) Rh∗W•ΩX′

RgY ∗(f
′
∗)// RgY ∗RΓX′W•ΩY ′(c)[c]

Rf∗W•ΩX

Rf∗(g
∗
X )

OO

f∗ // RΓXW•ΩY (c)[c],

RΓX (g∗Y )

OO

where the horizontal (resp. vertical) morphisms are induced by (2.3.4) (resp.
(2.2.1)). By our assumption on the supports we obtain diagram (2.4.5) if we
apply ⊕Hi(RaΦ(−)) (resp. ⊕Hi(R lim←−RaΦ(−))) to diagram (2.4.6), where

a : Y → S is the structure morphism. Thus it suffices to show that (2.4.6)
commutes. By Proposition 2.4.1 the diagram (2.4.6) is isomorphic to the outer
square of the following diagram

(2.4.7) Rh∗W•ΩX′

RgY ∗(f
′
∗)// RgY ∗HcX′(W•ΩY ′)(c)

h∗W•ΩX′

gY ∗(f
′
∗) //

nat.

OO

gY ∗HcX′(W•ΩY ′)(c)

nat.

OO

f∗W•ΩX

g∗X

OO

f∗ // HcX(W•ΩY )(c).

g∗Y

OO
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The upper square obviously commutes. Thus it suffices to check that the lower
square of sheaves of de Rham-Witt systems commutes. This may be checked
locally and we may hence assume that the ideal sheaf of X in OY is generated
by a regular sequence t = t1, . . . , tc. By our assumptions on gY , the sequence
g∗Y t = g∗Y t1, . . . , g

∗
Y tc is again a regular sequence generating the ideal sheaf of

X ′ in OY ′ . Now the statement follows from the explicit formula (2.4.1).
2. case: X = PrY and f : X → Y is the projection map. In this situation we
also have X ′ = PrY ′ and f ′ : X ′ → Y ′ is the projection map. The morphisms f

and f ′ factor over (X, f−1(Ψ))→ (Y,Ψ) and (X ′, f ′−1
(Ψ′))→ (Y ′,Ψ′), which

are morphisms in (Sm∗/S). Similar to the first case we conclude that it is

enough to consider the case Φ = f−1(Ψ), Ψ′ = g−1
Y (Ψ) and Φ′ = f ′−1

(Ψ′) .
Now Lemma 2.4.3, (1) reduces us to show the commutativity of the following
diagram (with h = f ◦ gX = gY ◦ f ′)

(2.4.8) Rrh∗W•ΩX′

H0(RgY ∗(f
′
∗)) // gY ∗W•ΩY ′(−r)

Rrf∗W•ΩX

g∗X

OO

H0(f∗) // W•ΩY (−r).

g∗Y

OO

But now let i : Y → X be a section and i′ : Y ′ → X ′ its pull-back, viewed as
morphisms over Y . We obtain push-forwards

i∗ :W•ΩY (−r)→ Rrf∗W•ΩX , i′∗ : gY ∗W•ΩY ′(−r)→ Rrh∗W•ΩX′ .

And since gX is transversal to i we may apply case 1. to obtain

(g∗Y f∗ − f ′
∗g

∗
X) ◦ i∗ = g∗Y f∗i∗ − f ′

∗i
′
∗g

∗
Y = 0.

Thus the commutativity of (2.4.8) follows from Lemma 2.4.3, (2), which tells
us that i∗ is an isomorphism (with inverse f∗).
Proof in the general case. Since f : (X,Φ)→ (Y,Ψ) is quasi-projective we may
factor it as follows

(X,Φ)
i−→ (U,Φ)

j−→ (P,Φ)
π−→ (Y,Ψ),

where P = PrY , i : (X,Φ) → (U,Φ) is a closed immersion, j : (U,Φ) → (P,Φ)
is an open immersion and π : (P,Φ) → (Y,Ψ) is the projection. Notice that
we use the properness of f|Φ to conclude that Φ is also a family of supports on
U and on P and that all the maps above are in (Sm∗/S). By base change we
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obtain a diagram

(X ′,Φ′)

f ′

))
i′ //

gX

��

(UY ′ ,Φ′)

gU

��

j′ // (PY ′ ,Φ′)
π′

//

gP

��

(Y ′,Ψ′)

gY

��
(X,Φ)

f

55
i // (UY ,Φ)

j // (P,Φ)
π // (Y,Ψ),

with the horizontal maps in (Sm∗/S) and the vertical maps in (Sm∗/S). Notice
that if gY satisfies condition (1) or (2) from the statement of the Proposition,
then so does gU . By the functoriality of the push-forward the commutativity
of the square (2.4.5) follows from the first two cases and the fact that j∗ and j′∗
are just the excision isomorphisms by Proposition 2.3.3, (2). This proves the
proposition.

�

3. Correspondences and Hodge-Witt cohomology

In this section all schemes are assumed to be quasi-projective over k. We fix a
k-scheme S.

3.1. Exterior product.

3.1.1. Let X and Y be two k-schemes and M and N two complexes of de
Rham-Witt systems on X and Y respectively. Then for all n ≥ 1 we set

Mn ⊠Nn := p−1
1 Mn ⊗Z p

−1
2 Nn as a complex of abelian sheaves on X × Y,

where p1 : X×Y → X and p2 : X×Y → Y are the two projection morphisms.
It is obvious, that the maps πM ⊗ πN make the family {Mn ⊠Nn}n≥1 into a
pro-complex of abelian sheaves on X × Y , which we denote by

(3.1.1) M ⊠N.

3.1.2. Godement resolution. LetX be a k-scheme. For a sheaf of abelian groups
A on X we denote by G(A) its Godement resolution. Then there is a natural
way to equip the family {G(WnΩX)}n≥1 with the structure of a complex of
de Rham-Witt systems on X , which we denote by G(W•ΩX). It follows from
the exactness of G(−) and the surjectivity of the transition maps Wn+1ΩX →
WnΩX , that each term Gq(W•ΩX) is a flasque de Rham-Witt system (in the
sense of 1.5.3). Thus the natural augmentation map W•ΩX → G(W•ΩX),
makes G(W•ΩX) a flasque resolution of de Rham-Witt systems of X .
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3.1.3. Exterior product for Godement resolutions. Let X and Y be two k-
schemes with families of supports. It follows from the general construction
in [God73, II, §6. 1], that there is a morphism of pro-complexes of abelian
sheaves on X × Y

G(W•ΩX)⊠G(W•ΩY ) −→ G(W•ΩX ⊠W•ΩY ).

Therefore, multiplication induces a morphism of complexes

(3.1.2) G(W•ΩX)⊠G(W•ΩY ) −→ G(W•ΩX×Y ).

Definition 3.1.4. Let (X,Φ) and (Y,Ψ) be in (Sm∗/S) and denote the struc-
ture maps by a : X → S and b : Y → S. Then we define the exterior products

× : Hi((X,Φ)/S)⊠Hj((Y,Ψ)/S)→ Hi+j((X × Y,Φ×Ψ)/S × S),
× : Ĥi((X,Φ)/S)⊠ Ĥj((Y,Ψ)/S)→ Ĥi+j((X × Y,Φ×Ψ)/S × S)

as the composition of Hi+j((a× b)Φ×Ψ(3.1.2)) (resp. H
i+j((̂a× b)Φ×Ψ(3.1.2))

) with the natural map

Hi((X,Φ)/S)⊠Hj((Y,Ψ)/S)→ Hi+j((a×b)Φ×Ψ(G(W•ΩX)⊠G(W•ΩY )))

(resp. with ( ˆ ) ), where we use Hi((X,Φ)/S) = Hi(aΦG(W•ΩX)), etc.

Lemma 3.1.5. Let X = SpecA and Y = SpecB be two smooth affine k-schemes
and ZX ⊂ X, ZY ⊂ Y closed subsets. Assume there are sections s1, . . . , si ∈ A
and t1, . . . , tj ∈ B whose vanishing set equals ZX and ZY respectively. Then
for all n ≥ 1 and q, r ≥ 0 the morphism

× : Hi
ZX

(X,WnΩ
q
X)⊗Z H

j
ZY

(Y,WnΩ
r
Y )→ Hi+j

ZX×ZY
(X × Y,WnΩ

q+r
X×Y )

induced by Definition 3.1.4 is given by
[

α

[s1], . . . , [si]

]
×
[

β

[t1], . . . , [tj ]

]
=

[
p∗1α · p∗2β

p∗1[s1], . . . , p
∗
1[si], p

∗
2[t1], . . . , p

∗
2[tj ]

]
,

where we use the notation of 1.11.1, α ∈WnΩ
q
A, β ∈WnΩ

r
B and p1 : X×Y →

X and p2 : X × Y → Y are the two projection maps.

Proof. We denote by C the tensor product A ⊗k B and by KA, KB and KC

the respective Koszul complexes (see 1.11.1) K•([t],WnΩ
q
A), K

•([s],WnΩ
r
B)

and K•(p∗1[t], p
∗
2[s],WnΩ

q+r
C ). For any ordered tuple L = (l1 < . . . < lξ) of

natural numbers lν ∈ [1, i+j] we denote σ(L) := max{ν ∈ [0, ξ] | lν ≤ i}, where
we set l0 := 0. Notice that σ(L) = 0 iff l1 > i or L = ∅. We define

L≤i =

{
(l1 < . . . < lσ(L)), if σ(L) ∈ [1, ξ],

∅, if σ(L) = 0,

L>i =

{
((lσ(L)+1 − i) < . . . < (lξ − i)), if σ(L) < ξ,

∅, if σ(L) = ξ or L = ∅.
Thus the natural numbers appearing in the tuple L≤i are contained in [1, i],
whereas those appearing in L≥i are contained in [1, j].
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Let {e1, . . . ei}, {f1, . . . , fj} and {h1, . . . , hi+j} be the standard bases of
Wn(A)

i, Wn(B)j and Wn(C)
i+j , respectively. If L = (l1 < . . . < lξ) is an

ordered tuple with lν ∈ [1, i], then we write eL = el1 ∧ . . . ∧ elξ ∈
∧ξ

Wn(A)
i.

In case L is the emptyset we define eL to be 1 ∈ Wn(A). Similarly we define
the notations fL and hL.
With this notation we can define the morphism

ǫ :
⊕

µ+ν=ξ

(

HomWn(A)(

µ
∧

Wn(A)i,WnΩ
q
A)× HomWn(B)(

ν
∧

Wn(B)j ,WnΩ
r
B)

)

−→ HomWn(C)(

ξ
∧

Wn(C)i+j ,WnΩ
q+r
C ),

by sending a tuple of pairs of morphisms ⊕µ+ν=ξ(ϕµ, ψν) to the morphism,
which is uniquely determined by

hL 7→ p∗1ϕ
σ(L)(eL≤i) · p∗2ψξ−σ(L)(fL>i).

It is straightforward to check, that ǫ induces a morphism of complexes KA ⊗Z

KB → KC , which in degree zero equals

ǫ0 :WnΩ
q
A ⊗Z WnΩ

r
B →WnΩ

q+r
C , α⊗ β 7→ p∗1α · p∗2β

and in degree i+ j is given by

ǫi+j : Ki
A ⊗Z K

j
B → Ki+j

C , ǫi+j(ϕ⊗ ψ)(h[1,i+j]) = p∗1ϕ(e[1,i]) · p∗2ψ(f[1,j]).

By the very definition of the symbols
[

α
[s1],...,[si]

]
, etc. in 1.11.1 it remains to

show, that the following diagram commutes:

(3.1.3) Hi(KA)⊗Hj(KB)
nat. //

(1.11.1)

��

Hi+j(KA ⊗KB)
ǫ // Hi+j(KC)

(1.11.1)

��
Hi
ZX
⊗Hj

ZY

× // Hi+j
ZX×ZY

,

where we abbreviate Hi
ZX

= Hi
ZX

(X,WnΩ
q
X), etc. This is a straightforward

calculation. �

3.1.6. Exterior product for Cousin complexes. Let X and Y be smooth k-
schemes and denote by Z•

X and Z•
Y their respective filtrations by codimension.

Then we obtain from 3.1.2 a natural morphism

ΓZa
X
G(W•ΩX)⊠ ΓZb

Y
G(W•ΩY )

ΓZa+1
X

⊠ ΓZb
Y
+ ΓZa

X
⊠ ΓZb+1

Y

→
ΓZa+b

X×Y
G(W•ΩX×Y )

ΓZa+b+1
X×Y

G(W•ΩX×Y )
,

where we abbreviate the denominator on the left in the obvious way. With the
notation from 1.5.8, there is an obvious morphism from

Hi
Za

X/Z
a+1
X

(W•ΩX)⊠Hj
Zb

X/Z
b+1
Y

(W•ΩY )
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to the (i+ j)-th cohomology of the left hand side. In composition we obtain a
morphism

Hi
Za

X/Z
a+1
X

(W•ΩX)⊠Hj
Zb

Y /Z
b+1
Y

(W•ΩY )→ Hi+jZa+b
X×Y /Z

a+b+1
X×Y

(W•ΩX×Y ),

which is compatible with Frobenius. It is straightforward to check that this
pairing induces a morphism of pro-complexes of sheaves of W -modules on X×Y

(3.1.4) E(W•ΩX)⊠ E(W•ΩY )→ E(W•ΩX×Y ),

where E(−) denotes the Cousin complex with respect to the codimension fil-
tration (see 1.5.8).

Proposition 3.1.7. The exterior products defined above satisfy the following
properties:

(1) The exterior products (for H and Ĥ) can also be calculated by using the
morphism (3.1.4) in Definition 3.1.4 instead of the morphism (3.1.2).

(2) The exterior products are associative.
(3) Let f : (X,Φ)→ (Y,Ψ) and f ′ : (X ′,Φ′)→ (Y ′,Ψ′) be two morphisms

in (Sm∗/S) and α ∈ H((Y,Ψ)/S), α′ ∈ H((Y ′,Ψ′)/S), then

(f∗α) × (f ′∗α′) = (f × f ′)∗(α× α′) in H((X ×X ′,Φ× Φ′)/S × S).

Similar with Ĥ.
(4) Let f : (X,Φ) → (Y,Ψ) be a morphism in (Sm∗/S) and α ∈
H((X,Φ)/S), α′ ∈ H((X ′,Φ′)/S), then

(f∗α)× α′ = (f × idX′)∗(α× α′) in H((Y ×X ′,Ψ× Φ′)/S × S).

Similar with Ĥ.
(5) Let (X,Φ) and (Y,Ψ) be smooth k-schemes over S with families of

supports and α ∈ Hi,q((X,Φ)/S), β ∈ Hj,r((Y,Ψ)/S). Then (similar

properties hold for Ĥ):
(a) The switching isomorphism

H((X × Y,Φ×Ψ)/S × S) ∼= H((Y ×X,Ψ× Φ)/S × S)

sends α× β to (−1)qr+ijβ × α.
(b)

F (α) × F (β) = F (α× β), π(α) × π(β) = π(α × β),

d(α × β) = (dα) × β + (−1)qα× d(β),
for α, β ∈ Hn.

(c)

V (α) × β = V (α× F (β)), p(α)× β = p(α× π(β))

for α ∈ Hn, β ∈ Hn+1.
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Proof. (1) follows from [God73, II, Thm. 6.2.1]. (2), (3) and (5) easily follow
from the properties [God73, II, 6.5, (b), (d), (e)] and the corresponding prop-
erties of the multiplication map W•ΩX ⊠W•ΩY → W•ΩX×Y . It remains to
check (4). Since f is quasi-projective we may factor it as the composition of
a regular closed immersion followed by an open embedding into a projective
space over Y followed by the projection to Y . Using similar arguments as in the
proof of Proposition 2.4.4 (together with Lemma 2.4.3), we can reduce to the
case that Φ = Ψ and that f : (X,Φ) →֒ (Y,Φ) is a regular closed immersion of
pure codimension c. By (1) it thus suffices to show, that the following diagram
commutes

f∗(E(W•ΩX))⊠ E(W•ΩX′)

f∗⊠id

��

(3.1.4) // E(W•ΩX×X′)

(f×idX′ )∗

��
(ΓX(E(W•ΩY ))(c)[c]) ⊠ E(W•ΩX′)

(3.1.4) // ΓX×X′E(W•ΩY×X′)(c)[c],

where we denote by f∗ and (f × idX′)∗ the morphism defined in (2.3.3). The
question is local and we may therefore assume X = SpecA, X ′ = SpecA′

and Y = SpecB are affine and that the ideal of Y in X is generated by a
regular sequence τ1, . . . , τc. Furthermore we may check the commutativity in
each degree separately and thus by the description of the terms of the Cousin
complex in 1.5.8, (2), we are reduced to show the commutativity of the following
diagram:

Hi
ZX

(X,WnΩ
q
X )⊗Hi

ZX′
(X ′,WnΩ

q
X′)

f∗⊗id

��

× // Hi+j
ZX×ZX′

(X ×X ′,WnΩ
q+r
X×X′)

(f×id)∗

��
Hi+c

ZX
(Y,WnΩ

q+c
Y ×X′)⊗Hi

ZX′
(X ′,WnΩ

q
X′)

× // Hi+j+c
ZX×ZX′

(Y ×X ′,WnΩ
q+r+c
Y ×X′ ),

where ZX ⊂ X and ZX′ ⊂ X ′ are integral closed subschemes of codimension
i and j respectively. But this follows from the explicit formulas in Corollary
2.4.2 and Lemma 3.1.5. �

Remark 3.1.8. Notice that in the situation of (4) above the two elements α′ ×
(f∗α) and (idX′ × f)∗(α′ × α) are in general only equal up to a sign. This is
the reason for the sign in (3.3.6).

3.2. The cycle class of Gros. We review some results of [Gro85].

3.2.1. Witt log forms. Let X be a smooth k scheme. We denote by

WnΩ
q
X,log

the abelian sheaf on the small étale site Xét of X defined in [Ill79, I, 5.7]; it is
the abelian subsheaf of WnΩ

q
Xét

which is locally generated by sections of the
form

d[x1]

[x1]
· · · d[xq ]

[xq]
, with x1, . . . , xd ∈ O×

Xét
.

By definition WnΩ
0
X,log = Z/pnZ.
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3.2.2. The cycle class. Let X be a smooth k-scheme and Z ⊂ X a closed
integral subscheme of codimension c. Then by [Gro85, II, (4.1.6)] the restriction
map

(3.2.1) Hc
Z(Xét,WnΩ

c
X,log)

≃−→ Hc
Z\Zsing

((X \ Zsing)ét,WnΩ
c
X,log)

is an isomorphism (where Zsing denotes the singular locus of Z). Therefore
following Gros we can define the log-cycle class of Z of level n

cllog,n(Z) ∈ Hc
Z(Xét,WnΩ

c
X,log)

as the image of 1 under the Gysin isomorphism ([Gro85, II, Thm 3.5.8 and
(3.5.19)])

(3.2.2) H0((Z \ Zsing)ét,Z/p
nZ)

≃−→ Hc
Z\Zsing

((X \ Zsing)ét,WnΩ
c
X,log)

composed with the inverse of (3.2.1) (see [Gro85, II, Def. 4.1.7.]). We define
the cycle class of Z of level n

cln(Z) ∈ Hc
Z(X,WnΩX)

to be the image of cllog,n(Z) under the natural morphismHc
Z(Xét,WnΩ

c
X,log)→

Hc
Z(X,WnΩ

c
X). We have

π(cllog,n(Z)) = cllog,n−1(Z), π(cln(Z)) = cln−1(Z).

Therefore (cllog,n(Z))n (resp. (cln(Z))n) give rise to an element in the projec-
tive system Hc

Z(Xét,W•Ω
c
X,log) (resp. H

c
Z(X,W•Ω

c
X)), which we simply denote

by cllog(Z) (resp. cl(Z)).
Notice that we have an isomorphism

(3.2.3) Hc
Z(X,WΩcX) ∼= lim←−H

c
Z(X,WnΩ

c
X).

(Indeed by Proposition 1.5.6, (5) we have a spectral sequence

Ri lim←−H
j
Z(X,WnΩ

c
X) =⇒ Hi+j

Z (X,WΩcX),

which by Lemma 1.5.1, (1) gives a short exact sequence

0→ R1 lim←−H
c−1
Z (X,WnΩ

c
X)→ Hc

Z(X,WΩcX)→ lim←−H
c
Z(X,WnΩ

c
X)→ 0.

But by Lemma 1.5.9 Hc−1
Z (X,WnΩ

c
X) equals 0 for all n. Hence (3.2.3).) We

define

ĉl(Z) ∈ Hc
Z(X,WΩcX)

as the image of lim←−n cln(Z) via (3.2.3).

3.2.3. Properties of the cycle classes. The above cycle classes have the following
properties (we only list them for cl there are analogous properties for cllog and
ĉl):

(1) Let Z ⊂ X be a closed integral subscheme of codimension c and U ⊂ X
be open such that Z ∩U is smooth. Denote by i : Z ∩U →֒ (U,Z ∩U)
the morphism in (Sm∗/Spec k) which is induced by the inclusion of Z
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in X and by j : (U,Z ∩ U) →֒ (X,Z) in (Sm∗/Spec k) the morphism
induced by the open immersion U ⊂ X . Then

j∗cl(Z) = cl(Z ∩ U) = i∗(1) in Hc
Z(X,W•Ω

c
X),

where 1 is the multiplicative unit in the pro-ring H0(Z ∩U,W•OZ∩U ).
(2) Let Z and Z ′ be two closed integral subschemes of X of codimension

c and c′ respectively intersecting each other properly (i.e. each irre-
ducible component of Z ∩ Z ′ has codimension c+ c′ in X). Then

cl(Z.Z ′) = ∆∗(cl(Z)× cl(Z ′)) in Hc+c′

Z∩Z′(X,W•Ω
c+c′).

Here Z.Z ′ is the intersection cycle
∑

T nT [T ], where the sum is over
the irreducible components of Z ∩Z ′ and nT are the intersection mul-
tiplicities (computed via Serres tor-formula), cl(Z.Z ′) is defined to be∑

T nicl(T ) and ∆ : (X,Z ∩ Z ′) → (X ×X,Z × Z ′) in (Sm∗/Spec k)
is induced by the diagonal morphism.

(3) For a line bundle L on X we denote by c1(L)log ∈ H1(Xét,W•Ω
1
X,log)

the sequence of elements (dlogn([L]))n, where [L] denotes the class of
L in H1(X,O×

X) = H1(Xét,Gm) and dlogn is induced by taking H1 of
the map Gm →WnΩ

1
X,log, a→ dlog[a]. We denote by c1(L) the image

of c1(L)log in H1(X,W•Ω
c
X).

Let D ⊂ X be an integral subscheme of codimension 1, then

cl(D) = c1(O(D)) in H1(X,W•Ω
1
X).

(4) Let Z be as in (1), then:

F (cl(Z)) = π(cl(Z)), V (cl(Z)) = p(cl(Z)), d(cl(Z)) = 0.

(1) follows from the fact, that the Gysin morphism (3.2.2) is induced by the
pushforward i0∗, where i0 : Z \ Zsing → (X \ Zsing, Z \ Zsing) in (Sm∗/Spec k)
is induced by the inclusion. This follows from [Gro85, II, 3.4.] (or alternatively
from the description of the Gysin morphism in [Gro85, II, Prop. 3.5.6] together
with Proposition 2.4.1.) (2) is [Gro85, II, Prop. 4.2.12.] and (3) is [Gro85, II,
Prop. 4.2.1]. The first and the last equality in (4) follow from the definition,
the second equality is implied by the first and π(cln(Z)) = cln−1(Z).

3.3. Hodge-Witt cohomology as weak cohomology theory with

supports.

3.3.1. Weak cohomology theories with supports. Weak cohomology theories
with supports have been introduced in [CR09]. For the convenience of the
reader we recall the definitions.
First, recall the definition of the categories Sm∗ = (Sm∗/k) and Sm∗ =
(Sm∗/k) in Definition 2.1.1. For both categories Sm∗ and Sm∗ finite coprod-
ucts exist:

(X,Φ)
∐

(Y,Ψ) = (X
∐

Y,Φ ∪Ψ).
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For (X,Φ) let X =
∐
iXi be the decomposition into connected components,

then
(X,Φ) =

∐

i

(Xi,Φ ∩ ΦXi).

In general products don’t exist, and we define

(X,Φ)⊗ (Y,Ψ) := (X × Y,Φ×Ψ)

which together with the unit object 1 = Spec(k) and the obvious isomorphism
(X,Φ)⊗(Y,Ψ) −→ (Y,Ψ)⊗(X,Φ) makes Sm∗ and Sm

∗ to a symmetric monoidal
category (see [ML98, VII.1]).

3.3.2. A weak cohomology theory with supports consists of the following data
(F∗, F

∗, T, e):

(1) Two functors F∗ : Sm∗ −→ GrAb and F ∗ : (Sm∗)op −→ GrAb such that
F∗(X) = F ∗(X) as abelian groups for every object X ∈ ob(Sm∗) =
ob(Sm∗). We will simply write F (X) := F∗(X) = F ∗(X). We use
lower indexes for the grading on F∗(X), i.e. F∗(X) = ⊕iFi(X), and
upper indexes for F ∗(X).

(2) For every two objects X,Y ∈ ob(Sm∗) = ob(Sm∗) a morphism of
graded abelian groups (for both gradings):

TX,Y : F (X)⊗Z F (Y ) −→ F (X ⊗ Y ).

(3) A morphism of abelian groups e : Z −→ F (Spec (k)). For all smooth
schemes π : X −→ Spec (k) we denote by 1X the image of 1 ∈ Z via the

map Z
e−→ F ∗(Spec (k))

F∗(π)−−−−→ F ∗(X).

3.3.3. These data are required to satisfy the following conditions:

(1) The functor F∗ preserves coproducts and F ∗ maps coproducts to prod-
ucts. Moreover, for (X,Φ1), (X,Φ2) ∈ ob(Sm∗) with Φ1∩Φ2 = {∅} we
require that the map

F ∗(1) + F ∗(2) : F
∗(X,Φ1)⊕ F ∗(X,Φ2) −→ F ∗(X,Φ1 ∪Φ2),

with 1 : (X,Φ1 ∪ Φ2) −→ (X,Φ1) and 2 : (X,Φ1 ∪ Φ2) −→ (X,Φ2) in
Sm∗, is an isomorphism.

(2) The data (F∗, T, e) and (F ∗, T, e) respectively define a (right-lax) sym-
metric monoidal functor.

(3) (Grading) For (X,Φ) such that X is connected the equality

Fi(X,Φ) = F 2 dimX−i(X,Φ)

holds for all i.
(4) For all cartesian diagrams (cf. 2.1.1)

(X ′,Φ′)
f ′

//

gX

��

(Y ′,Ψ′)

gY

��
(X,Φ)

f // (Y,Ψ)
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with gX , gY ∈ Sm∗ and f, f ′ ∈ Sm∗ such that either gY is smooth
or gY is a closed immersion and f is transversal to gY the following
equality holds:

F ∗(gY ) ◦ F∗(f) = F∗(f
′) ◦ F ∗(gX).

Recall that f is transversal to gY if (f ′)∗NY ′/Y = NX′/X where N denotes the
normal bundle. The case X ′ = ∅ is also admissible; in this case the equality
3.3.3(4) reads:

F ∗(gY ) ◦ F∗(f) = 0.

In [CR09, p. 700] it is spelled out what it means for (F∗, T, e) (and (F ∗, T, e))
to be a right-lax symmetric monoidal functor.

Definition 3.3.4. If the data (F∗, F
∗, T, e) as in 3.3.2 satisfy the conditions

3.3.3 then we call (F∗, F
∗, T, e) a weak cohomology theory with supports.

Definition 3.3.5. Let (F∗, F
∗, T, e), (G∗, G

∗, U, ǫ) be two weak cohomology
theories with support. By a morphism

(3.3.1) (F∗, F
∗, T, e) −→ (G∗, G

∗, U, ǫ)

we understand a morphism of graded abelian groups (for both gradings)

φ : F (X) −→ G(X) for every X ∈ ob(V∗) = ob(V ∗),

such that φ induces a natural transformation of (right-lax) symmetric monoidal
functors

φ : (F∗, T, e) −→ (G∗, U, ǫ) and φ : (F ∗, T, e) −→ (G∗, U, ǫ),

i.e. φ induces natural transformations F∗ −→ G∗, F
∗ −→ G∗, and

(3.3.2) φ ◦ T = U ◦ (φ ⊗ φ), φ ◦ e = ǫ.

3.3.6. Chow theory as a weak cohomology theory with supports. An example of a
weak cohomology theory with supports are the Chow groups (CH∗,CH

∗,×, e)
[CR09, 1.1]. We will briefly recall the definitions for the convenience of the
reader.

Definition 3.3.7 (Chow groups with support). Let Φ be a family of supports
on X . We define:

CH(X,Φ) = lim−→W∈Φ
CH(W ).

The group CH(X,Φ) is graded by dimension. We set

CH∗(X,Φ) =
⊕

d≥0

CHd(X,Φ)[2d],

where the bracket [2d] means that CHd(X,Φ) is considered to be in degree 2d.
There is also a grading by codimension. Let X =

∐
iXi be the decomposition

into connected components then CH∗(X,Φ) =
⊕

iCH
∗(Xi,Φ ∩ ΦXi) and

CH∗(Xi,Φ ∩ ΦXi) =
⊕

d≥0

CHd(Xi,Φ ∩ ΦXi)[2d]
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where CHd(Xi,Φ ∩ ΦXi) is generated by cycles [Z] with Z ∈ Φ ∩ ΦXi , Z
irreducible, and codimXi(Z) = d.
Let f : (X,Φ) −→ (Y,Ψ) be a morphism in Sm∗. There is a push-forward

(3.3.3) CH∗(f) : CH(X,Φ) −→ CH(Y,Ψ),

defined by the usual push-forward of cycles (f|W )∗ : CH(W ) −→ CH(f(W )) −→
CH(Y,Ψ) (for this we need that f|W is proper and f(Φ) ⊂ Ψ). We obtain a
functor

(3.3.4) CH∗ : Sm∗ −→ GrAb, CH∗(X,Φ) := CH(X,Φ), f 7→ CH∗(f).

In order to define a functor

CH∗ : (Sm∗)op −→ GrAb

we use Fulton’s work on refined Gysin morphisms [Ful98, §6.6].
Let f : X −→ Y be a morphism between smooth schemes and let V ⊂ Y be a
closed subscheme, thus f : (X, f−1(V )) −→ (Y, V ) is a morphism in Sm∗. We
define

CH∗(f) := f ! : CH(Y, V ) = CH(V ) −→ CH(f−1(V )) = CH(X, f−1(V )).

For the general case let f : (X,Φ) −→ (Y,Ψ) be any morphism in Sm∗. For
every V ∈ Ψ the map f induces (X, f−1(V )) −→ (Y, V ) in Sm∗. We may define

CH∗(f) : CH(Y,Ψ) = lim−→V ∈Ψ
CH(Y, V ) −→ lim−→W∈Φ

CH(X,W ) = CH(X,Φ).

The assignment

CH∗ : (Sm∗)op −→ GrAb, CH∗(X,Φ) = CH(X,Φ), f 7→ CH∗(f)

defines a functor. Together with the exterior product × (see [Ful98, §1.10]) and
the obvious unit 1 : Z −→ CH(Spec (k)), we obtain a weak cohomology theory
with supports (CH∗,CH

∗,×, 1).

3.3.8. ¿From Proposition 2.3.3 and Proposition 2.2.2 we obtain two functors

Ĥ∗ : Sm∗ −→ GrAb,

Ĥ∗ : (Sm∗)op −→ GrAb,

where for an object (X,Φ) ∈ ob(Sm∗) = ob(Sm∗) with structure morphism
a : X −→ Spec (k) we have

Ĥ(X,Φ) := Ĥ∗(X,Φ) := Ĥ∗(X,Φ) := Ĥ((X,Φ)/Spec k) =
⊕

p,q≥0

RqâΦW•Ω
p
X

as abelian groups (see (1.4.4) for the definition of âΦ). In view of Proposition
1.5.6 we get an equality

RqâΦ = Hq ◦R lim←−◦Ra∗ ◦RΓΦ.

In particular, if Φ = ΦX is the set of all closed subsets of X then

Ĥ(X) := Ĥ(X,ΦX) =
⊕

p,q≥0

Hq(R lim←−RΓ(W•Ω
p
X)).
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Note that R lim←−◦RΓ = RΓ ◦ R lim←− and R lim←−(W•Ω
p
X) = lim←−(W•Ω

p
X) = WΩpX

by Lemma 1.5.1. Thus we obtain

Ĥ(X) =
⊕

p,q≥0

Hq(X,WΩpX).

In the following we will write Ĥ(X) for Ĥ(X,ΦX).

The grading for Ĥ∗ is defined by

Ĥi(X,Φ) =
⊕

p+q=i

Rq âΦW•Ω
p
X .

For Ĥ∗(X,Φ) the grading is defined such that 3.3.3(4) holds.
For two objects (X,Φ), (Y,Ψ) with structure maps a : X −→ Spec (k), b : Y −→
Spec (k), we define

(3.3.5) T : Ĥ(X,Φ)⊗Z Ĥ(Y,Ψ) −→ Ĥ(X × Y,Φ×Ψ)

by the formula

(3.3.6) T (αi,p ⊗ βj,q) = (−1)(i+p)·j(αi,p × βj,q),

where αi,p ∈ RiâΦW•Ω
p
X , βj,q ∈ Rj b̂ΨW•Ω

q
Y , and × is the map in 3.1.4.

We define

e : Z −→ Ĥ(Spec (k)) =W (k)

by e(n) = n for all n ∈ Z.

Proposition 3.3.9. The triples (Ĥ∗, T, e) and (Ĥ∗, T, e) define right-lax sym-
metric monoidal functors.

Proof. The morphism T respects the grading Ĥ∗ and the grading Ĥ∗. In the
following we will work with the upper grading Ĥ∗. All arguments will also

work for the lower grading Ĥ∗ because the difference between lower and upper
grading is an even integer.
The axioms which involve e do obviously hold. By using the associativity of ×
(Proposition 3.1.7(2)) it is straightforward to prove the associativity of T . Let
us prove the commutativity of T , i.e. that the diagram

(3.3.7) H(X,Φ)⊗H(Y,Ψ)
T //

��

H(X × Y,Φ×Ψ)

ǫ

��
H(Y,Ψ)⊗H(X,Φ)

T // H(Y ×X,Ψ× Φ)

is commutative. The left vertical map is defined by α⊗β 7→ (−1)deg(α) deg(β)β⊗
α. By using Proposition 3.1.7(5)(a) we obtain

ǫ(T (αi,p ⊗ βj,q)) = ǫ((−1)(i+p)jαi,p × βj,q) = (−1)(i+p)j(−1)pq+ijβj,q × αi,p
= (−1)pq+pjβj,q × αi,p.
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On the other hand,

T ((−1)(i+p)(j+q)βj,q ⊗ αi,p) = (−1)(i+p)(j+q)(−1)(j+q)iβj,q × αi,p
= (−1)pq+pjβj,q × αi,p.

This proves the commutativity of diagram (3.3.7).

The functoriality of T with respect to Ĥ∗ follows immediately from Proposition
3.1.7(3). The functoriality of T with respect to Ĥ∗ follows from Proposition
3.1.7)(4). �

Theorem 3.3.10. The datum (Ĥ∗, Ĥ
∗, T, e) is a weak cohomology theory with

supports (cf. Definition 3.3.4).

Proof. We have to verify the properties in section 3.3.3. Property 3.3.3(1) is
obvious. Proposition 3.3.9 implies 3.3.3(2). The compatibility of the gradings
(3.3.3(3)) is satisfied by definition. Proposition 2.4.4 yields 3.3.3(4). �

3.3.11. In the same way as in section 3.3.8 we define

PĤ∗ : Sm∗ −→ GrAb,

P Ĥ∗ : (Sm∗)op −→ GrAb,

where for an object (X,Φ) ∈ ob(Sm∗) = ob(Sm∗) with structure morphism
a : X −→ Spec (k) we have

PĤ(X,Φ) = PĤ∗(X,Φ) = PĤ∗(X,Φ) =
⊕

p≥0

RpâΦW•Ω
p
X

as abelian groups. The grading is defined in the obvious way:

PĤ2p(X,Φ) = RpâΦW•Ω
p
X ,

and zero for all odd degrees. Of course, for PĤ∗(X,Φ) the grading is defined
such that 3.3.3(4) holds.
For two objects (X,Φ), (Y,Ψ), we get an induced map

T : PĤ(X,Φ)⊗Z PĤ(Y,Ψ) −→ PĤ(X × Y,Φ×Ψ)

from (3.3.5).
Theorem 3.3.10 implies the following statement.

Corollary 3.3.12. The datum (PĤ∗, P Ĥ
∗, T, e) is a weak cohomology theory

with supports (cf. Definition 3.3.4). Induced by the inclusion PĤ(X,Φ) ⊂
Ĥ(X,Φ), we get a morphism of weak cohomology theories with supports
(cf. Definition 3.3.5)

(PĤ∗, P Ĥ
∗, T, e) −→ (Ĥ∗, Ĥ

∗, T, e).
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3.4. Cycle classes. One of the main goals of [CR09] was to give a criterion
when a weak cohomology theory (F∗, F

∗, T, e) admits a morphism

(CH∗,CH
∗,×, 1) −→ (F∗, F

∗, T, e).

In order to apply [CR09, Theorem 1.2.3] in our situation, i.e. for

(PĤ∗, P Ĥ
∗, T, e), we first need to prove semi-purity.

Recall that (PĤ∗, P Ĥ
∗, T, e) satisfies the semi-purity condition (cf. [CR09,

Definition 1.2.1]) if the following holds:

• For all smooth schemes X and irreducible closed subsets W ⊂ X the
groups PĤi(X,W ) vanish if i > 2 dimW .
• For all smooth schemesX , closed subsetsW ⊂ X , and open sets U ⊂ X
such that U contains the generic point of every irreducible component
of W , we require the map

PĤ∗() : PĤ2 dimW (X,W ) −→ PĤ2 dimW (U,W ∩ U),

induced by  : (U,W ∩ U) −→ (X,W ) in Sm∗, to be injective.

Proposition 3.4.1. The weak cohomology theory with supports
(PĤ∗, P Ĥ

∗, T, e) satisfies the semi-purity condition.

Proof. To verify the two conditions we may assume that X is connected of
dimension d. Since

PĤ2i(X,W ) = Hd−i
W (X,WΩd−iX ),

we need to show that Hd−i
W (X,WΩd−iX ) vanishes if 2i > 2 dimW (or equiva-

lently, d− i < codimXW ). Indeed, we have

Hd−i
W (X,WΩd−iX ) = Rd−ia∗RΓWR lim←−(WnΩ

d−i
X )

with a : X −→ Spec (k) the structure map. Since RΓWR lim←− = R lim←−RΓW , we
need to show that

(3.4.1) RjΓWWnΩ
d−i
X = 0,

for j < codimXW . This follows from Lemma 1.5.9 (which follows from the fact

that the graded pieces of the standard filtration on WnΩ
d−i
X are extensions of

locally free OX -modules [Ill79, I, Cor. 3.9]).
For the second condition, let W ⊂ X be a closed subset and U ⊂ X open, such
that U contains the generic point of every irreducible component of W . We
need to prove that the restriction map

Hd−dimW
W (X,WΩd−dimW

X ) −→ Hd−dimW
U∩W (U,WΩd−dimW

U )

is injective. But the kernel is a quotient of Hd−dimW
W\U (X,WΩd−dimW

X ), which

vanishes because d− dimW < codimX(W\U). �
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3.4.2. In view of [CR09, Theorem 1.2.3] there is at most one morphism of
weak cohomology theories with support

(CH∗,CH
∗,×, 1) −→ (PĤ∗, P Ĥ

∗, T, e).

Theorem 3.4.3. There is exactly one morphism (in the sense of Definition
3.3.5)

(CH∗,CH
∗,×, 1) −→ (PĤ∗, P Ĥ

∗, T, e).

Proof. We need to verify the criteria given in [CR09, Theorem 1.2.3].
The condition [CR09, Theorem 1.2.3](1) is satisfied by Proposition 2.3.4.
For the second condition [CR09, Theorem 1.2.3](2) we need to show that for the
0-point ı0 : Spec (k) −→ P1 and the ∞-point ı∞ : Spec (k) −→ P1 the following
equality holds:

PĤ∗(ı0) ◦ e = PĤ∗(ı∞) ◦ e.
By 3.2.3(1) the left hand side is ĉl({0}) and the right hand side equals ĉl({∞}).
In view of 3.2.3(3) we obtain

ĉl({0}) = c1(OP1(1)) = ĉl({∞}).
For W ⊂ X an irreducible closed subset, we set cl(X,W ) := ĉl(W ). Then
3.2.3(1) implies that condition [CR09, Theorem 1.2.3](4) holds.
Finally, we prove [CR09, Theorem 1.2.3](3). Let ı : X −→ Y be a closed
immersion between smooth schemes, and let D ⊂ Y be an effective smooth
divisor such that

• D meets X properly, thus D ∩X := D ×Y X is a divisor on X,
• D′ := (D ∩X)red is smooth and connected, and thus D ∩X = n ·D′

as divisors (for some n ∈ Z, n ≥ 1).

We denote by ıX : X −→ (Y,X), ıD′ : D′ −→ (D,D′) the morphisms in Sm∗

induced by ı, and we define g : (D,D′) −→ (Y,X) in Sm∗ by the inclusion
D ⊂ Y . Then the following equality is required to hold:

(3.4.2) PĤ∗(g)(PĤ∗(ıX)(1X)) = n · PĤ∗(ıD′)(1D′).

Obviously, we may assume that X and Y are connected; we set c := codimYX .
A priori, we need to prove the equality (3.4.2) in Hc

D′(D,WΩcD). Since Ĥ
∗(g),

Ĥ∗(ıX) and Ĥ∗(ıD′) are morphisms in d̂RWk, they commute with Frobenius.
Thus both sides of (3.4.2) are already contained in the part which is invariant
under the Frobenius Hc

D′(D,WΩcD)
F . Denote by f : (D,D′) −→ (Y,D′) the

morphism in Sm∗ which is induced by the inclusion D ⊂ Y .
We claim that

PĤ∗(f) : H
c
D′(D,WΩcD)→ Hc+1

D′ (Y,WΩc+1
Y )

is injective on Hc
D′(D,WΩcD)

F .
Indeed, by [Ill79, I, Thm. 5.7.2] there is an exact sequence of pro-sheaves on
Dét

0→W•Ω
c
D,log →W•Ω

c
D

1−F−−−→W•Ω
c
D → 0.
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This yields an exact sequence of pro-groups

Hc−1
D′ (D,W•Ω

c
D)→ Hc

D′(Dét,W•Ω
c
D,log)→ Hc

D′(D,W•Ω
c
D)

F → 0.

(Notice that Hi
D′(D,W•Ω

q
D) = Hi

D′(Dét,W•Ω
q
D), since the WnΩ

q
D are quasi-

coherent on WnD and Dét = (WnD)ét.) But Hc−1
D′ (D,W•Ω

c
D) = 0 (see e.g.

(3.4.1)) and thus

lim←−
n

Hc
D′(Dét,W•Ω

c
D,log) = lim←−

n

Hc
D′(D,W•Ω

c
D)

F (3.2.3)
= Hc

D′(D,WΩcD)
F .

Combining this with Gros’ Gysin isomorphism (3.2.2) we obtain an isomor-
phism

Zp
≃−→ Hc

D′(D,WΩcD)
F , 1 7→ ĉl(D′)

3.2.3, (1)
= PĤ∗(ıD′)(1D′).

In the same way we also obtain an isomorphism

Zp
≃−→ Hc+1

D′ (Y,WΩc+1
Y )F , 1 7→ ĉl(D′)

3.2.3, (1)
= PĤ∗(f) ◦ PĤ∗(ıD′)(1D′).

This yields the claim.
Thus it suffices to prove the following equality

PĤ∗(f)PĤ
∗(g)(PĤ∗(ıX)(1X)) = n · PĤ∗(f)PĤ∗(ıD′)(1D′).

For this denote by g′ : D −→ (Y,D) in Sm∗ and ∆Y : (Y,D′) −→ (Y ×Y,D×X)
in Sm∗ the morphisms induced by the inclusion and the diagonal respectively.
Then

PĤ∗(f)PĤ
∗(g)(PĤ∗(ıX)(1X)) = PĤ∗(g

′)(1D) ∪ PĤ∗(ıX)(1X)

= PĤ∗(∆Y )(ĉl(D)× ĉl(X)) 3.2.3, (1)

= ĉl(D.X) 3.2.3, (2)

= n · ĉl(D′)

= n · PĤ∗(f ◦ ıD′)(1D′) 3.2.3, (1),

= n · PĤ∗(f)PĤ∗(ıD′)(1D′)

where a ∪ b := PĤ∗(∆Y )(T (a ⊗ b)) and hence the first equality holds by the
projection formula, see [CR09, Proposition 1.1.11]. This finishes the proof. �

Definition 3.4.4. We denote by

ĉl : (CH∗,CH
∗,×, 1) −→ (Ĥ∗, Ĥ

∗, T, e)

the composition of the morphism in Theorem 3.4.3 and Corollary 3.3.12. Note
that there is no conflict with the notation in section 3.2.
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3.4.5. To a weak cohomology theory F = (F∗, F
∗, T, e) we can attach a

graded additive category CorF ([CR09, Definition 1.3.5]). By definition we
have ob(CorF ) = ob(Sm∗) = ob(Sm∗), and

HomCorF ((X,Φ), (Y,Ψ)) = F (X × Y, P (Φ,Ψ)),

where

P (Φ,Ψ) := {Z ⊂ X × Y ;Z is closed, pr2 | Z is proper,

Z ∩ pr−1
1 (W ) ∈ pr−1

2 (Ψ) for every W ∈ Φ}.
The composition for correspondences is as usual:

b ◦ a = F∗(p13)(F
∗(p12)(a) ∪ F ∗(p23)(b)),

with pij : X1 ×X2 ×X3 −→ Xi ×Xj the projection; the product ∪ is defined
by a ∪ b := F ∗(∆)(T (a⊗ b)) (see [CR09, 1.3] for the details).
Moreover, there is a functor

ρF : CorF −→ (Ab)

to abelian groups defined by

ρF (X,Φ) = F (X,Φ)

ρF (γ) = (a 7→ F∗(pr2)(F
∗(pr1)(a) ∪ γ)), for γ ∈ F (X × Y, P (Φ,Ψ)),

(see [CR09, 1.3.9]).
The morphism

ĉl : CH = (CH∗,CH
∗,×, 1) −→ Ĥ = (Ĥ∗, Ĥ

∗, T, e)

(Definition 3.4.4) induces a functor (see [CR09, 1.3.6])

Cor(ĉl) : CorCH −→ CorĤ .

For (X,Φ) ∈ CorĤ , the group ρĤ(X,Φ) = Ĥ(X,Φ) is a de Rham-Witt module

over k (i.e. an object in d̂RWk). The next theorem states that the Chow
correspondences act as morphism of de Rham-Witt modules.

Theorem 3.4.6. The composition

CorCH −→ CorĤ
ρĤ−−→ (Ab)

induces a functor

(3.4.3) Corĉl : CorCH −→ d̂RWk.

Proof. Let (X,Φ), (Y,Ψ) ∈ Sm. Note that CorCH((X,Φ), (Y,Ψ)) is graded
and is only non-trivial in even degrees. By definition

Cor2iCH ((X,Φ), (Y,Ψ)) = CHdimX+i(X × Y, P (Φ,Ψ)),

(we may assume that X is equidimensional), where CHdimX+i(X×Y, P (Φ,Ψ))
is generated by cycles Z with codimX×Y Z = dimX + i, as in 3.3.6.
We will show that a cycle Z ∈ Cor2iCH ((X,Φ), (Y,Ψ)) defines a morphism

ρĤ(ĉl(Z)) : Ĥ(X,Φ)(−i) −→ Ĥ(Y,Ψ)
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in d̂RWk (the shift by −i concerns only the grading and the differential, which
is multiplied with (−1)i).
Because pullback is a morphism of de Rham-Witt modules (Definition 2.2.1)
and pushforward is a morphism of de Rham-Witt modules up to the shift with
the relative dimension (Definition 2.3.1), we can easily reduce the statement to
the following claim. For all (X,Φ) and all irreducible closed subsets Z ⊂ X of
codimension c the map

Ĥ(X,Φ) −→ Ĥ(X ×X,Φ× ΦZ)(c)

a 7→ T (a⊗ ĉl(Z))

is a morphism in d̂RWk. The compatibility with F and V follows immediately
from Proposition 3.1.7(5) and the invariance F (ĉl(Z)) = ĉl(Z) (results of Gros
3.2.3(4)). The compatibility with d also follows from Proposition 3.1.7(5) and
d(ĉl(Z)) = 0 (3.2.3(4)):

T (da⊗ ĉl(Z)) dfn
= (−1)deg(da)·cda× ĉl(Z) (3.3.6),

= (−1)(deg(a)+1)·cd(a× ĉl(Z)) 3.1.7(5), 3.2.3(4),

= (−1)cdT (a⊗ ĉl(Z)) (3.3.6).

�

Proposition 3.4.7. (i) For every f : (X,Φ) −→ (Y,Ψ) in Sm∗ the
transpose of the graph Γ(f)t ⊂ Y × X defines an element in
Cor0CH((Y,Ψ), (X,Φ)) (i.e. has degree 0). The morphism

Corĉl(Γ(f)
t) : Ĥ(Y,Ψ) −→ Ĥ(X,Φ)

is the same as f∗ in Definition 2.2.1.
(ii) For every f : (X,Φ) −→ (Y,Ψ) in Sm∗ the graph Γ(f) ⊂ X × Y

defines an element in Cor−2r
CH ((X,Φ), (Y,Ψ)) (i.e. has degree −2r =

2(dim(Y )− dim(X))). The morphism

Corĉl(Γ(f)) : Ĥ(X,Φ)(r) −→ Ĥ(Y,Ψ)

is the same as f∗ in Definition 2.3.1.

Proof. For (i). Let i2 : (X, f−1Ψ) −→ (Y ×X, pr−1
Y Ψ) be the morphism in Sm∗

induced by the morphism of schemes (f, idX). Let i1 : X −→ (Y × X,Γ(f)t)
and i3 : (X, f−1Ψ) −→ (Y × X,Γ(f)t ∩ pr−1

Y Ψ) be the morphism in Sm∗ in-

duced by (f, idX). For all a ∈ Ĥ(Y,Ψ) we use the projection formula [CR09,
Proposition 1.1.11] to obtain:

Corĉl(Γ(f)
t)(a) = Ĥ∗(prX)(Ĥ∗(prY )(a) ∪ ĉl(Γ(f)t)) by definition,

= Ĥ∗(prX)(Ĥ∗(prY )(a) ∪ Ĥ∗(i1)(1)) functoriality of ĉl (cf. 3.4.4)

= Ĥ∗(prX)(Ĥ∗(i3)(Ĥ
∗(i2)Ĥ

∗(prY )(a)) projection formula,

= Ĥ∗(prX)(Ĥ∗(i3)(Ĥ
∗(f)(a))

= Ĥ∗(f)(a).
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The proof of (ii) is similar. �

3.5. Correspondence action on relative Hodge-Witt cohomology.

For a scheme S over k we need a relative version of the functor (3.4.3) with

values in de Rham-Witt modules d̂RWS over S.
Let f : X −→ S and g : Y −→ S be two schemes over S. Suppose that X,Y are
smooth over k. Since X ×S Y ⊂ X × Y defines a closed subset we can define
the family of supports on X × Y

(3.5.1) P (X ×S Y ) := P (ΦX ,ΦY ) ∩X ×S Y,

this is the family of supports consisting of all closed subsets of X ×S Y , which
are proper over Y . (Recall that ΦX denotes the family of all closed subsets of
X .) If h : Z → S is another S-schemes which is smooth over k, then

{
p13 | p−1

12 (P (X ×S Y )) ∩ p−1
23 (P (Y ×S Z)) is proper,

p13(p
−1
12 (P (X ×S Y )) ∩ p−1

23 (P (Y ×S Z)) ⊂ P (X ×S Z).

By using the fact that CH defines a weak cohomology theory with supports we
obtain a composition (see [CR09, 1.3] for details)
(3.5.2)

CH(X × Y, P (X ×S Y ))×CH(Y ×Z, P (Y ×S Z)) ◦−→ CH(X ×Z, P (X ×S Z)),

(a, b) 7→ b ◦ a := CH∗(p13)(CH
∗(p12)(a) ∪ CH∗(p23)(b)),

with morphisms pij induced by the projections:

p12 : (X × Y × Z, P (X ×S Y )× Z) −→ (X × Y, P (X ×S Y )) ∈ Sm∗,

p23 : (X × Y × Z,X × P (Y ×S Z)) −→ (Y × Z, P (Y ×S Z)) ∈ Sm∗,

p13 : (X × Y × Z, P (X ×S Y ) ∩ P (Y ×S Z)) −→ (X × Z, P (X ×S Z)) ∈ Sm∗.

Definition 3.5.1. We define CS to be the (graded) additive category whose
objects are given by k-morphisms f : X −→ S, where X is a smooth scheme
over k. Sometimes we will by abuse of notation write X instead of f : X → S.
The morphisms are defined by

HomCS (X,Y ) := CH(X × Y, P (X ×S Y )),

and the composition is as in (3.5.2). For f : X −→ S the identity element in
HomCS (X,X) is the diagonal ∆X .

The verification that the composition defines a category is a straightforward
calculation. Notice that if X → S and Y → S are proper, then HomCS (X,Y ) =
CH(X ×S Y ). The full subcategory of CS whose objects are proper S-schemes,
which are smooth over k, has been defined and studied in [CH00, Definition 2.8].
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3.5.2. Let a ∈ HomCS (f : X −→ S, g : Y −→ S) = CH(X ×Y, P (X×S Y )), with

X and Y integral. Suppose that a is of degree i, i.e. is contained in CHdimX+i.
For every open subset U ⊂ S we get by restriction an induced cycle

aU ∈ CH(f−1(U)× g−1(U), P (f−1(U)×U g−1(U))).

By using the functor Corĉl (3.4.3) we obtain a morphism in d̂RWk:

Corĉl(aU ) : Ĥ(f−1(U))(−i) −→ Ĥ(g−1(U)).

Recall that Ĥ(f−1(U)) =
⊕

p,q≥0H
q(f−1(U),WΩpf−1(U)); we denote by

U 7→ F(U) = Ĥ(f−1(U))(−i), U 7→ G(U) := Ĥ(g−1(U)),

the obvious presheaves on S.

Lemma 3.5.3. Let a ∈ HomCS (f : X −→ S, g : Y −→ S) = CH(X × Y, P (X ×S
Y )). The collection (Corĉl(aU ))U⊂S defines a morphism of presheaves

(Corĉl(aU ))U⊂S : F −→ G.
By sheafification we obtain a morphism of sheaves

(3.5.3) (Corĉl(aU ))U⊂S :
⊕

p,q≥0

Rqf∗WΩpX(−i) −→
⊕

p,q≥0

Rqg∗WΩpY .

Proof. Let U, V be two open subsets of S such that V ⊂ U . We denote by
Γ(f−1(V ) −→ f−1(U))t ⊂ f−1(U) × f−1(V ) the transpose of the graph of the
inclusion f−1(V ) −→ f−1(U), and similarly for Γ(g−1(V ) −→ g−1(U))t.
Since the restrictions F(U) −→ F(V ) and G(U) −→ G(V ) are induced by the cor-
respondences Corĉl(Γ(f

−1(V ) −→ f−1(U))t) and Corĉl(Γ(g
−1(V ) −→ g−1(U))t),

respectively, we only need to prove that

Γ(g−1(V ) −→ g−1(U))t ◦ aU = aV ◦ Γ(f−1(V ) −→ f−1(U))t

as morphisms in CorCH , i.e. as cycles in

CH(f−1(U)× g−1(V ), P (f−1(U)×S g−1(V ))).

Via the identification f−1(U)×S g−1(V ) = f−1(V )×S g−1(V ) both sides equal
aV .
Since the sheafification of F is

⊕
p,q≥0 R

qf∗WΩpX(−i), and similarly for G, we
obtain (3.5.3). �

Proposition 3.5.4. The assignment

Ĥ(?/S) : CS −→ d̂RWS ,

Ĥ(X/S) :=
⊕

p,q≥0

Rqf∗WΩpX ,

Ĥ(a/S) := (Corĉl(aU ))U⊂S ,

(cf. Lemma 3.5.3) defines a functor to de Rham-Witt modules over S.

For the proof of the Proposition we will need the following lemma.
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Lemma 3.5.5. Let S = Spec (R). Let X,Y be S-schemes which are smooth over
k. We denote by f∗ : W (R) −→ H0(X,WOX) and g∗ : W (R) −→ H0(Y,WOY )
the maps induced by f : X −→ S and g : Y −→ S, respectively. We denote by
pr1 : X × Y −→ X and pr2 : X × Y −→ Y the projections.
Let Z ⊂ X ×S Y be an irreducible closed subset which is proper over Y ; we set
c = codimX×Y Z. Then

Ĥ∗(pr2)(g
∗(r)) ∪ ĉl([Z]) = Ĥ∗(pr1)(f

∗(r)) ∪ ĉl([Z])
in Hc

Z(X × Y,WΩcX×Y ).

Proof. Choose an open set U ⊂ X × Y such that Z ∩ U is nonempty and
smooth. Since the natural map

Hc
Z(X × Y,WΩcX×Y )→ Hc

Z∩U (U,WΩcU )

is injective (Proposition 3.4.1), it suffices to check the equality on
Hc
Z∩U (U,WΩcU ). We write ı1 : Z ∩U −→ (U,Z ∩U) in Sm∗ and ı2 : Z ∩U −→ U

in Sm∗ for the obvious morphisms. By using the projection formula and

ĉl([Z ∩ U ]) = Ĥ∗(ı1)(1) (3.2.3(1)) we reduce to the statement

Ĥ∗(ı2)Ĥ
∗(pr2)(g

∗(r)) = Ĥ∗(ı2)Ĥ
∗(pr1)(f

∗(r)).

This follows from g ◦ pr2 ◦ ı2 = f ◦ pr1 ◦ ı2. �

Proof of Proposition 3.5.4. For two composable morphisms a, b in CS , we
clearly have

(b ◦ a)U = bU ◦ aU
for every open U ⊂ S. This implies Ĥ(b ◦ a/S) = Ĥ(b/S) ◦ Ĥ(a/S).

Moreover, Corĉl(aU ) is a morphism in d̂RWk for all U , thus Ĥ(a/S) commutes

with F, V, d. Finally, we need to show that Ĥ(a/S) induces a morphism of
W (OS)-modules. For this, we may assume that S = Spec (R) is affine, and it
suffices to show that

Corĉl(a) : Ĥ(X)(−i) −→ Ĥ(Y )

is W (R)-linear. We proceed as in the proof of [CR09, Proposition 3.2.4].
The ring homomorphism f∗ : W (R) −→ H0(X,WOX) and g∗ : W (R) −→
H0(Y,WOY ) induce the W (R)-module structures on Ĥ(X) and Ĥ(Y ) via the
∪-product:

r · a = f∗(r) ∪ a,
for all r ∈ W (R) and a ∈ Ĥ(X); similarly for Ĥ(Y ). We have to prove the

following equality for all r ∈ R, a ∈ Ĥ(X), and irreducible closed subsets
Z ⊂ X ×S Y :

g∗(r)∪ Ĥ∗(pr2)(Ĥ
∗(pr1)(a)∪ ĉl([Z])) = Ĥ∗(pr2)(Ĥ

∗(pr1)(f
∗(r) ∪ a)∪ ĉl([Z])).

For this, it is enough to show that

Ĥ∗(pr2)(g
∗(r)) ∪ ĉl([Z]) = Ĥ∗(pr1)(f

∗(r)) ∪ ĉl([Z])
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in Hc
Z(X × Y,WΩcX×Y ), with c the codimension of Z. Lemma 3.5.5 implies

the claim. �

Proposition 3.5.6. Let X and Y be two S-schemes which are smooth over k.

(i) If Z is the transpose of the graph of a morphism h : X −→ Y over S

then Ĥ([Z]/S) is the pullback morphism defined in 2.2.1.
(ii) If Z is the graph of a proper morphism h : X −→ Y over S then

Ĥ([Z]/S) is the pushforward morphism defined in 2.3.1.

Proof. The statement follows from Proposition 3.4.7. �

3.5.7. Local cup product. Let X be a smooth equidimensional k-scheme and
Z ⊂ X an integral closed subscheme of codimension c. We have (see e.g.
(3.4.1))

HiZ(X,WΩX) = 0, for all i < c.

Hence there is a natural morphism in the derived category of de Rham-Witt
modules on X

(3.5.4) HcZ(WΩX)→ RΓZWΩX [c]

inducing an isomorphism

(3.5.5) Hc
Z(X,WΩX) ∼= H0(X,HcZ(WΩX)).

We may thus define a local version of the cup product with the cycle class of
Z, ĉl(Z) ∈ H0(X,HcZ(WΩX))
(3.5.6)

WΩX → HcZ(WΩX)(c), α 7→ α ∪ ĉl([Z]) := ∆∗((−1)c·degα(α× ĉl([Z]))),
as the composition

WΩX
nat.−−→ pr1∗pr

−1
1 WΩX

(−1)c·deg α(−×ĉl([Z]))−−−−−−−−−−−−−−→ pr1∗HcX×Z(WΩX×X)(c)

∆∗

−−→ pr1∗∆∗HcZ(WΩX)(c) = HcZ(WΩX)(c)

where ∆ : (X,Z) → (X × X,X × Z) in (Sm∗/X × X) is induced by the
diagonal, ∆∗ is the pullback constructed in 2.2.1 and × is the exterior product
from 3.1.4. Notice that by Lemma 3.1.5 α ∪ ĉl(Z) equals (−1)c·degαα · ĉl([Z]).
Lemma 3.5.8. In the above situation the cup product with ĉl([Z]),

Hi(X,WΩX)→ Hi+c
Z (X,WΩX)(c), a 7→ a ∪ ĉl([Z]),

factors via the local cup product, i.e. equals the composition

Hi(X,WΩX)
(3.5.6)−−−−→ Hi(X,HcZ(WΩX)(c))

(3.5.4)−−−−→ Hi+c
Z (X,WΩX)(c).

Proof. Recall that for a ∈ Hi(X,WΩqX) the cup product a ∪ ĉl([Z]) equals

H∗(∆)((−1)(i+q)c(a× ĉl([Z]))),
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where ∆ : (X,Z)→ (X×X,X×Z) in (Sm∗/Spec k) is the diagonal. Therefore
it suffices to show that the exterior product

(3.5.7) × ĉl([Z]) : Hi(X,WΩqX)→ Hi+c
X×Z(X ×X,WΩq+cX×X)

factors via Hi(X,−) applied to

pr−1
1 WΩqX → HcX×Z(WΩX×X), α 7→ (−1)ic(α× ĉl([Z])),

composed with the natural map HcX×Z(WΩX×X) → RΓX×ZWΩX×X [c]. Let
E(W•ΩX) be the Cousin complex of W•ΩX (see 1.5.8, Lemma 1.5.9), then the
complex ΓZE(W•ΩX) equals zero in all degrees < c, hence there is a morphism
of complexes

(3.5.8) HcZ(W•ΩX)→ ΓZE(W•Ω
c
X)[c],

which, after applying lim←− to it, represents (3.5.4). We obtain the following
commutative diagram

pr−1
1 E(W•Ω

q
X)

⊠ ĉl([Z])// E(W•Ω
q
X)⊠HcZ(W•Ω

c
X) // ΓX×ZE(W•Ω

q+c
X×X)[c]

pr−1
1 W•Ω

q
X

OO

⊠ ĉl([Z]) // W•Ω
q
X ⊠HcZ(W•Ω

c
X)

× //

OO

HcX×Z(W•Ω
q+c
X×X),

(3.5.8)

OO

where the top right arrow is the composition

E(W•Ω
q
X)⊠HcZ(W•Ω

c
X)

id⊠(3.5.8)−−−−−−→ E(W•Ω
q
X)⊠ ΓZE(W•Ω

c
X)[c]

≃−→ (E(W•Ω
q
X)⊠ ΓZE(W•Ω

c
X))[c]

(3.1.4)−−−−→ ΓX×ZE(W•Ω
q+c
X×X)[c].

Notice that the isomorphism

(3.5.9) (E ⊠ ΓZE[c]) ∼= (E ⊠ ΓZE)[c]

is given by multiplication with (−1)ic on Ei ⊠ ΓZE
j , for all i, j (see the sign

convention in [Con00, (1.3.6)]). Now we apply Hi(X,−) ◦ lim←− to the above

diagram, use Proposition 3.1.7, (1), take care about the sign from (3.5.9) and
use (3.2.3) and we see that (3.5.7) factors as desired. �

3.5.9. Let h : S → T be a morphism of k-schemes. Then any two objects
X,Y ∈ CS naturally define objects in CT (via h) and X ×S Y ⊂ X ×T Y
is a closed subscheme. This gives a natural map CH(X × Y, P (X ×S Y )) →
CH(X × Y, P (X ×T Y )). In this way h induces a functor

CS → CT .
If h is fixed, we denote the image of a ∈ HomCS (X,Y ) in HomCT (X,Y ) via
this functor again by a. But notice that this functor is in general not faithful.

Proposition 3.5.10. Let h : S → T be a morphism of k-schemes. Let f : X →
S and g : Y → S be two objects in CS and assume that X and Y are integral
and f and g are affine. Let Z ⊂ X ×S Y be a closed integral subscheme which
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is finite and surjective over Y , therefore giving rise to a morphism in d̂RWS

(by Proposition 3.5.4)

Ĥ([Z]/S) : f∗WΩX → g∗WΩY .

Then we have the following equality of morphisms in d̂RWT

Ĥ([Z]/T ) =
⊕

i

Rih∗Ĥ([Z]/S) :
⊕

i

Ri(hf)∗WΩX →
⊕

i

Ri(hg)∗WΩY .

Proof. We consider the following composition in the derived category of abelian
sheaves on S:

f∗WΩX
pr∗1−−→ R(fpr1)∗WΩX×Y(3.5.10)

(3.5.6)−−−−→ R(fpr1)∗HcZ(WΩX×Y )(c)

≃, Z⊂X×SY−−−−−−−−→ R(gpr2)∗HcZ(WΩX×Y )(c)

(3.5.4)−−−−→ g∗Rpr2∗RΓZ(WΩX×Y )[c](c)

(2.3.4)−−−−→ g∗WΩY .

Notice that the third arrow only exists in the category of abelian sheaves, it
is not respecting the WOS-module structure. We claim that the composition
(3.5.10) equals Ĥ([Z]/S) and that ⊕iRih∗(3.5.10) equals Ĥ([Z]/T ). This will
prove the statement. Clearly it suffices to prove the last claimed equality, the
first then follows with h = id.
To this end, let U ⊂ T be an open subset. We denote by XU , YU and ZU
the pullbacks of X , Y and Z over U . Then Corĉl([ZU ]) : H

i(XU ,WΩXU ) →
Hi(YU ,WΩYU )(c) is given by the following composition

Hi(XU ,WΩXU )
pr∗1−−→ Hi(XU , Rpr1∗WΩXU×YU )

≃−→ Hi(YU , Rpr2∗WΩXU×YU )

∪ ĉl([ZU ])−−−−−−→ Hi(YU , Rpr2∗RΓZU
WΩXU×YU [c](c))

(2.3.4)−−−−→ Hi(YU ,WΩYU ).

Since f and g are affine this composition equals by Lemma 3.5.8 the com-
position Hi(h−1(U), (3.5.10)). By definition Ĥ([Z]/T ) is the sheafification
of U 7→ Corĉl([ZU ]) and the sheafification of U 7→ Hi(h−1(U), (3.5.10)) is
Rih∗((3.5.10)). This proves the claim.

�

3.6. Vanishing results. Recall from Proposition 3.5.4 that we have a functor

Ĥ(?/S) : CS −→ d̂RWS ,

Ĥ(X/S) :=
⊕

p,q≥0

Rqf∗WΩpX
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(cf. Definition 3.5.1 for CS). Let f : X −→ S, g : Y −→ S be objects in CS , i.e.
S-schemes which are smooth over k. For simplicity let us assume that X and
Y are connected. For an equidimensional closed subset Z ⊂ X ×S Y which is
proper over Y and has codimension dimX + i in X × Y we obtain a morphism

in d̂RWS :

Ĥ([Z]/S) :


⊕

p,q≥0

Rqf∗WΩpX


 (−i) −→

⊕

p,q≥0

Rqg∗WΩpY .

Lemma 3.6.1. Let Z ⊂ X ×S Y be closed subset which is proper over Y . Let
r ≥ 0 be an integer. Suppose that for every point z ∈ Z the image pr2(z) is a
point of codimension ≥ r in Y . Then there is a natural number N ≥ 1 such
that

N · image(Ĥ([Z]/S)) ⊂
⊕

p≥r,q≥r

Rqg∗WΩpY .

In other words, the projection of image(Ĥ([Z]/S)) to
⊕

p<r or q<r

Rqg∗WΩpY

is killed by N .

Proof. We may assume that Z is irreducible and X,Y are connected. We set
i = dim Y − dimZ = codimX×Y Z − dimX .
By using an alteration we can find a smooth equidimensional scheme D of
dimension dimY − r together with a proper morphism π : D −→ Y such that
π(D) ⊃ pr2(Z). In particular, Z is contained in the image of the map idX×Sπ :
X ×S D −→ X ×S Y .
Let ZD ⊂ X×SD be an irreducible closed subset with dim(ZD) = dim(Z) and
(idX × π)(ZD) = Z. (ZD is automatically proper over D.) We define N to be
the degree of the field extension k(Z) ⊂ k(ZD).
We obtain three maps:

Ĥ(Z/S) : Ĥ(X/S)(−i) −→ Ĥ(Y/S),
Ĥ(ZD/S) : Ĥ(X/S)(−i) −→ Ĥ(D/S)(−r),
Ĥ(Γ(π)/S) : Ĥ(D/S)(−r) −→ Ĥ(Y/S),

(Γ(π) denotes the graph of π). We claim that

N · Ĥ(Z/S) = Ĥ(Γ(π)/S) ◦ Ĥ(ZD/S).
Indeed, by functoriality it is sufficient to prove

N · [Z] = [Γ(π)] ◦ [ZD]
where ◦ is the composition in CS (see (3.5.2)). This is an easy computation in
intersection theory.
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Thus it is sufficient to show that

image(Ĥ([Γ(π)]/S)) ⊂
⊕

p≥r,q≥r

Rqg∗WΩpY .

Proposition 3.5.6 implies that Ĥ([Γ(π)]/S) is the push-forward π∗ defined in
2.3.1. Thus

Ĥ([Γ(π)]/S)(Rq(g ◦ π)∗WΩpD) ⊂ Rq+rg∗WΩp+rY ,

for all (p, q), which completes the proof. �

Lemma 3.6.2. Let Z ⊂ X ×S Y be closed subset, which is proper over Y .
Suppose that X is equidimensional of dimension d. Let r ≥ 0 be an integer.
Suppose that for every point z ∈ Z the image pr1(z) is a point of codimension
≥ r in X. Then there is a natural number N ≥ 1 such that

N ·


 ⊕

p>d−r or q>d−r

Rqf∗WΩpX


 ⊂ ker(Ĥ([Z]/S)).

Proof. The proof is analogous to the proof of Lemma 3.6.1.
We may assume that Z is irreducible and Y connected. We set i = dim Y −
dimZ = codimX×Y Z − dimX .
By using an alteration we can find a smooth equidimensional scheme D of
dimension d − r together with a proper morphism π : D −→ X such that
π(D) ⊃ pr1(Z). In particular, Z is contained in the image of the map π×S idY :
D ×S Y −→ X ×S Y .
Let ZD ⊂ D×S Y be an irreducible closed subset with dim(ZD) = dim(Z) and
(π × idY )(ZD) = Z. (ZD is automatically proper over Y .) We define N to be
the degree of the field extension k(Z) ⊂ k(ZD).
We obtain three maps:

Ĥ(Z/S) : Ĥ(X/S)(−i) −→ Ĥ(Y/S),
Ĥ(ZD/S) : Ĥ(D/S)(−i) −→ Ĥ(Y/S),
Ĥ(Γ(π)t/S) : Ĥ(X/S) −→ Ĥ(D/S),

(Γ(π)t denotes the transpose of the graph of π). We claim that

N · Ĥ(Z/S) = Ĥ(ZD/S) ◦ Ĥ(Γ(π)t/S).
Indeed, by functoriality it is sufficient to prove

N · [Z] = [ZD] ◦ [Γ(π)t]
where ◦ is the composition in CS (see (3.5.2)). This is a straightforward calcu-
lation in intersection theory.
Because dimD = d− r, the map Ĥ(Γ(π)t/S) vanishes on

⊕

p>d−r or q>d−r

Rqf∗WΩpX ,

which proves the statement. �
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Remark 3.6.3. Resolution of singularities implies that Lemma 3.6.1 and 3.6.2
hold for N = 1.

3.7. De Rham-Witt systems and modules modulo torsion.

3.7.1. Let A be an abelian category (only A = dRWX and A = d̂RWX will
be important for us). There are two natural Serre subcategories attached to
torsion objects of A. We define

Ab−tor := {X ∈ ob(A) | ∃n ∈ Z\{0} : n · idX = 0}
as full subcategory of A. We define

Ator := {X ∈ ob(A) | ∃(Xi)i∈I ∈ AIb−tor∃φ :
⊕

i∈I

Xi −→ X epimorphism}

as full subcategory of A. Note that the index set I is not finite in general.
Obviously,

Ab−tor ⊂ Ator.

3.7.2. If A is well-powered, i.e. the family of subobjects of any object is a

set (e.g. A = d̂RWX), then the quotient categories A/Ab−tor and A/Ator
exist and are abelian categories. We refer to [Gab62, Chapitre III] for quotient
categories. The functors

q : A −→ A/Ab−tor, q′ : A −→ A/Ator,
are exact. Moreover, q(X) = 0 if and only if X ∈ Ab−tor; the same statement
holds for q′ and Ator. There is an obvious factorization

A −→ A/Ab−tor −→ A/Ator.
If A is the category of (left) modules over a ring R then

A/Ator ∼= (R ⊗Z Q-modules).

We define

AQ := A/Ab−tor.
For future reference, we record the following special case.

Definition 3.7.3. Let X be a scheme over k. We define

d̂RWX,Q := d̂RWX/d̂RWX,b−tor

as quotient category. We denote by q the projection functor

q : d̂RWX −→ d̂RWX,Q.

We use the same definitions for dRWX .

The main reason for working with the quotient A/Ab−tor instead of A/Ator is
that the Homs are well-behaved.
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Proposition 3.7.4. Let A be a well-powered abelian category. Let X,Y ∈
ob(A). Then

HomAQ
(q(X), q(Y ))

is naturally a Q-module and the map

HomA(X,Y )⊗Z Q −→ HomAQ
(q(X), q(Y ))

is an isomorphism.

Proof. For any n ∈ Z\{0} the morphism q(Y )
·n−→ q(Y ) in AQ is invertible;

therefore
Q ⊂ HomAQ

(q(Y ), q(Y )).

Via the composition

Hom(q(X), q(Y ))×Hom(q(Y ), q(Y )) −→ Hom(q(X), q(Y ))

we see that Hom(q(X), q(Y )) is a Q-module. The Q-module structure induced
by Q ⊂ Hom(q(X), q(X)) and

Hom(q(X), q(X))×Hom(q(X), q(Y )) −→ Hom(q(X), q(Y ))

is the same, because

f ◦ (q(X)
·n−→ q(X)) = (q(Y )

·n−→ q(Y )) ◦ f = nf.

We need to show that the canonical map

HomA(X,Y )⊗Z Q −→ HomAQ
(q(X), q(Y ))

is an isomorphism.
For the injectivity it is sufficient to prove that for all f ∈ HomA(X,Y ) with
q(f) = 0 it follows that n · f = 0 for some n ∈ Z\{0}. Indeed, q(f) = 0 implies
image(f) ∈ Ab−tor; thus there is an integer n 6= 0 with n · idimage(f) = 0. It
follows that nf = 0.
For the surjectivity, let f : X −→ Y be a morphism in A such that
ker(f), coker(f) ∈ Ab−tor; equivalently q(f) is an isomorphism. We need to
show that the inverse map q(f)−1 is contained in the image of HomA(Y,X)⊗Z

Q. Choose an integer n1 6= 0 such that n1 · idker(f) = 0. Then there exists
g1 : im(f) −→ X such that g1 ◦ f = n1 · idX . Let n2 6= 0 be an integer such

that n2 · idcoker(f) = 0. Then Y
·n2−−→ Y factors through im(f) and we obtain

g2 : Y
·n2−−→ im(f)

g1−→ X . Thus the image of g2 ⊗ (n1 · n2)
−1 is the inverse of

q(f). �

Corollary 3.7.5. Let F : A −→ B be a functor between well-powered abelian
categories. There is a natural functor FQ : AQ −→ BQ defined by

FQ(q(X)) = F (X)

for every object X in A, and
FQ : HomAQ

(q(X), q(Y )) −→ HomBQ
(FQq(X), FQq(Y ))

FQ := F ⊗Z idQ

via the isomorphism of Proposition 3.7.4.
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Remark 3.7.6. The statement of Corollary 3.7.5 also follows from

F (Ab−tor) ⊂ Bb−tor
by using the universal property of the quotient category.

Proposition 3.7.7. Let F : A −→ B be a left-exact functor between well-powered
abelian categories. Suppose that the left derived functor

RF : D+(A) −→ D+(B)
exists. Suppose that there exist sufficiently many F -acyclic objects in A. Then

FQ : AQ −→ BQ
is left-exact and the left derived functor

RFQ : D+(AQ) −→ D+(BQ)
exists. Moreover, the diagram

D+(A) RF //

D+(q)

��

D+(B)

D+(q)

��
D+(AQ)

RFQ // D+(BQ)
is commutative.

Proof. Let

(3.7.1) 0 −→ X ′ f ′

−→ Y ′ g′−→ Z ′ −→ 0

be an exact sequence in AQ. By [Gab62, Chapitre III,§1, Corollaire 1] we can
find an exact sequence

(3.7.2) 0 −→ X
f−→ Y

g−→ Z −→ 0

in A and isomorphisms X ′
∼=−→ q(X), Y ′

∼=−→ q(Y ), Z ′
∼=−→ q(Z), such that the

diagram

0 // X ′
f ′

//

∼=

��

Y ′
g′ //

∼=

��

Z ′ //

∼=

��

0

0 // q(X)
f // q(Y )

g // q(Z) // 0

is commutative. Since q is exact and qF = FQq, it follows that FQ is left exact.
We define

PQ := {X ′ ∈ ob(AQ) | ∃X ∈ ob(A) : q(X) ∼= X ′, RiF (X) ∈ Bb−tor for all i > 0}

as a full subcategory of AQ. If X ∈ ob(A) is an F -acyclic object then q(X) ∈
PQ. Therefore every object Y ∈ ob(AQ) admits a monomorphism ı : Y −→ X
with X ∈ ob(PQ).
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Suppose that in the exact sequence (3.7.1) we know that X ′ ∈ ob(PQ). We
claim that the following holds

Y ′ ∈ ob(PQ)⇔ Z ′ ∈ ob(PQ).

As above, we may prove the claim for (3.7.2) instead of (3.7.1). It is easy to
see that RiF (X) ∈ Bb−tor for all i > 0, and we conclude that

qRiF (Y )
∼=−→ qRiF (Z) for all i > 0.

This implies the claim.
In the same way we can see that if (3.7.1) is an exact sequence with objects in
PQ then

0 −→ FQ(X
′) −→ FQ(Y

′) −→ FQ(Z
′) −→ 0

is exact. From [Har66, I, Cor. 5.3, β] it follows that the left derived functor

RFQ : D+(AQ) −→ D+(BQ)
exists. Moreover, if X is F -acyclic then q(X) is FQ acyclic. Therefore the
diagram

D+(A) RF //

D+(q)

��

D+(B)

D+(q)

��
D+(AQ)

RFQ // D+(BQ)
is commutative.

�

Remark 3.7.8. Let f : X → Y be a morphism between k-schemes and Φ a
family of supports on X . The assumptions of the Proposition are satisfied for
the functors

ΓΦ : dRWX → dRWX ,

f∗ : dRWX → dRWY ,

lim←− : dRWX → d̂RWX ,

fΦ : dRWX → dRWY ,

f̂Φ : dRWX → d̂RWY ,

of Proposition 1.5.6.

Notation 3.7.9. In general, we will denote by a subscript Q the image of

an object of d̂RWX (resp. of D+(d̂RWX)) under the localization functor q

(resp. D+(q)). If F : d̂RWX → d̂RWY is a functor we will by abuse of notation
denote FQ again by F and RFQ again by RF . Thus q(Rf∗WΩX) will be
denoted by Rf∗WΩX,Q, etc. (Warning: WΩX,Q is not the same asWΩX⊗ZQ.)

4. Witt-rational singularities

All schemes in this section are quasi-projective over k.
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4.1. The Witt canonical system.

4.1.1. Recall from Definition 1.8.3 the notion of a Witt residual complex. Let
X be a k-scheme with structure map ρX : X → Spec k, then there is a canonical
Witt residual complex KX = ρ∆XW•ω (see Notation 1.9.2). This complex has
the following properties:

(1) If X is smooth of pure dimension d, then there is a quasi-isomorphism
of graded complexes τX : W•ωX → KX(−d)[−d], which is compatible
with localization. (Ekedahl, see Theorem 1.10.3.)

(2) If j : U →֒ X is an open subscheme, then j∗KX
∼= KU (see Proposition

1.8.8).
(3) If f : X → Y is a morphism of k-schemes, then there is a canonical

isomorphism f∆KY
∼= KX induced by cf,ρY , where ρY is the structure

map of Y . This isomorphism is compatible with composition and local-
ization and in case f is an open embedding also with the isomorphism
in (2) (via f∗ ∼= f∆). (See Proposition 1.8.8.)

(4) For a proper k-morphism f : X → Y , there is a trace map Trf :
f∗KX → KY , which is a morphism of complexes of Witt quasi-dualizing
systems (see Definition 1.6.3); it is compatible with composition and
localization (see Lemma 1.8.9).

(5) We have a functor

DX := Hom(−,KX) : C(dRWX,qc)
o → C(dRWX).

It preserves quasi-isomorphisms and hence also induces a functor from
D(dRWX,qc)

o to D(dRWX) (see 1.9.1).
(6) Let f : X → Y be a finite morphism. We denote by

ϑf : f∗DX(−)→ DY (f∗(−))
the composition

f∗Hom(−,KX)
nat.−−→ Hom(f∗(−), f∗KX)

Trf−−→ Hom(−,KY ).

Then ϑf is an isomorphism of functors on C−(dRWX,qc); it is com-
patible with composition and localization. (It is an isomorphism on
each level by duality theory, see 1.7.3, (7); for the other assertions see
Proposition 1.9.4.)

Definition 4.1.2. Let X be a k-scheme of pure dimension d. The Witt canon-
ical system on X is defined to be the (−d)-th cohomology of KX sitting in
degree d and is denoted by W•ωX , i.e.

W•ωX := H−d(KX)(−d).
Since W•OX is a Witt system (i.e. a de Rham-Witt system with zero dif-
ferential), W•ωX inherits the structure of a Witt system from the canonical
isomorphism KX

∼= Hom(W•OX ,KX) and 4.1.1, (5). We denote the limit
with respect to π by

WωX := lim←−
π

W•ωX .
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Remark 4.1.3. Notice that in case X is smooth the above definition of W•ωX
coincides (up to canonical isomorphism) with our earlier definition of W•ωX =
W•Ω

d
X , by 4.1.1, (1). But observe, in Example 1.6.4, (2) we viewed it as a

Witt dualizing system, whereas now as a Witt system. This will not cause any
confusion.

Proposition 4.1.4. Let X be a k-scheme of pure dimension d. Then W•ωX
has the following properties:

(1) The sheaf W1ωX equals the usual canonical sheaf on X if X is normal.
(2) The complex KX is concentrated in degree [−d, 0], hence there is a

natural morphism of complexes

W•ωX → KX(−d)[−d].
This morphism is a quasi-isomorphism if X is Cohen-Macaulay (CM).

(3) For each n the sheaf WnωX is a coherent sheaf on WnX, which satisfies
Serre’s condition S2.

(4) Let j : U →֒ X be an open subscheme which contains all 1-
codimensional points of X. Then we have an isomorphism of Witt
systems

W•ωX
≃,nat.−−−−→ j∗j

∗W•ωX = j∗W•ωU .

If X is normal, U can be chosen to be smooth, in which case we have
an isomorphism

j∗W•ωU ≃ j∗W•Ω
d
U ,

which is induced by 4.1.1, (1) and (2). In particular the transition
maps WnωX →Wn−1ωX are surjective if X is normal.

(5) Assume X is normal. Then there is a natural isomorphism for all n

Hom(WnωX ,WnωX) ∼= H−d(DX,n(WnωX)(−d)),
where DX,n(−) = Hom(−,KX,n). Therefore Hom(W•ωX ,W•ωX) is
naturally equipped with the structure of a Witt system and multiplica-
tion induces an isomorphism of Witt systems

W•OX ≃−→ Hom(W•ωX ,W•ωX).

(6) Let f : X → Y be a proper morphism between k-schemes, which are both
of pure dimension d. Then we define the pushforward f∗ : f∗W•ωX →
W•ωY as the composition in dRWY

f∗ : f∗W•ωX = f∗H
−d(KX)(−d) = H−d(f∗KX)(−d)

Trf
−−→ H−d(KY )(−d) = W•ωY

This morphism is compatible with composition and localization and in
case X and Y are smooth coincides with the pushforward defined in
Definition 2.3.1 (for S = Y .)

(7) The sequence of WnOX-modules

0→ in∗Wn−1ωX
p
−→ WnωX

Fn−1

−−−→ i∗F
n−1
X∗ ωX

is exact for any n ≥ 1. Furthermore, if X is CM, then the map on the
right is also surjective. (Here we write ωX :=W1ωX .)
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Proof. (1) is clear by construction. (In the derived category of coherent sheaves
KX,1 is isomorphic to ρ!Xk, where ρX : X → Spec k is the structure map.) It
suffices to prove the other statements on a fixed finite level n.
(2). The codimension function associated to KX,n (see 1.7.1) is given by

dKX,n(x) = −trdeg(k(x)/k) = dimOX,x − d
(see [Con00, (3.2.4)]). This already gives the first statement of (2). For the
second statement the same argument as in [Eke84, I, 2.] works (there for
smooth schemes). For the convenience of the reader we recall the argument.
Let X be CM. We have to show that Hi(KX,n) = 0 for all i 6= −d. For n = 1
this follows from (1). We have an exact sequence of coherent WnOX -modules

0→ i∗F
n−1
X∗ OX

V n−1

−−−→WnOX π−→ in∗Wn−1OX ,
where FX denotes the absolute Frobenius on X and i, in denote the closed
embeddings X →֒ WnX , Wn−1X →֒ WnX . Applying RHomWnOX (−,KX,n)

to it and using duality for the finite morphisms iFn−1
X and in (cf. 4.1.1, (6))

we obtain a triangle in D(WnOX)

(4.1.1) in∗KX,n−1 → KX,n → (iFn−1
X )∗KX,1 → in∗KX,n−1[1].

Therefore the statement follows by induction.
(3). SinceKX,n is a residual complex, it has coherent cohomology by definition.
To prove the S2 property of WnωX it suffices to show

(4.1.2)

{
Ext0WnOX,x

(k(x),WnωX,x) = 0, for all x ∈ X(1)

ExtiWnOX,x
(k(x),WnωX,x) = 0, for i = 0, 1 and all x ∈ X(2),

where X(c) denotes the points of codimension c. By the formula for the codi-
mension function associated to KX,n above and [Har66, V, §7], we have

(4.1.3) ExtiWnOX,x
(k(x),KX,n) =

{
0, if x 6∈ X(i+d),

k(x), if x ∈ X(i+d).

Thus the vanishing (4.1.2) can easily be deduced from the spectral sequence

Ei,j2 = Exti(k(x), Hj(KX,n))⇒ Exti+j(k(x),KX,n)

and the vanishing Ei,j2 = 0 if i < 0 or j 6∈ [−d, 0] (by (2)).
(4). The first morphism is bijective by (3) and [SGA2, Exp. III, Cor. 3.5].
(5). The first isomorphism is obtained by considering the spectral sequence

Exti(WnωX , H
j(KX,n))⇒ Exti+j(WnωX ,KX,n) = Hi+j(DX,n(WnωX))

and using that Hj(KX,n) 6= 0 only for j ∈ [−d, 0], by (2). The second isomor-

phism can easily be deduced from (4), the isomorphism WnOX ≃−→ j∗WnOU
(WnOX is S2) and the corresponding statement for smooth schemes, see 1.10.1.
(6) The equality f∗H

−d(KX) = H−d(f∗KX) follows from the spectral sequence
Rif∗H

j(KX) ⇒ Ri+jf∗KX , (2) above and from Rf∗KX = f∗KX . The other
statements follow from 4.1.1, (4).
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(7) Recall that F and p on W•ωX are defined by the isomorphism KX
∼=

Hom(W•OX ,KX) and the formulas in 1.6.6. Thus the exact sequence in (7) is
the result of applying H−d to the triangle (4.1.1) above and using the isomor-
phisms p ◦ ǫi and V ◦ ǫσi from 1.6.5. �

Definition 4.1.5. Let f : X → Y be a finite and surjective k-morphism
between integral normal schemes both of dimension d.

(1) We define a pullback morphism in dRWY

f∗ :W•ωY → f∗W•ωX

as follows: Choose open and smooth subschemes jX : U →֒ X and
jY : V →֒ Y , which contain all 1-codimensional points of X and Y
respectively and such that f restricts to a morphism f ′ : U → V . We
define f∗ as the composition

W•ωY
≃,4.1.4,(5)−−−−−−−−→ jY ∗W•Ω

d
V

f ′∗

−−→ jY ∗f
′
∗W•Ω

d
U

≃,4.1.3−−−−−→ f∗jX∗W•ωU

≃,4.1.4,(5)−−−−−−−−→ f∗W•ωX .

It is straightforward to check, that this morphism is independent of the
choice of U . We also write f∗ for the sum of the natural pullback on
W•O with the just defined pullback, i.e.

f∗ :W•OY ⊕W•ωY → f∗(W•OX ⊕W•ωX).

Taking the limit we obtain a pullback in d̂RWY

f∗ :WOY ⊕WωY → f∗(WOX ⊕WωX).

(2) We define a pushforward in dRWY

f∗ : f∗W•OX →W•OY
as the composition

f∗W•OX
≃,4.1.4,(5)−−−−−−−−→ f∗Hom(W•ωX ,W•ωX)

≃,4.1.4,(5)−−−−−−−−→ H−d(f∗DX(W•ωX)(−d))
≃, ϑf−−−→ H−d(DY (f∗W•ωX)(−d))
DY (f∗), (1)−−−−−−−→ H−d(DY (W•ωY )(−d))
≃,4.1.4,(5)−−−−−−−→ Hom(W•ωY ,W•ωY )

≃,4.1.4,(5)−−−−−−−−→ W•OY .
We also write f∗ for the sum of the pushforward on f∗W•ωX defined
in Proposition 4.1.4, (6) with the just defined pushforward. Taking the

limit we obtain a pushforward in d̂RWY

f∗ : f∗(WOX ⊕WωX)→WOY ⊕WωY .
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Lemma 4.1.6. Let f : X → Y be a finite and surjective k-morphism between
normal integral schemes of dimension d.

(1) Let jY : V →֒ Y be an open smooth subscheme, which contains all 1-
codimensional points of Y and such that U := f−1(V ) ⊂ X is smooth
and contains all 1-codimensional points of X (e.g. V = Y \ f(Xsing)).
Denote by jX : U →֒ X and f ′ : U = f−1(V )→ V the pullbacks. Then

j∗X ◦ f∗ = f ′∗ ◦ j∗Y , j∗Y ◦ f∗ = f ′
∗ ◦ j∗X ,

where f ′∗ is the pullback defined in Definition 2.2.1 and f ′
∗ is the push-

forward defined in Definition 2.3.1 (with S = V ).
(2) The composition f∗ ◦ f∗ equals the multiplication with the degree of f .

Proof. The first part of (1) follows from the fact that all the maps in the
definitions of f∗ and f

∗ are compatible with localization; the second part follows
immediately from the definitions. For (2) we have to check that f∗◦f∗−deg f =
0 in Hom(W•OY ,W•OY ) = W•OY and in Hom(W•ωY ,W•ωY ) = W•OY . It
suffices to check this on some open V ⊂ Y and hence the assertion follows from
(1) and Proposition 2.3.4 (Gros). �

4.2. Topological finite quotients.

4.2.1. Universal homeomorphisms. Recall that a morphism of k-schemes u :
X → Y is a universal homeomorphism if for any Y ′ → Y the base change
morphism u′ : X ×Y Y ′ → Y ′ is a homeomorphism. By [EGAIV(4), Cor.
(18.12.11)] this is equivalent to say that u is finite, surjective and radical. In
caseX and Y are integral and Y is normal it follows from [EGAI, Prop. (3.5.8)],
that u is a universal homeomorphism if and only if u is finite, surjective and
purely inseparable (i.e. k(Y ) ⊂ k(X) is purely inseparable).

4.2.2. Relative Frobenius. We denote by σ : Spec k → Spec k the Frobenius
(we will not use the notation from section 1.2 any longer); for a k-scheme X
we denote by X(n) the pullback of X along σn : Spec k → Spec k and by σnX :

X(n) → X the projection. Notice that since k is perfect, σnX is an isomorphism
of Fp-schemes. The n-th relative Frobenius of X over k is by definition the

unique k-morphism FnX/k : X → X(n) which satisfies σnX ◦ FnX/k = FnX , where

FX : X → X is the absolute Frobenius morphism of X . Clearly FnX/k is a

universal homeomorphism.

Lemma 4.2.3. Let u : X → Y be a morphism between integral k-schemes, which
is a universal homeomorphism and assume that Y is normal. Then deg u = pn

for some natural number n and there exits a universal homeomorphism v : Y →
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X(n) such that the following diagram commutes

X
Fn

X/k //

u

��

X(n),

u×idSpec k

��
Y

v
=={{{{{{{{

Fn
Y/k

// Y (n).

Proof. We may assume X = SpecB and Y = SpecA. Then by 4.2.1 u∗ : A →֒
B is an inclusion of k-algebras which makes k(A) ⊂ k(B) a purely inseparable
field extension of degree pn. Fn∗X/k is given by B ⊗k,σn k → B, b ⊗ λ 7→ bp

n

λ.

But bp
n ∈ k(A) ∩ B = A by the normality of Y . Therefore Fn∗X/k factors via

u∗ : A →֒ B. We obtain a homomorphism of k-algebras B ⊗k,σn k → A, which

gives rise to a k-morphism v : Y → X(n). It follows that v is a universal
homeomorphism, which makes the diagram in the statement commutative. �

Lemma 4.2.4. Let u : X → Y be a universal homeomorphism between two
integral and normal schemes. Let u∗ and u∗ be the pushforward and the pullback
from Definition 4.1.5. Then

u∗u
∗ = deg u · id(WOY ⊕WωY ), u∗u∗ = deg u · idu∗(WOX⊕WωX ).

Proof. The equality on the left is a particular case of Lemma 4.1.6, (2). To
prove the equality on the right we may assume that X and Y are smooth (by
Proposition 4.1.4 and the corresponding statement for WO). Then by Lemma

4.1.6, (1) and Proposition 3.5.6, we have u∗ = Ĥ([Γ]/Y ) and u∗ = Ĥ([Γt]/Y ),
where Γ ⊂ X × Y is the graph of u and Γt its transpose. Therefore we are
reduced to show

(4.2.1) [Γt] ◦ [Γ] = deg u · [∆X ] in CH(X ×X,P (X ×Y X)),

where ∆X ⊂ X×X is the diagonal. But since u is flat (being a finite and surjec-
tive morphism between integral and smooth schemes) and a homeomorphism,
we have

[Γt] ◦ [Γ] = [X ×Y X ] = dimk(X)(k(X)⊗k(Y ) k(X)) · [∆X ] = deg u · [∆X ].

�

Definition 4.2.5. Let X be a normal and equidimensional scheme. We say
that X is a finite quotient if there exists a finite and surjective morphism from
a smooth scheme Y → X . We say that X is a tame finite quotient if this
morphism can be chosen to have its degree (as a locally constant function on
Y ) not divisible by p. We say that X is a topological finite quotient if there
exists a universal homeomorphism u : X → X ′ to a finite quotient X ′.

Remark 4.2.6. If X ′ is a finite quotient, so is X ′(n). It follows from Lemma
4.2.3 that if X is normal and equidimensional and if there exists a universal
homeomorphism u : X ′ → X with a source a finite quotient X ′, then X is a
topological finite quotient.
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Topological finite quotients are good to handle because of the following Propo-
sition.

Proposition 4.2.7. Consider morphisms

Z

u

��
X

f // Y,

where X is smooth and integral, Y , Z are normal and integral, f is finite and
surjective and u is a universal homeomorphism. Let a : Y → S be a morphism
to some k-scheme S. Set

β := pr1,3∗[X ×Y Z ×Y X ] in Hom0
CS
(X,X) = CHdimX(X ×X,P (X ×S X)),

where pr1,3 : X ×Z ×X → X ×X is the projection (see 3.5 for the notation).
Then for all i the composition

f∗ ◦ u∗ : Ri(au)∗(WOZ ⊕WωZ)Q → Ri(af)∗(WOX ⊕WωX)Q

induces an isomorphism in d̂RWS

Ri(au)∗(WOZ ⊕WωZ)Q ∼= Ĥ(β/S)(Ri(af)∗(WOX ⊕WωX)Q),

where Ĥ(β/S) is the morphism from Proposition 3.5.4 (see Notation 3.7.9 for
the meaning of the subscript Q).

Proof. First of all notice that both f and u are finite and universally equidimen-
sional. It follows that β defines an element in CHdimX(X ×X,P (X ×Y X)), a

fortiori in CHdimX(X×X,P (X×SX)). In particular, Proposition 3.5.4 yields
a morphism

Ĥ(β/Y ) : f∗(WOX ⊕WωX)→ f∗(WOX ⊕WωX).

We claim

(4.2.2) Ĥ(β/Y ) = f∗u∗u
∗f∗,

with f∗, u∗, u
∗, f∗ as in Definition 4.1.5. By Proposition 4.1.4, (4) and Lemma

4.1.6, (1) and since Ĥ(β/Y ) is compatible with localization in Y (just by con-
struction), we may assume, that X , Y and Z are smooth. Then

β = [Γtf ] ◦ [Γu] ◦ [Γtu] ◦ [Γf ],
where we denote by Γtf ⊂ Y ×X the transpose of the graph of f , etc. Therefore

claim (4.2.2) follows from Proposition 3.5.6. Thus Proposition 3.5.10 implies
that

Ĥ(β/S)(Ri(af)∗(WOX ⊕WωX)

= Image(f∗u∗u
∗f∗ : Ri(af)∗(WOX ⊕WωX)→ Ri(af)∗(WOX ⊕WωX)).

Thus the assertion follows from (u∗f∗)(f
∗u∗) = deg f deg u · id (by Lemma

4.1.6, (a) and Lemma 4.2.4). �
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4.3. Quasi-resolutions and relative Hodge-Witt cohomology.

Definition 4.3.1. We say that a morphism between two integral k-schemes
f : X → Y is a quasi-resolution if the following conditions are satisfied:

(1) X is a topological finite quotient,
(2) f is projective, surjective, and generically finite,
(3) the extension of the function fields k(Y ) ⊂ k(X) is purely inseparable.

Condition (2) and (3) are for example satisfied if f is projective and birational.
Let X,Y be integral and normal. In general, every projective, surjective and
generically finite morphism f : X −→ Y can be factored through the normaliza-
tion Y ′ of Y in the function field k(X) of X :

f : X
f ′

−→ Y ′ u−→ Y.

The morphism f ′ is birational and u is finite. If k(Y ) ⊂ k(X) is purely insep-
arable then u is a universal homeomorphism.

Remark 4.3.2. Let X be an integral k-scheme. It follows from the proof of
[dJ97, Cor. 5.15] (cf. also [dJ96, Cor. 7.4]), that there exists a finite and
surjective morphism from a normal integral scheme u : X ′ → X , such that
k(X) ⊂ k(X ′) is purely inseparable and a smooth, integral and quasi-projective
schemeX ′′, with a finite groupG acting on it such that there is a projective and
birational morphism f : X ′′/G→ X ′. In particular X has a quasi-resolution

X ′′/G
f−→ X ′ u−→ X.

Theorem 4.3.3. Let Y be a topological finite quotient and f : X → Y a quasi-
resolution. Then the pullback f∗ and the pushforward (see Proposition 4.1.4,

(6)) induce isomorphisms in Db(d̂RWY,Q)

f∗ :WOY,Q ≃−→ Rf∗WOX,Q, Rf∗WωX,Q ∼= f∗WωX,Q[0]
f∗,≃−−−→WωY,Q.

Proof. We can assume that X and Y are integral schemes of dimension d and
(by Lemma 4.2.4) also that they are finite quotients. Thus there exist smooth
integral schemes X ′ and Y ′ together with finite and surjective morphisms a :
X ′ → X and b : Y ′ → Y . Let

X
π−→ X1

u−→ Y,

be a factorization of f , with π projective and birational, X1 normal and u a
universal homeomorphism. We can find a non-empty smooth open subscheme
U0 ⊂ Y , such that U1 := u−1(U0), U2 := π−1(U1), U

′
0 := b−1(U0) and U ′

2 :=
a−1(U2) are smooth and π|U2 is an isomorphism. Notice that a|U ′

2, b|U ′
0 and

u|U1 are then automatically flat. Set Z ′
0 := Y ′ \ U ′

0 and Z ′
2 := X ′ \ U ′

2. We
define

α := [X ′ ×X X ′] ∈ CHd(X ′ ×X ′, P (X ′ ×X X ′)),

β := [Y ′ ×Y Y ′] ∈ CHd(Y ′ × Y ′, P (Y ′ ×Y Y ′)),

γ := [X ′ ×Y Y ′] ∈ CHd(X ′ × Y ′, P (X ′ ×Y Y ′)).
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(See 3.5 for the notation.) These cycles are well-defined since a : X ′ → X and
b : Y ′ → Y are universally equidimensional. We claim

(4.3.1) deg b · (γ ◦ α)− deg a · (β ◦ γ) ∈ image(CH(Z ′
2 ×Y Z ′

0)),

(4.3.2) deg a · (γt ◦ β)− deg b · (α ◦ γt) ∈ image(CH(Z ′
0 ×Y Z ′

2)),

(4.3.3) (γt ◦ γ ◦ α)− (deg a deg b deg u) · α ∈ image(CH(Z ′
2 ×Y Z ′

2)),

(4.3.4) (γ ◦ γt ◦ β)− (deg a deg b deg u) · β ∈ image(CH(Z ′
0 ×Y Z ′

0)).

Observe that (U ′
2 ×Y Y ′) ∪ (X ′ ×Y U ′

0) = U ′
2 ×U0 U

′
0 etc. Thus using the

localization sequence we see that it suffices to prove

deg b · (γ|U ′
2×U

′
0
◦ α|U ′

2×U
′
2
) = deg a · (β|U ′

0×U
′
0
◦ γ|U ′

2×U
′
0
) ∈ CH(U ′

2 ×U0 U
′
0),

deg a · (γt|U ′
0×U

′
2
◦ β|U ′

0×U
′
0
) = deg b · (α|U ′

2×U
′
2
◦ γt|U ′

0×U
′
2
) ∈ CH(U ′

0 ×U0 U
′
2),

(γt|U ′
0×U

′
2
◦ γ|U ′

2×U
′
0
◦ α|U ′

2×U
′
2
) = (deg a deg b deg u) · α|U ′

2×U
′
2
∈ CH(U ′

2 ×U0 U
′
2),

(γ|U ′
2×U

′
0
◦ γt|U ′

0×U
′
2
◦ β|U ′

0×U
′
0
) = (deg a deg b deg u) · β|U ′

0×U
′
0
∈ CH(U ′

0 ×U0 U
′
0).

Obviously

α|U ′
2×U

′
2
= [Γta|U ′

2
] ◦ [Γa|U ′

2
],

β|U ′
0×U

′
0
= [Γtb|U ′

0
] ◦ [Γb|U ′

0
],

γ|U ′
2×U

′
0
= [Γtb|U ′

0
] ◦ [Γu|U1

] ◦ [Γπ|U2
] ◦ [Γa|U ′

2
].

Thus the claim follows from

[Γu|U1
] ◦ [Γtu|U1

] = deg u · [∆U0 ], [Γtu|U1
] ◦ [Γu|U1

] = deg u · [∆U1 ];

see (4.2.1) for the equality on the right.
In view of the vanishing Lemmas 3.6.1 and 3.6.2, we see that (4.3.1) implies,

that Ĥ(γ/Y ) induces a morphism

Ĥ(α/Y )

(
⊕

i

Ri(fa)∗(WOX′ ⊕WωX′)Q

)
→ Ĥ(β/Y ) (b∗(WOY ′ ⊕WωY ′)Q)

and (4.3.2) implies that Ĥ(γt/Y ) induces a morphism

Ĥ(β/Y ) (b∗(WOY ′ ⊕WωY ′)Q) → Ĥ(α/Y )

(

⊕

i

Ri(fa)∗(WOX′ ⊕WωX′)Q

)

.

By (4.3.3) and (4.3.4) these morphisms are inverse to each other, up to mul-
tiplication with (deg a deg b deg u). By Proposition 4.2.7 a∗ induces for all i an

isomorphismRif∗(WOX⊕WωX)Q → Ĥ(α/Y )(Ri(fa)∗(WOX′⊕WωX′)Q) and

b∗ induces an isomorphism (WOY ⊕WωY )Q → Ĥ(β/Y )(b∗(WOY ′⊕WωY ′)Q).
This gives Rif∗WOX,Q = 0 = Rif∗WωX,Q, for all i ≥ 1. It also gives iso-
morphisms in cohomological degree 0, but it is not immediately clear that
these coincide with pullback and pushforward. But since X1 is normal and
π : X → X1 is birational, the pullback π∗ : WOX1 → π∗WOX clearly is an
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isomorphism and hence so is f∗ : WOY,Q → f∗WOX,Q, by Lemma 4.2.4. Now
the statement follows from the next lemma. �

Lemma 4.3.4. Let f : X → Y be a proper morphism between k-schemes of the

same pure dimension d and assume that the pullback morphism f∗ :WOY,Q ≃−→
Rf∗WOX,Q is an isomorphism in D(d̂RWY,Q). Then the pushforward (see
Proposition 4.1.4, (6))

f∗ : f∗WωX,Q
≃−→WωY,Q

is an isomorphism. More precisely, there exists a natural number N ≥ 1 such
that kernel and cokernel of f∗WnωX →WnωY are N -torsion for all n ≥ 1.

Proof. By assumption we find a natural number N ≥ 1 such that Rif∗WOX ,
i ≥ 1, as well as kernel and cokernel of f∗ :WOY → f∗WOX are all N -torsion.
It follows from the short exact sequence

0→WO V n

−−→ WO →WnO → 0

that there exists a natural numberM ≥ 1 (e.g. M = N2) such thatRif∗W•OX ,
i ≥ 1, as well as kernel and cokernel of f∗ : W•OY → f∗W•OX are M -torison.
Let Cn be the cone of f∗ : WnOY → Rf∗WnOX in Db

qc(WnOY ). (Here we
write f∗ instead of Wn(f)∗ etc.) Then the above can be rephrased by saying,
that Hi(Cn) is M -torsion for all i ∈ Z and all n ≥ 1. Now applying the
dualizing functor DWnY to the triangle in Db

qc(WnOY )
WnOY → Rf∗WnOX → Cn →WnOY [1]

and using the duality isomorphism DWnYRf∗
∼= Rf∗DWnX yields a triangle in

Db
qc(WnOY )

DWnY (Cn)→ Rf∗KX,n → KY,n → DWnY (Cn[−1]).
Taking H−d, we obtain an exact sequence

Ext−d(Cn,KY,n)→ R−df∗KX,n →WnωY → Ext−d(Cn[−1],KY,n).

As in Proposition 4.1.4, (6) the morphism in the middle is just the pushforward
f∗ : f∗WnωX → WnωY . Consider the spectral sequence

Ei,j2 = Exti(H−j(Cn),KY,n)⇒ Exti+j(Cn,KY,n).

The filtration on Exti+j(Cn,KY,n) induced by this spectral sequence is finite

and the E2-terms are M -torsion. Thus the groups Ext−d(Cn[−1],KY,n) and

Ext−d(Cn,KY,n) are M r-torsion, for some r >> 0. In fact r only depends
on the length of the filtration of the above spectral sequence and since this
length is bounded for all n ≥ 1, we may choose r to work for all n. It follows
that kernel and cokernel of f∗ : f∗WnωX → WnωY are M r-torsion; hence
kernel and cokernel of the limit f∗ : f∗WωX → WωY as well. This yields the
statement. �
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4.4. Rational and Witt-rational singularities. A special class of singu-
larities which appear naturally in higher dimensional geometry are the rational
singularities. Essentially, rational singularities do not affect the cohomological
properties of the structure sheaf.

Definition 4.4.1 ([KKMS73, p. 50]). Let S be a normal variety and f : X −→ S
a resolution of singularities (i.e. f is projective and birational andX is smooth).
We say that f is a rational resolution if

(1) Rif∗OX = 0, for i > 0,
(2) Rif∗ωX = 0 for i > 0 (this always holds by Grauert-Riemenschneider if

the characteristic of the ground field is zero (see e.g. [KM98, Cor.2.68]),
but is needed in positive characteristic).

We say that Y has rational singularities if a rational resolution exists.

An immediate problem with the definition of rational singularities in positive
characteristic is that the existence of a resolution of singularities is assumed.
For example, tame quotient singularities are rational singularities provided that
a resolution of singularities exists [CR09, Theorem 2].
If an integral normal scheme Y over a field has one rational resolution, then all
resolutions are rational, i.e. rational singularities are an intrinsic property of
Y . (In characteristic zero, this was proved by Hironaka, see [CR09, Theorem
1] for the characteristic p case.)
In characteristic zero, Kovács [Kov00] observed that one can replace condition
(1) in Definition 4.4.1 by the following condition: there is an alteration f :
X −→ S such that the natural morphism

OS −→ Rf∗OX
admits a splitting in the derived category of coherent sheaf on S. The main tool
in the proof is Grauert-Riemenschneider vanishing, and this characterization
does not hold in positive characteristic.
In order to study congruence formulas for the number of points of a variety over
a finite field, Blickle and Esnault [BE08] introduced the notion of Witt-rational
singularities.

Definition 4.4.2 ([BE08, Def. 2.3]). Let S be an integral k-scheme and f :
X −→ S a generically étale alteration with X a smooth k-scheme. We say that
S has BE-Witt-rational singularities if the natural morphism

WOS ⊗Z Q −→ Rf∗WOX ⊗Z Q

admits a splitting in the derived category of sheaves of abelian groups on X .

We call the singularities defined in [BE08] BE-Witt-rational singularities, rather
than Witt-rational singularities, because we will redefine Witt-rational singu-
larities in 4.4.4. We remark:

Proposition 4.4.3. The notion of BE-Witt-rational singularities is indepen-
dent of the chosen generically étale alteration. More precisely, if an in-
tegral scheme S has BE-Witt-rational singularities, then for any alteration
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(not necessarily generically étale) g : Y → S, with Y smooth, the pullback
g∗ :WOS ⊗Z Q→ Rg∗WOY ⊗Z Q admits a splitting in the derived category of
sheaves of abelian groups on X.

Proof. Obviously it suffices to prove that if f : X → Y is an alteration between
smooth schemes, then the composition

WOY f∗

−→ Rf∗WOX f∗−→WOY
is multiplication with [k(X) : k(Y )], where f∗ is the pushforward from Defini-
tion 2.3.1. It suffices to check this on some non-empty open subscheme U of
Y such that f |f−1(U) is finite. Thus the statement follows from Proposition
2.3.4 (Gros). �

Definition 4.4.4. We say that an integral k-scheme S has Witt-rational singu-
larities if for any quasi-resolution (see Definition 4.3.1) f : X → S the following
conditions are satisfied:

(1) f∗ :WOS,Q ≃−→ f∗WOX,Q is an isomorphism.
(2) Rif∗WOX,Q = 0, for all i ≥ 1.
(3) Rif∗WωX,Q = 0, for all i ≥ 1.

In case only the first two properties are satisfied we say S has WO-rational
singularities. (See Notation 3.7.9 for the meaning of the subscript Q.)

Remark 4.4.5. Notice that if S is normal, then condition (1) above is automat-
ically satisfied. Indeed, each quasi-resolution f : X → S can be factored as

X
π−→ X1

u−→ S with X1 normal, π projective and birational and u an universal
homeomorphism; thus condition (1) is satisfied by Lemma 4.2.4.

Proposition 4.4.6. Let S be an integral k-scheme. Then the following state-
ments are equivalent:

(1) S has Witt-rational singularities.
(2) There exists a quasi-resolution f : X → S satisfying (1), (2), (3) of

Definition 4.4.4.
(3) There exists a quasi-resolution f : X → S, such that there are isomor-

phisms in Db(d̂RWS,Q)
(4.4.1)

f∗ :WOS,Q ≃−→ Rf∗WOX,Q, Rf∗WωX,Q ∼= f∗WωX,Q[0]
f∗,≃−−−→WωS,Q.

(4) For all quasi-resolutions f : X → S the morphisms (4.4.1) are isomor-
phisms.

Proof. Clearly (1) ⇒ (2) and (4) ⇒ (1). (2) ⇒ (3) follows from Lemma
4.3.4. For (3) ⇒ (4) notice that by de Jong (see Remark 4.3.2) any two quasi-
resolutions of S can be dominated by a third one. Thus the statement follows
from Theorem 4.3.3. �

There is an obvious analog of this proposition for WO-rational singularities.
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Corollary 4.4.7. Topological finite quotients over k have Witt-rational sin-
gularities.

Remark 4.4.8. In characteristic 0 finite quotients always have rational singu-
larities (see e.g. [KM98, Prop. 5.13]). In characteristic p > 0 this is not the
case. Indeed let G = Z/pnZ act linearly on a finite dimensional k-vector space,
where k is assumed to be algebraically closed. Then it is shown in [ES80],
that A(V )/G is not CM, provided that dimk V > dimk V

G + 2. In particu-
lar A(V )/G cannot have rational singularities in the sense of Definition 4.4.1,
which are always CM. This also shows that Witt-rational singularities do no
need to be CM.

Proposition 4.4.9. Let u : Y −→ Y ′ be a universal homeomorphism between
normal schemes. Then Y has Witt-rational singularities if and only if Y ′ has
Witt-rational singularities.

Proof. If f : X −→ Y is a quasi-resolution then u ◦ f is a quasi-resolution. For
all i > 0 we get

Ri(u ◦ f)∗WOX,Q = u∗R
if∗WOX,Q, Ri(u ◦ f)∗WωX,Q = u∗R

if∗WωX,Q,

and thus

Ri(u ◦ f)∗WOX,Q = 0⇔ Rif∗WOX,Q = 0,

Ri(u ◦ f)∗WωX,Q = 0⇔ Rif∗WωX,Q = 0.

�

Definition 4.4.10. Let S be a k-scheme and X and Y two integral S-schemes.
We say that X and Y are quasi-birational over S if there exists a commutative
diagram

Z
πX

~~||
||

πY

  A
AA

A

X

  @
@@

@ Y

��~~
~~

S,

with πX and πY quasi-resolutions (see Definition 4.3.1). We say that the triple
(Z, πX , πY ) (or just Z if we do not need to specify πX and πY ) is a quasi-
birational correspondence between X and Y .

Since quasi-resolutions always exist (see Remark 4.3.2), two integral projective
S-schemes X and Y are quasi-birational over S if and only if the generic points
of X and Y map to the same point η in S and there exists a field L with a
homomorphism OS,η → L and inclusions of OS,η-algebras k(X) →֒ L, k(Y ) →֒
L, which make L a finite and purely inseparable field extension of k(X) and
k(Y ). In particular this is the case if k(X) and k(Y ) are isomorphic as OS,η-
algebras.
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Corollary 4.4.11. Let S be a k-scheme and f : X → S and g : Y → S
two S-schemes, which are integral, have Witt-rational singularities and are
quasi-birational over S to each other. Then the choice of a quasi-birational

correspondence between X and Y induces isomorphisms in Db(d̂RWS)

(4.4.2) Rf∗WOX,Q ∼= Rg∗WOY,Q, Rf∗WωX,Q ∼= Rg∗WωY,Q.

Moreover, two quasi-birational correspondences Z and Z ′ induce the same iso-
morphisms if there exists a field L with a homomorphism OS,η → L (η ∈ S
being the common image of the generic points of X and Y ) and inclusions of
OS,η-algebras k(Z) →֒ L, k(Z ′) →֒ L, which make L a finite and purely in-
separable field extension of k(Z) and k(Z ′), such that the composite inclusions
k(X), k(Y ) →֒ k(Z) →֒ L and k(X), k(Y ) →֒ k(Z ′) →֒ L are equal.

Proof. A quasi-birational correspondence (Z, πX , πY ) between X and Y in-
duces an isomorphism

Rf∗WOX,Q
π∗
X ,≃−−−−→ Rf∗RπX∗WOZ,Q ∼= Rg∗RπY ∗WOZ,Q

≃, π∗
Y←−−−− Rg∗WOY,Q,

and similar for Wω. For the second statement first notice that if (Z, πX , πY )
and (Z ′, π′

X , π
′
Y ) are two quasi-birational correspondences between X and Y

and if there is a quasi-resolution a : Z ′ → Z such that π′
X = πX ◦ a and

π′
Y = πY ◦ a, then they induce the same isomorphisms (4.4.2). If we are given

two arbitrary quasi-birational correspondences Z and Z ′ between X and Y and
a field L as is the statement of the corollary, then we can take a quasi-resolution
of the closure of the image of SpecL → Z ×S Z ′ to obtain a quasi-birational
correspondence Z ′′ between X and Y mapping via a quasi-resolution to Z and
Z ′ and is compatible with πX , π′

X , πY , π
′
Y in the obvious sense. This proves

the statement. �

Corollary 4.4.12. In the situation of Corollary 4.4.11 assume that S is inte-
gral and f and g are generically finite and purely inseparable. Then any quasi-
birational correspondence between X and Y induces the same isomorphism in

Db(d̂RWS)

Rf∗WOX,Q ∼= Rg∗WOY,Q, Rf∗WωX,Q ∼= Rg∗WωY,Q.

Corollary 4.4.13. Let S be a k-scheme and f : X → S be an integral and
projective S-scheme, which has Witt-rational singularities. Let k(X)perf be the
perfect closure of k(X) and η ∈ S the image of the generic point of X. Then
EndOS,η−alg(k(X)perf) is acting on Rf∗WOX,Q and Rf∗WωX,Q as objects in

Db(d̂RWS).

Proof. An element σ in EndOS,η−alg(k(X)perf) will when composed with

k(X) →֒ k(X)perf factor over a finite and purely inseparable extension L of
k(X). By the remark after Definition 4.4.10 it hence gives rise to a quasi-
birational correspondence of X with itself and thus yields the promised well-
defined action by Corollary 4.4.11. �
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Remark 4.4.14. The above corollaries have obvious analogs for WO-rational
singularities.

Corollary 4.4.15. Let X and Y be two integral k-schemes, which have WO-
rational singularities and are quasi-birational over k. Then in d̂RWk,Q

Hi(X,WOX,Q) ∼= Hi(Y,WOY,Q), for all i ≥ 0.

In particular, if X and Y are projective then [BBE07, Thm 1.1] yields a Frobe-
nius equivariant isomorphism

Hi
rig(X/K)<1 ∼= Hi

rig(Y/K)<1 for all i ≥ 0,

where K = Frac(W (k)) and Hi
rig(X/K)<1 denotes the part of rigid cohomology

on which the Frobenius acts with slope < 1.

Proof. Apply Corollary 4.4.11 in the case S = k. �

We will also give some results on the torsion, see Theorem 5.1.10 and Theorem
5.1.13.

Corollary 4.4.16. Let k be a finite field. Let X and Y be two quasi-birational
integral and projective k-schemes, which have WO-rational singularities. Then
for any finite field extension k′ of k we have

|X(k′)| ≡ |Y (k′)| mod |k′|.
Proof. This follows from Corollary 4.4.15 and [BBE07, Cor. 1.3]. �

In the case where X and Y are smooth, integral and proper, the above corollary
was proved in [Eke83, Cor. 3, (i)]. In case there is a morphism f : X → Y ,
which is birational andX is smooth and projective and Y = Z/G is the quotient
under a finite group G of a smooth projective scheme Z, this was proved in
[Cha09, Thm 4.5.].
We investigate the properties of Witt-rational singularities a little bit further.

Proposition 4.4.17. Consider the following properties on an integral k-scheme
S:

(1) S has rational singularities.
(2) S has Witt-rational singularities.
(3) S has WO-rational singularities.
(4) S has BE-Witt-rational singularities.

Then
(1)⇒ (2)⇒ (3)⇒ (4).

Furthermore the first implication is strict, by Remark 4.4.8 above.

Proof. (1) ⇒ (2): By assumption there exists a resolution f : X → S. The
exact sequences

0→Wn−1OX V−→WnOX → OX → 0

and (see Proposition 4.1.4, (7))

0→Wn−1ωX
p
−→WnωX

Fn−1

−−−→ ωX → 0
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give us Rif∗WnOX = 0 = Rif∗WnωX for all n, i ≥ 1 and also WnOS ∼=
f∗WnOX . Since S is CM, the isomorphism WnOS ∼= Rf∗WnOX also gives the
isomorphism f∗WnωX ∼= WnωS via duality (see Proposition 4.1.4, (2)). Now
the statement follows from the exact sequence (see Lemma 1.5.1)

0→ R1 lim←−
n

Ri−1f∗En → Rif∗(lim←−
n

En)→ lim←−
n

Rif∗En → 0,

where En ∈ {WnOX ,WnωX}. (For the vanishing of R1f∗WωX use that
f∗WnωX ∼= WnωS and hence the projection maps f∗WnωX → f∗Wn−1ωX
are surjective, by Proposition 4.1.4, (4).)
(2) ⇒ (3): trivial.
(3)⇒ (4): By Remark 4.3.2 we find a quasi-resolution of S of the form f : X →
S with X a finite quotient. We thus find a smooth scheme X ′ with a finite and
surjective morphism g : X ′ → X . Then h := fg : X ′ → S is an alteration and
h∗ :WOS,Q → Rg∗WOX′,Q splits by Proposition 4.4.6, (1)⇒ (2), and Lemma
4.1.6, (2); a fortiori h∗ :WOS ⊗Q→ Rg∗WOX′ ⊗Q splits. �

4.5. Complexes and sheaves attached to singularities of schemes.

Corollary 4.5.1. Let S be an integral scheme and f : X → S and g : Y → S
be quasi-resolutions. Then X and Y are quasi-birational over X and any quasi-
birational correspondence between X and Y induces the same isomorphism in

the derived category Db(d̂RWS)

Rf∗WOX,Q ∼= Rg∗WOY,Q, Rf∗WωX,Q ∼= Rg∗WωY,Q.

Furthermore, if Z is another integral scheme and h : Z → S a quasi-resolution,
then the isomorphisms

Rf∗WOX,Q ∼= Rh∗WOZ,Q, Rf∗WωX,Q ∼= Rh∗WωZ,Q

induced by any quasi-birational correspondence between X and Z equals the iso-
morphism obtained by composing the isomorphisms induced by quasi-birational
correspondences between X and Y and between Y and Z.

Proof. First we show that X and Y are quasi-birational over S. For this notice
that k(X) ⊗k(S) k(Y ) is a local Artin algebra. Denote by L its residue field.
Then we can take a quasi-resolution of the closure of the image of SpecL in
X ×S Y to obtain a quasi-birational correspondence between X and Y . Let V
and V ′ be two quasi-birational correspondences between X and Y . Denote by
L′′ the residue field of the local Artin algebra k(V )⊗k(S)k(V ′). This is a purely
inseparable field extension of k(S). Hence there is only one embedding over
k(S) of k(X) and k(Y ) into L′′. Thus by Corollary 4.4.11 the two isomorphisms
induced by V and V ′ are equal. Finally if we have the three quasi-resolutions
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f, g, h, we find a diagram of S-morphisms

V ′′ //

��

V ′

��

// Z

V

��

// Y

X,

in which V is a quasi-birational correspondence between X and Y , V ′ is a
quasi-birational correspondence between Y and Z and V ′′ is a quasi-birational
correspondence between V and V ′ (and also between X and Z). The last
statement of the Corollary follows. �

Definition 4.5.2. Let S be an integral k-scheme of dimension d. We define in

Db(d̂RWS,Q)

WS0,S := Rf∗WOX,Q, WSd,S := Rf∗WωX,Q,

where f : X → S is any quasi-resolution. This definition is independent (up to
a canonical isomorphism) of the choice of the quasi-resolution f by Corollary
4.5.1.

It follows, that S has WO-rational singularities if and only if WS0,S ∼= WOS
and it has Witt-rational singularities if and only if in addition we have
Hi(WSd,S) = 0 for all i ≥ 1 (which is equivalent to WSd,S ∼=WωS,Q).
Next we want to give a characterization of Witt-rational singularities using
alterations.

Proposition 4.5.3. Let S be an integral k-scheme of dimension d and f :
X → S an alteration with X smooth. Set

ǫf :=
1

deg f
[X ×S X ]0 ∈ CHd(X ×X,P (X ×S X))Q,

where [X ×S X ]0 is the cycle associated to the closure of Xη ×η Xη in X ×S X
with η the generic point of S. Further set

Ĥ∗,0(X/S) :=
⊕

i

Rif∗WOX , Ĥ∗,d(X/S) :=
⊕

i

Rif∗WΩdX ,

Ĥ∗,(0,d)(X/S) := Ĥ∗,0(X/S)⊕ Ĥ∗,d(X/S).

Then:

(1) The restriction of Ĥ(ǫf/S) to Ĥ∗,(0,d)(X/S)Q is a projector, which we
denote by ef . (See Proposition 3.5.4 for the notation.)

(2) The pullback f∗ induces a natural morphism of Witt modules over S

f∗ :WOS,Q → ef Ĥ∗,(0,d)(X/S)Q.
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(3) If g : Y → S is another alteration with Y smooth. Then set

γf,g :=
1

deg f
[X ×S Y ]0 ∈ CHd(X × Y, P (X ×S Y )),

where [X ×S Y ]0 is the cycle associated to the closure of Xη ×η Yη in

X ×S Y . Then Ĥ(γf,g/S) : Ĥ(X/S) → Ĥ(Y/S) induces an isomor-
phism

(4.5.1) Ĥ(γf,g/S) : ef (Ĥ∗,(0,d)(X/S))Q
≃−→ eg(Ĥ∗,(0,d)(Y/S))Q,

which is compatible with the pullback morphism from (2).

Proof. Take a non-empty open and smooth subset U of S such that the pullback
of f - and in case (3) also of g - over U is finite and surjective and hence also
flat; the pullbacks are denoted by fU : XU → U and gU : XU → U . Notice
that the restriction of [X ×SX ]0 and [X ×S Y ]0 over U equal [XU ×U XU ] and
[XU ×U YU ].
(1) We have to show ef ◦ef−ef = 0 on Ĥ∗,(0,d)(X/S)Q. By the same argument
as in the proof of Theorem 4.3.3 (using the vanishing Lemmas 3.6.1 and 3.6.2)
it suffices to prove

[XU ×U XU ] ◦ [XU ×U XU ]− deg f · [XU ×U XU ] = 0.

This follows immediately from [XU ×U XU ] = [ΓtfU ] ◦ [ΓfU ].
(2) The morphism ef , in particular gives a projector ef : f∗WOX,Q →
f∗WOX,Q. Thus we need to show, that ef ◦ f∗ = f∗ on WOS,Q. It suffices to
prove this over U ; thus the statement follows from deg f · efU = f∗

U ◦ fU∗.

(3) To prove that γf,g is an isomorphism on ef (Ĥ∗,(0,d)(X/S)Q) with inverse
1

deg g Ĥ([Y ×S X ]0/S) it suffices to show that the following cycles in CHd(X ×
Y, P (X ×S Y )), etc.,

deg g · [X ×S Y ]0 ◦ [X ×S X ]0 − deg f · [Y ×S Y ]0 ◦ [X ×S Y ]0

deg f · [Y ×S X ]0 ◦ [Y ×S Y ]0 − deg g · [X ×S X ]0 ◦ [Y ×S X ]0

[Y ×S X ]0 ◦ [X ×S Y ]0 ◦ [X ×S X ]0 − (deg f deg g) · [X ×S X ]0

[X ×S Y ]0 ◦ [Y ×S X ]0 ◦ [Y ×S Y ]0 − (deg f deg g) · [Y ×S Y ]0

act as zero on Ĥ∗,(0,d)(X/S)Q and Ĥ∗,(0,d)(Y/S)Q respectively. By the same
argument as in the proof of Theorem 4.3.3 (using the vanishing Lemmas 3.6.1
and 3.6.2) it suffices to prove that the pullback along U of the above cycles
vanish. This follows easily from [XU ×U XU ] = [ΓtfU ] ◦ [ΓfU ], [XU ×U YU ] =
[ΓtgU ] ◦ [ΓfU ] and [ΓfU ] ◦ [ΓtfU ] = deg f · [∆U ], etc. This yields the isomorphism

(4.5.1). It is compatible with the pullback from (2), since on WOS,Q we have

Ĥ(γf,g/S)f∗ = g∗. Indeed over U we have Ĥ(γfU ,gU /U) = 1
deg f ·g∗U ◦fU∗; thus

it holds on U and hence on all of S. �

Definition 4.5.4. Let S be an integral k-scheme of dimension d and f : X → S
an alteration with X smooth. Then using the notations from Proposition 4.5.3
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we define

A0(X/S) := coker(WOS,Q
f∗

−−→ ef Ĥ
∗,0(X/S)Q) =

f∗WOX,Q

WOS,Q

⊕

i≥1

efR
if∗WOX,Q

and
Ad(X/S) := ef Ĥ>0,d(X/S) =

⊕

i≥1

efR
if∗WΩdX,Q.

Then by Proposition 4.5.3 A0(X/S) and Ad(X/S) are independent of f : X →
S up to a canonical isomorphism and are therefore denoted

A0(S) := A0(X/S), Ad(S) := Ad(X/S), A(S) := A0(S)⊕Ad(S).
Remark 4.5.5. If S is normal, then A(S) is a direct summand ofH∗,(0,d)(X/S)Q
for any alteration f : X → S with X smooth.

Theorem 4.5.6. Let S be an integral k-scheme. Then there are isomorphisms

in d̂RWS,Q

A0(S) ∼= H0(WS0,S)
WOS,Q

⊕

i≥1

Hi(WS0,S), Ad(S) ∼=
⊕

i≥1

Hi(WSd,S).

In particular:

(1) S has WO-rational singularities ⇐⇒ A0(S) = 0.
(2) S has Witt-rational singularities ⇐⇒ A(S) = 0.

Proof. By de Jong (see Remark 4.3.2) there exists an alteration f : X → S
which factors as

f : X
h−→ Y

g−→ S,

where X is smooth, Y = X/G, for G a finite group, h is the quotient map and
g is a quasi-resolution. Thus the following equalities hold by definition for all i

Hi(WS0,S) = Rig∗WOY,Q, Hi(WSd,S) = Rig∗WωY,Q.

Since Y is normal and h is finite and surjective it is also universally equidi-
mensional. Thus [X ×Y X ] ∈ CHd(X × X,P (X ×Y X)), where d = dimS.
We denote by [X ×S X ]0 the cycle associated to the closure of Xη ×η Xη in
X ×S X , where η is the generic point of S. We claim

(4.5.2) [X ×S X ]0 = deg g · [X ×Y X ] in CHd(X ×X,P (X ×S X)).

Indeed it suffices to check this over a smooth and dense open subscheme U of
S, over which g is a universal homeomorphism and Y is smooth. But then

[XU ×U XU ]
0 = [XU ×U XU ]

= [ΓtfU ] ◦ [ΓfU ]
= [ΓthU

] ◦ [ΓtgU ] ◦ [ΓgU ] ◦ [ΓhU ]

= deg g · [ΓthU
] ◦ [ΓhU ] by (4.2.1)

= deg g · [XU ×YU XU ].
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Hence the claim. Now Ĥ([X×Y X ]/Y ) induces an endomorphism of h∗(WOX⊕
WΩdX) which actually equals h∗ ◦ h∗, for h∗ and h∗ as in Definition 4.1.5
(see (4.2.2).) It thus follows from Proposition 3.5.10 and (4.5.2) that ef =

1
deg f Ĥ([X ×S X ]0/S) factors for each i ≥ 0 as

Rif∗(WOX ⊕WΩd
X)Q

ef //

1
deg h

·h∗ **TTTTTTTTTTTTTTTT
Rif∗(WOX ⊕WΩd

X)Q

Rig∗(WOY ⊕WωY )Q.

h∗

44jjjjjjjjjjjjjjjj

Taking into account that h∗ ◦ h∗ is multiplication with the degree of h, this
yields the statement of the theorem. �

4.6. Isolated singularities. In this section we will relate the sheaf A0(S)
(Definition 4.5.4) for a normal variety S with an isolated singularity to the
Witt vector cohomology of the exceptional set in a suitably good resolution
of singularities S̃. For this, we need to compute the higher direct images of
W (OS̃)Q.

Proposition 4.6.1. Let f : X̃ −→ Ỹ be a proper morphism of schemes. Let
Y0 ⊂ Ỹ be a closed subset, we denote by Y = Ỹ \Y0 the complement. We
consider the cartesian diagrams

X //

��
�

X̃

��

X0
oo

��
�

Y // Ỹ Y0.oo

Let I ⊂ OX̃ be a sheaf of ideals for X0. Suppose that Rif∗OX = 0 for all i > 0.
Then

Rif∗W (I)Q = 0 for all i > 0.

In order to prove Proposition 4.6.1 we need several Lemmas.

Lemma 4.6.2. Let X be a scheme and I ⊂ OX a sheaf of ideals. For all integers
a ≥ 1 the natural map

W (Ia)Q −→W (I)Q
is an isomorphism.

Proof. The proof is the same as in [BBE07, Proposition 2.1(ii)]. �

Lemma 4.6.3. With the assumptions of Proposition 4.6.1. There are N, a ≥ 0
such that for all r ≥ N and all n ≥ 1 the morphism

Rif∗Wn(Ir+a) −→ Rif∗Wn(Ir),
induced by Ir+a ⊂ Ir, vanishes for all integers i > 0.

Proof. [BBE07, Lemma 2.7(i)]. �
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Proof of Proposition 4.6.1. Choose N as in Lemma 4.6.3. By using Lemma
4.6.2 we may replace I by IN . Thus we may assume that N = 1. The image
of the Frobenius acting on Wn(I) is contained in Wn(Ip):

Wn(I) F //

∃!

%%J
JJJJJJJJ

Wn(I)

Wn(Ip)
,
�

99ttttttttt

and therefore F a (with a as in Lemma 4.6.3) is zero on Rif∗Wn(I) for all i > 0.
We continue as in the proof of [BBE07, Theorem 2.4]. Since F a acts as zero on
lim←−n R

if∗Wn(I) and R1 lim←−nR
if∗Wn(I) for all i ≥ 1, we obtain via the exact

sequence

0→ R1 lim←−
n

Ri−1f∗Wn(I)→ Rif∗(W (I))→ lim←−
n

Rif∗Wn(I)→ 0

that F 2a acts as zero on Rif∗W (I) for all i > 0 (we use that R1 lim←−n f∗Wn(I) =
0). Thus the relation FV = p implies that p2a kills Rif∗W (I) for all i > 0. �

Corollary 4.6.4. Let S be an integral scheme with an isolated singularity at
the closed point s ∈ S. Let f : X −→ S be projective and birational. Suppose
that f is an isomorphism over S\{s}; we denote by E the closed set f−1(s)
equipped with some scheme structure. Then

Rif∗WOX,Q = Hi(E,WOE,Q) for all i > 0,

where Hi(E,WOE,Q) is considered as skyscraper sheaf supported in s. More-
over, the morphism is compatible with the Frobenius and Verschiebung action.

Proof. Let I be the sheaf of ideals for E. We obtain an exact sequence

0 −→WIQ −→WOX,Q −→WOE,Q −→ 0.

Proposition 4.6.1 implies that the higher direct images of WIQ vanish, which
proves the statement. �

Lemma 4.6.5. Let E be a scheme. Write E = ∪ri=1Ei with Ei irreducible for
all i. There is a spectral sequence

Es,t1 =
⊕

1≤ı0<ı1<···<ıs≤r

Ht(∩sj=0Eıj ,WO∩s
j=0Eıj

,Q)⇒ Hs+t(E,WOE,Q).

The spectral sequence is compatible with the Frobenius and Verschiebung oper-
ation.

Proof. By [BBE07, Proposition 2.1(i)] the sheaf WO∩s
j=0Eıj

,Q doesn’t depend

on the choice of the scheme structure for ∩sj=0Eıj .
¿From [BBE07, Corollary 2.3] we get an exact sequence

WOE,Q −→
⊕

ı0

WOEı0 ,Q
−→
⊕

ı0<ı1

WOEı0∩Eı1 ,Q
−→ . . . ,

Documenta Mathematica 17 (2012) 663–781



764 Andre Chatzistamatiou and Kay Rülling

where the maps are sums of restriction maps and thus compatible with F and
V .
For every affine open set U ⊂ E we have

Ht(U ∩sj=0 Eıj ,WO) = 0, for all t > 0,

because U ∩sj=0 Eıj is affine. Therefore we obtain the spectral sequence in the
statement. �

Proposition 4.6.6. Let E be a projective scheme over a finite field k = Fpa .
Write E = ∪ri=1Ei with Ei irreducible for all i. Suppose that for all s ≥ 1 and
all 1 ≤ ı0 < · · · < ıs ≤ r the set theoretic intersection ∩sj=0Eıj , equipped with
the reduced scheme structure, is smooth.
For all n ≥ 2 the differential of Es,tn , induced by the spectral sequence of Lemma

4.6.5, vanishes. In other words, Es,t2 ⇒ Hs+t(E,WOE,Q) is degenerated and

Es,t∞ = Es,t2 for all s, t.

Proof. By definition Es,tn is a subquotient of Es,t1 . By assumption, ∩sj=0Eıj is
smooth and projective. We know that

Ht(∩sj=0Eıj ,WO∩s
j=0Eıj

,Q) ∼= Ht
crys(∩sj=0Eıj/K)[0,1[,

where the right hand side is the slope < 1-part of crystalline cohomol-
ogy (K = W (k)). This isomorphism is compatible with the F -operation.
It follows from [KM74] that the characteristic polynomial of F a acting on
Ht

crys(∩sj=0Eıj/K) is the characteristic polynomial of the geometric Frobenius

acting on Ht
ét((∩sj=0Eıj ) ×k k̄,Qℓ) for any prime ℓ 6= p. Thus F a acting on

Ht
crys(∩sj=0Eıj/K)[0,1[ has algebraic eigenvalues with absolute value p

ta
2 with

respect to any embedding of K into C. In particular, this holds for the eigen-
values of Es,tn for n ≥ 1 and all s. Thus the differential

Es−n,t+n−1
n −→ Es,tn −→ Es+n,t−n+1

n

vanishes if n ≥ 2. �

Theorem 4.6.7. Let k be a finite field. Let S be a normal integral scheme with
an isolated singularity at the closed point s ∈ S. Let f : X −→ S be projective
and birational. Suppose that f is an isomorphism over S\{s}; we denote by E
the closed set f−1(s). Write E = ∪ri=1Ei with Ei irreducible for all i. Suppose
that for all s ≥ 1 and all 1 ≤ ı0 < · · · < ıs ≤ r the set theoretic intersection
∩sj=0Eıj , equipped with the reduced scheme structure, is smooth.
Then S has WO-rational singularities (Definition 4.4.4) if and only if the spec-
tral sequence of Lemma 4.6.5 satisfies

Es,t2 = 0 for all (s, t) 6= (0, 0).

Proof. It follows from Corollary 4.6.4 that S has WO-rational singularities if
and only if

Hi(E,WOE,Q) = 0 for all i > 0.

The assertion follows from Proposition 4.6.6. �

Documenta Mathematica 17 (2012) 663–781



Hodge-Witt Cohomology . . . 765

The case t = 0 is a combinatorial condition on the exceptional set E. For any
smooth and proper scheme X over k we have

H0(X,WOX)⊗W (k) W (k̄) ∼= H0
ét(X ×k k̄,Qp)⊗Qp W (k̄).

Therefore the condition Es,02 = 0, for all s ≥ 1, is equivalent to the vanishing
of the cohomology of the complex

⊕

ı0

H0(Eı0 ×k k̄,Qp) −→
⊕

ı0<ı1

H0((Eı0 ∩ Eı1)×k k̄,Qp) −→
⊕

ı0<ı1<ı2

H0((Eı0 ∩ Eı1 ∩ Eı2)×k k̄,Qp) −→ . . .

in degree≥ 1. Of course, the cohomology in degree = 0 equalsH0(E×k k̄,Qp) =
Qp, because S is normal.
For a surface S the conditions for t ≥ 1 are equivalent to Ei,red ×k k̄ ∼=

∐
j P

1

for all i. Indeed, for a smooth curve Ei we have

dimH1(Ei,WOEi,Q) ≥ dimH1(Ei,OEi),

and H1(Ei,OEi) = 0 if and only if Ei ×k k̄ is a disjoint union of P1s.
Therefore S hasWO-rational singularities if and only if the exceptional divisor
of a minimal resolution over k̄ is a tree of P1s.

4.7. Cones and Witt-rational singularities. In [BE08, Ex. 2.3] Blickle
and Esnault give an example of an Fp-scheme which has BE-rational singulari-
ties but not rational singularities. Their proof in fact shows, that their example
also has WO-rational singularities. In this section we slightly generalize their
example and show that it also has Witt-rational singularities.

4.7.1. Let X be a proper k-scheme, L an invertible sheaf on X and V (L) =
Spec (⊕n≥0L⊗n). We denote by s0 : X →֒ V (L) the zero-section. By Grauert’s
criterion (see [EGAII, Cor. (8.9.2)]) L is ample on X if and only if there exists
a k-scheme C together with a k-rational point v ∈ C and a proper morphism

q : V (L) → C, such that q induces an isomorphism V (L) \ s0(X)
≃−→ C \ {v}

and q−1(v)red = s0(X)red. If L is ample, we call any triple (C, q, v) as above
a contractor of the zero-section of V (L). One can choose C for example to be
the cone SpecS, where S is the graded ring k ⊕n≥1 H

0(X,L⊗n) and v is the
vertex, i.e. the point corresponding to the ideal S+.
The following proposition is well-known; we prove it for lack of reference.

Proposition 4.7.2. Let X be a proper and smooth k-scheme and L an ample
sheaf on X. Then the following statements are equivalent:

(1) For any n ≥ 1 and all contractors (C, q, v) of the zero-section of
V (L⊗n) we have Riq∗ωV (L⊗n) = 0 for all i ≥ 1.

(2) Hi(X,ωX ⊗ L⊗n) = 0 for all i, n ≥ 1.
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Proof. Let (C, q, v) be a contractor of the zero-section of V (L). Denote by I
the ideal sheaf of the zero section of X in V (L). We have

s∗0I = L, s0∗L⊗n = In/In+1.

We set Yn := Spec (OV (L)/In); in particular Y1 = s0(X). The sheaves

Riq∗ωV (L) have support in {v} and since
√
mvOV (L) = I, where mv ⊂ OX,v is

the ideal of v, the theorem on formal functions yields

Riq∗ωV (L) = 0⇐⇒ lim←−
n

Hi(Yn, ωV (L)|Yn
) = 0.

Further ωV (L)|Y1
∼= ωX⊗L, hence tensoring the exact sequence 0→ In/In+1 →

OYn+1 → OYn → 0 with ωV (L)|Yn+1
yields the exact sequence

(4.7.1) 0→ ωX ⊗ L⊗n+1 → ωV (L)|Yn+1
→ ωV (L)|Yn

→ 0.

(2)⇒ (1): We have Hi(Y1, ωV (L)|Y1
) = Hi(X,ωX ⊗ L) = 0 for all i ≥ 1, by

assumption. Now the statement for (C, q, v) follows from (4.7.1) and induction.
Since L is any ample sheaf, we can replace L by L⊗n in the above argument
and obtain the statement also for a contractor of the zero-section of V (L⊗n).
(1)⇒ (2): Let d be the dimension of X . Then the maps
Hd(Yn+1, ωV (L)|Yn+1

) → Hd(Yn, ωV (L)|Yn
) are surjective for all n ≥ 1.

Since lim←−nH
d(Yn, ωV (L)|Yn

) = 0 by assumption, we get in particular

Hd(Y1, ωV (L)|Y1
) = Hd(X,ωX ⊗ L) = 0.

Replacing L by L⊗n in the above argument thus gives us

Hd(X,ω ⊗ L⊗n) = 0, for all n ≥ 1.

Assume we proved Hi+1(X,ω ⊗ L⊗n) = 0, for all n ≥ 1. Then (4.7.1) yields
that Hi(Yn+1, ωV (L)|Yn+1

) → Hi(Yn, ωV (L)|Yn
) is surjective and as above we

conclude that in particular Hi(Y1, ωV (L)|Y1
) = Hi(X,ωX ⊗ L) equals zero (if

i ≥ 1). Again we can do the argument with L replaced by L⊗n and obtain
Hi(X,ωX ⊗ L⊗n) = 0 for all n ≥ 1. This finishes the proof. �

Remark 4.7.3. Notice that in characteristic zero condition (1) is always satisfied
because of the Grauert-Riemenschneider vanishing theorem; condition (2) is
always satisfied because of the Kodaira vanishing theorem.

Theorem 4.7.4. Let X0 be a smooth, projective and geometrically connected
k-scheme and L an ample sheaf on X0. Assume (X0,L) satisfies the following
condition:

(4.7.2) Hi(X0, ωX0 ⊗ L⊗n) = 0, for all n, i ≥ 1.

Let X be the projective cone of (X0,L), i.e. X = Proj(S[z]), where S denotes
the graded k-algebra k ⊕n≥1 H

0(X0,L⊗n).
Then X is integral and normal; it has Witt-rational singularities if and only if

(4.7.3) Hi(X0,WOX0)Q = 0, for all i ≥ 1.
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Furthermore if L is very ample, then X is CM if and only if the following
condition is satisfied:

(4.7.4) Hi(X0,L⊗n) = 0, for all n ∈ Z and all 1 ≤ i ≤ dimX0 − 1.

Proof. Let v be the k-rational point of X , corresponding to the homogenous
ideal in S[z] generated by S+. Then the pointed projective cone X \ {v} is
an A1-bundle over X0 = ProjS. Thus X has an isolated singularity at v
and it suffices to consider the affine cone C = SpecS of (X0,L). Since X0

is integral, projective and geometrically connected and k is perfect we have
H0(X0,OX0) = k, by Zariski’s connectedness theorem. Thus C is integral and
normal by [EGAII, Prop. (8.8.6), (ii)]. Set V := V (L) = Spec (⊕n≥0L⊗n);
it is an A1-bundle over X0, hence is smooth. By [EGAII, Cor. (8.8.4)] there
exists a projective morphism q : V → C, such that the triple (C, q, v) becomes
a contractor of the zero-section of V . In particular, q : V → C is a projective
resolution of singularities of C. (In case L is very ample, q : V → C is the
blow-up of C in the closed point v, see [EGAII, Rem. (8.8.3)].) By Proposition
4.4.6 and Remark 4.4.5 it suffices to prove

Riq∗WOV,Q = 0, Riq∗WωV,Q = 0, for all i ≥ 1.

By Corollary 4.6.4 the vanishing Riq∗WOV,Q = 0 is equivalent to the vanishing
Hi(X0,WOX0)Q = 0. Thus it suffices to prove the vanishing Riq∗WωV,Q = 0
under the assumptions (4.7.2) and Rq∗WOV,Q ∼= WOC,Q. Proposition 4.7.2
yields Riq∗ωV = 0 for all i ≥ 1. Hence also Riq∗WnωV = 0 for all i, n ≥ 1,
by the exact sequence in Proposition 4.1.4, (7) and induction. Therefore the
exact sequence

0→ R1 lim←−
n

Ri−1q∗WnωV → Riq∗WωV → lim←−
n

Riq∗WnωV → 0

immediately yields

(4.7.5) Riq∗WωV,Q = 0, for all i ≥ 2.

To conclude also the vanishing of R1q∗WωV,Q we have to prove the vanishing
(R1 lim←−n q∗WnωV )Q = 0. To this end denote by I•, K• and C• the image,

the kernel and the cokernel of q∗W•ωV → W•ωC , respectively. Notice that
Kn and Cn are coherentWnOC -modules, whose support is concentrated in the
closed point v; hence these modules have finite length. Therefore K• and C•

satisfy the Mittag-Leffler condition, in particular R1 lim←−Cn = 0 = R1 lim←−Kn.

Furthermore, R2 lim←−Kn = 0 by Lemma 1.5.1, (1). Thus the exact sequence
0→ K• → q∗W•ωV → I• → 0 gives

R1 lim←− q∗WnωV ∼= R1 lim←− In.
We also have the vanishing R1 lim←−WnωC = 0, since the transition maps are

surjective (by Proposition 4.1.4, (4)) and therefore the exact sequence 0 →
I• →W•ωC → C• → 0 gives a surjection

lim←−Cn → R1 lim←− In → 0.
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By Lemma 4.3.4 (lim←−Cn)Q = 0, hence also (R1 lim←− q∗WnωV )Q = 0.

For the last statement notice that X is CM if and only if Hi
v(C,OC) = 0 for

all i ≤ d − 1 = dimX0. Since C is affine the long exact localization sequence
gives us an exact sequence

0→ H0
v (C,OC)→ H0(C,OC)→ H0(C \ {v, },OC)→ H1

v (C,OC)→ 0

and isomorphisms

Hi−1(C \ {v},OC) ∼= Hi
v(C,OC), for all i ≥ 2.

Let π : C \ {v} → X0 be the pointed affine cone over X0 = ProjS. Since L is
very ample the graded ring S is generated by S1 and we obtain

π∗OC\{v} =
⊕

n∈Z

L⊗n.

Therefore H0(C \ {v},OC) =
⊕

n≥0H
0(X0,L⊗n) = S = H0(C,OC). Thus

H0
v (C,OC) and H1

v (C,OC) always vanish and Hi
v(C,OC) vanishes for 2 ≤ i ≤

dimX0 if and only if
⊕

n∈ZH
i−1(X0,L⊗n) vanishes, which is exactly condition

(4.7.4). This proves the Theorem. �

Remark 4.7.5. (1) Condition (4.7.2) in the above theorem holds in charac-
teristic zero by Kodaira vanishing, which in general is wrong in positive
characteristic; for a counter example see [Ray78]. By [DI87, Cor. 2.8.]
this condition holds if X0 lifts to a smooth W2(k)-scheme and has di-
mension ≤ p. Notice also that condition (4.7.2) and (4.7.4) are always
satisfied if X0 is a smooth hypersurface in some Pnk and L = OPn

k
(1)|X0

.
(2) The vanishing (4.7.3) is satisfied if the degree map induces an isomor-

phism CH0(X0 ×k k(X0))Q ∼= Q, which is for example the case if X0,k̄

is rationally chain connected, where k̄ is an algebraic closure of k. See
[BE08, Ex. 2.3], alternatively one can also use Bloch’s decomposition
of the diagonal and the vanishing Lemmas 3.6.1 and 3.6.2. Another
case where (4.7.3) holds is when X0 has a smooth projective model
X0 over a complete discrete valuation ring R of mixed characteris-
tic and with residue field k, such that the generic fiber X0,η satisfies
Hi(X0,η,OX0,η ) = 0 for all i ≥ 1. This follows from p-adic Hodge the-

ory (“ the Newton polygon of Hi
crys(X0/W ) ⊗ Frac(R) ∼= Hi

dR(X0,η)
lies above the Hodge polygon”).

(3) The example in [BE08] alluded to at the beginning of this section is the
following: By [Shi74, Prop. 3] the Fermat hypersurfaces X0 ⊂ P2r+1

k

given by xn0 +. . .+x
n
2r+1, where n is such that pν ≡ −1 mod n, for some

ν ≥ 1, are unirational over k̄. Hence X0 satisfies the conditions (4.7.2),
(4.7.3) and (4.7.4) of the theorem and we obtain that the projective
cone X of X0 is normal, CM and has Witt-rational singularities. (In
[BE08, Ex. 2.3.] it was shown that X is WO-rational.) Choosing X0

of degree larger than 2r + 2 we see, that HdimX0(X0,OX0) 6= 0 and it
follows that X cannot have rational singularities.
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(4) Let X be as in the theorem and let π : Y → X be any resolution of
singularities. Then Riπ∗WωY,Q = 0 for all i ≥ 1. As it follows from
the proof and [CR09, Thm. 1], we even have the stronger vanishing
Riπ∗ωY = 0 for all i ≥ 1, which is implied by condition (4.7.2) solely.
It is an obvious question whether the vanishing Riπ∗WωY,Q = 0 also
holds without condition (4.7.2), i.e. does some version of Grauert-
Riemenschneider vanishing hold. In view of Proposition 4.7.2, this
question should be linked to some kind of Kodaira vanishing, of which
at the moment even the formulation is not clear. (But see [BBE07,
Cor. 1.2] for a first result in this direction.)

4.8. Morphisms with rationally connected generic fibre. The goal
of this section is to prove the following theorem.

Theorem 4.8.1. Let X be an integral scheme with Witt-rational singularities.
Let f : X −→ Y be a projective morphism to an integral and normal scheme Y .
We denote by η the generic point of Y , and Xη denotes the generic fibre of f .
Suppose that Xη is smooth and for every field extension L ⊃ k(η) the degree
map

CH0(Xη ×k(η) L)⊗Z Q −→ Q

is an isomorphism. Then
⊕

i>0

Rif∗WOX,Q ∼=
⊕

i>0

Hi(WS0,Y ),
⊕

i>0

Rif∗WωX,Q ∼=
⊕

i>0

Hi(WSdimY,Y ),

where WS is defined in Definition 4.5.2.

4.8.2. Let f : X −→ Y be as in the assumptions of Theorem 4.8.1. We can
choose a factorization (cf. Remark 4.3.2)

X ′ π−→ X ′/G
h−→ X ′′ u−→ X,

such that

• X ′ is smooth, integral and quasi-projective, G is a finite group acting
on X ′,
• h is birational and projective,
• X ′′ is normal and u is a universal homeomorphism.

We obtain a commutative diagram

(4.8.1) X ′

π

��
X ′/G

h

��
X ′′

u

��

// Y ′′

u′

��
X

f // Y
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where Y ′′ is the Stein factorization of X ′′ −→ Y . Therefore u′ is a universal
homeomorphism. Note that Y ′′ is also the Stein factorization of X ′/G −→ Y .

Lemma 4.8.3. With the assumptions of Theorem 4.8.1. Set f ′ = f ◦ u ◦ h ◦ π
with the notation as in diagram (4.8.1). We consider X ′ via f ′ as a scheme
over Y . Let P =

∑
g∈G[Γ(g)] ∈ CH(X ′×Y X ′), with Γ(g) the graph of g. Then

there is a natural isomorphism

Ĥ(P/Y )

(
⊕

i>0

Rif ′
∗(WOX′,Q ⊕WωX′,Q)

)
−→
⊕

i>0

Rif∗(WOX,Q ⊕WωX,Q)

Proof. The cycle P =
∑

g∈G[Γ(g)] is already defined in CH(X ′ ×X′/G X ′).
Theorem 4.5.6 and Corollary 4.4.7 imply

(4.8.2) Ĥ(P/(X ′/G)) (π∗WOX′,Q ⊕ π∗WωX′,Q) ∼=WOX′/G,Q ⊕WωX′/G,Q.

It follows from Proposition 3.5.10 that

Ĥ(P/Y ) =
⊕

i

Ri(f ◦ u ◦ h)∗Ĥ(P/(X ′/G)).

Since P 2 = #G · P , we obtain from (4.8.2) that

Ĥ(P/Y )

(
⊕

i>0

Rif ′
∗(WOX′,Q ⊕WωX′,Q)

)
=

⊕

i>0

Ri(f ◦ u ◦ h)∗(WOX′/G,Q ⊕WωX′/G,Q).

Because X has Witt-rational singularities and X ′/G
u◦h−−→ X is a quasi-

resolution we get

Rj(u ◦ h)∗(WOX′/G,Q ⊕WωX′/G,Q) =

{
0 for all j > 0

WOX,Q ⊕WωX,Q for j = 0,

which implies the statement. �

Proposition 4.8.4. Let f ′ : X ′ −→ Y be a projective and surjective morphism.
Suppose that Y is normal, and X ′ is smooth and connected. We denote by η
the generic point of Y . Let Y ′ ⊂ X ′ be a closed irreducible subset such that
Y ′ −→ Y is generically finite. We denote by A1 and A2 the closure of Y ′

η ×η X ′
η

and X ′
η ×η Y ′

η in X ′×Y X ′, respectively. Then there are natural isomorphisms

Ĥ([A1]/Y )

(
⊕

i>0

Rif ′
∗WOX′,Q

)
∼= A0(Y )(4.8.3)

Ĥ([A2]/Y )

(
⊕

i>0

Rif ′
∗WωX′,Q

)
∼= AdimY (Y ).(4.8.4)

(See Definition 4.5.4 for A.)
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Proof. We will prove (4.8.4), the identity (4.8.3) can be proved in the same
way.
Let Ỹ −→ Y ′ be an alteration of Y ′, such that Ỹ is smooth. We denote by
ı : Ỹ −→ X ′ the composition. The graph of ı defines a morphism

Ĥ(Γ(ı)/Y ) : Ĥ(Ỹ /Y )(−r) −→ Ĥ(X ′/Y ),

with r := dimX ′ − dimY . The closure Z of X ′
η ×η Ỹη in X ′ ×Y Ỹ defines a

morphism

Ĥ(Z/Y ) : Ĥ(X ′/Y ) −→ Ĥ(Ỹ /Y )(−r).
We have (idX′ × ı)∗([Z]) = d · [A2] for some d 6= 0. Finally, we define Q to be

the closure of Ỹη ×η Ỹη in Ỹ ×Y Ỹ . We have the following relations

[Γ(ı)] ◦ [Z]− d[A2] ∈ ker(CH(X ′ ×Y X ′) −→ CH(X ′
η ×η X ′

η)),

[Z] ◦ [Γ(ı)]− [Q] ∈ ker(CH(Ỹ ×Y Ỹ ) −→ CH(Ỹη ×η Ỹη)),
[A2] ◦ [A2]− e[A2] ∈ ker(CH(X ′ ×Y X ′) −→ CH(X ′

η ×η X ′
η)),

[Q] ◦ [Q]− g[Q] ∈ ker(CH(Ỹ ×Y Ỹ ) −→ CH(Ỹη ×η Ỹη)),
for some e, g 6= 0. Because of Lemma 3.6.2 we conclude that

Ĥ([A2]/Y )

(
⊕

i>0

Rif ′
∗WωX′,Q

)
∼= Ĥ([Q]/Y )

(
⊕

i>0

Ri(f ′ ◦ ı)∗WωỸ ,Q

)
.

By Definition 4.5.4 the right hand side is AdimY (Y ). �

Proof of Theorem 4.8.1. We use diagram 4.8.1 and the constructions of 4.8.2.
The first step is to prove

(4.8.5) CH0(X
′
η ×k(η) L)G ⊗Q ∼= Q

for every field extension L ⊃ k(η). We have a push-forward map

α : CH0(X
′
η ×k(η) L)⊗Q −→ CH0(Xη ×k(η) L)⊗Q,

and because Xη is smooth over k(η) we have a pull-back map

β : CH0(Xη ×k(η) L)⊗Q −→ CH0(X
′
η ×k(η) L)⊗Q.

We have the following formula for the composition

β ◦ α = deg(u)
∑

g∈G

g∗,

provided that G acts faithfully on X ′ (we may assume this). Thus (4.8.5)
follows from the assumptions.
Let

P =
∑

g∈G

[Γ(g)] ∈ CH(X ′ ×Y X ′),

with Γ(g) the graph of g. We denote by Pη the image of P in CH(X ′
η ×η X ′

η).
The cycle Pη is invariant under the action of G on the left and the right factor
of X ′

η ×η X ′
η.
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By the same arguments as in [BS83, Proposition 1] we see that there are non-
zero integers N1, N2,M1,M2, effective divisors D1, D2 on X ′

η, and a closed
point α of X ′

η, such that

N1Pη +N2[α×η X ′
η] ∈ image(CH(X ′

η ×η D2)),(4.8.6)

M1Pη +M2[X
′
η ×η α] ∈ image(CH(D1 ×η X ′

η)).(4.8.7)

Let D̄1, D̄2, and Yα be the closures of D1, D2, and α in X ′. The map Yα −→ Y
is generically finite and Yα,η = α. Let A1 and A2 be the closures of α ×η X ′

η

and X ′
η ×η α in X ′ ×Y X ′. Because of the formulas (4.8.6), (4.8.7) over the

generic point η, there is a Weil divisor S ⊂ Y such that

N1P +N2[A1] ∈ image(CH(X ′ ×Y D̄2)) + image(CH(X ′
S ×S X ′

S)),

M1P +M2[A2] ∈ image(CH(D̄1 ×Y X ′)) + image(CH(X ′
S ×S X ′

S)).

Lemma 3.6.1 implies that Ĥ(P/Y ) acts as Ĥ([A1]/Y ) on⊕

i>0

Rif ′
∗WOX′,Q.

¿From Lemma 3.6.2 we conclude that Ĥ(P/Y ) acts as Ĥ([A2]/Y ) on⊕

i>0

Rif ′
∗WωX′,Q.

In view of Proposition 4.8.4, Theorem 4.5.6, and Lemma 4.8.3 this implies the
statement of the theorem. �

5. Further applications

5.1. Results on torsion.

5.1.1. The Cartier-Dieudonné-Raynaud algebra. Recall from [IR83, I, (1.1)]
that the Cartier-Dieudonné-Raynaud algebra is the graded (non-commutative)
W -algebra, generated by formal symbols F and V in degree 0 and by d in
degree 1 which satisfy the following relations

F · a = F (a) · F, a · V = V · F (a), (a ∈ W ), F · V = p = V · F
a · d = d · a (a ∈W ), F · d · V = d, d · d = 0.

(Here F is a formal symbol, whereas F (a) denotes the Frobenius on the Witt
vectors of k applied to the Witt vector a.) Thus R is concentrated in degree
0 and 1. Notice that any de-Rham-Witt module and any Witt-module on
a scheme X naturally becomes an R-module (the latter with d acting as 0).
Therefore we have an exact functor

d̂RWX → Sh(X,R) := (sheaves-of R-modules on X)

which trivially derives to a functor

(5.1.1) φ : Db(d̂RWX)→ Db(Sh(X,R)) := Db(X,R).

We set
Rn := R/(V n · R+ d · V n · R).
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Notice that this is a left R-module. We obtain a functor

Rn⊗R : Sh(X,R)→ Sh(X,Wn[d]) := (sheaves of Wn[d]-modules on X),

where Wn[d] is the graded Wn-algebra Wn ⊕Wn · d, with d2 = 0. By [IR83,
Prop. (3.2)] the following sequence is an exact sequence of right R-modules

(5.1.2) 0→ R(−1) (Fn,−Fnd)−−−−−−−→ R(−1)⊕R dV n+V n

−−−−−−→ R→ Rn → 0.

This allows us to calculate the left-derived functor

Rn ⊗LR − : D−(Sh(X,R))→ D−(Sh(X,Wn[d])) := D−(X,Wn[d]).

One obtains the following.

(1) Assume X is smooth. Then Rn ⊗LRWΩX ∼=WnΩX .
(2) Let f : X → Y be a morphism of k-schemes, then

Rn ⊗LR Rf∗(−) ∼= Rf∗(Rn ⊗LR (−)) : Db(X,R)→ Db(Y,Wn[d]).

(3) Let X be a scheme and Z ⊂ X be a closed subscheme, then

Rn ⊗LR RΓZ(−) ∼= RΓZ(Rn ⊗LR (−)) : Db(X,R)→ Db(X,Wn[d]).

The first statement is [IR83, II, Thm (1.2)], the last two statements follow
directly from (5.1.2).

Proposition 5.1.2 ([Eke85, I, Prop. 1.1.]). Let S be a k-scheme and M ∈
Db(S,R) a complex of R-modules, which is bounded in both directions, i.e.
there exists a natural number m, such that Hi(M)j is non-zero only for (i, j) ∈
[−m,m]× [−m,m].

(1) Assume there exist integers r, s ∈ Z, such that Hi(R1 ⊗LRM)j = 0 for
all pairs (i, j) satisfying one of the following conditions

(5.1.3) (i+j = r, i ≥ s) or (i+j = r−1, i ≥ s+1) or (i+j = r+1, i ≥ s+1).

Then

Hi(Rn ⊗LRM)j = 0, for all n and all (i, j) with i+ j = r, i ≥ s.
(2) Assume there exist integers r, s ∈ Z, such that Hi(R1 ⊗LRM)j = 0 for

all pairs (i, j) satisfying one of the following conditions

(5.1.4) (i+ j = r, i ≤ s) or (i+ j = r+1, i ≤ s) or (i+ j = r− 1, i ≤ s− 1).

Then

Hi(Rn ⊗LRM)j = 0 for all n and all (i, j) with i+ j = r, i ≤ s.

This proposition is called Ekedahl’s Nakayama Lemma because applying it to
the cone of a morphism f :M → N in Db(X,R) between two complexes, which
are bounded in both directions, we obtain that Rn⊗R f is an isomorphism for
all n, if R1 ⊗LR f is.
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Corollary 5.1.3. Let S be a k-scheme and f : X → S, g : Y → S two
S-schemes which are smooth over k. Let ϕ : Rf∗WΩX → Rg∗WΩY be a
morphism in Db(S,R). Then R1 ⊗R ϕ is a morphism

ϕ1 := R1 ⊗LR ϕ : Rf∗ΩX → Rg∗ΩY in Db(S, k[d])

and furthermore:

(1) If there exists an natural number a ≥ 0 such that ϕ1 : ⊕j≤aRf∗ΩjX
≃−→

⊕j≤aRg∗ΩjY is an isomorphism, then

ϕ̂ := R lim←−
n

(Rn ⊗R ϕ) :
⊕

j≤a

Rf∗WΩjX
≃−→
⊕

j≤a

Rg∗WΩjY

is an isomorphism.

(2) If there exists a natural number a ≥ 0 such that ϕ1 : ⊕j≥aRf∗ΩjX
≃−→

⊕j≥aRg∗ΩjY is an isomorphism, then

ϕ̂ = R lim←−
n

(Rn ⊗R ϕ) :
⊕

j≥a

Rf∗WΩjX
≃−→
⊕

j≥a

Rg∗WΩjY

is an isomorphism.

Proof. First of all notice, that by 5.1.1, (1) and (2) Rn ⊗LR ϕ indeed is
a morphism Rf∗WnΩX → Rg∗WnΩY and that R lim←−(Rn ⊗

L
R ϕ) is a mor-

phism Rf∗WΩX → Rg∗WΩY , since R lim←−Rf∗WnΩX = Rf∗R lim←−nWnΩX =

Rf∗WΩX .
Denote by C the cone of ϕ in Db(S,R). It is clearly bounded in both directions
(in the sense of Proposition 5.1.2). Assume we are in the situation of (1). Then
Hi(R1 ⊗LR C)j = 0 for all i ∈ Z and j ≤ a. Choose i0 ∈ Z and j0 ≤ a and set
s := i0 and r := j0 + i0. Then Hi(R1 ⊗LR C)j = 0 for all (i, j) as in (5.1.3).
Thus Hi0(Rn ⊗LR C)j0 = 0 for all n. Therefore Rn ⊗LR ϕ is an isomorphism for
all n in degree ≤ a, which gives (1). Now assume we are in the situation of (2).
Then Hi(R1 ⊗LR C)j = 0 for all i ∈ Z and j ≥ a. Choose i0 ∈ Z and j0 ≥ a
and set s := i0 and r := i0+ j0. Then H

i(R1⊗LRC)j = 0 for (i, j) as in (5.1.4).
Thus Hi0(Rn ⊗LR C)j0 = 0, which implies (2) as above. �

Lemma 5.1.4. Let X be a smooth scheme and E(W•ΩX) the Cousin complex
of W•Ω with respect to the codimension filtration on X (see 1.5.8). Then there
is a natural commutative diagram of isomorphisms in Db(X,Wn[d])

Rn ⊗LRWΩX
≃ //

≃

��

Rn ⊗LR lim←−E(W•ΩX)

≃

��
WnΩX

≃ // E(WnΩX).

Proof. There is an obvious map

Rn ⊗R lim←−E(W•ΩX) = lim←−E(W•ΩX)/(V n + dV (lim←−E(W•ΩX)))→ E(WnΩ),

Documenta Mathematica 17 (2012) 663–781



Hodge-Witt Cohomology . . . 775

yielding a morphism Rn⊗LR lim←−E(W•ΩX)→ E(WnΩ), which clearly fits into a

diagram as in the statement. By Lemma 1.5.9, E(W•ΩX) is a flasque resolution
ofW•ΩX and thus, by Lemma 1.5.4, (4), lim←−E(W•ΩX) is a resolution ofWΩX .
Hence the two horizontal arrows in the diagram are isomorphisms, and by
5.1.1(1) the vertical arrow on the left is an isomorphism. This proves the
claim. �

5.1.5. Let f : X → Y be a morphism between k-schemes. Then we have the
pullback in Db(dRWY ) (see Definition 2.2.1)

f∗ :W•ΩY → Rf∗W•ΩX .

Using (5.1.2) and 5.1.1, (1), (2) one checks

f∗
n = Rn ⊗LR (φ(R lim←− f

∗)) in Db(Y,Wn[d]),

where φ is the forgetful functor from (5.1.1), f∗
n denotes the image of f∗ under

the projection from Db(dRWY ) to Db(Y,Wn[d]) and R lim←− : Db(dRWY ) →
Db(d̂RWY ) (see Proposition 1.5.6.)

5.1.6. Let f : X → Y be a morphism of pure relative dimension r between
smooth schemes and let Z ⊂ X be a closed subscheme, such that f|Z is proper.

Then we have the pushforward in Db(dRWY ) (see (2.3.4))

f∗ : Rf∗RΓZW•ΩX →W•ΩY (−r)[−r].
Using (2.3.3) and Lemma 5.1.4 one checks

f∗,n = Rn ⊗LR (φ(R lim←− f∗)) in Db(Y,Wn[d]).

5.1.7. Let X be smooth equidimensional scheme and Z ⊂ X an integral closed
subscheme of codimension c. Then we have the cup-product with cl([Z]) (see
3.2.2) in Db(dRWX)

(−) ∪ cl([Z]) : W•ΩX
(3.5.6)−−−−→ HcZ(W•Ω)(c)

(3.5.4)−−−−→ RΓZ(W•Ω)(c)[c].

Notice that in 3.5.7 we defined this maps only in the limit, but they can clearly
be constructed on each level and the limit of the above gives 3.5.7. Also notice
that the first map is given by α 7→ (−1)c·degαα · cl([Z]), which is a morphism
of de Rham-Witt systems (since F (cl([Z])) = π(cl([Z])) and d(cl([Z])) = 0.)
Using (5.1.2) and 5.1.1, (1), (3) one checks

(− ∪ cln([Z])) = Rn ⊗LR φ(R lim←−((−) ∪ cl([Z]))) in Db(X,Wn[d]).

5.1.8. Let S be a k-scheme, f : X → S and g : Y → S be two S-schemes
which are smooth over k and of the same pure dimension N . Let Z ⊂ X ×S Y
be a closed integral subscheme of dimension N , which is proper over Y . Then
we define the morphism

R([Z]/S) : Rf∗WΩX → Rg∗WΩY in Db(S,R)
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as the composition

Rf∗WΩX
pr∗1−−→ Rf∗Rpr1∗WΩX×Y

∪cl([Z])−−−−−→ Rf∗Rpr1∗RΓZWΩX×Y (N)[N ]

≃, Z⊂X×SY−−−−−−−−→ Rg∗Rpr2∗RΓZWΩX×Y (N)[N ]
pr2∗−−−→ Rg∗WΩY .

Here we simply write pr∗1 instead of φ(R lim←−(pr
∗
1)) etc. Notice that the third

arrow does not exist in Db(d̂RWS), since it is not compatible with the WOS-
action. By 5.1.1 and 5.1.5, 5.1.6, 5.1.7, Rn ⊗LR R([Z]/S) equals the following
composition in Db(S,Wn[d]), for all n ≥ 1

Rf∗WnΩX
pr∗1,n−−−→ Rf∗Rpr1∗WnΩX×Y(5.1.5)

∪cln([Z])−−−−−−→ Rf∗Rpr1∗RΓZWnΩX×Y (N)[N ]

≃, Z⊂X×SY−−−−−−−−→ Rg∗Rpr2∗RΓZWnΩX×Y (N)[N ]
pr2,n∗−−−−→ Rg∗WnΩY .

This also shows that

(5.1.6) R([Z]/S) = R lim←−(Rn ⊗
L
R R([Z]/S)).

Lemma 5.1.9. In the situation of 5.1.8 we have

⊕iHi(R([Z]/S)) = Ĥ([Z]/S) : Ĥ(X/S)→ Ĥ(Y/S),
in particular Hi(R([Z]/S)) is WOS-linear. (See Proposition 3.5.4 for the no-
tation.) Further,

⊕iHi(R1 ⊗LR R([Z]/S)) : ⊕iRif∗ΩX → ⊕iRig∗ΩY
equals the the morphism ρH(Z/S) from [CR09, Prop. 3.2.4]; in particular it is
OS-linear.
Proof. By Lemma 3.5.8 (and its proof for the level n = 1 case) the global cup

product (−) ∪ ĉl([Z]) : Hi(X × Y,WΩX×Y ) → Hi+N
Z (X × Y,WΩX×Y (N))

(resp. (−) ∪ cl1([Z]) : Hi(X × Y,ΩX×Y )→ Hi+N
Z (X × Y,ΩX×Y (N))) is given

by applying Hi(X × Y,R lim←−(−)) to the cup product of 5.1.7 (resp. applying

Hi(X × Y,R1 ⊗LR (−)) to 5.1.7 ). Now the lemma follows from going through
the definitions (cf. also the proof of Proposition 3.5.10 and of [CR09, Lem.
4.1.3].) �

Theorem 5.1.10. Let S be a k-scheme and f : X → S and g : Y → S be two S-
schemes which are integral and smooth over k and have dimension N . Assume
X and Y are properly birational over S, i.e. there exists a closed integral
subscheme Z ⊂ X ×S Y , such that the projections Z → X and Z → Y are
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proper and birational. Then Rn⊗LRR([Z]/S) (see 5.1.8) induces isomorphisms
in Db(S,Wn), for all n ≥ 1

Rf∗WnOX ∼= Rg∗WnOY , Rf∗WnΩ
N
X
∼= Rg∗WnΩ

N
Y .

Therefore R([Z]/S) = R lim←−(Rn ⊗
L
R R([Z]/S)) induces isomorphisms in

Db(S,R)

Rf∗WOX ∼= Rg∗WOY , Rf∗WΩNX
∼= Rg∗WΩNY .

Taking cohomology we obtain isomorphisms of WOS-modules which are com-
patible with Frobenius and Verschiebung

Rif∗WOX ∼= Rig∗WOY , Rif∗WΩNX
∼= Rig∗WΩNY , for all i ≥ 0.

Proof. By Ekedahl’s Nakayama Lemma (Corollary 5.1.3) it suffices, to show
that

Hi(R1 ⊗LR R([Z]/S)) : Rif∗ΩX → Rig∗ΩY

is an isomorphism for all i ≥ 0. This follows from Lemma 5.1.9 and [CR09,
Thm. 3.2.6]. The second statement follows again from Lemma 5.1.9. �

Remark 5.1.11. Notice that we do not need to assume here that any of the
schemes X , Y or S are quasi-projective. We had to assume it in section 2 and
3 since, we can only prove the compatibility of H(−/S) with composition of
correspondences, in the quasi-projective case. But in the argument above we
only need that the maps exist in Db(S,R) and can then reduce to the result of
[CR09], where no quasi-projectiveness assumption is needed.

Modulo torsion the WO-part of the following corollary was proved by Ekedahl
in [Eke83].

Corollary 5.1.12. Let X and Y be two smooth and proper k-schemes, which
are birational and of pure dimension N . Then there are isomorphisms of
W [F, V ]-modules

Hi(X,WOX) ∼= Hi(Y,WOY ), Hi(X,WΩNX) ∼= Hi(Y,WΩNY ), for all i ≥ 0

and also for all n, isomorphisms of Wn-modules

Hi(X,WnOX) ∼= Hi(Y,WnOY ), Hi(X,WnΩ
N
X ) ∼= Hi(Y,WnΩ

N
Y ), for all i ≥ 0.

In the case where X and Y are tame finite quotients (see Definition 4.2.5) we
have no map like R([Z]/S). This is why we have to assume that there exists a
morphism in this case:

Theorem 5.1.13. Let f : X → Y be a proper and birational k-morphism
between two tame finite quotients. Then we have isomorphisms

f∗ :WOY ≃−→ Rf∗WOX , Rf∗WωX ∼= f∗WωX [0]
≃, f∗−−−→WωY ,

where Wω is defined in Definition 4.1.2 and f∗ is the pushforward from Propo-
sition 4.1.4, (6). There are also corresponding isomorphisms on each finite
level.
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Proof. By [CR09, Cor. 4.3.3] we have isomorphisms

f∗ : OY ≃−→ Rf∗OX , Rf∗ωX ∼= f∗ωX [0]
≃, f∗−−−→ ωY .

By [KM98, Prop. 5.7] tame finite quotients are CM. Now the statement follows
by induction from the two exact sequences (where X is any pure dimensional
CM scheme)

0→Wn−1OX V−→WnOX → OX → 0

and (see Proposition 4.1.4, (7))

0→Wn−1ωX
p
−→ WnωX

Fn−1

−−−→ ωX → 0.

�

Notice that theWO-part of the theorem is a direct consequence of [CR09, Cor.
4.3.3] and does not need any of the techniques developed in this paper.

Corollary 5.1.14. In the situation of Theorem 5.1.13 we have isomorphisms
of W [V, F ]-modules

Hi(X,WOX) ∼= Hi(Y,WOY ), Hi(X,WωX) ∼= Hi(Y,WωY ), for all i ≥ 0.

There are also corresponding isomorphisms on each finite level.
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