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Introduction

Let F be nonarchimedean local field, we denote by O its ring of integers, and
by P = ̟O the maximal ideal of this ring, where ̟ is a uniformiser of F .
We denote by q the cardinality of O/P and by |.| the absolute value on F
normalised such that |̟| is equal to q−1.
For n ≥ 1, we denote the group GL(n, F ) by Gn, the group GL(n,O) by
Gn(O), and we set G0 = {1}. We denote by An the torus of diagonal matrices
in Gn, and by Nn the unipotent radical of the Borel subgroup of Gn given
by upper triangular matrices. For m ≥ 1, we denote by Kn(m) the subgroup

of Gn, given by matrices

(
g v
l t

)
, for g in Gn−1(O), v in On−1, l with every

coefficient in Pm, and t in 1 +Pm. We set Kn(0) = Gn(O).

If π is a generic representation of G2, the essential vector of π was first consid-
ered in [C], for Gn with n ≥ 2, it was studied in [J-P-S]. Here is one of its main
properties: if one calls d the conductor (the power of q−s in the ǫ factor with
respect to an unramified additive character of F ) of the representation π, the
complex vector space πKn(d) of vectors in π fixed under Kn(d), is generated
by the essential vector of π, and πKn(k) becomes the null space for k < d.
However, to prove its existence, one has to study properties of the Rankin-
Selberg integrals associated to the pairs (π, π′), where π′ varies through the
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set of unramified generic representations of Gn−1.

We set a few more notations before explaining this.
We denote by ν the positive character |.| ◦ det of Gn. We use the product
notation for normalised parabolic induction (see Section 1.2). For any sequence
of complex numbers s1, . . . , sn, the representation |.|s1 × · · · × |.|sn of Gn is
unramified, and its subspace of Gn(O)-invariant vectors is of dimension 1 (see
Section 1.5).
We choose a character θ of (F,+) trivial on O but not on P−1, and use it to
define a non degenerate character, still denoted θ, of the standard unipotent
subgroup Nn of Gn, by θ(n) = θ(

∑n−1
i=1 ni,i+1).

For n ≥ 2, let π and π′ be representations of Whittaker type (see Section 1.4)
of Gn and Gn−1 respectively, and denote by W (π, θ) and W (π′, θ−1) their re-
spective Whittaker models (which are quotients of π and π′) with respect to θ
and θ−1.
If W and W ′ belong respectively to W (π, θ) and W (π′, θ−1), we denote
I(W,W ′, s) the associated Rankin-Selberg integral (see Section 1.4).
For example, for a sequence of complex numbers a1, . . . , am, the induced
representation |.|a1 × · · · × |.|am of Gm, is of Whittaker type. If moreover
Re(a1) ≥ · · · ≥ Re(am), the representation |.|a1 × · · · × |.|am is of Langlands’
type, and its Whittaker model contains a unique normalised spherical Whit-
taker function W (q−a1 , . . . , q−am). It is the unique Whittaker function on
Gm, fixed by Gm(O), which equals 1 on Gm(O), and associated to the Sa-
take parameter {q−a1 , . . . , q−am} (see [S]). For fixed g in Gm, the function
W (q−s1 , . . . , q−sm)(g) is an element of the ring C[q±s1 , . . . , q±sm ]Sm of invari-
ant Laurent polynomials. To define the essential vector of π, one needs to
show as in [J-P-S], the following theorem (see [G-J] for the definition of the L
function of an irreducible representation of Gn):

Theorem. Let π be a generic representation of Gn with Whittaker model
W (π, θ), then there exists in W (π, θ) a unique Gn−1(O)-invariant function
W ess

π , such that for every sequence of complex numbers s1, . . . , sn−1, one has

the equality I(W ess
π ,W (q−s1 , . . . , q−sn−1), s) =

∏n−1
i=1 L(π, s+ si).

Hence, the statement of the theorem is equivalent to say that for any
unramified representation π′ of Langlands’ type of Gn−1 with normalised
spherical Whittaker function W 0

π′ in W (π′, θ), one has the equality
I(W ess

π ,W 0
π′ , s) = L(π, π′, s) (see Section 1.4 for the definition of L(π, π′, s)

and the equality L(π, π′, s) =
∏n−1

i=1 L(π, s+ si) when π′ = |.|s1 × · · · × |.|sm).
Using this theorem, it is then shown in [J-P-S], using the functional equation
of L(π, π′, s), that the space W (π, θ)Kn(d) is a complex line spanned by W ess

π ,
and that W (π, θ)Kn(k) is zero for k < d.

In this paper, we will show the following result, using the interpretation in terms
of restriction of Whittaker functions of the Bernstein-Zelevinsky derivatives.
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Let π be a ramified generic representation of Gn, and πu be the unramified
component of the first nonzero spherical Bernstein-Zelevinsky derivative π(n−r)

of π (see Definition 1.3 for the precise definition). The representation πu is
an unramified representation of Langlands’ type of Gr when r ≥ 1. In this
situation, we show in Corollary 3.2, that there is a unique Whittaker function
W ess

π in W (π, θ), which is right Gn−1(O)-invariant, and which satisfies, for
a = diag(a1, . . . , an−1) ∈ An−1 and a′ = diag(a1, . . . , ar) ∈ Ar, the equality:

W (diag(a, 1)) = W 0
πu
(a′)ν(a′)(n−r)/2

1O(ar)
∏

r<i<n

1O∗(ai), (1)

when r ≥ 1, and
W (diag(a, 1)) =

∏

0<i<n

1O∗(ai) (2)

when r = 0.
Computing the integral I(W ess

π ,W 0
π′ , s) for an unramified representation π′

of Langlands’ type of Gn−1, we will obtain in Corollary 3.3 the statement
(more precisely a slightly more general statement) of the theorem stated above.

For GL(2, F ), a detailed account about newforms can be found in [Sc], the
author obtains Formula (1) (see Section 2.4 of [loc. cit.]) up to normalisation
by an ǫ-factor. For GL(n, F ), Miyauchi ([Mi]) recently obtained Formula (1),
assuming the existence of the essential vector, by using Hecke algebras, i.e.
generalising Shintani’s method for spherical representations.

Remark. The reason why we got interested in reproving the existence of such
a vector is the following. In [J-P-S], the uniqueness of such a vector is proved.
The proof of the existence is valid only for generic representations π appearing
as subquotients of representations parabolically induced by ramified characters
of GL(1, F ) and cuspidal representations of GL(r, F ) for r ≥ 2, i.e. generic
representations whith L-function equal to one.
Before we explain this, let us mention that Jacquet (see [J]) found a simple fix
for the proof of [J-P-S], so that the motivation of writing our note is really to
give a constructive proof of the existence of this vector, which provides a nice
application of the techniques developed in [C-P].

In [J-P-S], the following is shown: for fixed W in W (π, θ), the function

P (W, q−s1 , . . . , q−sn−1) = I(W,W (q−s1 , . . . , q−sn−1), 0)/

n−1∏

i=1

L(π, si)

belongs to the ring C[q±s1 , . . . , q±sn−1 ]Sn−1 of symmetric Laurent polynomials
in the variables q−si . It is also shown that the existence of the essential vector
is equivalent to the fact that the vector space

I(π) = {P (W, q−s1 , . . . , q−sn−1),W ∈ W (π, θ)},
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which is actually an ideal, is equal to the the full ring

C[q±s1 , . . . , q±sn−1 ]Sn−1 .

The argument used to prove it goes like this:
For W well chosen, P (W, qs1 , . . . , q−sn−1) is equal to

n−1∏

i=1

1/L(π, si).

We denote by Q the element 1/L(π, s) of C[q−s], so that

P (W, q−s1 , . . . , q−sn−1) =

n−1∏

i=1

Q(q−si).

Because of the functional equation of the L-function L(π, |.|s1 ×· · ·× |.|sn−1 , s),
denoting π∨ the smooth contragredient of π, one shows that I(π) also contains
the product

∏n−1
i=1 Q′(q−1qsi), where

Q′(q−s) = 1/L(π∨, s).

Proposition 2.1. of the paper then shows that Q′(q−1qs) and Q(q−s) are prime
to one another in C[q±s], and they deduce from this that no maximal ideal

Iq−a1 ,...,q−an−1 = {R ∈ C[q±a1 , . . . , q±an−1 ], R(q±a1 , . . . , q±an−1) = 0}

for (a1, . . . , an−1) in Cn−1, contains
∏n−1

i=1 Q′(q−1qsi) and
∏n−1

i=1 Q(q−si) to-
gether, which implies the result.
This last step is false as soon as n ≥ 3, and there are a and b in C∗ such
that Q(a) = Q′(q−1b−1) = 0, because then both products belong to any ideal
Ia,b,...,xn−1 . This is the case as soon as the degree d◦(Q) of Q satisfies d◦(Q) ≥ 1.
However, using the functional equation of L(π, |.|z1 × · · · × |.|zn−1), and the
cyclicity of W (q−z1 , . . . , q−zn−1) in W (|.|z1 × · · · × |.|zn−1 , θ) when Re(zi) ≥
Re(zi+1), Jacquet noticed (see [J]) that one can find for every (a1, . . . , an−1)
in Cn−1, a polynomial in I(π), taking the value 1 when evaluated at
(q±a1 , . . . , q±an−1), so I(π) is indeed equal to C[q±s1 , . . . , q±sn−1 ]Sn−1 .

1 Preliminaries

In this section, we first recall basic facts about smooth representations of locally
profinite groups. We then focus on Gn, recall results from [B-Z] about deriva-
tives, then introduce the L-function of a pair of representations of Whittaker
type, we discuss espacially the unramified case.
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1.1 Smooth representations, restriction and induction

When G is an l-group (locally compact totally disconnected group), we denote
by Alg(G) the category of smooth complex G-modules. We denote by Ĝ the
group of smooth characters (smooth representations of dimension 1) of G. If
(π, V ) belongs to Alg(G), H is a closed subgroup of G, and χ is a character of
H , we denote by V (H,χ) the subspace of V generated by vectors of the form
π(h)v − χ(h)v for h in H and v in V . This space is stable under the action of
the subgroup NG(χ) of the normalizer NG(H) of H in G, which fixes χ.
We denote by δG the positive character of G such that if µ is a right Haar
measure on G, and int is the action of G on smooth functions f with compact
support in G, given by (int(g)f)(x) = f(g−1xg), then µ ◦ int(g) = δG(g)µ for
g in G.
The space V (H,χ) is NG(χ)-stable. Thus, if L is a closed-subgroup of NG(χ),
and δ′ is a (smooth) character of L (which will be a normalising character dual
to that of normalised induction later), the quotient VH,χ = V/V (H,χ) (that
we simply denote by VH when χ is trivial) becomes a smooth L-module for the
(normalised) action l.(v + V (H,χ)) = δ′(l)π(l)v + V (H,χ) of L on VH,χ.
We denote by V H the subspace of vectors of V fixed by H ; for H compact
and open, the functor V 7→ V H from Alg(G) to Alg(G0) is exact ([B-H], 2.3.,
Corollary 1).
We say that (π, V ) in Alg(G) is admissible if for any compact open subgroup
H of G, the vector space V H is finite dimensional.
If H is a closed subgroup of an l-group G, and (ρ,W ) belongs to Alg(H), we
define the objects (indGH(ρ), Vc = indGH(W )) and (IndGH(ρ), V = IndGH(W )) of
Alg(G) as follows. The space V is the space of smooth functions from G to W ,
fixed under right translation by the elements of a compact open subgroup Uf

of G, and satisfying f(hg) = ρ(h)f(g) for all h in H and g in G. The space Vc

is the subspace of V , consisting of functions with support compact mod H , in
both cases, the action of G is by right translation on the functions.
We recall that by Frobenius reciprocity law ([B-H], 2.4.), the spaces
HomG(π, Ind

G
H(ρ)) and HomH(π|H , ρ) are isomorphic when π (resp. ρ) be-

longs to Alg(G) (resp. Alg(H)).
If the group G is exhausted by compact subsets (which is the case of closed
subgroups of Gn), and (π, V ) is irreducible, it is known ([B-H], 2.6., Corollary
1) that the center Z of G acts on V by the so-called central character of π
which we will denote cπ. When G = Gn, then Z identifies with F ∗. By defini-
tion, the real part Re(χ) of a character χ of F ∗ is the real number r such that
|χ(t)|C = |t|r, where |z|C =

√
zz̄ for z in C.

1.2 Parabolic induction and segments for GL(n)

Now we focus on the case G = Gn, we will only consider smooth representations
of its closed subgroups. It is known that irreducible representations of Gn are
admissible (see [C2]).
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If n ≥ 1, let n̄ = (n1, . . . , nt) be a partition of n of length t (i.e. an ordrered
set of t positive integers whose sum is n), we denote by Mn̄ to be the Levi
subgroup of Gn, of matrices diag(g1, . . . , gt), with each gi in Gni

, by Nn̄ the

unipotent subgroup of matrices



In1 ⋆ ⋆

. . . ⋆
Int


, and by Pn̄ the standard

parabolic subgroup Mn̄Nn̄ (where Mn̄ normalises Nn̄). Note that M(1,...,1) is
equal to An, and N(1,...,1) = Nn. For each i, let πi be a smooth representation
of Gni

, then the tensor product π1 ⊗ · · · ⊗ πt is a representation of Mn̄, which
can be considered as a representation of Pn̄ trivial on Nn̄. We will use the
product notation

π1 × · · · × πt = IndGn

Pn̄
(δ

1/2
Pn̄

π1 ⊗ · · · ⊗ πt)

for the normalised parabolic induction. Parabolic induction preserves finite
length and admissibility (see [B-Z] or [C2]).
We say that an irreducible representation (ρ, V ) of Gn is cuspidal, if the Jacquet
module VNn̄

is zero whenever n̄ is a proper partition of n (i.e. we exclude
n̄ = (n)).
Suppose that n̄ = (m, . . . ,m) is a partition of n of length l, and that ρ is a
cuspidal representation of Gm. Then Theorem 9.3. of [Z] implies that the Gn-
module ν−(l−1)ρ× ν−(l−2)ρ× · · · × ν−1ρ× ρ has a unique irreducible quotient
which we denote [ν−(l−1)ρ, ν−(l−2)ρ, . . . , ν−1ρ, ρ]. We will call such a represen-
tation a segment, it is known that segments are the quasi square integrable
representations of Gn, but we won’t need this result.
We end this paragraph with a word about induced representations of Lang-
lands’ type:

Definition 1.1. Let ∆1, . . . ,∆t be segments of respectively Gn1 , . . . , Gnt
, and

suppose that Re(c∆i
) ≥ Re(c∆i+1). Let n = n1+· · ·+nt, then the representation

∆1 × · · · ×∆t of Gn is said to be induced of Langlands’ type.

These representations enjoy many remarkable properties, some of which we will
recall later, here is a first one (which is the main result of [Sil]).

Proposition 1.1. Let π be induced of Langlands’ type, then π has a unique ir-
reducible quotient Q(π). Moreover, considering that isomorphic representations
are equal, the map π 7→ Q(π) gives a bijection between the set of induced repre-
sentations of Langlands’ type of Gn, and the set of irreducible representations
of Gn.

1.3 Berstein-Zelevinsky derivatives

For n ≥ 2 we denote by Un the group of matrices of the form

(
In−1 v

1

)
.
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For n > k ≥ 1, the group Gk embeds naturally in Gn, and is given by matrices
of the form diag(g, In−k). We denote by Pn the mirabolic subgroup Gn−1Un

of Gn for n ≥ 2, and P1 = {1G1}. If one sees Pn−1 as a subgroup of Gn−1

itself embedded in Gn, then Pn−1 is the normaliser of θ|Un
in Gn−1 (i.e. if

g ∈ Gn−1, then θ(g−1ug) = θ(u) for all u ∈ Un if and only if g ∈ Pn−1). We
define the following functors:

• The functor Φ− from Alg(Pk) to Alg(Pk−1) such that, if (π, V ) is
a smooth Pk-module, Φ−V = VUk,θ, and Pk−1 acts on Φ−(V ) by
Φ−π(p)(v + V (Uk, θ)) = δPk

(p)−1/2π(p)(v + V (Uk, θ)).

• The functor Φ+ from Alg(Pk−1) to Alg(Pk) such that, for π in Alg(Pk−1),

one has Φ+π = indPk

Pk−1Uk
(δ

1/2
Pk

π ⊗ θ).

• The functor Φ̂+ from Alg(Pk−1) to Alg(Pk) such that, for π in Alg(Pk−1),

one has Φ̂+π = IndPk

Pk−1Uk
(δ

1/2
Pk

π ⊗ θ).

• The functor Ψ− from Alg(Pk) to Alg(Gk−1), such that if (π, V ) is
a smooth Pk-module, Ψ−V = VUk,1, and Gk−1 acts on Ψ−(V ) by
Ψ−π(g)(v + V (Uk, 1)) = δPk

(g)−1/2π(g)(v + V (Uk, 1)).

• The functor Ψ+ from Alg(Gk−1) to Alg(Pk), such that for π in

Alg(Gk−1), one has Ψ+π = indPk

Gk−1Uk
(δ

1/2
Pk

π ⊗ 1) = δ
1/2
Pk

π ⊗ 1.

These functors have the following properties which can be found in [B-Z]:

Proposition 1.2. a) The functors Φ−, Φ+, Ψ−, and Ψ+ are exact.
b) Ψ− is left adjoint to Ψ+.
b’) Φ− is left adjoint to Φ̂+.
c) Φ−Ψ+ = 0 and Ψ−Φ+ = 0.
d) Ψ−Ψ+ ≃ Id and Φ−Φ+ ≃ Id.
e) One has the exact sequence 0 → Φ+Φ− → Id → Ψ+Ψ− → 0.

Following [C-P], if τ belongs to Alg(Pn), we will denote (Φ−)kτ by τ(k), and
as usual, τ (k) will be defined as Ψ−τ(k−1).

Because of e), τ has a natural filtration of Pn-modules 0 ⊂ τn ⊂ · · · ⊂ τ1 = τ ,
where τk = Φ+k−1

Φ−k−1
τ . We will use the notation τ(k),i for (τ(k))i. The

following observation is just a restatement of the definitions:

Lemma 1.1. If τ belongs to Alg(Pn), then τk = Φ+(τ(1),k−1) for k ≥ 1.
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1.4 Representations of Whittaker type and their L-functions

We recall that we fixed a character θ of conductor O in the introduction.

Definition 1.2. Let π be an admissible representation of Gn, we say that π
is of Whittaker type π if Hom(π, IndGn

Nn
(θ)) is of dimension 1, or equivalently,

according to Frobenius reciprocity law, if the space HomNn
(π, θ) is of dimension

1. We denote by W (π, θ) the image of π in IndGn

Nn
(θ), it is called the Whittaker

model of π (with respect to θ), it is a quotient of π.

Being of Whittaker type does not depend on the character θ of (F,+), as
another non trivial character θ′ of (F,+) will give birth to a character θ′ of
Nn, conjugate to θ by An.

In terms of derivatives, as the representation IndPn

Nn
(θ) is isomorphic to

(Φ̂+)n−1Ψ+(1), where 1 is the trivial representation of G0, applying b) and
b′) of Proposition 1.2, we obtain that HomNn

(π, θ) ≃ C if and only if π(n) = 1.
Applying this to product of segments, and using the rules of “derivation“ given
in Lemma 3.5 of [B-Z] and Proposition 9.6. of [Z], we obtain that if ∆1, . . . ,∆t

are segments of Gn1 , . . . , Gnt
respectively, the representation π = ∆1×· · ·×∆t

of Gn (for n = n1 + · · · + nt) is of Whittaker type. If the segments ∆i are
ordered so that π is of Langlands’ type, we can say more according to the main
result of [J-S 3].

Proposition 1.3. For n ≥ 1, let π be a representation of Gn, which is induced
of Langlands’ type, then it has an injective Whittaker model, i.e. π ≃ W (π, θ)
(equivalently π embeds in IndGn

Nn
(θ)).

If π is irreducible and embeds in IndGn

Nn
(θ), it is a well-known theorem of

Gelfand and Kazhdan ([G-K]) that the multiplicity of π in IndGn

Nn
(θ) is 1, we

then say that π is generic. We recall (Theorem 9.7 of [Z]), that every generic
representation π of GL(n, F ) can be written uniquely, up to permutation of
the terms in the product, as a commutative product of unlinked (see 4.1. of
[Z]) segments

[ν−(k1(π)−1)ρ1(π), . . . , ρ1(π)]× · · · × [ν−(kt(π)−1)ρt(π), . . . , ρt(π)].

In particular, generic representations are the representations of Langlands’
type which are irreducible.

We now recall from [J-P-S 2], some results about the L-function of a pair of
representations of Whittaker type. Let π be a representation of Gn of Whittaker
type, and π′ be a representation of Whittaker type of Gm, with respective
Whittaker models W (π, θ) and W (π′, θ−1), for n ≥ m ≥ 1.
When n > m, and W and W ′ are respectively in W (π, θ) and W (π′, θ−1), we
write

I(W,W ′, s) =

∫

Nm\Gm

W

(
g

In−m

)
W ′(g)ν(g)s−(n−m)/2dg.

Documenta Mathematica 18 (2013) 1191–1214



Essential Whittaker Functions for GL(n) 1199

When n = m, and W and W ′ are respectively in W (π, θ) and W (π′, θ−1), φ is
in C∞

c (Fn), and η is the row vector (0, . . . , 0, 1) in the space M(1, n, F ) of row
matrices 1 by n with entries in F , we write

I(W,W ′, φ, s) =

∫

Nn\Gn

W (g)W ′(g)φ(ηg)ν(g)sdg.

It is shown in [J-P-S 2] that these integrals converge absolutely for Re(s) large,
and define elements of C(q−s).
If n > m, the integrals I(W,W ′, s) (which we shall also write I(W ′,W, s) when
convenient) span, when (W,W ′) varies in W (π, θ) × W (π′, θ−1), a fractional
ideal of C[qs, q−s], which is generated by a unique Euler factor L(π, π′, s). If
n = m, the integrals I(W,W ′, φ, s) span, when (W,W ′, φ) varies in W (π, θ) ×
W (π′, θ−1)× C∞

c (Fn), a fractional ideal of C[qs, q−s], which is generated by a
unique Euler factor L(π, π′, s). If n < m, we define L(π, π′, s) to be L(π′, π, s).
We recall Proposition 9.4 of [J-P-S 2].

Proposition 1.4. For n ≥ m ≥ 1, if π = ∆1 × · · · ×∆t is a representation of
Gn induced of Langlands’ type, and π′ = ∆′

1 × · · · ×∆′
u is a representation of

Gm induced of Langlands’ type, then L(π, π′, s) =
∏

i,j L(∆i,∆
′
j , s).

Finally, we recall that it is proved in Section 5 of [J-P-S 2], that if π is a
generic representation of Gn, and χ is a character of G1, one has the equality
L(π, χ, s) = L(χ⊗π, s) between the Rankin-Selberg L-function on the left, and
the Godement-Jacquet L-function on the right.

1.5 Unramified representations

We say that a representation (π, V ) of Gn is unramified (or spherical), if it
admits a nonzero Gn(O)-fixed vector in its space. If it is the case, we recall
that the Hecke convolution algebra Hn (whose elements are the functions with
compact support on Gn, which are left and right invariant under Gn(O)),
acts on V Gn(O) (when V Gn(O) is of dimension 1, the action is necessarily
by a character). The Hecke algebra Hn is commutative and isomorphic by
the Satake isomorphism to the algebra C[X±1

1 , . . . , X±1
n ]Sn according to [Sat].

Hence, a character of Hn is associated to a unique set of nonzero complex num-
bers {z1, . . . , zn}, corresponding to the evaluation P 7→ P (z±1

1 , . . . , z±1
n ) from

C[X±1
1 , . . . , X±1

n ]Sn to C. It is known that when π is unramified and irreducible
(see Section 4.6 in [Bu] for example), then V Gn(O) is one dimensional, and that
the corresponding character of Hn determines π, in which case the associated
set of nonzero complex numbers is called the Satake parameter of π.
We recall with proofs, some classical facts about parabolically induced spherical
representations.

Proposition 1.5. Let πi be a representation of Gni
for i between 1 and t,

n = n1 + · · ·+ nt, Mn̄ be the standard Levi subgroup of n corresponding to the
partition (n1, . . . , nt), and π = π1×· · ·×πt. The vector space HomGn(O)(1, π)
is isomorphic to HomMn̄∩Gn(O)(1, π1 ⊗ · · · ⊗ πt).
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Proof. From Mackey’s theory ([B-Z], Theorem 5.2.), as Gn is equal to
the double-class Pn̄Gn(O), the restriction of π to Gn(O) is equal to
Ind

Gn(O)
Mn̄∩Gn(O)(π1⊗· · ·⊗πt). The result then follows from Frobenius reciprocity

law.

We have the following corollaries to this.

Corollary 1.1. Let χ1, . . . , χn be unramified characters of F ∗, then the repre-
sentation π = χ1×· · ·×χn of Gn is unramified, and πGn(O) is one dimensional.
In particular, by the exactness of the functor V 7→ V Gn(O) from Alg(Gn) to
Alg(G0), the representation π has only one irreducible spherical subquotient.

When π = |.|s1 × · · ·× |.|sn is an unramified representation of Gn induced from
the Borel subgroup, we just saw that πGn(O) is of dimension 1. The character
of Hn, given by its action on πGn(O) corresponds to the set {q−s1 , . . . , q−sn}.
If π is moreover of Langlands’ type, it is the Satake parameter of Q(π) thanks
to the next corollary.

Corollary 1.2. If π = χ1 × · · · × χn is as above, but moreover of Langlands’
type, then it is the irreducible quotient of π which is spherical. In particular, π
is spanned by πGn(O).

Proof. One checks by induction on n the following assertion: the represen-
tation π can be written π1 × · · · × πt, where for each i, the representation
πi is equal to ν(li−1)/2µi × ν(li−3)/2µi · · · × ν(1−li)/2µi for a positive inte-
ger li and an unramified character µi of F ∗, and such that the segments
[π′

i] = [ν(1−li)/2µi, . . . , ν
(li−1)/2µi] are unlinked, the character ν(1−lt)/2µt is

equal to χn, and the segment [π′
t] contains any other [π′

i] in which χn occurs
(i.e. if χn = νrµi for r ∈ 1

2Z between (1−li)/2 and (li−1)/2, then r = (1−li)/2
and li ≤ lt). From [Z], Section 2, the irreducible quotient of πi is the irreducible
submodule of ν(1−li)/2µi × · · · × ν(li−1)/2µi, i.e. the character µ̃i = µi ◦ det of
Gli . The representation µ̃1×· · ·× µ̃l is thus a quotient of π, which is irreducible
by Theorem 4.2 of [Z], hence it is its irreducible quotient. It is spherical from
Proposition 1.5, as the representations µ̃i are spherical.

Corollary 1.3. A segment ∆ of Gn, for n ≥ 2, is always ramified.

Proof. If ∆ was unramified, as it is irreducible, its Satake parameter would
be equal to a set {q−s1 , . . . , q−sn}, hence the same as that of Q(π), for π =
|.|s1 × · · · × |.|sn (if we order the si’s in a correct way). In particular, ∆ would
be equal to Q(π), which is absurd according to Proposition 1.1.

For unramified representations of Langlands’ type, normalised spherical Whit-
taker functions are test functions for L factors. If π is an unramified represen-
tation of Langlands’ type, we denote by W 0

π the spherical function in W (π, θ)
which is equal to 1 on Gn(O), and call it the normalised spherical Whittaker
function of π. In [S], Shintani gave an explicit formula for W 0

π in terms of the
Satake parameter of π.
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Using this formula, Jacquet and Shalika found (Proposition 2.3 of [J-S], and
equality (3) in Section 1 of [J-S 2]), for π and π′ two unramified representa-
tions of Langlands’ type (see the discussion after Equations (3) and (4) below)
of Gn and Gm respectively, and for correct normalisations of Haar measures,
the equalities:

L(π, π′, s) = I(W 0
π ,W

0
π′ ,1On , s)

=

∫

An

W 0
π (a)W

0
π′(a)1O(an)δBn

(a)−1ν(a)sd∗a, (3)

when n = m, and

L(π, π′, s) = I(W 0
π ,W

0
π′ , s)

=

∫

Am

W 0
π

(
a

In−m

)
W 0

π′(a)δBm
(a)−1ν(a)s−(n−m)/2d∗a (4)

when n > m.
In the aforementioned papers, Jacquet and Shalika work with generic represen-
tations, however, their proofs extend verbatim to unramified representations of
Langlands’ type. Indeed, the formula for W 0

π in terms of Satake parameters is
still valid, and thanks to Proposition 1.4, the factor L(π, π′, s) is still equal to
(using notations of [J-S] and [J-S 2]) the Artin factor 1/det(1− q−sA⊗A′) for
A and A′ diagonal matrices corresponding to the Satake parameters of π and
π′ respectively. In particular, when π is generic, W 0

π is the essential vector of π.

Now let π = ∆1 × · · · × ∆t be a generic representation of Gn, written as a
unique product of the unlinked segments ∆i = [ν−(ki(π)−1)ρi(π), . . . , ρi(π)],
and π′ = µ1 × · · · × µm be an unramified representation of Gm of Langlands’
type, for 1 ≤ m ≤ n. One has, according to Proposition 1.4 and Theorem 8.2.
of [J-P-S 2] (whose proof is independant of [J-P-S]), the equality of Rankin-
Selberg L-functions L(π, π′, s) =

∏
i,j L(ρi(π), µj , s).

We notice that L(ρi(π), µj , s) is equal to 1 unless ρi(π) is an unramified char-
acter of G1. Hence, one has the equality

L(π, π′, s) =
∏

{i,ρi(π)∈F̂∗/O∗,j}

L(ρi(π), µj , s).

This incites us to introduce the following representation.

Definition 1.3. Let π = ∆1 × · · · × ∆t be a generic representation of Gn,
with ∆i = [ν−(ki(π)−1)ρi(π), . . . , ρi(π)]. Let r be the cardinality of the set

{ρj(π), ρj(π) ∈ F̂ ∗/O∗}. When this set is non empty, denote by χ1, . . . , χr

its elements ordered such that Re(χi) ≥ Re(χi+1) for 1 ≤ i ≤ r − 1. We de-
fine πu as the trivial representation of G0 when r = 0, and as the unramified
representation of Langlands type χ1 × · · · × χr of Gr when r ≥ 1.
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Let π a generic representation of Gn, and π′ be an unramified representation
of Gm of Langlands’ type, with 1 ≤ m ≤ n. If we set L(πu, π

′, s) = 1 when πu

is the trivial representation of G0, we have, according to Proposition 1.4:

L(π, π′, s) = L(πu, π
′, s). (5)

From now on, we will order the segments ∆i in the generic representation π,
such that ρi(π) is an unramified character χi of G1 for 1 ≤ i ≤ r, is not such a
character for i ≥ r + 1, and Re(χi) ≥ Re(χi+1) for 1 ≤ i ≤ r − 1.

2 Mirabolic restriction, sphericity, and restriction of Whit-
taker functions

In this section, we first give results on the derivative functors and how they
act on subspaces fixed by compact subgroups, then we recall some results from
[C-P] about their interpretation in terms of restriction of Whittaker functions.
We introduce a few more notations, in order to get a handy parametrisation
of the diagonal torus of Gn, in terms of simple roots. For k ≤ n, let Zk be
the center of Gk naturally embedded in Gn; we parametrise it by F ∗ using
the morphism βk : zk 7→ diag(zkIk, In−k). Hence the maximal torus An of Gn

is the direct product Z1.Z2 . . . Zn−1.Zn. We will sometimes (but not always)
omit the βk’s in this parametrisation and write (z1, . . . , zn) for the element
β1(z1) . . . βn(zn) of An. Notice that the i-th simple root αi has the property
that αi(z1, . . . , zn) = zi.

2.1 Mirabolic restriction and sphericity

We first give a corollary of Proposition 1.2, about a concrete interpretation
of Φ−, when restricted to Φ+(Alg(Pn)). Property d) of the aforementioned
proposition says that Φ− sends Φ+τ surjectively onto a Pn-module isomorphic
to τ . Writing Φ+τ as Ind

Pn+1

PnUn+1
(δ

1/2
Pn+1

τ ⊗ θ), we want to make the map Φ−

explicit between Ind
Pn+1

PnUn+1
(δ

1/2
Pn+1

τ ⊗ θ) and τ .

Proposition 2.1. For n ≥ 1, if τ belongs to Alg(Pn), then Φ− identifies with
the map f 7→ f(In+1) from Φ+τ to τ .

Proof. Call EI the map f 7→ f(In+1) from Φ+τ to τ . Let’s first show that
EI is surjective. If v belongs to the space V of τ , let U = In + M(n,Pl)
be a congruence subgroup of Gn, with l large enough for v to be fixed by
U ′ = U ∩ Pn. Call f the function from Pn to V , defined by

f

(
pu x

1

)
= δ

1/2
Pn+1

(p)θ(xn)τ(p)v,

for p ∈ Pn, u ∈ U , x ∈ Fn with bottom coordinate xn, and f(p′) = 0 when
p′ is not in PnUn+1U . The map f is well defined, because v is fixed by U ′. It
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is smooth as it is right invariant under Un+1(O)U (as θ is trivial on O). One
checks (see the proof of next Propositon for a detailed similar computation),
that f satsifies the requested left invariance under PnUn+1, so that f ∈ Φ+(V ).
Finally f(In+1) = v, thus f is a preimage of v via EI .
An easy adaptation of the Proposition 1.1. of [C-P] then shows that the Pn-
submodule Φ+τ(Un+1, θ) of Φ+(τ) is equal to Ker(EI). As a consequence, the
map EI induces an isomorphism EI between Φ−Φ+(τ) and τ , which is Pn-
equivariant. Hence, the following diagram, with the right isomorphism equal
to EI , commutes:

Φ+(τ)
Φ−

։ Φ−Φ+(τ)

=
≃

Φ+(τ)
EI

։ τ

We recall that for n ≥ 1, as a consequence of the Iwasawa decomposition, any
element g of Gn can be written in the form zpk with z in F ∗, p in Pn, and k in
Gn(O). We now notice that the restriction of Φ− to (Φ+τ)Pn+1(O) is surjective
onto τPn(O).

Proposition 2.2. For n ≥ 1, the map f 7→ f(In+1) from (Φ+τ)Pn+1(O) to
τPn(O) is surjective.

Proof. Let v0 be a vector in the space of τ which is Pn(O)-invariant, we claim
that the function f defined by

f

(
zpk x

1

)
= δ

1/2
Pn+1

(p)θ(xn)1O∗(z)τ(p)v0,

for z in F ∗, p in Pn, k in Gn(O), and x in Fn (with x the transpose of
(x1, . . . , xn)), is a preimage of v0 in (Φ+τ)Pn+1(O).
First we check that f is well-defined: if zpk = z′p′k′, this implies that z′ is equal
to z mod O∗, and p′ is equal to p mod Pn(O). Hence δ

1/2
Pn+1

(p) = δ
1/2
Pn+1

(p′),
1O∗(z′) = 1O∗(z), and τ(p′)v0 = τ(p)v0 as v0 is Pn(O)-invariant.
Then we check that f indeed belongs to Φ+(τ). Let p0 belong to Pn embedded
in Pn+1 by p 7→ diag(p, 1), let u0 belong to Un+1, and p1 belong to Pn+1, we
need to check the relations

f(p0p1) = δ
1/2
Pn+1

(p0)τ(p0)f(p1)

and
f(u0p1) = θ(u0)f(p1).

Write p1 =

(
zpk x

1

)
, we have f(p0p1) = f

(
zp0pk p0x

1

)
. As θ((p0x)n) =

θ(xn), we have

f(p0p1) = δ
1/2
Pn+1

(p0p)θ(xn)1O∗(z)τ(p0p)v0 = δ
1/2
Pn+1

(p0)τ(p0)f(p1)
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as wanted.

Write u0 =

(
In x0

1

)
, we also have

f(u0p1) = f

(
zpk x0 + x

1

)

= δ
1/2
Pn+1

(p)θ((x0 + x)n)1O∗(z)τ(p)v0 = θ(u0)f(p1)

as wanted.

If

(
k0 x0

1

)
belongs to Pn+1(O) (i.e. k0 ∈ Gn(O) and x0 ∈ On), as

θ((zpkx0)n) = 1 when z belongs to O∗, we have

f(

(
zpk x

1

)(
k0 x0

1

)
) = f

(
zpkk0 zpkx0 + x

1

)
= f

(
zpk x

1

)
,

and f is right Pn+1(O)-invariant. Finally, it is obvious that f(In+1) = v0.

Now we are able to prove the following property of Φ−, that we will be of great
use later.

Proposition 2.3. For n ≥ 1, if τ belongs to Alg(Pn), then Φ− maps

τPn(O) surjectively onto τ
Pn−1(O)

(1) , and Ψ− maps τGn−1(O) surjectively onto

τ (1)
Gn−1(O)

.

Proof. For the first part, we use the filtrations 0 ⊂ τn ⊂ · · · ⊂ τ1 = τ of
τ , and 0 ⊂ τ(1),n−1 ⊂ · · · ⊂ τ(1),1 = τ(1) of τ(1). But τi equals Φ+(τ(1),i−1)

because of Lemma 1.1, so that Φ− maps τ
Pn(O)
i onto τ

Pn−1(O)
(1),i−1 surjectively

according to Proposition 2.2. In particular, Φ− maps τPn(O)
2 , hence τPn(O) (as

τ
Pn(O)
2 ⊂ τPn(O)), onto τ

Pn−1(O)
(1),1 = τ

Pn−1(O)
(1) surjectively.

Ψ− maps τGn−1(O) surjectively onto τ (1)
Gn−1(O)

, because Ψ− is surjective from
τ to τ (1), and the functor V 7→ V Gn−1(O) is exact from Alg(Gn−1) to Alg(G0)
as Gn−1(O) is compact open in Gn−1 (τ is a Gn−1-module by restriction).

2.2 Mirabolic restriction for Whittaker functions

We start by recalling Proposition 1.1 of [C-P], which gives an interpretation of
Φ− in terms of restriction of Whittaker functions.

Proposition 2.4. For k ≥ 2, and any submodule τ of (ρ, C∞(Nk\Pk, θ))
(where ρ denotes the action of Pk by right translation), the map

R : W 7→ δ
−1/2
Pk

W|Pk−1
is Pk−1-equivariant from (ρ, C∞(Nk\Pk, θ)) to

(ρ, C∞(Nk−1\Pk−1, θ)), with kernel τ(Uk, θ). Hence it inducues a Pk−1-
modules isomorphism between Φ−τ and Im(R) ⊂ C∞(Nk−1\Pk−1, θ), so that
(ρ, Im(R)) is a model for Φ−τ .
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Notice that for k ≥ 2, if g ∈ Gk−1 equals zpk with z ∈ F ∗, p ∈ Pk−1, and
k ∈ Gn−1(O), then the absolute value of z depends only on g, so we can write
it |z(g)|. We now state a proposition that follows from the proofs of Proposition
1.6. of [C-P], about the interpretation of Ψ− in terms of Whittaker functions.

Proposition 2.5. Let τ be a Pk-submodule of C∞(Nk\Pk, θ), and suppose that
τ (1) is a Gk−1-module with central character c. Then, for any W in τ , for any
g in Gk−1, the quantity c−1(z)|z|−(k−1)/2W (diag(zg, 1)) is constant whenever
z is in a punctured neighbourhood of zero (maybe depending on g) in F ∗.

Remark 2.1. Notice that in the proof of the Proposition 1.6. of [C-P], τ is of
a particular form, and τ (1) is supposed to be irreducible. The only fact that is
actually needed is that τ (1) has a central character.

This has the following consequence.

Corollary 2.1. For k ≥ 2, let τ be a Pk-submodule of (ρ, C∞(Nk\Pk, θ)), and
suppose that τ (1) is a Gk−1-module with central character c, then Ψ− identifies
with the map

S : W 7→ [g 7→ lim
z→0

c−1(z)|z|(1−k)/2W (diag(zg, 1))δ
−1/2
Pk

(g)]

from τ to to C∞(Nk−1\Gk−1, θ). To be more precise, S has kernel τ(Uk, 1),
and it induces a Gk−1-modules isomorhism S between τ (1) and S(τ) ⊂
C∞(Nk−1\Gk−1, θ).

Proof. For W in τ , call W its image in τ (1), and call S(W ) the function

[g 7→ lim
z→0

c−1(z)|z|(1−k)/2W (diag(zg, 1))δ
−1/2
Pk

(g)]

in C∞(Nk−1\Gk−1, θ), which is well defined according to Proposition 2.5.

If u(x) =

(
Ik−1 x

1

)
belongs to Uk, then ρ(u(x))W (diag(zg, 1)) =

θ(z(gx)k−1)W (diag(zg, 1)). As θ(z(gx)k−1) = 1 for z small enough, we deduce
that S(ρ(u(x))W ) = S(W ), hence the kernel of S contains τ(Uk, 1). Conversely,
if S(W ) = 0, the smoothness of W and the Iwasawa decomposition imply that
W (g) is null for |z(g)| in a punctured neighbourhood of zero depending only on
W . According to Proposition 2.3. of [M] (which is a restatement of Proposition
1.3. of [C-P]), this means that W belongs to τ(Uk, 1).
The C-linear map S : W 7→ S(W ) induces a C-linear isomorphism S : W 7→
S(W ) between τ (1) and its image in (ρ, C∞(Nk−1\Gk−1, θ)). Moreover, it is a
Gk−1-equivariant because for g0 ∈ Gk−1, one has that S(τ (1)(g0)W ) equals

S(δ
−1/2
Pk

(g0)ρ(g0)W ) = δ
−1/2
Pk

(g0)S(ρ(g0)W ) = ρ(g0)S(W ) = ρ(g0)S(W ).
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We end this section by stating two technical lemmas about Whittaker functions
fixed under a maximal compact subgroup, the first is inspired from Lemma 9.2
of [J-P-S 2].

Lemma 2.1. For n ≥ 2, let τ be a Pn-submodule of C∞(Nn\Pn, θ), and let W
belong to τPn(O), then there exists W ′ in τPn(O), such that W ′(pβn−1(z)) =
W (p)1O∗(z) for p in Pn−1 and z in F ∗.

Proof. For l in Z, we denote by φl the characteristic function 1Pl of Pl. We fix

a Haar measure dt on F . The Fourier transform φ̂l

θ
with respect to θ and dt

is equal to λlφ−l for λl = dt(Pl) > 0. We denote by Φl the function ⊗n−1
i=1 φl,

which is the characteristic of the lattice ̟lOn−1 in Fn−1. We denote by u the
natural isomorphism between Fn−1 and Un. We also recall that any element
of τ is determined by its restriction to Gn−1.
We set W l(p) =

∫
x∈Fn−1 W (pu(x))Φl(x)dx for p in Pn and dx = dt1 ⊗

· · · ⊗ dtn−1, hence W l belongs to τ . Moreover if k belongs to Gn−1(O), and
g belongs to Gn−1, then W l(gk) is equal to

∫
x∈Fn−1 W (gku(x))Φl(x)dx =∫

x∈Fn−1 W (gu(kx))Φl(x)dx because W is Pn(O)-invariant, and this last inte-
gral is equal to

∫
x∈Fn−1 W (gu(x))Φl(k

−1x)dx =
∫
x∈Fn−1 W (gu(x))Φl(x)dx =

W l(g) because of the invariance of dx and Φl under Gn−1(O). It is also clear
that W l is invariant Un(O) because W is, hence W l belongs to τPn(O).
Now, for p in Pn−1 ⊂ Pn, and z in F ∗, we obtain:

W l(pβn−1(z)) =

∫

x∈Fn−1

W (pβn−1(z)u(x))Φl(x)dx

=

∫

x∈Fn−1

W (u(zpx)pβn−1(z))Φl(x)dx

=

∫

x∈Fn−1

θ((zpx)n−1)W (pβn−1(z))Φl(x)dx

= W (pβn−1(z))

∫

x∈Fn−1

Φl(x)θ(zxn−1)dx

= W (pβn−1(z))

∫

y∈̟lOn−2

dy

∫

t∈F

φl(t)θ(zt)dt

= λn−2
l W (pβn−1(z))φ̂l

θ
(z) = λn−1

l W (pβn−1(z))φ−l(z)

The function W ′ = W 0/λn−1
0 −W−1/λn−1

−1 thus satisfies

W ′(pβn−1(z))=W (pβn−1(z))(φ0−φ1)(z)=W (pβn−1(z))1O∗(z)=W (p)1O∗(z)

because W is invariant under βn−1(O
∗) ⊂ Pn(O).

Lemma 2.2. For n ≥ 2, let τ be a Pn-submodule of C∞(Nn\Pn, θ),
and let W belong to τGn−1(O), then there exists W ′ in τPn(O), such that
W ′(z1, . . . , zn−1, 1) = W (z1, . . . , zn−1, 1)1O(zn−1) for zi in F ∗.
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Proof. Let du be the Haar measure on Un, corresponding to the Haar measure
dx = dt1 ⊗ · · · ⊗ dtn−1 on Fn−1, normalised by dti(O) = 1 for i between 1
and n − 1. Now set W ′(g) =

∫
u∈Un(O)

W (gu)du. The vector W ′ is a linear
combination of right translates of W by elements of Un(O), so it belongs to
τ . It is clearly invariant under Un(O), and still invariant under Gn−1(O), as
Gn−1(O) normalises Un(O). The following computation then gives the result:

W ′(z1, . . . , zn−1, 1) =

∫

x∈On−1

W (β1(z1) . . . βn−1(zn−1)u(x))dx

=

∫

x∈On−1

W (u(β1(z1) . . . βn−1(zn−1)x)β1(z1) . . . βn−1(zn−1))dx

=

∫

x∈On−1

θ(zn−1xn−1)W (β1(z1) . . . βn−1(zn−1))dx

= 1̂O

θ
(zn−1)W (z1, . . . , zn−1, 1) = 1O(zn−1)W (z1, . . . , zn−1, 1),

the last equality because of the normalisation of the Haar measure on F .

3 Construction of the essential Whittaker function

We are now going to produce the essential vector of a generic representation
π of Gn, which will now be fixed untill the end. We recall recall that we
associated to π, an integer 0 ≤ r ≤ n, and an unramified representation of
Langlands’ type πu of Gr in Section 1.5.

We first notice that the subspace of π(n−r) fixed by Gr(O) is a complex line.

Proposition 3.1. Let π be generic representation of Gn. Then (π(n−r))Gr(O)

is of dimension 1. If v0 is a generator of (π(n−r))Gr(O), then the submodule
< Gr.v

0 > of π(n−r) spanned by v0 surjects onto πu.

Proof. Write π = ∆1×· · ·×∆t for the ordering of the ∆i’s fixed after Definition
1.3. According to Lemma 3.5. of [B-Z] the representation π(n−r) has a filtration
with subquotients ∆

(a1)
1 × · · · × ∆

(at)
t , with

∑
i ai = n − r. According to

Proposition 9.6 of [Z], πu appears as one of these subquotients, and by the
choice of r, the other nonzero subquotients amongst them all contain either
a segment as a factor (in the product notation) of some Gk for k ≥ 2, or a
ramified character of G1. According to Proposition 1.3, and Proposition 1.5
1.5, these other subquotients contain no nonzero Gn(O)-invariant vector. The
result then follows from the exactness of the functor V 7→ V Gn(O) from Alg(Gn)
to Alg(G0).

We also notice the following facts. First, from the theory of Kirillov models
(see [B-Z], Theorem 4.9), for n ≥ 2, the map W ∈ W (π, θ) 7→ W|Pn

is
injective, we denote by W (π(0), θ) its image. We choose this notation be-
cause Pn-module π(0) = π|Pn

is isomorphic to the submodule W (π(0), θ) of
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(ρ, C∞(Nn\Pn, θ)). Now if one applies Proposition 2.4 repeatedly to π(0), then
for r ≤ n − 1, the Pr+1-module π(n−r−1) is isomorphic to the submodule of

(ρ, C∞(Nr+1\Pr+1, θ)), whose vectors are the functions (
∏n

k=r+2 δ
−1/2
Pk

)W|Pr+1

for W ∈ W (π, θ) (where Pr+1 is embedded in Pn via p 7→ diag(p, In−r−1)), we
denote by W (π(n−r−1), θ) this Pr+1-module.

Proposition 3.1 has the following corollary.

Corollary 3.1. Under the condition 1 ≤ r ≤ n − 1, there exists W̃0 in
W (π(n−r−1), θ)

Gr(O) such that

W 0
πu
(g) = lim

z→0
c−1(z)|z|−r/2W̃0(diag(zg, 1))δ

−1/2
Pr+1

(g)

for all g in Gr. This implies that the representation πu occurs as a submodule
of π(n−r).

Proof. We take Ψ−(W (π(n−r−1), θ)) as a model for π(n−r), i.e. π(n−r) =

Ψ−(W (π(n−r−1), θ)). Let W̃0 be a preimage (which we shall normalise later), of
v0 under Ψ−, which we take in W (π(n−r−1), θ)

Gr(O) thanks to Proposition 2.3.
We denote by < Pr+1.W̃0 > the Pr+1-submodule of W (π(n−r−1), θ) spanned
by W̃0. By definition of Ψ−, we have

Ψ−(< Pr+1.W̃0 >) = Ψ−(< Gr.W̃0 >) =< Gr.v
0 > .

Now, Zn acts by a character c on < Gr.v
0 > (which is the central character of

πu as well according to Proposition 3.1). Let S be the map defined in Corollary
2.1 from < Pr+1.W̃0 > to C∞(Nr\Gr, θ). We know from this corollary, that S
factors to give an isomorphism S between < Gr.v

0 > and S(< Pr+1.W̃0 >).
Define W 0 as W 0 = S(W̃0) in C∞(Nr\Gr, θ), so that S(< Pr+1.W̃0 >) is equal
to Gr.W

0. As the Gr-module < Gr.W
0 > is isomorphic to < Gr.v

0 >, there is
a surjective Gr-module morphism from < Gr.W

0 > onto W (πu, θ) according to
Proposition 3.1. It sends W 0 to a nonzero multiple of W 0

πu
. We normalise W̃0,

such that the Whittaker function W 0 = S(W̃0) is equal to 1 on Gn(O). The
Hecke algebra Hr thus multiplies W 0 and W 0

πu
by the same character, as W 0

πu
is

the image of W 0 via a Gr-intertwining operator. Both are normalised spherical
Whittaker functions, they are thus equal according to [S]. In particular, we have
S(W̃0) = W 0

πu
, which is the first statement of the corollary. Next, this implies

the equalities < Gr.W
0 >=< Gr.W

0
πu

>= W (πu, θ), so the surjection from
< Gr.v

0 > onto W (πu, θ) is actually equal to the isomorphism S, hence πu

occurs as a submodule of π(n−r).

The following proposition then holds.

Proposition 3.2. Under the condition 1 ≤ r ≤ n − 1, there exists
in W (π(n−r−1), θ)

Pr+1(O) an element W0, such that W0(z1, . . . , zr, 1) =

δ
1/2
Pr+1

(z1, . . . , zr)W
0
πu
(z1, . . . , zr)1O(zr) for zr in F ∗.
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Proof. Let W̃0 be as in Corollary 3.1. By the claim in the proof of The-
orem 2.1 of [M] (the arguments of the claim in Proposition 1.6. of [C-P]
are actually sufficient here), there is N in N, such that W̃0(z1, . . . , zra, 1) =
cπu

(a)|a|r/2W̃0(z1, . . . , zr, 1) (parametrizing Ar+1 with the βi’s) for |zr| ≤ q−N

and |a| ≤ 1. For b in F ∗, call W̃0,b the function p 7→ W̃0(pβr(b))/(cπu
(b)|b|r/2)

defined on Pr+1, then W̃0,b still belongs to W (π(n−r−1), θ)
Gr(O), and

W̃0,b(z1, . . . , zr, 1)/(cπu
(zr)|zr|r/2) is constant with respect to zr whenever

|zr| ≤ q−N/|b|. We choose b in F ∗ satisfying |b| = q−N , so that the function
W̃0,b(z1, . . . , zr, 1)/(cπu

(zr)|zr|r/2) is constant with respect to zr for |zr| ≤ 1.
Hence, according to Corollary 3.1, for |zr| ≤ 1, we have the equalities

W̃0,b(z1, . . . , zr, 1)/(cπu
(zr)|zr|r/2) = W̃0(z1, . . . , zrb, 1)/(cπu

(zrb)|zrb|r/2)

= δ
1/2
Pr+1

(z1, . . . , zr−1, b)W
0
πu
(z1, . . . , zr−1, b)/(cπu

(b)|b|r/2)

= δ
1/2
Pr+1

(z1, . . . , zr−1, 1)W
0
πu
(z1, . . . , zr−1, 1).

They imply the equality

W̃0,b(z1, . . . , zr, 1) = δ
1/2
Pr+1

(z1, . . . , zr−1, zr)W
0
πu
(z1, . . . , zr−1, zr)

for |zr| ≤ 1. On the other hand, applying Lemma 2.2, there is
W0 is in W (π(n−r−1), θ)

Pr+1(O), such that W0(z1, . . . , zr, 1) is equal to
W̃0,b(z1, . . . , zr, 1)1O(zr), it is then clear that W0 has the desired property.

We now prove the main result of this paper.

Theorem 3.1. For n ≥ 2, let π be a ramified generic representation of Gn

(i.e. r ≤ n− 1). Then one can produce a Gn−1(O)-invariant function W ess
π in

W (π, θ), whose restriction to An−1 (when An−1 is parametrised by its simple
roots), is given by formula

W ess
π (z1, . . . , zn−1, 1)

= W 0
πu
(z1, . . . , zr)ν(z1, . . . , zr)

(n−r)/2
1O(zr)

n−1∏

j=r+1

1O∗(zj) (6)

when r ≥ 1, and by

W ess
π (z1, . . . , zn−1, 1) =

n−1∏

j=1

1O∗(zj) (7)

when r = 0. A function W ess
π with such properties is unique, and has image

W 0
πu

in π(n−r).
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Proof. Suppose first that we have r ≥ 1. We already constructed in the previous
proposition a vector W0 in W (π(n−r−1), θ)

Pr+1(O) such that

W0(z1, . . . , zr, 1) = δ
1/2
Pr+1

(z1, . . . , zr)W
0
πu
(z1, . . . , zr)1O(zr).

Then, applying Proposition 2.3 and then Lemma 2.1, we obtain W1 in
W (π(n−r−2), θ)

Pr+2(O), that satisfies

W1(z1, . . . , zr+1, 1) = δ
1/2
Pr+2

(z1, . . . , zr+1)W0(z1, . . . , zr, 1)1O∗(zr+1)

= δ
1/2
Pr+2

(z1, . . . , zr, 1)δ
1/2
Pr+1

(z1, . . . , zr)W
0
πu
(z1, . . . , zr)1O(zr)1O∗(zr+1).

Repeating this last step (Proposition 2.3 and then Lemma 2.1), we ob-
tain by induction for all k between 1 and n − r − 1, an element Wk in
W (π(n−r−1−k), θ)

Pr+k+1(O), that satisfies

Wk(z1, . . . , zr+k, 1) = δ
1/2
Pr+k+1

(z1, . . . , zr+k)Wk−1(z1, . . . , zr+k−1, 1)1O∗(zr+k)

= W 0
πu
(z1, . . . , zr)1O(zr)

r+k∏

j=r+1

1O∗(zj)
r+k+1∏

i=r+1

δ
1/2
Pi

(z1, . . . , zr, 1, . . . , 1︸ ︷︷ ︸
i−(r+1)×

).

We define W ess
π to be the element of W (π, θ) which restricts to Pn as Wn−r−1,

it is thus Gn−1(O)-invariant and satisfies Equation (6) of the statement of the
theorem, because

n∏

i=r+1

δ
1/2
Pi

(z1, . . . , zr, 1, . . . , 1︸ ︷︷ ︸
i−(r+1)×

) = |det(z1, . . . , zr)|
n−r

2

as δPi
(z1, . . . , zr, 1, . . . , 1) = |det(z1, . . . , zr)| for i > r.

If r = 0, we take for W0 the constant function on the trivial group P1 equal to
1 in W (π(n−1), θ) = W (π(n−1), θ)

P1(O). Again, thanks to Proposition 2.3 and
Lemma 2.1, there is W1 in W (π(n−2), θ)

P2(O) such that W1(z1, 1) = 1O∗(z1)
for z1 in F ∗, and we end as in the case r ≥ 1.
The function W ess

π is unique by the theory of Kirillov models, and its image in
π(n−r) is W 0

πu
by construction.

The expression of the restriction of W ess
π to An−1 in the usual coordinates is

the same.

Corollary 3.2. Let π be a ramified generic representation of Gn, then if
a = diag(a1, . . . , an−1) belongs to An−1, and a′ = diag(a1, . . . , ar) ∈ Ar, we
obtain Formulas (1) and (2) of the introduction:

W ess
π (diag(a, 1)) = W 0

πu
(a′)ν(a′)(n−r)/2

1O(ar)

n−1∏

j=r+1

1O∗(aj)
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when r ≥ 1, and

W ess
π (diag(a, 1)) =

n−1∏

j=1

1O∗(aj)

when r = 0.

Proof. We do the case r ≥ 1, the case r = 0 being simpler. If
diag(a1, . . . , an−1) = (z1, . . . , zn−1) belongs to An−1, we have ai = zi . . . zn−1,
hence if a′ = diag(a1, . . . , ar), we have (z1, . . . , zr) = (

∏n−1
i=r+1 zi)

−1a′ in Ar.
Equation (6) can thus be read:

W ess
π (diag(a, 1))

= W 0
πu
((

n−1∏

i=r+1

zi)
−1a′)ν((

n−1∏

i=r+1

zi)
−1a′)(n−1)/2

1O(zr)
n−1∏

i=r+1

1O∗(zi)

= W 0
πu
(a′)ν(a′)(n−r)/2

1O(ar)

n−1∏

i=r+1

1O∗(ai),

the last equality because if it is not 0 = 0, this means that zr+1, . . . , zn−1 all
belong to O∗, hence the inverse of their product as well, and W 0

πu
, ν, 1O∗ and

1O are all invariant under O∗.

We then have the following corollary.

Corollary 3.3. Let π be a generic representation of Gn with Whittaker
model W (π, θ). There exists in W (π, θ) a unique Gn−1(O)-invariant function
W ess

π equal to 1 on Gn−1(O), such that for every 1 ≤ m ≤ n − 1, and
every unramified representation π′ of Langlands’ type of Gm, with normalised
spherical function W 0

π′ in W (π′, θ−1), the equality I(W ess
π ,W 0

π′ , s) = L(π, π′, s)
holds for an appropriate normalisation of the invariant measure on Nm\Gm.

Proof. The unicity of a function W ess
π with such properties follows from [J-P-S].

If π is unramified (i.e. r = n), we set W ess
π = W 0

π and Equations (3) and (4)
show that it is the correct choice.
When r ≤ n−1, we again only treat the case r ≥ 1, the case r = 0 being similar,
but simpler (using Equation (2) instead of Equation (1)). We show that the
function W ess

π from the previous corollary satisfies the wanted equalities.
Thanks to Iwasawa decomposition, we have

I(W ess
π ,W 0

π′ , s) =

∫

Am

W ess
π (diag(a, In−m))W 0

π′ (a)δ−1
Bm

(a)ν(a)s−
(n−m)

2 d∗a′.

If m > r, using Equations (1) and δBm

(
a

Im−r

)
= δBm

(a)ν(a)m−r , we find

I(W ess
π ,W 0

π′ , s) =

∫

Ar

W 0
πu
(a′)W 0

π′

(
a′

Im−r

)
δ−1
Br

(a′)1O(ar)ν(a
′)s−

(m−r)
2 d∗a′
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=

∫

Ar

W 0
πu
(a′)W 0

π′

(
a′

Im−r

)
δ−1
Br

(a′)ν(a′)s−
(m−r)

2 d∗a′ = I(W 0
π′ ,W 0

πu
, s),

as W 0
π′

(
a′

Im−r

)
vanishes for |ar| > 1. Hence, by Equations (4) and (5), we

obtain
I(W ess

π ,W 0
π′ , s) = L(πu, π

′, s) = L(π, π′, s).

If m = r, using Equation (1), we find

I(W ess
π ,W 0

π′ , s) =

∫

Ar

W 0
πu
(a′)W 0

π′

(
a′
)
δ−1
Br

(a′)1O(ar)ν(a
′)sd∗a′,

but this integral is equal to

I(W 0
πu
,W 0

π′ ,1Om , s) = L(πu, π
′, s) = L(π, π′, s)

by Equations (3) and (5).
If m < r, Equation (1) gives

I(W ess
π ,W 0

π′ , s) =

∫

Am

W 0
πu
(diag(a, Ir−m))W 0

π′(a)δ−1
Bm

(a)ν(a)s−
(r−m)

2 d∗a,

and this integral is equal to

I(W 0
πu
,W 0

π′) = L(πu, π
′, s) = L(π, π′, s)

by Equations (4) and (5).
In all cases, we have

I(W ess
π ,W 0

π′ , s) = L(π, π′, s).
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