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Abstract. In this article, we construct a class of anticyclotomic
p-adic Rankin-Selberg L-functions for Hilbert modular forms, general-
izing the construction of Brakoc̆ević, Bertolini, Darmon and Prasanna
in the elliptic case. Moreover, building on works of Hida, we give a
necessary and sufficient criterion for the vanishing of the Iwasawa µ-
invariant of this p-adic L-function vanishes and prove a result on the
non-vanishing modulo p of central Rankin-Selberg L-values with anti-
cyclotomic twists. These results have future applications to Iwasawa
main conjecture for Rankin-Selberg convolution and Iwasawa theory
for Heegner cycles.
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Introduction

The purpose of this article is to (i) construct a class of anticyclotomic
Rankin-Selberg p-adic L-functions for Hilbert modular forms and study the
vanishing/non-vanishing of the associated Iwasawa µ-invariant, (ii) prove a re-
sult on the non-vanishing modulo p of central Rakin-Selberg L-values with
anticyclotomic twists. Let F be a totally real algebraic number field of degree
d over Q and K be a totally imaginary quadratic extension of F . Denote by
z 7→ z the non-trivial element in Gal(K/F). Let π be an irreducible cuspidal
automorphic representation of GL2(AF ) with unitary central character ω. Let
πK be a lifting of π to K constructed in [Jac72, Thm. 20.6]. Then πK is an irre-
ducible automorphic representation of GL2(AK), which is cuspidal if π is not
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710 M.-L. Hsieh

obtained from the automorphic induction from K/F . Let λ : A×
K/K× → C×

be a unitary Hecke character of K× such that

(0.1) λ|A×
F
= ω−1.

The automorphic representation πK ⊗ λ is therefore conjugate self-dual. For
each place v of F , we can associate a local L-function L(s, πKv ⊗ λv) and a
local epsilon factor ε(s, πKv ⊗λv, ψv) (which depends on a choice of non-trivial
character ψv : Fv → C×) to the local constituent πKv ⊗ λv of πK ⊗ λ ([JL70,
Thm. 2.18 (iv)]). Denote by L(s, πK ⊗ λ) the global L-function obtained by
the meromorphic continuation of the Euler product of local L-functions at all
finite places. In this paper, we study the p-adic variation of the central value
L(12 , πK ⊗ λ) with anticyclotomic twists under certain hypotheses.
To introduce our hypotheses precisely, we need some notation. Fix a CM-type
Σ of K. Namely, Σ is a subset of Hom(K,C) such that

Σ ⊔Σ = Hom(K,C) ; Σ ∩Σ = ∅.
Then Σ induces an identification K⊗Q R ≃ CΣ. We shall identify Σ with the
set of archimedean places of F via the restriction. For each k =

∑
σ∈Σ kσσ ∈

Z[Σ], we write ΓΣ(k) =
∏
σ∈Σ Γ(kσ) (Γ is the usual Gamma function), and

if x = (xσ) ∈ (A×)Σ for an algebra A, we let xk :=
∏
σ∈Σ x

kσ
σ . For a Hecke

character χ : A×
K/K× → C×, we denote by χ∞ : (K ⊗Q R)× → C× its

archimedean component, and we say χ is of infinity type (k1, k2) for k1, k2 ∈
2−1Z[Σ] such that k1 − k2 ∈ Z[Σ] if

χ∞(z) = zk1−k2(zz)k2 for all z ∈ (K ⊗Q R)× ≃ (C×)Σ .

For each ideal a of F (resp. ideal A of K), we have a unique factorization
a = a+a− (resp. A = A+A−), where a+ (resp. A+) is only divisible by primes
split in K and a− (resp. A−) is divisible by primes inert or ramified in K. Let
n = n+n− be the conductor of π. We define the normalized local root number
attached to πKv and λv for each place v by

ε∗(πKv , λv) := ε(
1

2
, πKv ⊗ λv, ψv) · ωv(−1).

We remark that the value ε(12 , πKv ⊗ λv, ψv) does not depend on the choice of
ψv.
We assume that π has infinity type k =

∑
σ kσσ ∈ Z>0[Σ] and λ has infinity

type (k2 ,−k2 ). In other words, πσ is a discrete series or limit of discrete series
of weight kσ with unitary central character at every archimedean place σ. In
particular, this implies that {kσ}σ∈Σ have the same parity and the local root
number ε∗(πKv , λv) = +1 at every archimedean place. We further assume the
following local root number hypothesis for (π, λ):

Hypothesis A. The local root number ε∗(πKv , λv) = +1 for each v | n−.

In particular, the above hypothesis holds if n− = (1).
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We prepare some notation in Iwasawa theory. Let p be an odd rational prime.
Fix an embedding ι∞ : Q →֒ C and isomorphism ι : C

∼→ Cp once and for all.
Throughout this article, we make the following assumption

Σ is p-ordinary.(ord)

Let Σp be the set of p-adic places of K induced by Σ. Then the ordinary
assumption (ord) means that Σp and its complex conjugation Σp gives a full
partition of the set of p-adic places of K. If L is a number field, we write
GL = Gal(Q/L) for the absolute Galois group. Denote by recK : A×

K → GabK
the geometrically normalized reciprocity law. Recall that we say a continuous
character φ̂ : GabK → C×

p is locally algebraic of weight (k1, k2) with k1, k2 ∈ Z[Σ]

if χ(recK(a)) = ak1ak2 for every a ∈ (K ⊗ Qp)
× close to 1 (See also [Ser68,

Chapter III, §2]). Let K−
p∞ be the maximal anticyclotomic Z

[F :Q]
p -extension

of K. Let Γ− = Gal(K−
p∞/K) and let Λ = ZpJΓ

−K be the Iwasawa algebra

of [F : Q]-variables. To each locally algebraic p-adic character φ̂ : Γ− → C×
p

of weight (m,−m), we can associate a Hecke character φ : A×
K/K× → C× of

infinity type (m,−m) defined dy

φ(a) := ι−1(φ̂(recK(a))a
−m
p amp )am∞a

−m
∞ ,

where ap ∈ (K ⊗Q Qp)
× and a∞ ∈ (K ⊗Q R)× are the p-component and the

archimedean component of a respectively. We say φ̂ is the p-adic avatar of
φ. We shall call Xcrit

p the set of critical specializations, consisting of locally
algebraic p-adic characters on Γ− of weight (m,−m) with m ∈ Z≥0[Σ] (See
§5.4).
Our first result is the construction of the anticyclotomic p-adic L-function at-
tached to πK ⊗ λ. We need more notation. Let DF be the different of F and
DK/F be the relative different of K/F . Let N be the prime-to-p conductor of
πK ⊗λ. We have a unique decomposition N = N+N− and fix a decomposition
N+ = FF with (F,F) = 1 such that N− is only divisible by prime inert or
ramified in K/F and F is only divisible by primes split in K/F . We choose
δ ∈ K such that

• δ = −δ,
• Imσ(δ) > 0 for all σ ∈ Σ,
• The polarization ideal c(OK) := D−1

F (2δDK/F) is prime to pNN.

Let (Ω∞,Ωp) be the complex and p-adic periods attached to (K, Σ) defined
in [HT93, (4.4a), (4.4b)]. For each Hecke character χ of K×, we define the
p-adic multiplier eΣp(π, χ) by

(0.2) eΣp(π, χ) :=
∏

P∈Σp, p=PP

ε(
1

2
, πp ⊗ χP, ψp)L(

1

2
, πp ⊗ χP)−2χ−2

P
(−2δ).

The shape of this modified p-Euler factor eΣp(π, χ) has been suggested by J.
Coates [Coa89].
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Theorem A. In addition to (ord) and Hypothesis A, we further assume that

(sf) n− is square-free.

Then there exists an element LΣp(π, λ) ∈ Λ such that for every φ̂ ∈ Xcrit
p of

weight (m,−m), we have

φ̂(LΣp(π, λ)
2)

Ω
2(k+2m)
p

=
ΓΣ(k +m)ΓΣ(m+ 1)

(Im δ)k+2m(4π)k+2m+1·Σ
· eΣp(π, λφ) ·

L(12 , πK ⊗ λφ)
Ω

2(k+2m)
K

× [O×
K : O×

F ]
2 · φ(F−1),

where ΩK = (2πi)−1Ω∞, (Im δ) = (Imσ(δ))σ∈Σ and (4π) means the diagonal
element (4π)σ∈Σ in (C×)Σ.

If π is attached to a Hilbert new form f and χ is a Hecke character of A×
K,

then the L-function L(s, πK ⊗ χ) can be identified with the Rankin-Selberg
L-function L(f, χ, s) of f and the theta series associated to χ by

L(s, πK ⊗ χ) = L(f, χ, s+
kmx − 1

2
) (kmx := max

σ∈Σ
kσ).

Therefore, LΣp(π, λ) is the p-adic L-function that interpolates the square root
of Rankin-Selberg central L-values. We shall call LΣp(π, λ) := LΣp(π, λ)

2

the anticyclotomic p-adic L-function for πK ⊗ λ with respect to the p-ordinary
CM type Σ. If π is obtained from the automorphic induction of a Hecke
character of K×, one can see, by comparing the interpolation formulas on both
sides, that LΣp(π, λ) is a product of two p-adic Hecke L-functions for CM fields
constructed by Katz [Kat78] and Hida-Tilouine [HT93] up to an explicit unit
in Λ.

Remark. When F = Q, π arises from an elliptic new form f of weight k and
level n, the construction of LΣp(π, λ) can be recovered from [BDP13, Theorem
5.4] under some extra assumptions p ∤ n and n− is only divisible by ramified

primes. In their notation, L(f, χ−1, 0) = L(1−k2 , πK ⊗ χ−1) for χ ∈ Σ
(2)
cc (N)

defined in the page 1094 loc.cit.,and our set Xcrit
p corresponds to Σ

(2)
cc (N) by

φ̂→ λ−1φ−1|·|−
k
2

AK
, where |·|AK

is the adelic absolute value of A×
K

2. Note that
Hypothesis A on local root numbers is also imposed in the bottom of page 1903
loc.cit.. This kind of p-adic L-function with some extra Euler factors removed
is also considered in [Bra11a] under different hypotheses.

Our second theorem is to prove the vanishing of the Iwasawa µ-invariant µ−
π,λ,Σ

of LΣp(π, λ) under certain hypothesis. Recall that the µ-invariant µ−
π,λ,Σ is

defined by

µ−
π,λ,Σ = inf

{
r ∈ Q≥0 | p−rLΣp(π, λ) 6≡ 0 (mod mpΛ)

}
,

where mp is the maximal ideal of Zp. To explain our hypothesis, we recall
that thanks to the works of Deligne, Carayol, Blasius-Rogawski and Taylor

2Our conventions for the infinity type are opposite to each other
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et.al ([BR93], [Tay89], [Jar97]), there exists a finite extension L/Qp and the
p-adic Galois representation ρp(π) : GF → GL2(OL) such that ρp(π) is unram-
ified outside pn; for each finite place v ∤ pn,

ι−1(L(s, ρp(π)|WFv
)) = L(s+

1− kmx
2

, π∨
v ),

where WFv is the Weil group of Fv. Let cλ be the conductor of λ. For each
v | c−λ , let ∆λ,v be the finite group λ(O×

Kv
).

Theorem B. With the assumptions in Theorem A, suppose further that

(1) p is unramified in F ,
(2) the residual Galois representation

ρp(πK) := ρp(π)|GK
(mod mp) is absolutely irreducible,

(3) p ∤
∏
v(c−λ )=1 ♯(∆λ,v).

Then µ−
π,λ,Σ = 0.

Let ℓ 6= p be a rational prime. We next consider the problem of the non-
vanishing modulo p of L-values twisted by anticyclotomic characters of ℓ-power
conductor. This problem has been studied in the literature in various settings
(cf. [Vat03], [Hid04a], [Fin06], [Hsi12]). To state our result along this direction,
we introduce some notation. Let l be a prime of F above ℓ and let K−

l∞ be the
anticyclotomic pro-ℓ extension in the ray class field over K of conductor l∞. Let
Γ−
l := Gal(K−

l∞/K) and let X0
l be the set consisting of finite order characters

φ : Γ−
l → µℓ∞ . Let χ be a Hecke character of infinity type (k2 +m,−k2 −m)

and of conductor cχ with m ∈ Z≥0[Σ] as before.

Theorem C. In addition to (ord), (sf) and Hypothesis A, we further assume
that

(1) (pl, ncχDK/F) = 1,
(2) the residual Galois representation ρp(πK) is absolutely irreducible,
(3) p ∤

∏
v(c−λ )=1 ♯(∆χ,v).

Then for almost all characters φ ∈ X0
l , we have

[O×
K : O×

F ]
2 · ΓΣ(k +m)ΓΣ(m+ 1)

(Im δ)k+2m(4π)k+2m+1·Σ
· L(

1
2 , πK ⊗ χφ)
Ω

2(k+2m)
K

6≡ 0 (mod mp).

Here almost all means "except for finitely many φ ∈ X−
l " if dimQℓ

Fl = 1 and
"for φ in a Zariski dense subset of X0

l " if dimQℓ
Fl > 1 ([Hid04a, p.737]).

Note that Theorem C in particular implies a simultaneous non-vanishing
of central L-values with anticyclotomic twists. This has application to the
non-vanishing of Bessel models of theta lifts of GSp(4) in view of [PTB11,
Thm. 3] and the existence of some explicit theta lifts [Nar13]. In addition, we
would like to mention several future applications of these results in Iwasawa
theory.
I. Iwasawa main conjecture for Rankin-Selberg convolution. The
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congruences between Eisenstein series and cusp forms on unitary groups
provide a general strategy to construct elements in Selmer groups in terms
of L-values and has been used to prove one-sided divisibility in Greenberg-
Iwasawa main conjectures for GL2 and CM fields ([SU14] [Hsi14a]). Usually
the most difficult part in the method of Eisenstein congruence is to prove the
non-vanishing modulo p of certain Eisenstein series, where the non-vanishing
modulo p of L-values always play an important role. For example, Skinner
and Urban use results of Finis and Vatsal to show the non-vanishing modulo
p of certain Klingen-Eisenstein series on U(2, 2). In a recent work [Wan13b],
Xin Wan applies the method of Eisenstein congruence on the unitary group
U(3, 1) to obtain a one-sided divisibility result towards Greenberg-Iwasawa
main conjecture for certain Rankin-Selberg convolution, and Theorem C is
used to prove the non-vanishing modulo p of Fourier-Jacobi coefficients of
certain Siegel-Eisenstein series on U(3, 1). His results along this direction lead
to C. Skinner’s work on the converse of Gross-Zagier and Kolyvagin. Moreover,
combining our Theorem B, he is able to deduce Perrin-Riou’s main conjecture
for Heegner points [Wan13a] in some cases.
II. Iwasawa theory for Heegner cycles. An immediate consequence of
Theorem C is the non-vanishing of the p-adic L-function LΣp(π, λ). Combined
with the work [BDP13] relating the p-adic logarithm of Heegner points and the
values of LΣp(π, λ) outside the range of interpolation, this gives a new proof
of Cornut-Vatsal theorem on Mazur conjecture for higher Heegner points when
p is split in the imaginary quadratic field. In our forthcoming work [CH14]
on the Perrin-Riou’s explicit reciprocity law for Heegner cycle Euler system
with connection to LΣp(π, λ) when π is associated with an elliptic new form
f ∈ Sk(Γ0(N)) with Deligne’s p-adic Galois representation Vf , we also use this
result to obtain the rank-zero case of Bloch-Kato conjecture for the Galois
representation Vf (

k
2 ) ⊗ λ̂ as well as the analogue of Mazur conjecture for the

image of higher Heegner cycles under the p-adic Abel-Jacobi map (the ℓ-adic
case with ℓ 6= p is proved by Howard [How06]).

The key ingredients in this article are the use of normalized toric cusp forms
and the explicit calculations of their period integral formula. In representation
theory, toric cusp forms are Gross-Prasad test vectors [GP91] in the space of
cuspidal automorphic forms on GL2(AF ). It seems they often serve the optimal
choice in the application of toric period integrals to arithmetic. For example,
Afalo and Nekovář [AN10] used Gross-Prasad test vectors in the setting of
definite quaternion algebras to give an extension of the work of Cornut-Vatsal
on Mazur conjecture. For the reader’s convenience, we recall the definition
here. Let χ be a Hecke character of K× such that χ|A× = ω−1 and let T ⊂ A×

K

be the subgroup consisting of ideles z = (zv) ∈
∏
v K×

v with zv/zv ∈ O×
Kv

for
all primes v split in K. Fixing an embedding ι : K× →֒ GL2(F), we say an
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automorphic form ϕ : GL2(F)\GL2(AF )→ C is a toric form of character χ if

ϕ(gι(t)) = χ−1(t)ϕ(g) for all t ∈ T .
In addition, to obtain the optimal p-integrality, we will need to normalize toric
forms so that their Fourier coefficients are not all congruent to zero modulo
p. This is equivalent to choosing a normalized Gross-Prasad test vector in the
local Whittaker model of πv at each place v. The reader will find later that
the normalization of toric forms is the most subtle and important part of this
paper.
We give a rough sketch of the proofs. We begin with an outline the construction
of LΣp(π, λ) as follows.

(1) Construct a toric Hilbert modular form ϕλφ of character λφ for each
φ̂ ∈ Xcrit

p as above by a careful choice of toric local Whittaker functions
in local Whittaker models of π (See Definition 3.1, Lemma 3.13).

(2) Make an explicit calculation of the Fourier expansion of ϕλφ.
(3) Via the p-adic interpolation of the Fourier expansion, construct a

p-adic distribution Fλ on Γ− valued in the space of p-adic modular
forms, which interpolates toric forms ϕλφ for φ̂ ∈ Xcrit

p . The p-adic L-
function LΣp(π, λ) is obtained by a weighted sum of the evaluation of
this distribution Fλ at a finite set of CM points.

The evaluation of ϕχ with χ = λφ at CM points in the step (3) is essentially
the toric period integral Pχ(ϕχ) given by

Pχ(ϕχ) =

∫

A×K×\A×
K

ϕχ(ι(t))χ(t)dt.

To prove the formula in Theorem A, we have to express the square Pχ(ϕχ)2 in
terms of the central L-value L(12 , πK ⊗χ). This is usually referred to as an ex-
plicit Waldspurger formula. Such a formula has been exploited widely in the lit-
erature based on either explicit theta lifts ([Mur10], [Mur08], [Xue07], [Hid10a]
and [BDP13]) or the technique of relative trace formula ([MW09]). In this paper
we adopt a different approach, making use of a formula of Waldspurger which
is indeed proved but not stated explicitly in [Wal85]. This formula decomposes
the square Pχ(ϕ) of the global period toric integral into a product of local pe-
riod integrals involving local Whittaker functions of ϕ. Explicit computation of
these local integrals shows that Pχ(ϕ)2 is essentially equal to the central value
of the L-function L(s, πK⊗λ). We emphasize that this explicit formula does not
depend on the choices of special Bruhat-Schwartz functions in the classical ap-
proach of theta lifting but on choices of local Whittaker functions which reflect
the arithmetic of modular forms directly via the Fourier expansion. Now with
the above construction of toric forms and explicit period integral formulas, the
proofs of Theorem B and Theorem C when combined with fundamental works
of Hida ([Hid10b] and [Hid04a]) are reduced to a study the vanishing/non-
vanishing modulo p properties of the Fourier expansions of the toric cusp form
ϕλ at cusps (a, b) such that ab−1 is the polarization of an abelian variety with
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CM by OK. We give an explicit computation of Fourier coefficients of toric
forms ϕλ, with which we can study the non-vanishing modulo p property of
these Fourier coefficients. These calculations are elementary but quite tedious
and lengthy. Finally, the connection between the Fourier coefficients of Hilbert
modular forms and the trace of Frobenius of the associated Galois representa-
tions enables us to relate the non-vanishing modulo p of Fourier coefficients of
ϕλ at these cusps and the irreducibility of the residual Galois representation
ρp(π)|GK

.
We end this introduction by making a few remarks on our assumptions. The
restriction (sf) is merely due to the computational difficulty on the local period
integrals and the local Fourier coefficients, and it is expected to be unnecessary.
The global assumption on the irreducibility of residual Galois representation
assures that the new form associated to π is not congruent to theta series aris-
ing from K. This assumption prevents the vanishing modulo p of LΣp(π, λ)
from the possibility that LΣp(π, λ) is congruent to a product of two anticy-
clotomic Katz p-adic L-functions attached to self-dual Heck characters of the
root number −1. The local assumption (3) is equivalent to saying that the
local residual character λv (mod mp) is ramified for all v|c−λ . This hypothesis is
used to avoid the vanishing of L-values due to sign change phenomenon. For
example, if λv ≡ 1 (mod mp) is unramified at some prime q|c−λ with πq spe-
cial, then one can construct λ′ ≡ λ (mod mp) such that λ′ has the conductor
q−1c−λ and the same infinity type with λ. This implies that πK ⊗ λ′ has global
root number −1, and hence the algebraic part of L(12 , πK ⊗ λ) is congruent
to L(12 , πK ⊗ λ′) = 0. The above assumptions might be weaken with excep-
tional effort on the compuation of Fourier coefficients of toric forms. However,
Hypothesis A is fundamental, the failure of which makes the period integral
Pχ(ϕχ) vanish for all χ (and hence make the results null) by a well-known
theorem of Saito-Tunnell ([Sai93], [Tun83]).
This paper is organized as follows. After fixing notation and definitions in §1,
we derive a key formula of Waldspurger on the decomposition of global toric
period integrals into local toric period integrals (Proposition 2.1) in §2. The
bulk of this article is §3, where we give the choices of local toric Whittaker
functions Wχ,v and calculate explicitly these local period integrals attached
to Wχ,v. The explicit Waldspurger formula is proved in Theorem 3.14, and a
non-vanishing modulo p of these toric Whittaker functions is proved in Propo-
sition 3.19. After reviewing briefly theory of complex and geometric Hilbert
modular forms in §4, we prove Theorem A in §5. The key ingredient is Propo-
sition 5.5, the construction of a p-adic measure Fλ,c on Γ− with values in the
space of p-adic modular forms, and the p-adic L-function LΣp(π, λ) is thus ob-
tained by evaluating Fλ,c at suitable CM points. The precise evaluation formula
of LΣp(π, λ)

2 is established in Theorem 5.7. In §6, we study the µ-invariant
of LΣp(π, λ) and prove Theorem B in Theorem 6.2. Finally, the non-vanishing
of central L-values modulo p is considered in §7 and Theorem C is proved in
Theorem 7.1.
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1. Notation and definitions

1.1. Measures on local fields. We fix some general notation and conven-
tions on local fields through this article. Let ψQ : AQ/Q→ C× be the additive
character such that ψQ(x∞) = exp(2πix∞) with x∞ ∈ R. Let q be a place of
Q and let F be a finite extension of Qq. Let ψq be the local component of ψ at
q and let ψF := ψq ◦TF/Qq

, where TF/Qq
is the trace from F to Qq. Let dx be

the Haar measure on F self-dual with respect to the pairing (x, x′) 7→ ψF (xx
′).

Let |·|F be the absolute value of F normalized by d(ax) = |a|F dx for a ∈ F×.
We often simply write |·| = |·|F if it is clear from the context without possible
confusion. We recall the definition of the local zeta function ζF (s). If F is
non-archimedean, let ̟F be a uniformizer of F and let

ζF (s) =
1

1− |̟F |sF
.

If F is archimedean, then

ζR(s) = π−s/2Γ(s/2); ζC(s) = 2(2π)−sΓ(s).

The Haar measures d×x on F× is normalized by

d×x = ζF (1) |x|−1
F dx.

In particular, if F = R, then dx is the Lebesgue measure and d×x = |x|−1
R dx,

and if F = C, then dx is twice the Lebesgue measure on C and d×x =
2π−1r−1drdθ (x = reiθ).
Suppose that F is non-archimedean. Let OF be the ring of integers of F and
let DF be the absolute different of F . Then D−1

F is the Pontryagin dual of OF
with respect to ψF , and vol(OF , dx) = |DF |

1
2

F . If µ : F× → C× is a character
of F×, define the local conductor a(µ) by

a(µ) = inf
{
n ∈ Z≥0 | µ(x) = 1 for all x ∈ (1 +̟n

FOF ) ∩ O×
F

}
.

1.2. If L is a number field, the ring of integers of L is denoted by OL, AL is
the adele of L and AL,f is the finite part of AL. For a ∈ A×

L , we put

ilL(a) := a(OL ⊗ Ẑ) ∩ L.
Denote by GL the absolute Galois group and by recL : A×

L → GabL the ge-
ometrically normalized reciprocity law. We define ψL : A×

L/L → C× by
ψL(x) = ψQ ◦ TrL/Q(x).
Let vp be the p-adic valuation on Cp normalized so that vp(p) = 1. We regard
L as a subfield in C (resp. Cp) via ι∞ : Q →֒ C (resp. ιp = ι−1◦ι∞ : Q →֒ Cp)
and Hom(L,Q) = Hom(L,Cp).
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Let Z be the ring of algebraic integers of Q and let Zp be the p-adic completion
of Z in Cp. Let Z be the ring of algebraic integers of Q and let Zp be the
p-adic completion of Z in Cp with the maximal ideal mp.

1.3. Local L-functions. Let F be a non-archimedean local filed. Let µ, ν :
F× → C× be two characters of F×. Denote by I(µ, ν) the space consisting of
smooth and GL2(OF )-finite functions f : GL2(F )→ C such that

f(

(
a b
0 d

)
g) = µ(a)ν(d)

∣∣∣a
d

∣∣∣
1
2

f(g).

Then I(µ, ν) is an admissible representation of GL2(F ). Denote by π(µ, ν) the
unique infinite dimensional subquotient of I(µ, ν). We call π(µ, ν) a principal
series if µν−1 6= |·|± and a special representation if µν−1 = |·|±.
Let E be a quadratic extension of F and let χ : E× → C× be a character.
We recall the definition of local L-functions L(s, πK ⊗ χ) ([Jac72, §20]) when
π = π(µ, ν) is a subrepresentation of I(µ, ν). If E = F ⊕ F , then we write
χ = (χ1, χ2) : F

× ⊕ F× → C× and put

L(s, πK ⊗ χ) =
{
L(s, π ⊗ χ1)L(s, π ⊗ χ2) if µν−1 6= |·|±,
L(s, µχ1)L(s, µχ2) if µν−1 = |·|.

If E is a field, then

L(s, πE ⊗ χ) =
{
L(s, µ′χ)L(s, ν′χ) if µν−1 6= |·|±,
L(s, µ′χ) if µν−1 = |·|.

Here µ′ = µ ◦NE/F , ν′ = ν ◦NE/F are characters of E×.

1.4. Whittaker and Kirillov models. Let F be a local field. Let π be
an irreducible admissible representation of GL2(F ) and let ψ : F → C× be a
non-trivial additive character. We let W(π, ψ) be the Whittaker model of π.
Recall that W(π, ψ) is a subspace of smooth functions W : GL2(F )→ C such
that

(1) W (

(
1 x
0 1

)
g) = ψ(x)W (g) for all x ∈ F .

(2) If v is archimedean, W (

(
a

1

)
) = O(|a|N ) for some positive number

N .

(cf. [JL70, Thm. 6.3]). Let K(π, ψ) be the Kirillov model of π. If F is non-
archimedean, then K(π, ψ) is a subspace of smooth C-valued functions on F×,
containing all Bruhat-Schwartz functions on F×. A function in K(π, ψ) shall
be called a local Fourier coefficient of π. In addition, it is well known that we
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have the following GL2(F )-equivariant isomorphism

(1.1)

W(π, ψ)
∼→ K(π, ψ)

W 7→ ξW (a) :=W (

(
a

1

)
).

2. Waldspurger formula

Let F be a number field and K be a quadratic field extension ofF . Let A = AF .
Let G = GL2 /F . Let π be an irreducible cuspidal automorphic representation
of G(A) with unitary central character ω. Denote by A(π) the realization
of π in the space A0(G) of cusp forms on G(A). Let χ be a unitary Hecke
character of K× such that χ|A× = ω−1. Let πK be the quadratic base change
of π to the quadratic extension K/F . The existence of πK is established in
[Jac72]. The goal of this section is to deduce from results in [Wal85] a formula
(Proposition 2.1) which expresses the central value L(12 , πK ⊗ χ) in terms of a
product of local toric period integrals of Whittaker functions.
Let ψ := ψF : A/F → C× be the standard non-trivial additive character. For
a place v of F , we let Gv = G(Fv) and let χv : K×

v → C× (resp. ψv : Fv → C×)
denote the local constituent of χ (resp. ψ).

2.1. For x ∈ K, let T(x) := x + x and N(x) = xx. Let {1, ϑ} be a basis of K
over F . We let ι : K →M2(F) be the embedding attached to ϑ given by

(2.1) ι(aϑ+ b) =

(
aT(ϑ) + b −aN(ϑ)

a b

)
(a, b ∈ F).

Put

J :=

(
−1 T(ϑ)
0 1

)
.

Then M2(F) = ι(K) ⊕ ι(K)J . It is clear that J2 = 1 and ι(t)J = Jι(t) for all
t ∈ K.

2.2. The local bilinear form and toric integral. For each place v of
F , denote by πv (resp. ψv) the local constituent of π (resp. ψ) at v. Define a
C-bilinear form bv :W(πv, ψv)×W(πv, ψv)→ C by

bv(W1,W2) :=

∞∑

n=−∞

∫

̟nO×
F

W1(

(
a

1

)
)W2(

(
−a

1

)
)ω−1(a)d×a

=

∫

F×
v

W1(

(
a

1

)
)W2(

(
−a

1

)
)ω−1(a)d×a.

It is known that this series converges absolutely as πv is a local constituent of a
unitary cuspidal automorphic representation. Moreover, the pairing bv enjoys
the property:

(2.2) bv(π(g)W1, π(g)W2) = ω(det g)bv(W1,W2).
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The pairing bv thus gives rise to an isomorphism between the contragredient
representation π∨ and π ⊗ ω−1.
The local toric period integral for W1,W2 ∈ W(πv, ψv) is given by

P (W1,W2, χv) :=

∫

K×
v /F

×
v

bv(π(ι(t))W1 , π(J)W2)χv(t)dt ·
L(1, τKv/Fv

)

ζFv (1)
.

The above integral converges as χv is unitary ([Wal85, LEMME 7]).

2.3. A formula of Waldspurger. Let Λ(s, πK ⊗ χ) be the completed L-
function of πK ⊗ χ given by

Λ(s, πK ⊗ χ) :=
∏

v

L(s, πKv ⊗ χv) = L(s, πK ⊗ χ) ·
∏

v|∞

L(s, πKv ⊗ χv).

It is well known that Λ(s, πK ⊗ χ) converges absolutely for Re s ≫ 0 and has
meromorphic continuation to all s ∈ C. Moreover, it satisfies the functional
equation

Λ(s, πK ⊗ χ) = ε(s, πK ⊗ χ)Λ(1 − s, π∨
K ⊗ χ−1).

The global toric period integral for ϕ ∈ A(π) is defined by

Pχ(ϕ) :=

∫

K×A×\A×
K

ϕ(ι(t))χ(t)dt.

The following proposition connects the global toric periods and central L-values
of πK ⊗ χ.

Proposition 2.1 (Waldspurger). Let ϕ1, ϕ2 ∈ A(π) and let Wϕ1 ,Wϕ2 be the
associated global Whittaker functions. We suppose that Wϕi =

∏
vWi,v, where

Wi,v ∈ W(πv, ψv) such that Wi,v(1) = 1 for almost v (i = 1, 2). Then there
exists a finite set S0 of places of F including all archimedean places such that
for every finite set S ⊃ S0, we have

Pχ(ϕ1)Pχ(ϕ2) = Λ(
1

2
, πK ⊗ χ) ·

∏

v∈S

1

L(12 , πKv ⊗ χv)
· P (W1,v,W2,v, χv).

Proof. The proof is the combination of various formulae established in
[Wal85]. We first recall some important local integrals. Let D = G×G. For
each place v of F , let Sv = S(M2(Fv)) ⊗ S(F×

v ) and let Dv = Gv×Gv. Let
r = r′×r′′ : Gv×Dv → EndSv be the Weil representation of Gv×Dv defined in
[Wal85, §I.3 p.178]
Let ϕ ∈ A(π) be an automorphic form in the automorphic realization of π.
Recall that the global Whittaker function of ϕ is defined by

Wϕ(g) =

∫

F\AF

ϕ(

(
1 x
0 1

)
g)ψ(−x)dx.

Write Wv = W(πv, ψv). We further assume that Wϕ has the factorization
Wϕ =

∏
vWϕ,v ∈ ⊗′

vWv such that Wϕ,v(1) = 1 for almost v. For each v, let
U : Sv →Wv ⊗Wv, fv → Ufv be the Gv×Gv-equivaraint surjective morphism
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associated to Wv introduced in [Wal85, COROLLAIRE, p.187]. Define the
following local integrals:

C(fv) :=

∫

F×
v

Ufv (

(
a

1

)
,

(
−a

1

)
))ω−1(a)d×a,

B(fv, 1) :=

∫

Zv\GvNv

∫

F×
v

Wϕ,v(σ)r
′(σ)fv(x, x

−2)dxdσ,

P (fv, χv,
1

2
) :=

∫

F×
v \K×

v

B(r′′(ι(t), 1)fv, 1)χv(t)dt.

The convergence and analytic properties of these local integrals are studied in
[Wal85, LEMME 2, LEMME 3, LEMME 5]. Moreover, we have

B(fv, 1) = C(fv) ·
1

ζFv(1)
.

For each v, we take a special test function fv ∈ Sv such that

(2.3) Ufv =W1,v ⊗ π(J)W2,v.

Note that fv can be chosen to be the spherical test function f0
v := IM2(OFv )

⊗
IO×

Fv

for all but finitely many v. With this particular choice of fv, we have

(2.4)

P (fv, χv,
1

2
) =

∫

F×
v \K×

v

C(r′′(ι(t), 1)fv)dt ·
1

ζFv(1)

=

∫

F×
v \K×

v

bv(π(ι(t))W1 , π(J)W2)χv(t)dt ·
1

ζFv (1)

= P (W1,v,W2,v, χv) ·
1

L(1, τKv/Fv
)
.

Let S = ⊗Sv be the restricted product with respect to spherical test functions{
f0
v

}
v
. Define the theta kernel for f := ⊗fv ∈ S by

θf (σ, g) :=
∑

(x,u)∈M2(F)×F×

r(σ, g)f(x, u) (σ ∈ G(A), g ∈ G(A)×G(A)),

and define the automorphic form θ(f, ϕ, g) on G(A)×G(A) by

θ(f, ϕ, g) =

∫

G(F)\G(A)

ϕ(σ)θf (σ, g)dσ.

Note that according to (2.3), we have

θ(f, ϕ, g1, g2) = ϕ1(g1)ϕ2(g2J).

We define the toric period integral P (f, χ) by

P (f, χ) :=

∫

[K×A×\A×
K
]2
θ(f, ϕ, ι(t1), ι(t2))χ(t1)χ(t2)dt1dt2.

By the relation Jι(t2)J = ι(t2) and the automorphy of ϕ2, we find that

P (f, χ) = Pχ(ϕ1)Pχ(ϕ2).
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Let S0 be a finite set of places of F such that Wϕ,v, Wi,v and fv are spherical
for all v 6∈ S0. From [Wal85, Prop. 4, p.196 and LEMME 7, p.219], we deduce
the following formula for every finite set S ⊃ S0:

Pχ(ϕ1)Pχ(ϕ2) = Λ(
1

2
, πK ⊗ χ) ·

∏

v∈S

P (fv, χv,
1

2
) · L(1, τKv/Fv

)

L(12 , πKv ⊗ χ)
.

We thus establish the desired formula in virtue of (2.4). �

3. Toric period integrals

3.1. Notation. Throughout we suppose that F is a totally real number field
and K is a totally imaginary quadratic extension of F . We retain the notation
in the introduction and §2.1. Let Σ be a fixed CM type of K. Let π be
an irreducible automorphic cuspidal representation of GL2(A). Let n be the
conductor of π. Suppose that π has infinity type k =

∑
σ∈Σ kσσ ∈ Z≥1[Σ].

Let m =
∑
σmσσ ∈ Z≥0[Σ] and let χ be a Hecke character of infinity type

(k/2 +m,−k/2−m) such that χ|A× = ω−1. Let h be the set of finite places
of F . Recall that the set of infinite places of F is identified with the CM-type
Σ.
In this section, we will choose a special local Whittaker function at each place
v of F in §3.6 and calculate their associated local toric period integrals in §3.7
and §3.8. Finally, we prove in §3.10 a non-vanishing modulo p result of these
local Whittaker functions. This result plays an important role in the later
application to the calculation of the µ-invariant.
Let Cχ (resp. cω) be the conductor of χ (resp. ω). Let cχ = Cχ∩F . We further
decompose n− = n−s n

−
r , where n−s is prime to cω and n−r is only divisible by

prime factors of cω. Put

(3.1)
cv(χ) = inf

{
n ∈ Z≥0 | χ = 1 on (1 +̟nOE)×

}
,

mv(χ, π) =cv(χ)− v(n−).

It is clear that cv(χ) = v(cχ). We put

A(χ) = {v ∈ h | Kv is a field, πv is special and cv(χ) = 0} .

Let p > 2 be a rational prime satisfying (ord). The assumption (ord) in par-
ticular implies that every prime factor of p in F splits in K. Let Σp be the
p-adic places induced by Σ via ιp. Thus Σp and its complex conjugation Σp

give a partition of the places of K above p. Let N be the prime-to-p conductor
of πK ⊗ χ. We fix a decomposition N+ = FF such that (F,F) = 1.

3.2. Galois representation attached to π. Let ρp(π) : GF → GL2(OLπ )
be the p-adic Galois representation associated to π as in the introduction. Let
v ∤ p and let WFv be the local Weil group at v. Suppose that πv = π(µv , νv) is
a subquotient of the induced representations. By the local-global compatibility
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([Car86], [Tay89] and [Jar97]), we have

(3.2) ρp(π)|WFv
≃
(
µ−1
v |·|

1−kmx
2 ∗

0 ν−1
v |·|

1−kmx
2

)
(kmx = max

σ
kσ).

In particular, this implies that µv(̟Fv) and νv(̟Fv ) are p-adic units in O×
Lπ

.

3.3. Open compact subgroups. For each finite place v, we put

K0
v =

{
g =

(
a b
c d

)
∈ Gv | a, d ∈ OFv , b ∈ D−1

Fv
, c ∈ DFv , det g ∈ O×

Fv

}
,

and for an integral ideal a of F , we put

K0
v(a) =

{
g =

(
a b
c d

)
∈ K0

v | c ∈ aDFv , a− 1 ∈ a

}
,

Uv(a) = {g ∈ GL2(OFv ) | g ≡ 1 (mod a)} .

Let K0 =
∏
v∈hK

0
v and U(a) =

∏
v∈h Uv(a) be open compact subgroups of

GL2(Af ).

3.4. The choices of ϑ and ςv. We fix a finite idele dF = (dFv) ∈ A×
F ,f such

that dFv is a generator of the absolute different DFv at each finite place v and
dFv = 1 for v ∤ DF . Fixing an integral ideal r ⊂ cχnD2

K of F , we choose ϑ ∈ K
such that

(d1) Imσ(ϑ) > 0 for all σ ∈ Σ,
(d2)

{
1, d−1

Fv
ϑ
}

is an OFv -basis of OKv for all v | pr,
(d3) d−1

Fv
ϑ is a uniformizer of Kv for every v ramified in K.

The existence of such ϑ is guaranteed by strong approximation theorem. Then
ϑ is a generator of K over F and determines an embedding K →֒ M2(F) in
(2.1). Let

δ = 2−1(ϑ− ϑ) ∈ K×.

The condition (d2) allows us to choose dFv = 2δ at split v | pr. For each finite
place v, we also fix an OFv -basis {1, θv} of OKv such that θv = ϑ except for
finitely many v and

θv = d−1
Fv
ϑ for v|pr.

Write θv = avϑ+ bv with av, bv ∈ Fv.
For every v split in K, we shall fix a place w of K above v throughout, and de-
compose Kv := K⊗F Fv = Fvew⊕Fvew, where ew and ew are the idempotents
attached to w and w respectively. If v|pN+, we further require that w|FΣp, i.e.
w|F or w ∈ Σp. We identify δ ∈ Kw = Fv and write ϑv = ϑwew + ϑwew for
split v.
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For each place v, we define ςv ∈ GL2(Fv) as follows:

(3.3)

ςv =

(
Imσ(ϑ) Reσ(ϑ)

0 1

)
for v = σ ∈ Σ,

ςv =(ϑw − ϑw)−1

(
dFvϑw ϑw
dFv 1

)
for split v = ww,

ςv =

(
av 0
−bv dFv

)
for non-split finite v.

For t ∈ Kv, we put
ιςv(t) := ς−1

v ι(t)ςv.

It is straightforward to verify that if v = σ ∈ Σ is archimedean and t = x+iy ∈
C×, then

ιςσ (t) =

(
x −y
y x

)
,(3.4)

and if v = ww is split and t = t1ew + t2ew, then

ιςv (t) =

(
t1

t2

)
.(3.5)

Moreover, for all finite places v

ιςv (O×
Kv

) = ιςv (K×
v ) ∩K0

v .

3.5. Running assumptions. In this section, we will assume Hypothesis A for
(π, χ) and

(sf) n− is square-free.

The assumption (sf) implies that πv is an unramified special representation
if v|n−s and πv is a ramified principal series if v|n−r . In particular, for every
place v inert or ramified in K, πv is a sub-quotient of induced representations
and the local L-function L(s, πv) 6= 1. We shall write πv = π(µv, νv) such
that L(s, πv) = L(s, µv) for v|n−. By the local root number formulas [JL70,
Prop. 3.5,Thm. 2.18], under the assumption (sf) Hypothesis A on the sign of
local root numbers is equivalent to the following condition:

(R1)
Each v ∈ A(χ) is ramified in K and µ′

vχv(̟Kv) = − |̟|
1
2

(µ′
v := µv ◦NKv/Fv

).

In what follows, we fix a place v of F . Let F = Fv and E = Kv. If v is
finite, let O = OF and let ̟ = ̟Fv and ̟E be uniformizers of O and OE
respectively. We shall suppress the subscript v and write π = πv, χ = χv,
ς = ςv and ψ = ψv. For a ∈ F×, we put

d(a) =

(
a

1

)
∈ GL2(F ).
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3.6. The choice of local toric Whittaker functions. If v is finite, we
let W 0

v denote the new Whittaker function in W(π, ψ). In other words, W 0
v

is the unique Whittaker function which is invariant by K0
v (n) and W 0

v (1) = 1.
The existence and uniqueness of W 0

v are a consequence of the theory of new
vectors [Cas73]. Now we introduce some special local Whittaker functions.

3.6.1. The archimedean case. Suppose that v = σ ∈ Σ is an archimedean

place and F = R. Then πσ = π(|·|
kσ−1

2 , |·|
1−kσ

2 sgnkσ ) is the discrete series of
minimal SO(2,R)-type kσ. Let Wkσ ∈ W(πv, ψv) be the Whittaker function
given by

(3.6) Wkσ (zd(a)κθ) = a
kσ
2 e−2πaIR+(a) · eikσθ sgn(z)kσ ,

where z ∈ R× and κθ =

(
cos θ sin θ
− sin θ cos θ

)
. Let V+ and V− be the weight raising

and lowering differential operators in [JL70, p.165] given by

V± =

(
1 0
0 −1

)
⊗ 1±

(
0 1
1 0

)
⊗ i ∈ Lie(GL2(R))⊗R C.

Define the normalized weight raising differential operator Ṽ+ by

(3.7) Ṽ+ =
1

(−8π) · V+.

Then we have

(3.8) Ṽmσ
+ Wkσ (gκθ) = Ṽmσ

+ Wkσ (g)e
i(kσ+2mσ)θ.

3.6.2. The split case. Suppose that v = ww is split with w|ΣpF if v|pN+. We
introduce some smooth functions aχ,v on F× in the Kirillov model K(π, ψ).
Write χ = (χw, χw) : F

×⊕F× → C×. If the local L-function L(s, π⊗χw) = 1,
we simply put

aχ,v(a) = IO×(a)χw(a
−1).

Suppose that L(s, π ⊗ χw) 6= 1. Then π = π(µ, ν) is a principal series or
π = π(µ, ν) is special with µν−1 = |·| and µχw is unramified. If π ⊗ χw is
unramified, we set

aχ,v(a) = IO(a) · χ−1
w |·|

1
2 (a)

∑

i+j=v(a), i,j≥0

µχw(̟
i)νχw(̟

j).

If µiχw is unramified and µjχw is ramified for {µ1, µ2} = {µ, ν}, we set

aχ,v(a) = µi|·|
1
2 (a)IO(a).

If π is special, we set

aχ,v(a) = µ|·| 12 (a)IO(a).
These functions aχ,v indeed belong to the Kirillov model K(π, ψ) in virtue of the
description of the Kirillov models [Jac72, Lemma 14.3]. For each ξ ∈ K(π, ψ),

Documenta Mathematica 19 (2014) 709–767



726 M.-L. Hsieh

by the isomorphism (1.1) we denote by Wξ ∈ W(π, ψ) the unique Whittaker
function such that Wξ(d(a)) = ξ(a). We put

Wχ,v :=Waχ,v .

It follows from the choice of Wχ,v that

Wχφ,v =Wχ,v if φ : E× → C× is unramified.

Recall that the zeta integral Ψ(s,W, χw) for W ∈ W(π, ψ) is defined by

Ψ(s,W, χw) :=

∫

F×

W (d(a))χw(a) |a|s−
1
2 d×a.

Then the zeta integral for Wχ,v satisfies the following equation:

(3.9) Ψ(s,Wχ,v, χw) = L(s, π ⊗ χw) |DF |
1
2 (vol(O×

F , d
×a) = |DF |

1
2 ).

Suppose that v = ww with w ∈ Σp. We define some p-modified Whittaker
functions as follows. For each u ∈ O×

F , we put

au,v(a) := Iu(1+̟O)(a)χw(a
−1) and Wχ,u,v =Wau,v .

Let a♭χ,v(a) := IO×(a)χw(a
−1) and let W ♭

χ,v be the p-modified Whittaker func-
tion given by

(3.10) W ♭
χ,v :=Wa♭

χ,v
=
∑

u∈Uv

Wχ,u,v,

where Uv is the torsion subgroup of O×. It is easy to verify that

(3.11) Ψ(s,W ♭
χ,v, χw) = 1 ; π(

(
a b
0 d

)
)W ♭

χ,v =χ−1
w (a)χ−1

w (d)W ♭
χ,v

for a, d ∈ O×, b ∈ D−1
F .

3.6.3. The inert and ramified case. Suppose that v is an inert or ramified finite
place. Then E is a non-archimedean local field. Define the operators Rv and
Pχ,ς on W ∈ W(π, ψ) by

RvW (g) :=W (g

(
1

̟

)
),

Pχ,ςW (g) :=v−1
E ·

∫

E×/F×

π(ις(t))W (g)χ(t)dt.

=v−1
E

∫

E×/F×

W (gς−1ι(t)ς)χ(t)dt.

Note that

vE = vol(E×/F×, dt) = ev · |DE |
1
2

E |DF |
− 1

2 , ev =

{
1 if v is inert,

2 if v is ramified.

We define the Whittaker function Wχ,v by

(3.12) Wχ,v := Pχ,ςRmv(χ,π)
v W 0

v .
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3.6.4. Define the subgroup Tv of E× by

Tv =

{
O×
EF

× if v is split,

E× if v is non-split.

Then Tv =
{
x ∈ E | x/x ∈ O×

E

}
if v is finite.

Definition 3.1 (Toric Whittaker functions). We say that W ∈ W(π, ψ) is a
toric Whittaker function of character χ if

π(ις(t))W = χ−1(t) ·W for all t ∈ Tv.
Lemma 3.2. The Whittaker functions Wχ,v chosen as above are toric. To be
precise, we have

(1) Ṽ mσ
+ Wkσ is a toric Whittaker function of the character χσ : C× →

C×, z 7→ zkσ+mσz−mσ |zz|−kσ/2.
(2) If v is finite, then Wχ,v are toric Whittaker functions of character χv.

(3) If v|p, then W ♭
χ,v is toric, and for u ∈ O×

F

π(ις(t))Wχ,u,v = χ−1(t)Wχ,u.t1−c,v,

where u.t1−c := utwt
−1
w , t = twew + twew ∈ O×

E with w ∈ Σp,
Proof. It follows immediately from the definitions of these Whittaker func-
tions together with (3.8), (3.4) and (3.5). �

3.7. Local toric period integrals (I).

3.7.1. Define the local toric period integral for W ∈ W(π, ψ) by

P (W,χ) :=P (W,W,χ)

=

∫

E×/F×

bv(π(ι(t))W,π(J )W )χ(t)dt · L(1, τE/F )
ζF (1)

.

The main task of this section is to evaluate P (π(ς)Wχ,v , χ). We first treat the
archimedean and split cases.

3.7.2. The archimedean case. Suppose v = σ ∈ Σ
∼→ Hom(F ,R) is an

archimedean place.

Proposition 3.3. We have

P (π(ς)Ṽ mσ
+ Wkσ , χ) = 23 · Γ(mσ + 1)Γ(kσ +mσ)

(4π)kσ+1+2mσ
.

Proof. Introduce the Hermitian inner product on W(π, ψ) defined by

〈W1,W2〉 := bv(W1, c(W2)), where c(W2)(g) :=W (

(
−1

1

)
g)ω(det g).

Write k = kσ and m = mσ. It is clear that

〈Wk,Wk〉 = (4π)−kΓ(k).
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Since c(V m+ Wk) and π(

(
−1

1

)
)V m+ Wk are both nonzero Whittaker functions

of weight −k − 2m, there exists some constant γ such that

π(

(
−1

1

)
)V m+ Wk = γ · c(V m+ Wk) ⇐⇒ V m+ Wk(d(a)) = γ · V m+ Wk(d(a))

for all a ∈ R+. Let hm(x) := V m+ Wk(d(x)). Then h0(x) = Wk(d(x)) is a
real-valued function in view of the definition (3.6). A simple calculation shows
that

hm+1 = 2x
dhm
dx

+ (k + 2m− 4πx)hm,

so by induction hm(x) takes value in R (cf. [JL70, p.189]). This implies that
γ = 1. We thus have

bv(π(ς)V
m
+ Wk, π(Jς)V

m
+ Wk) = 〈V m+ Wk, V

m
+ Wk〉 (ς−1Jς =

(
−1

1

)
).

To evaluate 〈V m+ Wk, V
m
+ Wk〉, note that by [JL70, p.166] we have

(3.13) Vm− V m+ Wk = (−4)mΓ(k +m)Γ(m+ 1)

Γ(k)
·Wk,

and hence we find that

〈V m+ Wk, V
m
+ Wk〉 =(−1)m〈Wk, V

m
− V m+ Wk〉

=4m
Γ(k +m)

Γ(k)
Γ(m+ 1)〈Wk,Wk〉

=4m(4π)−k · Γ(k +m)Γ(m+ 1).

Recall that dt = 2π−1dθ witht = eiθ, so vol(C×/R×, dt) = 2π−1 · π = 2.
Combining these with Lemma 3.2 (1), we find that

P (π(ς)Ṽ m+ Wk, χ) = 2 · (−8π)−2m · bv(π(ς)V m+ Wk, π(Jς)V
m
+ Wk) ·

ζR(2)

ζR(1)

= 23(4π)−2m−14−m · 〈V m+ Wk, V
m
+ Wk〉

= 23 · (4π)−k−2m−1Γ(k +m)Γ(m+ 1). �

3.7.3. The split case. Suppose that v = ww is a finite place split in E. Recall
that we have assumed w|ΣpF if v|pN+.

Lemma 3.4. We have

P (π(ς)W,χ)

=Ψ(
1

2
,W, χw)

2 · L(
1
2 , π ⊗ χw)

L(12 , π ⊗ χw)
· ε(1

2
, π ⊗ χw, ψ) · ω−1χ−2

w (−dF )ω(det ς).
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Proof. Let Ŵ (g) := W (g

(
0 1
−1 0

)
)ω−1(det g). By [JL70, Thm. 2.18 (iv)],

we have the local functional equation:

Ψ(1− s, Ŵ , χ−1
w )

L(1− s, π∨ ⊗ χ−1
w )

= ε(s, π ⊗ χw, ψ) ·
Ψ(s,W, χw)

L(s, π ⊗ χw)
.

We note that

ς−1
v Jςv =

(
0 d−1

F

dF 0

)
.

A straightforward computation shows that

P (π(ς)W,χ)

=ω(det ς)

∫

F×

∫

F×

W (d(at1))W (d(−a)
(

0 d−1
F

dF 0

)
)χw(t1)ω

−1(a)d×adt1

=ω(− det ς)ω−1χ−2
w (dF ) ·Ψ(

1

2
,W, χw)Ψ(

1

2
, Ŵ , χ−1

w )

=ω(det ς)ω−1χ−2
w (−dF )Ψ(

1

2
,W, χw)

2 · ε(1
2
, π ⊗ χw, ψ) ·

L(12 , π
∨ ⊗ χ−1

w )

L(12 , π ⊗ χw)
.

The lemma thus follows. �

Proposition 3.5. We have

1

L(12 , πE ⊗ χ)
·P (π(ς)Wχ,v , χ)

= |DF | ·
{
ε(12 , π ⊗ χw, ψ)χ−2

w (−dF ) if v | N+,

ω(det ς) if v ∤ N+.

If v = ww with w ∈ Σp, then

1

L(12 , πE ⊗ χ)
· P (π(ς)W ♭

χ,v , χ) =
ε(12 , π ⊗ χw, ψ)
L(12 , π ⊗ χw)2

· χ−2
w (dF ) |DF | .

Proof. The proposition follows immediately from Lemma 3.4. (3.9) and
(3.11) combined with the equations det ς = dF if v|pN+ and

ε(
1

2
, π ⊗ χw, ψ) · ω−1χ−2

w (−dF ) = 1 if v ∤ N+. �

3.8. Local toric period integrals (II). In this subsection, we treat the
case v is inert or ramified. A large part of the computation in this subsection
is inspired by [Mur08]. Put

w =

(
0 −d−1

F

dF 0

)
;

K0(̟) :=

{
g =

(
a b
c d

)
∈ K0

v | a− 1 ∈ ̟O, c ∈ ̟DF
}
.
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Let θ = θv ∈ OE be the element chosen in §3.4 and write W 0 for the new local
Whittaker function W 0

v at v. Recall that {1, θ} is an O-basis of OE and θ is a
uniformizer if E/F is ramified.

3.8.1. We prepare some elementary lemmas.

Lemma 3.6. Suppose that v|r. Let m be a non-negative integer and let

B1(O) =
{(

1 x
0 d

)
| x ∈ D−1

F , d ∈ O×

}
,

N(D−1
F ) =

{(
1 x
0 1

)
| x ∈ D−1

F

}
.

If y ∈ ̟m+1O, then we have

d(̟m)ις(1 + yθ)d(̟−m) ∈ K0(̟) (d(a) =

(
a

1

)
).

If y ∈ ̟rO× and 0 ≤ r ≤ m, then

d(̟m)ις(1 + yθ)d(̟−m) ∈ N(D−1
F )

(
̟m−r

y̟−m

)
wB1(O).

If y ∈ ̟O, then

d(̟m)ις(y + θ)d(̟−m) ∈ N(D−1
F )

(
̟m+ev−1

̟−m

)
wB1(O).

Proof. Recall that if v|r, then θ = d−1
F ϑ, ς =

(
dF

d−1
F

)
, and hence

ις(x + yθ) =

(
x+ yT(θ) yd−1

F N(θ)
ydF x

)
(x, y ∈ F ).

Then the proof is a straightforward calculation, so we omit the details. �

Lemma 3.7. Suppose that χ|F× is trivial on 1 + ̟O. For each non-negative
integer r, we set

Xr :=

∫

̟rO

χ(1 + yθ)d′y,

where d′y is the Haar measure on O such that vol(O, d′y) =

L(1, τE/F ) |DE |
1
2

E |DF |
− 1

2 . Then Xr = 0 if cv(χ) > 1 and 0 < r < cv(χ)

and Xr = |̟r| · L(1, τE/F ) |DE |
1
2

E |DF |
− 1

2 if r ≥ cv(χ).
Proof. Let Qr := 1 + ̟rOE/1 + ̟rO. If 0 < r < cv(χ), then χ is a
non-trivial character on the group Qr. Note that we have a bijection ̟rO ∼→
Qr, y 7→ 1 + yθ and the pull-back of the quotient measure dt on Qr is d′y.
Therefore, we have

Xr =

∫

Qr

χ(t)dt =

{
0 if 0 < r < cv(χ)

vol(̟rO, d′y) if r ≥ cv(χ).
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This finishes the proof. �

Define the matrix coefficient m0 : GL2(F )→ C by

m0(g) :=bv(π(g)W
0, π(

(
−1

1

)
)W 0)

=

∫

F×

W 0(d(a)g)W 0(d(a))ω−1(a)d×a.

Since W 0 is invariant by K0(̟), m0(g) only depends on the double coset
K0(̟)gK0(̟) by (2.2). Put

m = mv(χ, π) = cv(χ)− v(n−) ≥ −1.
We set
(3.14)

P ∗(π(ς)Rmv W 0, χ) := P (π(ς)Rmv W 0, χ) · ζF (1)

L(1, τE/F )
ω(̟−m det ς−1)

=

∫

E×/F×

bv(R−m
v π(ις(t))Rmv W 0, π(

(
−1

1

)
)W 0)χ(t)dt

=

∫

E×/F×

m0(d(̟m)ις(t)d(̟
−m))χ(t)dt.

Here we have used the fact that m + v(T(θ)) ≥ 0 in the second equality. It
follows immediately from the definition of the projector Pχ,ς that

(3.15)

P (π(ς)Wχ,v , χ) =P (π(ς)Pχ,ςRmv W 0, χ)

=P ∗(π(ς)Rmv W 0, χ) · ω(̟
m det ς)L(1, τE/F )

ζF (1)
.

Using the decomposition

E× = F×(1 +Oθ) ⊔ F×(̟O + θ)

and Lemma 3.6, we find that
(3.16)

P ∗(π(ς)Rmv W 0, χ)

=

∫

O

χ(1 + yθ)m0(d(̟m)ις(1 + yθ)d(̟−m))d′y

+

∫

̟O

χ(x+ θ)m0(d(̟m)ις(y + θ)d(̟−m)) |y + θ|−1
E d′y

=Xm+1 ·m0(1) +

m∑

r=0

∫

̟rO×

χ(1 + yθ)ω(̟−my)d′y ·m0(d(̟2(m−r))w)

+ Y0 · ω(̟−m)m0(d(̟2m+ev−1)w),

where

Y0 :=

∫

̟O

χ(y + θ)d′y · |̟|1−ev .
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In what follows, we use Lemma 3.7 and (3.16) to calculate P (π(ς)Wχ,v , χ).

3.8.2. The case v ∤ n−r . Suppose that v ∤ n−r , i.e. the central character ω is
unramified. Then (sf) implies that π is either an unramified principal series or
an unramified special representation.

Proposition 3.8. Suppose that π is an unramified principal series. Then

1

L(12 , πE ⊗ χ)
·P (π(ς)Wχ,v , χ)

=ω(̟m)
∣∣∣̟cv(χ)

∣∣∣ |DE |
1
2

E ·
{
ω(det ς) if cv(χ) = 0,

L(1, τE/F )
2 if cv(χ) > 0.

Proof. Since π is unramified, ω is unramified and m = cv(χ). Write π =
π(µ, ν) and let α = µ(̟) and β = ν(̟). The matrix coefficient m0 is a
spherical function on GL2(F ) in the sense of [Car79, Definition 4.1, p.150], and
m0(g) only depends on the double coset K0

vgK
0
v . By a standard computation

(cf. [Wal85, LEMME 14, p.226)]), we obtain

m0(1) =
ζF (1)L(1,Adπ)

ζF (2)
· |DF |

1
2 =

(1 + |̟|)ζF (1)
(1− αβ−1 |̟|)(1− α−1β |̟|) · |DF |

1
2 ;

(3.17)

m0(d(̟)) =
|̟| 12

1 + |̟| · (α+ β) ·m0(1);(3.18)

m0(d(̟2)) =
|̟|

1 + |̟| · (α
2 + β2 + (1 − |̟|)αβ) ·m0(1).(3.19)

If v is inert and m = 0, then

ω(det ς−1)P (π(ς)W 0, χ) =m0(1) · L(1, τE/F )
ζF (1)

· |DE |
1
2

E |DF |
− 1

2

=
1

(1− αβ−1 |̟|)(1− α−1β |̟|) · |DE |
1
2

E

=L(
1

2
, πE ⊗ χ) · |DE |

1
2

E .

Suppose that either v is ramified or m > 0 (so v|r and det ς = 1). Then we
deduce from (3.16) that

(3.20)

P ∗(π(ς)Rmv W 0, χ)

=Xm ·m0(1) +

m−1∑

r=0

(Xr −Xr+1)ω(̟
r−m) ·m0(d(̟2(m−r)))

+ Y0 · ω(̟−m)m0(d(̟2m+ev−1)).
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If v is ramified and m = 0, then X0 = |DE |
1
2

E |DF |
− 1

2 and Y0 =

χ(̟E) |DE |
1
2

E |DF |
− 1

2 . By (3.20), we find that

P (π(ς)W 0, χ)

=(m0(1) + χ(̟E)m
0(d(̟)))

L(1, τE/F )

ζF (1)
|DE |

1
2

E |DF |
− 1

2

=(1 +
α+ β

1 + |̟| · |̟|
1
2 χ(̟E)) ·m0(1) · |DE |

1
2

E |DF |
− 1

2

ζF (1)
(by (3.18))

=
(1 + χ(̟E)α |̟|

1
2 )(1 + χ(̟E)β |̟|

1
2 )

1 + |̟| ·m0(1) · |DE |
1
2

E |DF |
− 1

2

ζF (1)

= |DE |
1
2

E · L(
1

2
, πE ⊗ χ).

Suppose that m > 0. Note that since χ|O× = 1, Y0 = −X0 if v is inert and
Y0 = X0 = 0 if v is ramified. Combining with Lemma 3.7, (3.19) and (3.20),
we find that

P (π(ς)Rmv W 0, χ) =Xm · (m0(1)− ω(̟−1)m0(d(̟2)) · ω(̟−m)
L(1, τE/F )

ζF (1)

=ω(̟m) |̟m| · (1− αβ
−1 |̟|)(1− α−1β |̟|)

1 + |̟| ·m0(1)

× L(1, τE/F )
2

ζF (1)
|DE |

1
2

E |DF |
− 1

2

=ω(̟m) |̟m| |DE |
1
2

E · L(1, τE/F )2.

The proposition follows immediately. �

Proposition 3.9. Suppose that π is an unramified special representation.
Then

1

L(12 , πE ⊗ χ)
·P (π(ς)Wχ,v , χ)

=ω(̟m)
∣∣∣̟cv(χ)

∣∣∣ |DE |
1
2

E ·
{
L(1, τE/F )

2 if cv(χ) > 0,

2 if v is ramified and cv(χ) = 0.

Proof. Suppose that v|n−s . Then m = mv(χ, π) = cv(χ) − 1. Recall that
π = π(µ, ν) is a special representation with a unramified character µ and
µν−1 = |·|. We have

W 0(d(a)) =µ(a) |a| 12 IO(a),
W 0(d(a)w) =− µ(a) |a| 12 |̟| I̟−1O(a)
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(cf. [Sch02, Eq.(54)]). With the above formulas, we obtain by a direct compu-
tation that

m0(1) =
|DF |

1
2

1− |̟|2
; m0(w) = (− |̟|) ·m0(1) ;

m0(

(
1

̟

)
w) =(−µ(̟) |̟|− 1

2 ) ·m0(1).

If cv(χ) > 0, then it follows from (3.16) and Lemma 3.7 that

P (π(ς)Rmv W 0, χ) =Xm+1 · (m0(1)−m0(w)) · ω(̟m)
L(1, τE/F )

ζF (1)

=ω(̟m)
∣∣̟m+1

∣∣ · |DE |
1
2

E L(1, τE/F )
2.

If cv(χ) = 0 (m = −1), then v is ramified, X0 = |DE |
1
2

E |DF |
− 1

2 ,, Y0 =

χ(̟E) |DE |
1
2

E |DF |
− 1

2 , and

P (π(ς)Rmv W 0, χ)

=

(
X0 ·m0(1) + Y0 ·m0(

(
1

̟

)
w)

)
ω(̟−1) · L(1, τE/F )

ζF (1)

=(1− µ(̟)χ(̟E) |̟|−
1
2 ) |DE |

1
2

E |DF |
− 1

2 ·m0(1)(1− |̟|)ω(̟−1)

=
2 |DE |

1
2

E ω(̟
−1)

1 + |̟| (by (R1))

=2 |DE |
1
2

E ω(̟
−1) · L(1

2
, πE ⊗ χ). �

3.8.3. The case v|n−r . We consider the case π is a ramified principal series.
Recall that (sf) suggests that π = π(µ, ν), where µ is unramified and ν is
ramified, and the conductor a(ν) = a(ω) = 1. Since χ|F× = ω−1, we must
have m = cv(χ) − 1 ≥ 0. Let δv := θ − θ. Let DE/F be the discriminant of
E/F . We begin with a lemma.

Lemma 3.10. Suppose that χ|O× 6= 1 and χ|1+̟O = 1. Then
∫

̟−mO

χ(y + θ)d′y = χ(δv) |δv|
1
2

E ·
ε(0, χ−1, ψE)

ε(−1, ω, ψ) · L(1, τE/F )
∣∣DE/F

∣∣ 12 .

Proof. By [HKS96, Prop. 8.2], we have
∫

F

χ(y + 2−1δv)dy :=

∫

F

χ(y + 2−1δv)
∣∣y + 2−1δv

∣∣−s− 1
2

E
dy|s=− 1

2

=χ(δv) |δv|
1
2

E ·
ε(0, χ−1, ψE)

ε(−1, ω, ψ) .

By the assumption, for all r ≥ m+ 1 we have
∫

̟−rO×

χ(y + θ)dy = χ(̟−r) ·
∫

O×

χ(y)dy = 0.
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Thus ∫

̟−mO

χ(y + θ)dy = lim−→
r

∫

̟−rO

χ(y + θ)dy =

∫

F

χ(y + 2−1δv)dy.

The lemma follows from the fact that

d′y = L(1, τE/F )
∣∣DE/F

∣∣ 12 · dy. �

Proposition 3.11. We have

1

L(12 , πE ⊗ χ)
· P (π(ς)Wχ,v , χ) =

∣∣∣̟cv(χ)
∣∣∣ |DE |

1
2

E χ(δvd
−1
F ) |δv|

1
2

E · ε(0, χ, ψE)

× L(1, τE/F )2 · n2
v,

where nv is given by

(3.21) nv :=
µ(̟) |̟|m/2 |DF |

1
4

ε(0, ω, ψ)
∈ Z

×

(p).

Proof. We first recall that if ξ : F× → C× is a character of conductor a(ξ),
then

ε(s, ξ, ψ) = ξ(c) |c|s− 1
2 ·


 ∑

a∈O×/(1+̟a(ξ)O)

ξ−1(u)ψ(u/c)


 (c = dF̟

a(ξ)).

By the equation ε(s, ξ, ψ)ε(1 − s, ξ−1, ψ) = ξ(−1) (cf. [Sch02, Eq.(7)]), we see

that ε(0, ξ, ψ) belongs to Z
×

(p) whenever v does not divide p and ξ takes values

in Z(p). This shows that nv is a p-adic unit by the discussion in §3.2.
We proceed to prove the toric integral. We have

W 0(d(a)) =ν|·| 12 (a)IO(a),

W 0(d(a)w) =µ|·| 12 (a)I̟−1O(a) ·
ω(dF )µ(̟

2)

ε(0, ω, ψ)

(cf. [Sch02, Eq.(50) and (51)]). A simple calculation shows that

m0(1) = 0, m0(w) =
ω(dF )µ(̟

2)

ε(0, ω, ψ) · (1− |̟|) · |DF |
1
2 .

It is not difficult to show that if v is ramified, then

Y0 =

∫

̟O

χ(y + θ)d′y = 0,

and that if m = cv(χ)− 1 > 0, then
∫

̟rO×

χ(y−1 + θ)d′y = 0 for 0 < r < m and
∫

O

χ(y + θ)d′y = 0.

Documenta Mathematica 19 (2014) 709–767



736 M.-L. Hsieh

From the above equations, we find that

P ∗(π(ς)Rmv W 0, χ)

=Xm+1 ·m0(1) +

m∑

r=0

∫

̟rO×

χ(y−1 + θ)d′y · ω(̟−m)m0(d(̟2m−2r)w)

+ Y0 · ω(̟−m)m0(d(̟2m+ev−1)w)

=

∫

̟−mO

χ(y + θ)d′y · ω(̟−m)
∣∣̟2m

∣∣m0(w).

By Lemma 3.10, we obtain

P (π(ς)Rmv W 0, χ)

=P ∗(π(ς)Rmv W 0, χ) · ω(̟m)
L(1, τE/F )

ζF (1)

=
∣∣̟2m

∣∣χ(δv) |δv|
1
2

E |DE |
1
2

E |DF |
− 1

2
ε(0, χ−1, ψE)

ε(−1, ω, ψ) ·
µ(̟2)ω(dF )

ε(0, ω, ψ)(1− |̟|)

× L(1, τE/F )
2

ζF (1)

=
L(1, τE/F )

2µ(̟2) |DF |
1
2
∣∣̟2m+1

∣∣
ε(0, ω, ψ)2

· |DE |
1
2

E χ(δvd
−1
F ) |δv|

1
2

E ε(0, χ
−1, ψE).

The last equality follows from

ε(−1, ω, ψ) = |̟DF |−1 ε(0, ω, ψ).

From the above computation and that L(s, πE⊗χ) = 1, the proposition follows.
�

3.9. The global toric period integral. We return to the global situa-
tion. Let W (p)

χ,f be the prime-to-p Whittaker function given by

W
(p)
χ,f =

∏

v∈h, v∤p

Wχ,v ∈
⊗

v∈h,v∤p

W(πv, ψv).

Definition 3.12. Let Wχ,∞ :=
∏
σ∈ΣWkσ . Define the p-modified toric Whit-

taker function Wχ by

(3.22) Wχ =Wχ,∞ ·W (p)
χ,f ·

∏

v|p

W ♭
χ,v ∈ W(π, ψ).

Let u = (uv) ∈ (OF ⊗Z Zp)
× =

∏
vO×

Fv
. The u-component Wχ,u of Wχ is

defined by

(3.23) Wχ,u =Wχ,∞ ·W (p)
χ,f ·

∏

v|p

Wχ,uv ,v.
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Recall that the automorphic form ϕW ∈ A(π) associated to W ∈ W(π, ψ) is
defined by

(3.24) ϕW (g) :=
∑

β∈F

W (

(
β

1

)
g).

Let ϕχ (resp. ϕχ,u) be the automorphic form associated to Wχ (resp. Wχ,u).
Let Up =

∏
v|p Uv be the torsion subgroup of (OF ⊗Z Zp)

×. It follows immedi-
ately from the definition (3.10) that

(3.25) ϕχ =
∑

u∈Up

ϕχ,u.

Choose a sufficiently small prime-to-p integral ideal n1 such that Wχ,v is invari-
ant by Uv(n1) for all v ∤ p. Let K =

∏
vKv ⊂ GL2(Af ) be an open compact

subgroup such that

(3.26) Kv = K0
v if v | p ; Kv ⊂ Uv(n1) if v ∤ p.

For each positive integer n, put

Kn
1 :=

{
g ∈ K | gv ≡

(
1 ∗
0 1

)
(mod pn) for all v|p

}
.

One can verify that Wχ and Wχ,u (and hence ϕχ and ϕχ,u) are invariant by
Kn

1 for sufficiently large n. The following lemma immediately follows from
Lemma 3.2,

Lemma 3.13. Let T =
∏′
v Tv ⊂ A×

K. Then ϕχ is a toric automorphic form in
the sense that for all t ∈ T , we have

π(ις(t))Ṽ
m
+ ϕχ =χ−1(t)Ṽ m+ ϕχ.

In addition, for all t ∈ Tf =
∏′
v∈h Tv, we have

π(ις(t))ϕχ,u =χ−1(t)ϕχ,u·t1−c ,

where u · t1−c := utΣpt
−1

Σp
∈ (OF ⊗Z Zp)

×.

Decompose c−χ = c−χ,1c
−
χ,2 such that (c−χ,1, n

−
r ) = 1 and c−χ,2 has the same support

with n−r . Define a constant C′
π(χ) by

(3.27)

C′
π(χ) :=2♯(A(χ))+3[F :Q] · NF/Q(c−χ )

−1ω(c−χ,1)ω(n
−
s )

−1

×
∏

v∤pr

ω(det ςv) ·
∏

w|F, v=ww

ε(
1

2
, πv ⊗ χw, ψv)χ−2

w (−dFv)

×
∏

v|n−
r

χv(−δvd−1
Fv

) |δv|
1
2

Kv
ε(0, χ−1

v , ψKv)
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Note that C′
π(χ) is actually a p-adic unit as p > 2 and (p,Fn−) = 1. We

introduce the normalization factor N(π, χ) given by

(3.28) N(π, χ) :=
∏

v∈B(χ)

L(1, τKv/Fv
)nv.

We have the following central value formula of the toric integral Pχ(π(ς)Ṽ m+ ϕχ).

Theorem 3.14. We have

Pχ(π(ς)Ṽ
m
+ ϕχ)

2 =
ΓΣ(k +m)ΓΣ(m+ 1)

(4π)k+2m+1·Σ
· eΣp(π, χ) · L(

1

2
, πK ⊗ χ)

× |DK|−
1
2

R · C′
π(χ)N(π, χ)2,

where eΣp(π, χ) is the p-adic multiplier given by

eΣp(π, χ) =
∏

w∈Σp,v=ww

ε(
1

2
, πv ⊗ χw, ψv)L(

1

2
, πv ⊗ χw)−2χ−2

w (dFv ).

Proof. Note that Ṽ m+ ϕχ is the automorphic form associated to the Whit-
taker function

Ṽ m+ Wχ = Ṽm+ Wχ,∞ ·W (p)
χ,f ·

∏

v|p

W ♭
χ,v.

Hence, by Proposition 2.1 we find that

Pχ(π(ς)Ṽ
m
+ ϕχ)

2

=
∏

σ∈Σ

P (π(ςσ)Ṽ
mσ
+ Wkσ , χσ)

∏

v|p

1

L(12 , πKv ⊗ χv)
·P (π(ςv)W

♭
χ,v, χv)

×
∏

v∈h,v∤p

1

L(12 , πKv ⊗ χv)
·P (π(ςv)Wχ,v, χv) · L(

1

2
, πK ⊗ χ).

Combining the local calculations of toric integrals of our Whittaker functions
(Proposition 3.3, Proposition 3.5, Proposition 3.8, Proposition 3.9 and Propo-
sition 3.11) yields the central value formula. �

Remark 3.15. Let ϕ0
χ be the automorphic form associated to the toric Whit-

taker function W 0
χ :=Wχ,∞ ·

∏
v∈hWχ,v. Then we obtain the following central

value formula:

Pχ(π(ς)Ṽ
m
+ ϕ0

χ)
2 = |DK|−

1
2

R

ΓΣ(k +m)ΓΣ(m+ 1)

(4π)k+2m+1·Σ
·L(1

2
, πK⊗χ)·C′

π(χ)N(π, χ)2.

3.10. Non-vanishing of the local Fourier coefficients. In order to
prove the non-vanishing of our toric form ϕχ later, we calculate its local Fourier
coefficients in this subsection. Define aχ,v : F× → C the local Fourier coeffi-
cient associated to Wχ,v by

aχ,v(a) =Wχ,v(d(a)).

To obtain the optimal p-integrality of ϕχ, we need the following normalization
of the aχ,v.
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Definition 3.16 (Normalized local Fourier coefficients). Let

B(χ) = {v ∈ h | v is non-split with cv(χ) > 0} .
For v ∈ B(χ), let nv be defined as in (3.21) if v|n−r and nv = 1 if v ∤ n−r . Define
the normalized local Fourier coefficient a∗χ,v by

a∗χ,v := aχ,v ·





n−1
v L(1, τKv/Fv

)−1 if v ∈ B(χ),

1 if v ∈ A(χ),
ev otherwise.

Recall that ev = 1 if v is unramified and ev = 2 if v is ramified.

Let v ∤ p be a finite place. We shall show the normalized local Fourier coeffi-
cients a∗χ,v indeed take value in a finite extension of Zp and is not identically
zero modulo the maximal mp of Z induced by ιp : Q →֒ Cp. This is clear if v
is split in view of the definition of a∗χ,v = aχ,v in §3.6. The most difficult case
is when v is inert and π is ramified at v. We begin with some formulae of aχ,v.

Lemma 3.17. Suppose that cv(χ) = 0. Then

a∗χ,v(a) =

{
W 0
v (d(a)) if v ∤ n is unramified,

W 0
v (d(a)) +W 0

v (d(a̟))χ(̟Ev ) if v ∤ n is ramified.

If v | n, then v is ramified and

a∗χ,v(a) = µ|·| 12 (a)I̟−1O(a).

Proof. It is well-known that if π = π(µ, ν) is a unramified principal series,
then

W 0
v (d(a)) = IO(a) |a|

1
2 ·

∑

i+j=v(a), i,j≥0

µ(̟i)ν(̟j)

(cf. [Bum97, Thm. 4.6.5]). It follows from the definition of Wχ,v that Wχ,v =
W 0
v if v ∤ n is unramified and

Wχ,v(g) =
1

2
·W 0

v (g) +
1

2
·W 0

v (gd(̟))χ(̟E) if v ∤ n is ramified .

If v|n, then v ∈ A(χ). By (R1) v is ramified, and we find that

Wχ,v(g) =
1

2
·W 0

v (gd(̟)) +
1

2
·W 0

v (gw)ω(̟)χ(̟E).

The assertion follows from the formulas of W 0
v in Proposition 3.9. �

To treat the case v is non-split with cv(χ) > 0, i.e. v ∈ B(χ), we need to
introduce certain partial Gauss sums. For a non-split place v, write π = π(µ, ν)

with unramified µ and µν−1(̟) 6= |̟|−1 if π is unramified or special. Define
a character Ψπ,χ,v : E× → C× by

(3.29) Ψπ,χ,v(t) := µ(N(t)) · χ|·|
1
2

K(t).
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Recall that the partial Gauss sum Ãβ(Ψπ,χ,v) in [Hsi12, (4.17)] is defined by

Ãβ(Ψπ,χ,v) := lim
n→∞

∫

̟−nO

Ψ−1
π,χ,v(x+ θ)ψ(−d−1

F βx)dx · |DF |−
1
2 (β ∈ F×).

Lemma 3.18. Let v ∈ B(χ) be a non-split place with cv(χ) > 0. Then we have

ev
L(1, τE/F )

· aχ,v(a) =Ãa(Ψπ,χ,v) · ν|·|
1
2 (a)ν|·|

1
2 (̟m)

×





1 if v ∤ n−,

−1 if v | n−s ,
|̟m|χ(δv) |δv|

1
2

E
ε(0,χ−1,ψE)
ε(−1,ω,ψ) |DF |

− 1
2 if v | n−r .

Proof. It seems very difficult to deduce the above formula of aχ,v(a) by
a straightforward computation, so we shall prove the formula by identifying
the toric Whittaker function Wχ,v with the image of an explicit element in the
induced representation corresponding to πv via the Whittaker linear functional.
Recall the Whittaker linear functional Λ : I(µ, ν)→ C ([Bum97, (6.9), p.498])
is defined by

Λ(f) =

∫

F

f(

(
0 −1
1 x

)
)ψ(−x)dx := lim

n→∞

∫

̟−nO

f(

(
0 −1
1 x

)
)ψ(−x)dx.

Let ς = ςv =

(
dF

d−1
F

)
and m = mv(χ, π). Define Pχ,ςRmv ∈ EndC I(µ, ν)

by

Pχ,ςRmv f(g) = vol(E×/F×, dt)−1

∫

E×/F×

f(g

(
1

̟m

)
ις(t))dt.

By [Sch02, Lemma 2.2.1], there exists a local new vector section f0 ∈
I(µ, ν)K

0(̟) such that

W 0
v (g) = Λ(π(g)f0).

Put f0
χ := Pχ,ςRmv f0. Then

aχ,v(a) =Wχ,v(d(a)) = Λ(π(d(a))f0
χ).

We thus have

aχ,v(a) =ν|·|
1
2 (a)

∫

F

f0
χ(

(
0 −1
1 x

)
)ψ(−ax)dx

=f0
χ(

(
dF

d−1
F

)
) |DF |−1 · ν|·| 12 (a)

∫

F

Ψ−1
π,χ,v(x+ θ)ψ(−d−1

F ax)dx

=f0
χ(ς)

∗ · ν|·| 12 (a)Ãa(Ψπ,χ,v) · e−1
v |DE |

− 1
2

E ν|·|− 1
2 (̟m),

where f0
χ(ς)

∗ is the normalized value

f0
χ(ς)

∗ := ν−1|·| 12 (̟m)vE · f0
χ(ς) (vE = ev |DE |

1
2

E |DF |
− 1

2 ).
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To evaluate the value f0
χ(ς)

∗, we use the computation in (3.16) and obtain

f0
χ(ς)

∗ =

∫

O

χ(1 + yθ)f0(ς · R−m
v ις(1 + yθ)Rmv )d′y

+

∫

̟O

χ(y + θ)f0(ς · R−m
v ις(y + θ)Rmv ) |DE |−1

E d′y

=Xm+1 · f0(ς) +

m∑

r=0

∫

̟rO×

χ(1 + yθ)ω(̟−my)d′y · f0(ςd(̟2(m−r)))

+ Y0 · ω(̟−m)f0(ςd(̟2m+ev−1)).

To proceed, we need to use explicit formulas for f0 ([Sch02, Prop. 2.1.2]). Sup-
pose that π is a unramified principal series (v ∤ n−) or special representation
(v | n−s ). Then

f0
χ(ς)

∗ =Xm · f0(ς) +

m−1∑

r=0

(Xr −Xr+1) · ω(̟r−m) · f0(ςd(̟2(m−r)))

+ Y0 · ω(̟−m)f0(ςd(̟2m+ev−1)).

Let f sph be the unique K0
v -invariant function in I(µ, ν) with f sph(ς) =

L(1, µν−1) |DF |
1
2 . If π is an unramified principal series, then we can take

f0 = f sph ([Bum97, Prop. 4.6.8]), and following the computation of the case
cv(χ) > 0 in Proposition 3.8 we find that

f0
χ(ς)

∗ =Xm · (f0(ς)− ω(̟−1)f0(d(̟2)ς)) = Xm · (1− µν−1|·|(̟)) · f0(ς)

= |̟m| |DE |
1
2

E L(1, τE/F ).

If π is special, then

f0 = f sph − µ−1|·| 12 (̟)−1π(

(
1

̟

)
)f sph,

and following the computation of the case cv(χ) > 0 in Proposition 3.9 we find
that

f0
χ(ς)

∗ =Xm+1 · (f0(ς)− f0(ς ·w))

=Xm+1 · (− |̟|−1 + |̟|)f sph(ς)

=(−1) · |̟m| |DE |
1
2

E · L(1, τE/F ).

Finally, suppose that π is a ramified principal series with ramified ν (v | n−r ).
LetB(F ) be the group of upper triangular matrices in GL2(F ). Let f0 ∈ I(µ, ν)
be the function supported in B(F )wN(D−1

F ) such that

f0(ςwn) = |DF |
1
2 for every n ∈ N(D−1

F ).
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Then one checks easily that f0 does the job. Following the computation in
Proposition 3.11, we find that

f0
χ(ς)

∗

=ω(̟−m)
∣∣̟2m

∣∣ · χ(δv) |δv|
1
2

E

ε(0, χ−1, ψE)

ε(−1, ω, ψ) L(1, τE/F ) |DE |
1
2

E |DF |
−1 · f0(ς ·w)

= |̟m| · L(1, τE/F ) · ω−1|·|(̟m) · χ(δv)
ε(0, χ−1, ψE)

ε(−1, ω, ψ) |DE |
1
2

E |DF |
− 1

2 .

This completes the proof in all cases. �

To investigate the p-integrality of a∗χ,v, we define the local invariant µp(Ψπ,χ,v)
by

(3.30) µp(Ψπ,χ,v) := inf
x∈K×

v

vp(Ψπ,χ,v(x) − 1).

By [Hsi12, (4.17)], Ãβ(Ψπ,χ,v) is indeed an algebraic integer. Moreover, it is
proved in [Hsi12, Lemma 6.4] that

µp(Ψπ,χ,v) > 0 ⇐⇒ Ãβ(Ψπ,χ,v) ≡ 0 (mod mp) for all β ∈ F×.

Therefore, it follows from Lemma 3.18 that if v ∈ B(χ), then a∗χ,v takes values
in Zp and

a∗χ,v ≡ 0 (mod mp) ⇐⇒ µp(Ψπ,χ,v) > 0.

We summarize our discussion in the following proposition.

Proposition 3.19. Let O be the finite extension of OLπ generated by{
a∗χ,v(1)

}
v∈B(χ)

and the values of χ̂. Then we have

(1) the normalized local Fourier coefficient a∗χ,v takes values in O for every
finite place v ∤ p,

(2) if either v 6∈ B(χ) is unramified or v ∈ A(χ), then a∗χ,v(1) = 1,

(3) if v ∤ n is ramified with cv(χ) = 0, then a∗χ,v(̟
−1) = 1,

(4) if v ∈ B(χ), then µp(Ψπ,χ,v) = 0 if and only if there exists ηv ∈ F×

such that

a∗χ,v(ηv) 6≡ 0 (mod mp).

4. Review of Hilbert modular forms

In this section, we review some standard facts about Hilbert modular Shimura
varieties and Hilbert modular forms.

4.1. Let V = Fe1 ⊕ Fe2 be a two dimensional F -vector space and 〈 , 〉 :
V×V → F be the F -bilinear alternating pairing defined by 〈e1, e2〉 = 1. Let
L = OFe1 ⊕ D−1

F e2 be the standard OF -lattice in V , which is self-dual with

respect to 〈 , 〉. For g =

(
a b
c d

)
∈ M2(F), we define an involution g 7→ g′ :=

(
d −b
−c a

)
. We identify vectors in V with row vectors according to the basis
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e1, e2, so G(F) = GL2(F) has a natural right action on V . If g ∈ G(F), then
g′ = g−1 det g. Define a left action of G on V by g ∗ x := x · g′, x ∈ V .
Hereafter, we let K be an open compact subgroup of G(Af ) satisfying (3.26)
and the following conditions:
(neat)
K is contained in U(N ′) for some N ′ ≥ 3 and det(K) ∩O×

F ,+ ⊂ (K ∩O×
F )

2.

We also fix a prime-to-p positive integer N such that U(N) ⊂ K.

4.2. Kottwitz models. We recall Kottwitz models of Hilbert modular
Shimura varieties following the exposition in [Hid04b].

Definition 4.1 (S-quadruples). Let � be a finite set of rational primes not
dividing N and let U be an open compact subgroup of K0 such that U(N) ⊂ U .
LetWU = Z(�)[ζN ] with ζN = exp(2πiN ). Define the fibered category A(�)

U over
the category SCH/WU

of schemes over WU as follows. Let S be a locally
noetherian connected WU -scheme and let s be a geometric point of S. The
objects are abelian varieties with real multiplication (AVRM) over S of level
U , i.e. a S-quadruple (A, λ̄, ι, η(�))S consisting of the following data:

(1) A is an abelian scheme of dimension d over S.
(2) ι : OF →֒ EndS A⊗Z Z(�) .
(3) λ is a prime-to-� polarization of A over S and λ̄ is the OF ,(�),+-orbit

of λ. Namely

λ̄ = OF ,(�),+λ :=
{
λ′ ∈ Hom(A,At)⊗Z Z(�) | λ′ = λ ◦ a, a ∈ OF ,(�),+

}
.

(4) η(�) = η(�)U (�) is a π1(S, s)-invariant U (�)-orbit of the isomorphisms
of OF -modules η(�) : L⊗ZA

(�)
f

∼→ V (�)(As) := H1(As, Ẑ
(�))⊗ZA

(�)
f .

Here we define η(�)g for g ∈ G(A(�)
f ) by η(�)g(x) = η(�)(g ∗ x).

Furthermore, (A, λ̄, ι, η(�))S satisfies the following conditions:

• Let t denote the Rosati involution induced by λ on EndS A ⊗ Z(�) .
Then ι(b)t = ι(b), ∀ b ∈ OF .
• Let eλ be the Weil pairing induced by λ. Lifting the isomorphism
Z/NZ ≃ Z/NZ(1) induced by ζN to an isomorphism ζ : Ẑ ≃ Ẑ(1),
we can regard eλ as an F -alternating form eλ : V (�)(A) × V (�)(A)→
D−1

F ⊗ZA
(�)
f . Let eη denote the F -alternating form on V (�)(A) induced

by eη(x, x′) = 〈xη, x′η〉. Then

eλ = u · eη for some u ∈ A
(�)
f .

• As OF ⊗Z OS-modules, we have an isomorphism LieA ≃ OF ⊗Z OS
locally under the Zariski topology of S.

For two S-quadruples A = (A, λ̄, ι, η(�))S and A′ = (A′, λ′, ι′, η′(�))S , we define
morphisms by

Hom
A

(�)
K

(A,A′) =
{
φ ∈ HomOF

(A,A′) | φ∗λ′ = λ̄, φ ◦ η′(�) = η(�)
}
.
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We say A ∼ A′ (resp. A ≃ A′) if there exists a prime-to-� isogeny (resp.
isomorphism) in Hom

A
(�)
K

(A,A′).

We consider the cases when � = ∅ and {p}. When � = ∅ is the empty set and

U is an open compact subgroup in G(A
(�)
f ) = G(Af ), we define the functor

EU : SCH/WU
→ SETS by

EU (S) =
{
(A, λ̄, ι, η)S ∈ AK(S)

}
/ ∼ .

By the theory of Shimura-Deligne, EU is represented by ShU which is a quasi-
projective scheme over WU . We define the functor EU : SCH/WU

→ SETS
by

EU (S) =
{
(A, λ̄, ι, η) ∈ A(�)

U (S) | η(�)(L ⊗Z Ẑ) = H1(As, Ẑ)
}
/ ≃ .

By the discussion in [Hid04b, p.136], we have EK
∼→ EK under the hypothesis

(neat).
When � = {p} and U = K, we let W = WK = Z(p)[ζN ] and define functor

E(p)K : SCH/W → SETS by

E(p)K (S) =
{
(A, λ̄, ι, η(p))S ∈ A(p)

K(p)(S)
}
/ ∼ .

In [Kot92], Kottwitz shows E(p)K is representable by a quasi-projective scheme

Sh
(p)
K over W if K is neat. Similarly we define the functor E

(p)
K : SCH/W →

SETS by

E
(p)
K (S) =

{
(A, λ̄, ι, η(p)) ∈ A(p)

K (S) | η(p)(L ⊗Z Ẑ(p)) = H1(As, Ẑ
(p))
}
/ ≃ .

It is shown in [Hid04b, §4.2.1] that E
(p)
K

∼→ E(p)K .

Let c be a prime-to-pN ideal of OF and let c ∈ (A
(pN)
f )× such that c = ilF (c).

We say (A, λ, ι, η(p)) is c-polarized if λ ∈ λ̄ such that eλ = ueη, u ∈ cdet(K).
The isomorphism class [(A, λ, ι, η(p))] is independent of a choice of λ in λ under
the assumption (neat) (cf. [Hid04b, p.136]). We consider the functor

E
(p)
c,K(S) =

{
c-polarized S-quadruple [(A, λ, ι, η(p))S ] ∈ E

(p)
K (S)

}
.

Then E
(p)
c,K is represented by a geometrically irreducible scheme Sh(p)K (c)/W ,

and we have

(4.1) Sh
(p)
K /W =

⊔

[c]∈Cl+
F
(K)

Sh
(p)
K (c)/W ,

where Cl+F (K) is the narrow ray class group of F with level det(K).
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4.3. Igusa schemes. Let n be a positive integer. Define the functor I(p)K,n :
SCH/W → SETS by

S 7→ I(p)K,n(S) =
{
(A, λ̄, ι, η(p), j)S

}
/ ∼,

where (A, λ̄, ι, η(p))S is a S-quadruple, j is a level pn-structure, i.e. an OF -
group scheme morphism:

j : D−1
F ⊗Z µpn →֒ A[pn],

and ∼ means modulo prime-to-p isogeny. It is known that I(p)K,n is relatively

representable over E(p)K (cf. [HLS06, Lemma (2.1.6.4)]) and thus is represented
by a scheme IK,n.
Now we consider S-quintuples (A, λ, ι, η(p), j)S such that [(A, λ, ι, η(p))] ∈
E
(p)
c,K(S). Define the functor I(p)K,n(c) : SCH/W → SETS by

S 7→ I(p)K,n(c)(S) =
{
(A, λ, ι, η(p), j)S as above

}
/ ≃ .

Then I(p)K,n(c) is represented by a scheme IK,n(c) over Sh(p)K (c), and IK,n(c)

can be identified with a geometrically irreducible subscheme of IK,n ([DR80,
Thm. (4.5)]). For n ≥ n′ > 0, the natural morphism πn,n′ : IK,n(c) → IK,n′(c)

induced by the inclusion D−1
F ⊗µpn′ →֒ D−1

F ⊗µpn is finite étale. The forgetful

morphism π : IK,n(c) → Sh
(p)
K (c) defined by π : (A, j) 7→ A is étale for all

n > 0. Hence IK,n(c) is smooth over SpecW . We write IK(c) for lim←−n IK,n(c).

4.4. Complex uniformization. We describe the complex points ShU (C) for
U ⊂ G(Af ). Put

X+ =
{
τ = (τσ)σ∈Σ ∈ CΣ | Im τσ > 0 for all σ ∈ Σ

}
.

The action of g = (gσ)σ∈Σ ∈ G(F ⊗Q R) with gσ =

(
aσ bσ
cσ dσ

)
and det gσ > 0

on X+ is given by τ = (τσ) 7→ gτ =
(
aστσ+bσ
cστσ+dσ

)
. Let F+ be the set of totally

positive elements in F and let G(F)+ = {g ∈ G(F) | det g ∈ F+}. Define the
complex Hilbert modular Shimura variety by

M(X+, U) := G(F)+\X+×G(Af )/U.

It is well known that M(X+,K)
∼→ ShU (C) by the theory of abelian varieties

over C (cf. [Hid04b, § 4.2]). Now we define this isomorphism explicitly.
For τ = (τσ)σ∈Σ ∈ X+, we let pτ be the isomorphism V ⊗Q R

∼→ CΣ defined
by pτ (ae1 + be2) = aτ + b with a, b ∈ F ⊗Q R = RΣ . We can associate a
AVRM to (τ, g) ∈ X+×G(Af ) as follows.

• The complex abelian variety Ag(τ) = CΣ/pτ (g ∗ L).
• The F+-orbit of polarization 〈 , 〉can on Ag(τ) is given by the Riemann

form 〈 , 〉can := 〈 , 〉 ◦ p−1
τ .
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• The ιC : O →֒ EndAg(τ) ⊗Z Q is induced from the pull back of the
natural F -action on V via pτ .
• The level structure ηg : L⊗Z Af

∼→ (g ∗ L)⊗Z Af = H1(Ag(τ),Af ) is
defined by ηg(v) = g ∗ v.

Let Ag(τ) denote the C-quadruple (Ag(τ), 〈 , 〉can, ιC,Kηg). Then the map

[(τ, g)] 7→ [Ag(τ)] gives rise to an isomorphism M(X+, U)
∼→ ShU (C).

For a positive integer n, the exponential map gives the isomorphism exp(2πi−) :
p−nZ/Z ≃ µpn and thus induces a level pn-structure j(gp):

j(gp) : D−1
F ⊗Z µpn

∼→ D−1
F e2 ⊗Z p

−nZ/Z →֒ L ⊗Z p
−nZ/Z

g∗
∼→ Ag(τ)[p

n].

Put

Kn
1 :=

{
g ∈ K | gp ≡

(
1 ∗
0 1

)
(mod pn)

}
.

We have a non-canonical isomorphism:

M(X+,Kn
1 )

∼→ IK,n(C)

[(τ, g)] 7→ [(Ag(τ), 〈 , 〉can, ιC, η(p)g , j(gp))].

Let z = {zσ}σ∈Σ be the standard complex coordinates of CΣ and dz =
{dzσ}σ∈Σ . Then OF -action on dz is given by ιC(α)∗dzσ = σ(α)dzσ , σ ∈ Σ ≃
Hom(F ,C). Let z = zid be the coordinate corresponding to ι∞ : F →֒ Q →֒ C.
Then

(4.2) (OF ⊗Z C)dz = H0(Ag(τ),ΩAg(τ)/C).

4.5. Hilbert modular forms. Let k =
∑
σ kσσ ∈ Z≥1[Σ] such that

kσ1 ≡ kσ2 ≡ · · · ≡ kσd
(mod 2) for all σ1, . . . , σd ∈ Σ.

For τ = (τσ)σ∈Σ ∈ X+ and g = (

(
aσ bσ
cσ dσ

)
)σ∈Σ ∈ G(F ⊗Q R), we put

J(g, τ)k =
∏

σ∈Σ

(cστσ + dσ)
kσ .

Definition 4.2. Let kmx = maxσ∈Σ kσ. Denote by Mk(K
n
1 ,C) the space

of holomorphic Hilbert modular forms of weight k and level Kn
1 . Each f ∈

Mk(K
n
1 ,C) is a C-valued function f : X+×G(Af )→ C such that the function

f(−, gf ) : X+ → C is holomorphic for each gf ∈ G(Af ), and for u ∈ Kn
1 and

α ∈ G(F)+,

f(α(τ, gf )u) = (detα)−
kmxΣ+k

2 J(α, τ)k · f(τ, gf ).
Here detα is considered to be the element (σ(detα))σ∈Σ in (C×)Σ .

For every f ∈Mk(K
n
1 ,C),we have the Fourier expansion

f(τ, gf ) =
∑

β∈F+∪{0}

Wβ(f , gf )e
2πiTrF/Q(βτ).
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For a semi-group L in F , let L+ = F+ ∩L and L≥0 = L+ ∪ {0}. If B is a ring,
we denote by BJLK the set of all formal series

∑

β∈L

aβq
β , aβ ∈ B.

Let a, b ∈ (A
(pN)
f )× and let a = ilF (a) and b = ilF (b). The q-expansion of f at

the cusp (a, b) is given by

(4.3) f |(a,b)(q) =
∑

β∈(N−1ab)≥0

Wβ(f ,

(
a−1 0
0 b

)
)qβ ∈ CJ(N−1ab)≥0K.

If B is aW-algebra in C, let Mk(c,K
n
1 , B) be the space consisting of functions

f ∈Mk(K
n
1 ,C) such that

f |(a,b)(q) ∈ BJ(N−1ab)≥0K for all (a, b) such that ab−1 = c.

4.5.1. Tate objects. Let S be a set of d linearly Q-independent elements
in Hom(F ,Q) such that l(F+) > 0 for l ∈ S . If L is a lattice in F
and n a positive integer, let LS ,n = {x ∈ L | l(x) > −n for all l ∈ S } and
put B((L;S )) = lim

n→∞
BJLS ,nK. To a pair (a, b) of two prime-to-pN frac-

tional ideals, we can attach the Tate AVRM Tatea,b(q) = a∗ ⊗Z Gm/q
b over

Z((ab;S )) with O-action ιcan acting on a∗, where a∗ := a−1D−1
F . As de-

scribed in [Kat78], Tatea,b(q) has a canonical ab−1-polarization λcan and also
carries a canonical OF ⊗Z((ab;S ))-generator ωcan of ΩTatea,b

induced by the
isomorphism Lie(Tatea,b(q)/Z((ab;S ))) = a∗ ⊗Z Lie(Gm) ≃ a∗ ⊗ Z((ab;S )).
Since a is prime to p, the natural inclusion a∗ ⊗Z µpn →֒ a∗ ⊗Z Gm induces
a canonical level pn-structure ηp,can : D−1

F ⊗Z µpn = a∗ ⊗Z µpn →֒ Tatea,b(q).

Let La,b = L ·
(
b

a−1

)
= be1 ⊕ a∗e2. Then we have a level N -structure

η
(p)
can : N−1La,b/La,b ∼→ Tatea,b(q)[N ] over Z[ζN ]((N−1ab;S )) induced by

the fixed primitive N -th root of unity ζN . We write Tatea,b for the Tate

Z((ab;S ))-quadruple (Tatea,b(q), λcan, ιcan, η
(p)
can, ηp,can) at (a, b).

4.5.2. Geometric modular forms. We collect here definitions and basic facts
of geometric modular forms. The whole theory can be found in [Kat78] and
[Hid04b]. Let T be the algebraic torus overW defined by T (R) = (OF ⊗ZR)

×

for every W-algebra R. Let k ∈ Hom(T,Gm/W). Let B be a W-algebra. For
a B-algebra C, we consider a triple (A, j,ω) over C, consisting of [(A, j)] =
[(A, λ, ι, η(p), j)] ∈ IK,n(c)(C) (resp. [(A, j)] = [(A, λ̄, ι, η(p), j)] ∈ IK,n(C))
AVRM with level structures and an 1-form ω generating H0(A,ΩA/C) over
OF ⊗ZC. A geometric modular form f of weight k on IK,n(c) (resp. IK,n) over
B is a rule of assigning to every triple (A, j,ω) over C a value f(A, j,ω) ∈ C
satisfying the following axioms.

(G1) f(A, j,ω) = f(A′, j′,ω′) ∈ C if (A, j,ω) ≃ (A′, j′,ω′) over C,
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(G2) For a B-algebra homomorphism ϕ : C → C′, we have

f((A, j,ω)⊗C C′) = ϕ(f(A, j,ω)),

(G3) f((A, j, aω) = k(a−1)f(A, j,ω) for all a ∈ T (C) = (OF ⊗Z C)
×,

(G4) f(Tatea,b,ωcan) ∈ BJ(N−1ab)≥0K at all cusps (a, b) in IK,n(c) (resp.
IK,n).

For each k ∈ Z[Σ], we regard k ∈ Hom(T,Gm/W) as the character x 7→ xk, x ∈
(OF ⊗Z W)×. We denote by Mk(c,K

n
1 , B) (resp. Mk(K

n
1 , B)) the space of

geometric modular forms over B of weight k on IK,n(c) (resp. IK,n). For
f ∈Mk(K

n
1 , B), we write f |c ∈Mk(c,K

n
1 , B) for the restriction f |IK,n(c).

For each f ∈Mk(K
n
1 ,C), we regard f as a holomorphic Hilbert modular form

of weight k and level Kn
1 by

f(τ, gf) = f(Ag(τ), 〈 , 〉can, ιC, ηg, 2πidz),
where dz is the differential form in (4.2). By GAGA this gives rise to an
isomorphism Mk(K

n
1 ,C)

∼→ Mk(K
n
1 ,C) and Mk(c,K

n
1 ,C)

∼→ Mk(c,K
n
1 ,C).

Moreover, as discussed in [Kat78, §1.7], we have the following important iden-
tity which bridges holomorphic modular forms and geometric modular forms

f |(a,b)(q) = f(Tate(a,b),ωcan) ∈ CJ(N−1ab)≥0K.

By the q-expansion principle, if B is W-algebra in C and f ∈Mk(c,K
n
1 , B) =

Mk(c,K
n
1 ,C), then f |c ∈ Mk(c,K

n
1 , B).

4.5.3. p-adic modular forms. Let B be a p-adic W-algebra in Cp. Let
V (c,K,B) be the space of Katz p-adic modular forms over B defined by

V (c,K,B) := lim←−
m

lim−→
n

H0(IK,n(c)/B/pmB,OIK,n).

In other words, Katz p-adic modular forms consist of formal functions on the
Igusa tower.
Let C be a B/pmB-algebra. For each C-point [(A, j)] = [(A, λ, ι, η(p), j] ∈
IK(c)(C) = lim←−n IK,n(c)(C), the p∞-level structure j induces an isomorphism

j∗ : D−1
F ⊗ZC ≃ LieA which in turn gives rise to a generator ω(j) of H0(A,ΩA)

as a OF ⊗Z C-module. Then we have a natural injection

(4.4)
Mk(c,K

n
1 , B) →֒ V (c,K,B)

f 7→ f̂(A, j) := f(A, j,ω(j))

which preserves the q-expansions in the sense that f̂ |(a,b)(q) := f̂(Tatea,b) =

f |(a,b)(q). We call f̂ the p-adic avatar of f .

4.6. CM points. Recall that we have fixed ϑ ∈ K in §3.4 satisfying (d1-3) and
the associated embedding ι : K →֒ M2(F) in (2.1). The map pϑ : V ⊗Q R ≃
CΣ , ae1 + be2 7→ aϑ+ b yields an isomorphism pϑ : V ≃ K satisfying

pϑ(x)α = pϑ(xι(α)) for x ∈ V, α ∈ K.
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Let ς =
∏
v ςv ∈ G(A), where ςv ∈ Gv for each place v is defined in (3.3). Let

ςf ∈ G(Af ) be the finite part of ς . According to our choices of ςv, we have

ςf ∗ (L ⊗Z Ẑ) = (L ⊗Z Ẑ) · ς ′f = p−1
ϑ (OK ⊗Z Ẑ).

Define x : A×
K → X+×G(Af ) by

a = (a∞, af ) 7→ x(a) := (ϑΣ , ι(af )ςf ).

Let a ∈ (A
(pN)
K,f )× and let

(A(a), j(a))/C = (Aι(a)ςf (ϑΣ), 〈 , 〉can, ιcan, η(p)(a), j(a))
be the C-quintuple associated to x(a) as in §4.4. The alternating pairing 〈 , 〉 :
K×K :→ F defined by 〈x, y〉 = (xy − xy)/(ϑ − ϑ) induces an isomorphism
OK∧OF

OK = c(OK)
−1D−1

F for the fractional ideal c(OK) = D−1
F ((ϑ−ϑ)D−1

K/F).
The hypothesis (d2) on ϑ implies that

c(OK) is prime to pcχnDK/F .

Note that c(OK) descends to a fractional ideal of OF and that c(OK) is the
polarization of x(1) = (A(1), j(1)). In addition, x(a) = (A(a), j(a))/C is an
abelian variety with CM by OK with the polarization ideal of x(a) given by

c(a) := c(OK)N(a)
−1 (a = ilK(a)).

It thus gives rise to a complex point [x(a)] in IK(c(a))(C). Let Wp be the
p-adic completion of the maximal unramified extension of Zp in Cp. The
general theory of CM abelian varieties ([Shi98]) combined with the criterion
of Serre and Tate ([ST68]) imply that [x(a)] indeed descends to a point in
IK(c(a))(Wp) →֒ IK(Wp), which is still denoted by x(a). The collection
{[x(a)]}

a∈(A
(pN)
K,f )×

⊂ IK(Wp) are called CM points in the Hilbert modular

Shimura varieties.

5. Anticyclotomic Rankin-Selberg p-adic L-functions

5.1. Toric forms.

Definition 5.1 (Toric forms). We define the complex Hilbert modular form
fχ : X+×G(Af )→ C associated to ϕχ by

(5.1)
fχ(τ, gf ) =ϕχ(g) · J(g∞, i)k(det g∞)−

kmxΣ+k
2 |det g|kmx/2

A ,

(i = (
√
−1)σ∈Σ , g = (g∞, gf), g∞i = τ, det g∞ > 0).

Here det g∞ = (det gσ)σ∈Σ ∈ (R×)Σ and det g∞ > 0 means det gσ > 0 for all
σ ∈ Σ.
Let f∗χ be the normalization of fχ given by

f∗χ = N(π, χ)−1 |det ςf |−kmx/2
Af

· fχ.
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Let δmk be the Maass-Shimura differential operator (cf. [HT93, (1.21)]). Then
the normalized differential operator Ṽ m+ defined in (3.7) is the representation
theoretic avatar of δmk in the following sense:

δmk fχ(τ, gf ) = (Ṽ m+ ϕχ)(g∞, gf)J(g∞, i)
k+2m(det g∞)−

kmxΣ+k+2m
2 |det g|kmx/2

A

(cf. [Hsi12, §4.5]). We call δmk f∗χ the normalized toric form of character χ
associated with the Hilbert modular form f .

Similarly, for each u ∈ (OF ⊗Z Zp)
×, we let f∗χ,u be the normalized modular

form associated to the u-component ϕχ,u (cf. Wχ,u in (3.23)). It is clear from
(3.25) that

(5.2) f∗χ =
∑

u∈Up

f∗χ,u.

Let Kn
1 be the open compact subgroup defined in (3.26). Then f∗χ and{

f∗χ,u
}
u∈Up

belong to Mk(K
n
1 ,C) for sufficiently large n.

For a ∈ (A
(p)
K,f )

××(OK ⊗ Zp)
×, we consider the Hecke action |[a] given by

|[a] : Mk(c(a),K
n
1 ,C)→Mk(c, aK

n
1 ,C) (aK

n
1 := ις(a)K

n
1 ις(a

−1)),

f 7→ f |[a](τ, gf ) := f(τ, gf ις(a)).

The Hecke action |[a] can be extended to the spaces of p-integral modular forms
(cf. [Hsi14b, §2.6]). It follows from Lemma 3.13 immediately that

(5.3) f∗χ,u|[a] = χ−1|·|kmx/2
AK

(a) · f∗χ,u.a1−c for all a ∈ Tf (u.a1−c := uaΣpa
−1

Σp
).

5.2. The toric period integral. Next we consider the toric period integral
of f∗χ. Let UK = (K ⊗Q R)××(OK ⊗Z Ẑ)× be a subgroup of A×

K and let
Cl− = K×A×\A×

K/UK. Let R be the subgroup of A×
K generated by K×

v for all
ramified places v and let Clalg− be the subgroup of Cl− generated by the image
of R By Lemma 3.13 and the fact that T = A×UKR, we have

(5.4) Pχ(π(ς)Ṽ
m
+ ϕχ) = vol(UK, dt)♯(Cl

alg
− ) ·

∑

[t]∈Cl−/Cl
alg
−

Ṽ m+ ϕχ(ι(t)ς)χ(t).

Let D1 be a set of representatives of Cl−/Cl
alg
− in (A

(pN)
K,f )×. We define the

χ-isotypic toric period by

Pχ(δ
m
k f∗χ) :=

∑

a∈D1

δmk f∗χ(x(a))χ|·|−kmx/2
AK

(a).

Proposition 5.2. Let DK/F be the discriminant of K/F . We have

Pχ(δ
m
k f∗χ)

2 =
ΓΣ(k +m)ΓΣ(m+ 1)

(Imϑ)k+2m(4π)2m+k+1
· L(1

2
, πK ⊗ χ) · eΣp(π, χ)

× [O×
K : O×

F ]
2 · Cπ(χ),
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where

Cπ(χ) = C′
π(χ) · 4−[F :Q]

∣∣NF/Q(DK/F)
∣∣ 12
R

(
♯(Cl−)hF

♯(Clalg− )hK

)2

∈ Z
×

(p)

and C′
π(χ) is defined in (3.27).

Proof. We first note that the ratio ♯(Cl−)hF

♯(Clalg− )hK

is a power of 2, so the constant

Cπ(χ) is a p-adic unit. By definition, we have

fχ(x(a)) = ϕχ(ι(af )ς)(Imϑ)−k/2 · |N(a) det ςf |kmx/2
A

.

By (5.4), we find that

vol(UE , d
×t)♯(Clalg− ) · Pχ(δmk f∗χ) =

1

N(π, χ) · (Im ϑ)k/2+m
· Pχ(π(ς)Ṽ m+ ϕχ).

From the well-known formula

2L(1, τK/F) = (2π)[F :Q] · hK/hF

|DK|
1
2

R |DF |−
1
2

R · [O×
K : O×

F ]
,

we see that

vol(UK, dt) =vol(K×A×\A×
K, dt) · ♯(Cl−)−1

=2π−[F :Q]L(1, τK/F) · ♯(Cl−)−1 =
2[F :Q] |DF |

1
2

R

|DK|
1
2

R [O×
K : O×

F ]
· hK
hF♯(Cl−)

.

The proposition follows form Theorem 3.14 immediately. �

5.3. The Fourier expansion of f∗χ,u. Let u = (uv) ∈ Up. We give an
expression of the Fourier expansion of f∗χ,u. Let Wχ,u,f be the finite part of
Wχ,u. By the definition of fχ,u, we have
(5.5)

fχ,u(τ, gf ) =
∑

β∈F

Wχ,u,f (

(
β

1

)
gf )Wχ,∞(

(
β

1

)(
y∞ x∞
0 1

)
) · y−k/2∞

=
∑

β∈F+

Wχ,u,f (

(
β

1

)
gf )β

k/2e2πiTrF/Q(βτ).

(τ = x∞ + iy∞ = (xσ + iyσ)σ∈Σ ∈ X+)

The second equality follows from the choice of Whittaker functions at the
archimedean places (3.6).
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We define the global prime-to-p Fourier coefficient a
(p)
χ : (A

(p)
f )× → C by

(5.6)

a(p)χ (a) :=N(π, χ)−1 ·W (p)
χ,f (

(
a

1

)
) (a = (av) ∈ A×

f )

=
∏

v∈B(χ)

1

nvL(1, τKv/Fv
)
Wχ,v(

(
av

1

)
)

∏

v 6∈B(χ),v∤p

Wχ,v(

(
av

1

)
)

=
∏

v∈h,v∤p

a∗χ,v(av).

Here a∗χ,v are the normalized local Fourier coefficients defined in Definition 3.16.

Proposition 5.3. Let c be a prime-to-p ideal of F and let c ∈ (A
(p)
K,f )

× such

that ilF (c) = c. Then the Fourier expansion of f∗χ,u at the cusp (OF , c) is given
by

f∗χ,u|(OF ,c)(q) =
∑

β∈(N−1c)+

aβ(f
∗
χ,u, c)q

β ,

where

aβ(f
∗
χ,u, c) = βk/2a(p)χ (βc−1)

∏

w∈Σp,v|w

χw(β
−1)Iuv(1+̟vOFv )

(β).

In particular, f∗χ,u ∈Mk(K
n
1 ,O) by Proposition 3.19, and the Fourier expansion

of f∗χ at the cusp (OF , c) is given by

f∗χ|(OF ,c)(q) =
∑

β∈(N−1c)+

aβ(f
∗
χ, c)q

β ,

where
aβ(f

∗
χ, c) = βk/2a(p)χ (βc−1)

∏

w∈Σp

χw(β
−1) · IO×

F,(p)
(β).

Proof. It follows from the definition of Wχ,u that

Wχ,u,f (

(
βc−1

1

)
) =W

(p)
χ,f (

(
βc−1

1

)
) ·
∏

v|p

Wχ,uv ,v(

(
β

1

)
)

=W
(p)
χ,f (

(
βc−1

1

)
) ·

∏

w∈Σp,v|w

χ−1
w (av)Iuv(1+̟vOFv )

(β).

The proposition follows from (5.5) immediately. The Fourier expansion of f∗χ
follows from (5.2). �

5.4. p-adic L-functions. Now we resume the setting in the introduction.
Let K−

p∞ be the maximal anticyclotomic Z
[F :Q]
p -extension of K and let Γ− =

Gal(K−
p∞/K). Let C(Γ−) = C(Γ−,Zp) be the space of continuous functions

ϕ : Γ− → Zp. The reciprocity law recK at Σp induces a morphism

recΣp : (F ⊗Q Qp)
× ≃

∏

w∈Σp

K×
w

recK−→ Γ−.
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Let Xcrit
p be the set of critical specializations, consisting of p-adic characters

φ̂ : Γ− → C×
p such that for some m ∈ Z≥0[Σ],

φ̂(recΣp(x)) = xm for all x ∈ (OF ⊗ Zp)
× sufficiently close to 1.

Let φ be an anticyclotomic Hecke character of p-power conductor and of infinity
type (m,−m) with m ∈ Z≥0[Σ]. Then φ is unramified outside p and φ|A× = 1.
The p-adic avatar φ̂ of φ belongs to Xcrit

p . To be precise, let φΣp :=
∏
w∈Σp

φw.
Then we have

(5.7) φ̂(recΣp(x)) = φΣp(x)x
m for every x ∈ (F ⊗Q Qp)

×.

Hereafter, we let λ be a Hecke character of K× and assume that Hypothesis A
and (sf) hold for (π, λ). Note that Hypothesis A and (sf) also hold for (π, λφ).
We will apply our calculations in §3 to the pair (π, χ) = (π, λφ).

Lemma 5.4. Let φ be as above. Then

(1) a
(p)
λφ = a

(p)
λ .

(2) C′
π(λφ) = C′

π(λ)φ(F).

Proof. If v ∤ p is split, we have remarked that Wχvφ
−1
v ,v = Wχv ,v. If v is

inert or ramified, then φv = 1 as φv is unramified and p > 2. Therefore, we have
W

(p)
χφ,f = W

(p)
χ,f . Part (1) follows from the definition of a(p)λφ (5.6) immediately.

Next, recall that we have defined C′
π(χ) for a Hecke character χ in (3.27).

Since φ is anticyclotomic and unramified outside p, part (2) follows from the
fact [Sch02, Eq.(11)]

ε(
1

2
, πv ⊗ λwφw, ψv) = ε(

1

2
, πv ⊗ λw, ψ)φw(D2

FF) (v = ww, w|F). �

Let Op := OF ⊗Z Zp and let Γ′ := recΣp(1 + pOp) be an open subgroup of
Γ−. Let {θ(σ)}σ∈Σ be the Dwork-Katz p-adic differential operators ([Kat78,
Cor. (2.6.25)]) and let θm :=

∏
σ∈Σ θ(σ)

mσ .

Proposition 5.5. There exists a unique p-adic distribution Fλ,c : C(Γ−) →
V (c,K,Zp) such that

(i) Fλ,c is supported in Γ′,

(ii) for every φ̂ ∈ Xcrit
p of weight (m,−m), we have

Fλ,c(φ̂) = θmf̂∗λφ,c.

Proof. We denote by Fλ,c(q) the p-adic measure with values in the space
of formal q-expansions such that for every ϕ ∈ C(Γ−),

Fλ,c(q)(ϕ) =
∑

β∈(N−1c)+

aβ(f
∗
λ , c)ϕ(recΣp(β))q

β .

Note that aβ(f
∗
λ , c) = 0 unless β ∈ O×

F ,(p), and thus Fλ,c has support in Γ′ by
definition.
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Let φ̂ be the p-adic avatar of a Hecke character φ of infinity type (m,−m). By
[Kat78, (2.6.27)] (cf. [HT93, §1.7 p.205]), the q-expansion of θmf̂∗λφ is given by

θmf̂∗λφ|(OF ,c)(q) =
∑

β∈(N−1c)+

aβ(f
∗
λφ, c)φΣp(β)β

mqβ .

Therefore, by Lemma 5.4 and (5.7) we find that

(5.8) Fλ,c(q)(φ̂) = θmf̂∗λφ,c(q).

By the q-expansion principle, this measure descends to the p-adic measure Fλ,c

with values in the space of p-adic modular forms V (c,K,Zp). �

We are ready to define the p-adic L-function.

Definition 5.6. For a ∈ A×
K, define |[a] ∈ End(C(Γ−)) by ϕ 7→ ϕ|[a](σ) :=

ϕ(σ recK(a)|Γ−). Fix a square root
√
Cπ(λ) ∈ Z

×

p of the constant Cπ(λ) and

let λ̃ = λ · |·|−kmx/2
AK

. We define the p-adic integral distribution LΣp(π, λ) :

C(Γ−)→ Zp by

(5.9) LΣp(π, λ)(ϕ) =
1√
Cπ(λ)

·
∑

a∈D1

λ̃(a) ·
(
Fλ,c(a)(ϕ|[a])

)
(x(a)).

We will still denote by LΣp(π, λ) ∈ ZpJΓ
−K the corresponding power series.

We give the evaluation formula of LΣp(π, λ) at critical specializations. Let

(Ω∞,Ωp) ∈ (C×)Σ×(Z×

p )
Σ be the complex and p-adic CM periods of (K, Σ)

introduced in [HT93, (4.4 a,b) p.211] (cf. (Ω, c) in [Kat78, (5.1.46), (5.1.48)])
and let ΩK = (2πi)−1Ω∞. For each Hecke character χ of infinity type (m,−m),
we define the algebraic L-value by

(5.10) Lalg(
1

2
, πK ⊗ χ) :=

ΓΣ(m)ΓΣ(k +m)

(Imϑ)k+2m(4π)k+2m+1·Σ
· L(

1
2 , πK ⊗ χ)
Ω

2(k+2m)
K

∈ Q.

The algebraicity of this L-value is due to Shimura [Shi78].

Theorem 5.7. Suppose that Hypothesis A and (sf) hold. Then for each

p-adic character φ̂ ∈ Xcrit
p of weight (m,−m), we have the evaluation formula

(
LΣp(π, λ)(φ̂)

Ωk+2m
p

)2

=[O×
K : O×

F ]
2 · eΣp(π, λφ)L

alg(
1

2
, πK ⊗ λφ) · φ−1(F).

Proof. It follows from [Kat78, (2.4.6), (2.6.8), (2.6.33)] that

1

Ωk+2m
p

θmf̂∗λφ(x(a)) =
1

Ωk+2m
K

δmk f∗λφ(x(a)).
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We thus have
1

Ωk+2m
p

·LΣp(π, λ)(φ̂) =
√
Cπ(λ)

−1 ∑

a∈D1

λ̃φ(a) · 1

Ωk+2m
p

θmf̂∗λφ(x(a))

=
1

Ωk+2m
K ·

√
Cπ(λ)

· Pλφ(δmk f∗λφ).

Combined with Proposition 5.2 and Lemma 5.4 (2), the above equation yields
the proposition. �

6. The µ-invariant of p-adic L-functions

In this section, we use the explicit computation of Fourier coefficients of{
f∗λ,u

}
u∈Up

to study the µ-invariant of the p-adic L-function LΣp(π, λ) by the

approach of Hida [Hid10b].

6.1. The t-expansion of p-adic modular forms. We begin with a brief
review of the t-expansion of p-adic modular forms. A functorial point in IK(c)

can be written as [(A, j)] = [(A, λ, ι, η(p), j)]. Enlarging Wp if necessary, we
let Wp be the p-adic ring generated by the values of λ on finite ideles over the
Witt ring W (F̄p). Let mWp be the maximal ideal ofWp and fix an isomorphism

Wp/mWp

∼→ F̄p. Let T := O∗
F⊗Zµp∞ and let T̂ = O∗

F⊗Z Ĝm/Wp
be the formal

completion. Let {ξ1, . . . , ξd} be a basis of OF over Z and let t be the character
1 ∈ OF = X∗(O∗

F ⊗Z Gm) = Hom(O∗
F ⊗Z Gm,Gm). Then

OT̂
∼→WpJS1, . . . , SdK (Si = tξi − 1).

Let x := x(1)/Wp
∈ IK(c)(Wp) be the CM point introduced in §4.6and let

x0 = x ⊗Wp F̄p = (A0, j0) ∈ IK(c)(F̄p) be the reduction. The theory of Serre-

Tate coordinates ([Kat81]) tells us the deformation space Ŝx0 of x0 is isomorphic
to the formal torus T̂ , and the p∞-level structure j0 of A0 induces a canonical
isomorphism ϕx0 : T̂/W

∼→ Ŝx0 = Spf ÔIK(c),x0
(cf. [Hid10b, (3.15)]). We will

regard the character t on T̂ as a function on Ŝx0 via ϕx0 . Then x is the canonical
lifting of x0, i.e. t(x) = 1. For f ∈ V (c,K,Wp), we define

f(t) := ϕ∗
x0
(f) ∈ OT̂ =WpJS1, . . . , SdK.

The formal power series f(t) is called the t-expansion around x0 of f .

6.2. The vanishing of the µ-invariant. Let π− : (A
(pN)
K,f )× → Γ− be the

natural map induced by the reciprocity law. Let Z ′ = π−1
− (Γ′) be a subgroup

of (A
(pN)
K,f )× and let Cl′− ⊃ Clalg− be the image of Z ′ in Cl−. Let D′

1 (resp.

D′′
1 ) be a set of representative of Cl′−/Cl

alg
− (resp. Cl−/Cl

′
−) in (A

(pN)
K,f )×.

Let D1 := D′
1D′′

1 be a set of representative of Cl−/Cl
alg
− . Recall that Up is

the torsion subgroup of O×
p . Let U be the torsion subgroup of K× and let

Ualg = (K×)1−c ∩O×
K be a subgroup of U . We regard Ualg as a subgroup of Op
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by the imbedding induced by Σp. Let D0 be a set of representatives of Up/Ualg

in Up.
Let c := c(OK) be the polarization ideal of the chosen CM point x(1). The
following theorem reduces the calculation of the µ-invariant µ−

π,λ,Σ to the de-
termination of p-adic valuation of the q-expansion of f∗λ,u.

Theorem 6.1. Suppose that p is unramified in F . Then

µ−
π,λ,Σ = inf

(a,u)∈D1×D0

β∈F+

vp(aβ(f
∗
λ,u, c(a))).

Proof. For every pair (u, a) ∈ Up×D1, we let f∗u,a := f∗λ,u|c(a) ∈
Mk(c(a),K,O). Let Fu,a be the p-adic avatar of f∗u,a. Fix a sufficient large
finite extension L over Qp so that χ and f∗u,a|[a] are defined over OL for all
(u, a), and hence Fu,a|[a] ∈ V (c,OL). For each z ∈ Z ′, let 〈z〉 be the unique
element in 1 + pOp such that recΣp(〈z〉) = π−(z) ∈ Γ−. For (a, b) ∈ D1×D′′

1 ,
we define

F̃a(t) =
∑

u∈Up

Fu,a(t
u−1

),

F
b(t) =

∑

a∈bD1

λ̃(ab−1)F̃a|[a](t〈ab
−1〉).

Let L b
Σ(π, λ) be the p-adic measure on 1+pOp ≃ Γ′ obtained by the restriction

of LΣp(π, λ) to π−(b)Γ′. In other words, for each continuous function ϕ : Γ′ →
Zp, we have

L
b
Σ(π, λ)(ϕ) :=LΣp(π, λ)(Ib.Γ′ · ϕ|[b−1])

=
∑

a∈bD′
1

λ̃(a)Fλ,c(a)(ϕ|[ab−1])(x(a)).

Here the second equality follows from the fact that Fλ,c(a) has support in
Γ′ (Proposition 5.5 (i)). The argument of [Hsi14b, Prop. 5.2] shows that
F
b(t) is the power series expansion of the measure L b

Σ(π, λ) regarded as a
p-adic measure on Op and that

µ−
π,λ,Σ = inf

b∈D′′
1

µ(Fb), where

µ(Fb) := inf
{
r ∈ Q≥0 | p−rFb 6≡ 0 (mod mp)

}
.

By (5.3) we find that

F̃a(t) = ♯(Ualg) ·
∑

u∈D0

Fu,a(t
u−1

),

and hence

F
b(t) = ♯(Ualg) ·

∑

(u,a)∈D0×bD′
1

λ̃(ab−1)Fu,a|[a](t〈ab
−1〉u−1

).
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Proceeding along the same lines in [Hsi14b, Thm. 5.5], we deduce the theo-
rem from the above equation by the linear independence of p-adic modular
forms modulo p acted by the automorphisms in D0×D′

1 ([Hid10b, Thm. 3.20,
Cor. 3.21]) and the q-expansion principle for p-adic modular forms. �

Theorem 6.2. In addition to Hypothesis A and (sf), we suppose that p is
unramified in F and

(aiK) the residual Galois representation ρp(πK) is absolutely irreducible.

Then µ−
π,λ,Σ = 0 if and only if

∑

v|c−λ

µp(Ψπ,λ,v) = 0,

where µp(Ψπ,λ,v) are the local invariants defined as in (3.30).

Proof. It is not difficult to deduce from the formula of aβ(f
∗
λ,u, c(a)) in

Proposition 5.3 and Proposition 3.19 that

µp(Ψπ,λ,v) > 0 for some v|c−λ ⇒ aβ(f
∗
λ,u, c(a)) ≡ 0 (mod mp) for all a ∈ A×

f ,

and hence µ−
π,λ,Σ > 0 by Theorem 6.1.

Conversely, we suppose that µp(Ψπ,λ,v) = 0 for all v|c−λ . We are going to show
µ−
π,λ,Σ = 0 by contradiction. Assume that µ−

π,λ,Σ > 0. By Proposition 5.3

Theorem 6.1, for each a ∈ A
(pN)
K,f we find that

aβ(f
∗
λ,u, c(a)) ≡ 0 (mod mp) for all u ∈ Up and β ∈ F+

⇐⇒ a
(p)
λ (βc−1N(a−1)) ≡ 0 (mod mp) for all β ∈ O×

F ,(p).

Therefore, as a function on (A
(p)
f )×, we have

(6.1)
a
(p)
λ (a) ≡ 0 (mod mp) for all

a ∈ O×
F ,(p)c

−1 det(U(N))N((A
(pN)
K,f )×) = F×c−1N((A

(p)
K,f )

×).

By Proposition 3.19, there exists η = (ηv) ∈
∏
v|c−χ
F×
v such that a∗λ,v(ηv) 6≡

0 (mod mp) for each v|c−λ . We extend η to be the idele in A×
f such that ηv = 1

at v ∤ cχ. Therefore, (6.1) together with the factorization formula of a(p)λ (5.6)
imply that for each uniformizer ̟v at v ∤ pr, we have
(6.2)

a
(p)
λ (η̟v) ≡ 0 (mod mp) ⇐⇒ W 0

v (

(
̟v

1

)
) ≡ 0 (mod mp) whenever

̟v ∈ [η−1c−1] := F×η−1c−1N((A
(p)
K,f )

×).

On the other hand, by (3.2), we find that

Tr ρp(π)(Frobv) = ω(̟v)
−1 |̟v|−kmx/2W 0

v (

(
̟v

1

)
) for all v ∤ pn.
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Let recK/F : A×
K → Gal(K/F) be the surjection induced by the reciprocity law.

Combined with (6.2), the above equation yields that

Tr ρp(π)(Frobv) ≡ 0 (mod mp) whenever

Frobv|K = recK/F (̟v) = recK/F(η
−1c−1).

This in particular implies that recK/F (η
−1c−1) must be the complex conju-

gation c, and hence we arrive at a contradiction to (aiK) by the following
Lemma 6.3. �

Lemma 6.3. Let p > 2 be a prime. Let G be a finite group and H ⊂ G be a index
two subgroup. Let ρ : G →֒ GL2(F̄p) be a faithful irreducible representation of
G. Let T = Tr ρ : G→ F̄p be the trace function. Assume that

(1) There exists an order two element c ∈ G−H,
(2) T(hc) = 0 for all h ∈ H.

Then ρ|H is reducible.

Proof. The assumption (2) implies that T(c) = 0, and hence det ρ(c) = −1.
We may assume that ρ(c) =

(
0 1
1 0

)
. Suppose that p ∤ ♯(G). By the usual

representation theory of finite groups, we have

1 = 〈T,T〉 := 1

♯(G)

∑

g∈G

T(g)T(g−1) =
1

2♯(H)

∑

h∈H

T(h)T(h−1) =
1

2
·〈T|H ,T|H〉.

Since 〈T|H ,T|H〉 = 2, we conclude that ρ|H is not irreducible.
Now we assume that p | ♯(H). For each b ∈ M2(F̄p) with b2 = 0, define the
p-subgroup Pb of ρ(H) by

Pb =
{
h ∈ ρ(H) | h = 1 + xb for some x ∈ F̄p

}
.

Let h ∈ H be an element of p-power order. It is well known that (ρ(h)−1)2 = 0,
and hence T(h) = 2 and det ρ(h) = 1. Combined with T(hc) = 0, these
equations imply that

ρ(h) ∈ Pb1 or Pb2 with b1 =

(
1 1
−1 −1

)
, b2 =

(
1 −1
1 −1

)
.

Note that either Pb1 or Pb2 is trivial. Indeed, if h1 6= 1 ∈ Pb1 and h2 6= 1 ∈ Pb2 .
Then h1h2 ∈ H and Tr(h1h2c) 6= 0, which is a contradiction. In particular,
we conclude that elements of p-power order in H are commutative with each
other and that there is only one p-Sylow subgroup of H , which we denote by
P . It is clear that H normalizes P . Since P 6= {1}, there is a unique line fixed
by ρ(P ), which is an invariant subspace of ρ(H). We find that ρ|H is reducible
if p | ♯(H). �

Remark 6.4. The assumption (3) in Theorem B in the introduction implies
the vanishing of µp(Ψπ,λ,v) for all v|c−λ .
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7. Non-vanishing of central L-values with anticyclotomic twists

In this section, we consider the problem of non-vanishing of L-values modulo p
with anticyclotomic twists. Let ℓ 6= p be a rational prime and let l be a prime
of F above ℓ. Let Γ−

l := Gal(K−
l∞/K) be the Galois group of the maximal

anticyclotomic pro-ℓ extension K−
l∞ in the ray class field of K of conductor l∞.

Let X0
l be the set consisting of finite order characters φ : Γ−

l → µℓ∞ . Fix a
Hecke character χ of infinity type (k/2 +m,−k/2−m). We assume

(pl, nDK/F) = 1.

When p ∤ DK, we know the algebraic L-value Lalg(12 , πK⊗χφ) ∈ Zp in (5.10) in
view of Theorem 5.7. Recall that mp is the maximal ideal of Zp. This section
is devoted to proving the following result:

Theorem 7.1. With the same assumptions in Theorem 6.2, we further assume
that

(1) (pl, ncχDK/F) = 1.

(2) µp(Ψπ,χ,v) = 0 for all v|c−χ .

Then for almost all φ ∈ X0
l we have

Lalg(
1

2
, πK ⊗ χφ) 6≡ 0 (mod mp).

Here almost all means "except for finitely many φ ∈ X0
l " if dimQℓ

Fl = 1 and
"for φ in a Zariski dense subset of X0

l " if dimQℓ
Fl > 1 (See [Hid04a, p.737]).

When F = Q, an imprimitive version of the above result under different as-
sumptions is treated in [Bra11b].

7.1. After introducing some notation, we outline the approach of Hida [Hid04a]
to study this problem. We shall take r = cχnDK/F l to be the fixed ideal in
§3.4. For every n ∈ Z≥0, let Rln := OF + lnOK be the order in K of conductor
ln. Let Uln = (K ⊗Q R)×(Rn ⊗Z Ẑ)× and let Cl−ln := K×A×\A×

K/Uln be the
anticyclotomic ideal class group of conductor ln. Denote by [·]n : A×

K → Cl−ln
the quotient map. Let Cl−l∞ = lim←−n Cl

−
ln . Let Il be the l-adic Iwahori subgroup

of K0
l given by

Il =

{
g =

(
a b
c d

)
∈ K0

l | c ∈ ̟lDFl

}
.

Let K0(l) := K lIl = {g ∈ K | gl ∈ Il} be an open compact subgroup of
GL2(Af ). Recall that the Ul-operator on Mk(K0(l),C) is given by

F | Ul(τ, gf ) =
∑

u∈OF/lOF

F (τ, gf

(
̟l ud−1

Fl

0 1

)
).

We briefly outline the approach of Hida to prove Theorem 7.1 as follows:

(1) Construct a suitable p-adic modular form f̂†χ which is an eigenfunction
of Ul-operator with p-adic unit eigenvalue.
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(2) Consider Hida’s measure ϕ†
χ on Cl−l∞ attached to f̂†χ (7.1) and show

the evaluation formula of this measure is related to central values
Lalg(12 , πK ⊗ χφ) (Proposition 7.3).

(3) The Zariski density of CM points in Hilbert modular varieties modulo p
reduces the proof of Theorem 7.1 to the non-vanishing of certain Fourier
coefficients of f̂†χ at some cusp ([Hid04a, Thm. 3.2 and Thm. 3.3]).

We remind, as the reader will note, that the proof is very close to Theorem 5.7
and Theorem 6.2. The essential new inputs in this section are the choice of
Ul-eigenforms and the computation of local period integral at l.

7.2. CM points of conductor ln. Let n ∈ Z≥0. We choose ς(n)l ∈ Gl as
follows. If l = LL splits in K, writing ϑ = ϑLeL + ϑLeL (so dFl

= ϑL − ϑL is a
generator of DFl

), we put

ς
(n)
l =

(
ϑL −1
1 0

)(
̟n

l

1

)
.

If l is inert, then we put

ς
(n)
l =

(
0 1
−1 0

)(
̟n

l

1

)
.

Let ς(n) := ς
(n)
l

∏
v 6=l ςv. According to this choice of ς(n)l , we have

ς
(n)
f ∗ (L ⊗Z Ẑ) = qϑ(Rln).

Define xn : A×
K → X+×G(Af ) by

xn(a) := (ϑΣ , af ς
(n)
f ).

This collection {xn(a)}a∈A
×
K

of points is called CM points of conductor ln. As

discussed in §4.6, {xn(a))}a∈(A
(p)
K,f )

× descend to CM points in IK(Wp).

7.3. The measures associated to Ul-eigenforms. We construct the Ul-
eigenform f†χ as follows. Write πl = π(µl, νl). Define the local Whittaker

function W †
l ∈ W(πl, ψl) by

W †
l (g) =W 0

l (g)− µl|·|
1
2 (l)W 0

l (g

(
̟−1

l

1

)
).

It is not difficult to verify that

• W †
l is invariant by Il,

• W †
l (

(
a

1

)
) = νl|·|

1
2 (a)IOF

l
(a),

• W †
l is an Ul-eigenfunction with the eigenvalue νl(̟l) |̟l|−

1
2 .
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Define the normalized global Whittaker function W †
χ by

W †
χ := N(π, χ)−1 |det ςf |−kmx/2

Af
·
∏

σ∈Σ

Wkσ ·
∏

v∈h,v 6=l

Wχ,v ·W †
l ,

where N(π, χ) is the normalization factor in (3.28). Let ϕ†
χ be the automorphic

form associated to W †
χ as in (3.24) and let f†χ be the associated Hilbert modular

form as in Definition 5.1.
The following lemma follows from the choice of our Whittaker function W †

χ and
the construction of f†χ.

Lemma 7.2. Recall that R is the group generated by K×
v for all ramified places

v in A×
K. We have

(1) f†χ is toric of character χ outside l, and

f†χ(xn(ta)) = f†χ(xn(t))χ
−1|·|kmx/2

AK
(a) for all a ∈ R · (Rln ⊗Z Ẑ)×.

(2) f
†
χφ = f†χ for every φ ∈ X0

l .

Proof. Part (1) follows immediately from the fact that W †
χ is a toric Whit-

taker function outside l in view of Lemma 3.2. In addition, for every φ ∈ X0
l ,

φ is anticyclotomic and unramified outside l. We thus have W †
χ =W †

χφ, which
verifies part (2) (cf. Lemma 5.4). �

Following [Hid04a, (3.9)], we define a p-adic Zp-valued measure ϕ†
χ on Cl−l∞

attached to the p-adic avatar f̂†χ of f†χ as follows. For a locally constant function
φ : Cl−l∞ → Zp factoring through Cl−ln , we define

(7.1)
∫

Cl−
l∞

φdϕ†
χ = α−n

l

∑

[a]n∈Cl
−
ln

θmf̂†χ(xn(a))χ̂(a)φ([a]n),

where αl = νl(̟l) |̟l|
−kmx

2 and χ̂ is the p-adic avatar of χ|·|−kmx/2
AK

. One
checks that the right hand side does not depend on the choice of n since f†χ is
an Ul-eigenform with the eigenvalue αl.
Let φ ∈ X0

l be a character of conductor ln. We view φ as a character on
Cl−ln by the reciprocity law. Following the arguments in Proposition 5.2 and
Theorem 5.7, we can write the measure as a toric period integral of Ṽ m+ ϕ†

χφ:

(7.2)

Ωk+2m
K

Ωk+2m
p

·
∫

Cl−
l∞

φdϕ†
χ

=α−n
l vol(Uln , dt)

−1 1

(Imϑ)k/2+m
· Pχφ(π(ς(n))Ṽ m+ ϕ†

χ)

= vol(UK, dt)
−1 1

(Im ϑ)k/2+m
· α−n

l

L(1, τKl/Fl
) |̟l|n

· Pχφ(π(ς(n))Ṽ m+ ϕ†
χφ).

Here we used the fact that

vol(Uln , dt) = vol(UK, dt) · L(1, τKl/Fl
) |̟l|n .
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We have the following evaluation formula.

Proposition 7.3. Suppose that (l, cχnDK/F) = 1. For φ ∈ X0
l of conductor ln

with n ≥ 1, we have

(
1

Ωk+2m
p

·
∫

Cl−
l∞

φdϕ†
χ

)2

=
|̟l|−n
α2n
l

· [O×
K : O×

F ]
2 ·Lalg(

1

2
, πK⊗χφ) ·Cπ(χ)φ(F).

Proof. In view of (7.2), it remains to compute Pχφ(π(ς(n))Ṽ m+ ϕ†
χφ)

2, which
can be written as a product of local toric period integrals as in the proof of
Theorem 3.14. We have computed these local period integrals in §3.7 and §3.8
except for the local integral at l, which will be carried out in the following
Lemma 7.4. The desired formula is obtained by combining these calculations.

�

Lemma 7.4. Suppose that χl is unramified and φ ∈ X0
l has conductor ln, n ≥ 1.

Then

P (π(ς
(n)
l )W †

l , χφ) = |DKl
|
1
2

Kl
· ωl(̟

n
l ) |̟n

l |L(1, τKl/Fl
)2.

Proof. Write F = Fl (resp. E = Kl) and ̟ = ̟l. For t ∈ E, we put

ι(n)ς (t) := (ς
(n)
l )−1ι(t)ς

(n)
l .

First we suppose l is split. A direct computation shows that

ι(n)ς (t) =

(
1 ̟−nd−1

F

0 1

)(
tL
0 tL

)(
1 −̟−nd−1

F

0 1

)
;

(ς
(n)
l )−1Jς

(n)
l =

(
1 0

̟ndF −1

)
.

By the definition of W †
l , we find that

ω−1(det ς
(n)
l )P (π(ς

(n)
l )W †

l , χφ)

=

∫

O×
F

ψ(−d−1
F ̟−nx)φL(x)d

×x ·
∫

OF

ψ(d−1
F ̟−na)φ−1

L (a)d×a

=ε(1, φ−1
L , ψ)φL(−1)ε(1, φL, ψ) · ζF (1)2

= |̟nDF |L(1, τE/F )2.

This proves the formula in the split case. Now we suppose that l is inert. We
shall retain the notation in §3.8. Define m† : Gl → C by

m†(g) := bl(π(g)W
†
l ,W

†
l ).

Then m†(g) only depends on the double coset IlgIl. Put

P ∗ :=

∫

E×/F×

m†(ι(n)ς (t))χφ(t)dt.
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It is clear that

(7.3) P (π(ς
(n)
l )W †

l , χφ) = P ∗ · L(1, τE/F )ω(det ς
(n)
l )

ζF (1)
.

For y ∈ ̟rO×
F , it is easy to verify that ι(n)ς (1 + yθ) ∈ Il if r ≥ n and

ι(n)ς (1 + yθ) ∈ Ilw
(
̟n−r

̟r−n

)
Il if 0 ≤ r < n (w =

(
0 −d−1

F

dF 0

)
).

If x ∈ ̟OF , then

ι(n)ς (x+ θ) ∈ Ilw
(
̟n

̟−n

)
Il.

Note that n = cl(φ) = cl(χφ) as in (3.1). Combined with the above observations
and Lemma 3.7, a direct computation shows that

P ∗ = Xn ·m†(1) + (−Xn) ·m†(w

(
̟

̟−1

)
)

= bl(W
0
l − π(

(
̟−1

̟

)
)W 0

l ,W
†
l ) ·Xn

= (
µl(̟)

1− |̟| −
νl(̟)

1− µ−1
l νl|·|(̟)

) · 1− µ
−1
l νl|·|(̟)

µl(̟)− νl(̟)
· |DF |

1
2 Xn

=
1

1− |̟| · L(1, τE/F ) |̟
n| |DE |

1
2

E .

The formula in the inert case follows from (7.3) immediately. �

7.4. Proof of Theorem 7.1. We prove Theorem 7.1 in this subsection. By
the evaluation formula Proposition 7.3, it boils down to proving that

(7.4)
∫

Cl−∞

φdϕ†
χ 6≡ 0 (mod mp) for almost all φ ∈ X0

l .

By [Hid04a, Thm. 3.2, 3.3] together with the toric property of f†χ Lemma 7.2
(cf. [Hsi12, Lemma 6.1 and Remark 6.2]), the validity of (7.4) is reduced to
verifying the following condition:

(H′) For every u ∈ OFl
and a positive integer r, there exist β ∈ O×

F ,(p) and

a ∈ (A
(pN)
K,f )× such that β ≡ u (mod lr) and

aβ(f
†
χ, c(a)) 6≡ 0 (mod mp).

The verification of (H′) under the assumptions (aiK) and µp(Ψπ,χ,v) = 0 for
all v|c−χ follows from the same argument in Theorem 6.2. Note that for a

polarization ideal c(a) (c = c(OK), a ∈ (A
(pl)
K,f )

×) and a totally positive β ∈
O×

F ,(p) ∩ OFl
, we have (c(a), pl) = 1 and

aβ(f
†
χ, c(a)) = βk/2

∏

v∤pl

a∗χ,v(βc
−1
v N(a−1

v )) · νl|·|
1
2

Fl
(β) (ilF (c) = c).
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Let u ∈ OFl
and let ηu = (ηuv ) be the idele in A× such that a∗λ,v(η

u
v ) 6≡

0 (mod mp) for all v|c−χ , ηul = u and ηuv = 1 for all v ∤ lc−χ . To verify (H′),
we simply proceed the Galois argument in Theorem 6.2, replacing η in by ηu

therein. This completes the proof of Theorem 7.1.
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