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Abstract. In this paper we prove that the linear Koszul duality
isomorphism for convolution algebras in K-homology of [MR3] and
the Fourier transform isomorphism for convolution algebras in Borel–
Moore homology of [EM] are related by the Chern character. So,
Koszul duality appears as a categorical upgrade of Fourier transform
of constructible sheaves. This result explains the connection between
the categorification of the Iwahori–Matsumoto involution for graded
affine Hecke algebras in [EM] and for ordinary affine Hecke algebras
in [MR3].
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Introduction

0.1

This article is a sequel to [MR1, MR2, MR3]. It links two kinds of “Fourier”
transforms prominent in mathematics, the Fourier transform for constructible
sheaves and the Koszul duality. This is done in a particular situation which is
of interest in representation theory, namely the context of convolution algebras.
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0.2 Chern character map

Our geometric setting consists of two vector subbundles F1, F2 of a trivial vector
bundle X × V over a (smooth and proper) complex algebraic variety X . We
consider the fiber product F1×V F2 as well as the dual object – the fiber product
F⊥
1 ×V ∗ F⊥

2 of orthogonal complements of F1 and F2 inside the dual vector
bundle X×V ∗. The linear Koszul duality mechanism from [MR1, MR2, MR3]
is a geometric version of the standard Koszul duality between graded modules
over the symmetric algebra of a vector space and graded modules over the
exterior algebra of the dual vector space. Here, this formalism provides an
equivalence of categories of equivariant coherent sheaves on the derived fiber

products F1
R

×F2 and F
⊥
1

R

×F⊥
2 (in the sense of dg-schemes). In particular we get

an isomorphism of equivariant K-homology groups of algebraic varieties F1 ×V
F2 and F

⊥
1 ×V ∗F⊥

2 .1 On the other hand, the Fourier transform for constructible
sheaves provides an isomorphism of equivariant Borel–Moore homologies of
fiber products F1 ×V F2 and F⊥

1 ×V ∗ F⊥
2 , see [EM].

Our main result shows that the maps in K-homology and in Borel–Moore ho-
mology are related by the Chern character map (the “Riemann–Roch map”)
from equivariant K-homology to (completed) equivariant Borel–Moore homol-
ogy.2 In this way, linear Koszul duality appears as a categorical upgrade of the
topological Fourier transform.

0.3 Convolution algebras

In Representation Theory the above setting provides a geometric construction
of algebras. Indeed, when F1 = F2 =: F then the equivariant K-homology and
Borel–Moore homology of F ×V F have structures of convolution algebras; for
simplicity in this introduction we denote these AK(F ) and ABM(F ). The Chern

character provides a map of algebras AK(F ) → ÂBM(F ) from the K-homology
algebra to a completion of the Borel–Moore homology algebra [CG, Kat]. This
gives a strong relation between their representation theories: one obtains results
on the representation theory of the (more interesting) algebra AK(F ) through
the relation to the representation theory of the algebra ABM(F ) which is more
accessible.3 In this setting, the maps

ıK : AK(F )
∼
−→ AK(F

⊥), ıBM : ABM(F )
∼
−→ ABM(F

⊥)

induced respectively by linear Koszul duality and by Fourier transform are
isomorphisms of algebras.

1 Note that K-homology does not distinguish the derived fiber product from the usual
fiber product of varieties, see [MR3].

2 For simplicity we work under a technical assumption on Fi’s which is satisfied in all
known applications.

3 The reason is the powerful machinery of perverse sheaves that one can use in the topo-
logical setting, see [CG].
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An important example of this mechanism appears in the study of affine Hecke
algebras, see [KL, CG]. The Steinberg variety Z of a complex connected re-
ductive algebraic group G (with simply connected derived subgroup) is of the
above form F ×V F where the space X is the flag variety B of G, the vector
space V is the dual g∗ of the Lie algebra g of G, and F is the cotangent bun-
dle T ∗B. The G×Gm-equivariant K-homology and Borel–Moore homology of
the Steinberg variety Z are then known to be realizations of the affine Hecke
algebra Haff of the dual reductive group Ǧ (with equal parameters) and of the
corresponding graded affine Hecke algebra Haff . In this case the dual version
F⊥ ×V ∗ F⊥ turns out to be another – homotopically equivalent – version of
the Steinberg variety Z. Therefore, ıK and ıBM are automorphisms of Haff

and Haff , respectively. In fact these are (up to minor “correction factors”)
geometric realizations of the Iwahori–Matsumoto involution of Haff (see [EM])
and Haff (see [MR3]). The Chern character map can also be identified, in this
case, with (a variant of) a morphism constructed (by algebraic methods) by
Lusztig [L1]. So, in this situation, Theorem 1.9.1 explains the relation between
results of [MR3] and [EM].

0.4 Character cycles and characteristic cycles

In [Kas], Kashiwara introduced for a group G acting on a space X an invariant
of a G-equivariant constructible sheaf F on X . This is an element chG(F)
of the Borel–Moore homology of the stabilizer space GX := {(g, x) ∈ G ×X |
g ·x = x}. He “linearized” this construction to an element chg(F) of the Borel–
Moore homology of the analogous stabilizer space gX for the Lie algebra g of
the group G. Under some assumptions (that put one in the above geometric
setting) he proved that the characteristic cycle of F is the image of chg(F)
under a Fourier transform map in Borel–Moore homology (see [Kas, §1.9]).
This work is the origin of papers on Iwahori–Matsumoto involution [EM] and
linear Koszul duality [MR1]. From this point of view, the present paper is a
part of the effort to categorify Kashiwara’s character cycles.

0.5 Conventions and notation

In the body of the paper we will consider many morphisms involving K-
homology and Borel–Moore homology. We use the general convention that
morphisms involving only K-homology are denoted using bold letters, those
involving only Borel–Moore homology are denoted using fraktur letters, and
the other ones are denoted using “sans serif” letters.

If X is a complex algebraic variety endowed with an action of a reductive
algebraic group A, we denote by Coh

A(X) the category of A-equivariant co-
herent sheaves on X . If Y ⊂ X is an A-stable closed subvariety we denote
by Coh

A
Y (X) the subcategory consisting of sheaves supported set-theoretically

on Y ; recall that DbCoh
A
Y (X) identifies with a full subcategory in DbCoh

A(X).
When considering Gm-equivariant coherent sheaves, we denote by 〈1〉 the func-
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tor of tensoring with the tautological 1-dimensional Gm-module.

0.6 Organization of the paper

In Section 1 we define all our morphisms, and state our main result (Theorem
1.9.1). In Section 2 we study more closely the case of convolution algebras, and
even more closely the geometric setting for affine Hecke algebras; in this case
we make all the maps appearing in Theorem 1.9.1 explicit. In Sections 3 and
4 we prove some compatibility statements for our constructions, and we apply
these results in Section 5 to the proof of Theorem 1.9.1. Finally, Appendix A
contains the proofs of some technical lemmas needed in other sections.
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1 Definitions and statement

1.1 Equivariant homology and cohomology

If A is a complex linear algebraic group acting on a complex algebraic va-
riety Y , we denote by DA

const(Y ) the A-equivariant derived category of con-
structible complexes on Y with complex coefficients, see [BL]. Let CY , re-
spectively DY , be the constant, respectively dualizing, sheaf on Y . These are
objects of DA

const(Y ). We also denote by DY : DA
const(Y )

∼
−→ DA

const(Y )op the
Grothendieck–Verdier duality functor.
If M is in DA

const(Y ), the i-th equivariant cohomology of Y with coefficients in
M is by definition

H
i
A(Y,M) := ExtiDA

const(Y )(CY ,M).

In particular, the equivariant cohomology and Borel–Moore homology of Y are
defined by

H
i
A(Y ) := H

i
A(Y,CY ), H

A
i (Y ) := H

−i
A (Y,DY ).

We will also use the notation

H•
A(Y ) :=

⊕

i∈Z

HiA(Y ), Ĥ•
A(Y ) :=

∏

i∈Z

HiA(Y ),

HA• (Y ) :=
⊕

i∈Z

HAi (Y ), ĤA• (Y ) :=
∏

i∈Z

HAi (Y ).
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(By construction of the equivariant derived category, see [BL, §2.2], these def-
initions coincide – up to grading shift – with the definitions used e.g. in [L2,
EG2, BZ] using some “approximations” of EA.) Note that with our conven-
tions, one can have HAi (Y ) 6= 0 for i < 0. We will use the general convention
that we denote by the same symbol an homogeneous morphism between vec-
tor spaces of the form HA• (·) or H

•
A(·) and the induced morphism between the

associated vector spaces ĤA• (·) or Ĥ
•
A(·).

The vector spaces H•
A(Y ) and HA• (Y ) have natural gradings, and most mor-

phisms between such spaces that will occur in this paper will be homogeneous.
We will sometimes write a morphism e.g. as H•

A(Y ) → H
•+d
A (Y ′) to indicate

that it shifts degrees by d.
There exists a natural (right) action of the algebra H•

A(Y ) on HA• (Y ) induced by
composition of morphisms in DA

const(Y ); it extends to an action of the algebra

Ĥ•
A(Y ) on ĤA• (Y ).

We will also denote by KA(Y ) the A-equivariant K-homology of Y , i.e. the
Grothendieck group of the category of A-equivariant coherent sheaves on Y .
We will frequently use the following classical constructions. If Z is another
algebraic variety endowed with an action of A, and if f : Z → Y is a proper
A-equivariant morphism, then there exist natural “proper direct image” mor-
phisms

pdif : K
A(Z) → KA(Y ), resp. pdif : H

A
• (Z) → HA• (Y ),

see [CG, §5.2.13], resp. [CG, §2.6.8].4 Each of these maps satisfies a projection
formula; in particular for c ∈ H•

A(Y ) and d ∈ HA• (Z) we have

pdif (d · f
∗(c)) = pdif (d) · c, (1.1.1)

where f∗ : H•
A(Y ) → H•

A(Z) is the natural pullback morphism.
On the other hand, if Y is smooth, Y ′ ⊂ Y is an A-stable smooth closed
subvariety, and Z ⊂ Y is a not necessarily smooth A-stable closed subvariety,
then we have “restriction with supports” morphisms

res : KA(Z) → K
A(Z∩Y ′), resp. res : HA• (Z) → H

A
•−2 dim(Y )+2 dim(Y ′)(Z∩Y ′)

associated with the inclusion Y ′ →֒ Y , see [CG, p. 246], resp. [CG, §2.6.21].
(The definition of the second morphism is recalled in §A.5.) Note that the
morphism res satisfies the formula

res(c · d) = res(c) · i∗(d) (1.1.2)

for c ∈ HA• (Z) and d ∈ H•
A(Z), where i : Z ∩Y ′ →֒ Z is the embedding and i∗ is

the pullback in cohomology as in (1.1.1). (In the non-equivariant setting, this

4Only non-equivariant Borel–Moore homology is considered in [CG]. However, the con-
structions for equivariant homology are deduced from these, since the equivariant homology
of Y can be described in terms of ordinary homology of various spaces of the form U ×A Y

where U is an “approximation” of EA, see e.g. [EG1, §2.8].
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follows from [CG, Equation (2.6.41)] and the definition of res in [CG, §2.6.21];
the equivariant case follows using the remark in Footnote 4.)
Finally, if E → Y is an A-equivariant vector bundle, then we have the Thom
isomorphism

HA• (E) ∼= HA•−2rk(E)(Y ).

1.2 Fourier–Sato transform

Let again A be a complex linear algebraic group, and let Y be an A-variety.
If r : E → Y is an A-equivariant (complex) vector bundle, we equip it with an
A×Gm-action where t ∈ Gm acts by multiplication by t−2 along the fibers of r.
We denote by E⋄ the A×Gm-equivariant dual vector bundle (so that t ∈ Gm

acts by multiplication by t2 along the fibers of the projection to Y ), and by
E∗ the dual A-equivariant vector bundle, which we equip with a Gm-action
where t ∈ Gm acts by multiplication by t−2 along the fibers. We denote by
ř : E∗ → X the projection.
The Fourier–Sato transform defines an equivalence of categories

FE : DA×Gm

const (E)
∼
−→ DA×Gm

const (E⋄). (1.2.1)

This equivalence is constructed as follows (see [KS, §3.7]; see also [AHJR, §2.7]
for a reminder of the main properties of this construction). Let Q := {(x, y) ∈
E ×Y E⋄ | Re(〈x, y〉) ≤ 0}, and let q : Q → E, q̌ : Q → E⋄ be the projections.
Then we have

FE := q̌!q
∗.

(This equivalence is denoted (·)∧ in [KS]; it differs by a cohomological shift
from the equivalence TE of [AHJR].)
Inverse image under the automorphism of A×Gm which sends (g, t) to (g, t−1)
establishes an equivalence of categories

DA×Gm

const (E⋄)
∼
−→ DA×Gm

const (E∗), (1.2.2)

see [BL, Chap. 6]. We will denote by

FE : DA×Gm

const (E)
∼
−→ DA×Gm

const (E∗)

the composition of (1.2.1) and (1.2.2).
Let F ⊂ E be an A-stable subbundle, and denote by F⊥ ⊂ E∗ the orthogonal
to F . Then one can consider the constant sheaf CF as an object of DA×Gm

const (E).
(Here and below, we omit direct images under closed inclusions when no confu-
sion is likely.) Similarly, we have the object CF⊥ of DA×Gm

const (E∗). The following
result is well known; we reproduce the proof for future reference.

Lemma 1.2.3. There exists a canonical isomorphism

FE(CF )
∼= CF⊥ [−2rk(F )].
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Proof. It is equivalent to prove a similar isomorphism for FE. For simplicity
we denote F⊥ by the same symbol when it is considered as a subbundle of E⋄.
By definition of FE we have a canonical isomorphism

FE(CF )
∼= q̌F !CQF

,

where QF := q−1(F ) ⊂ Q and q̌F is the composition of q̌ with the inclusion
QF →֒ Q. There is a natural closed embedding iF : F ×Y F⊥ →֒ QF ; we denote
by UF the complement and by jF : UF →֒ QF the inclusion. The natural exact

triangle jF !CUF
→ CQF

→ iF∗CF×XF⊥

+1
−−→ provides an exact triangle

qF !jF !CUF
→ qF !CQF

→ qF!
iF !CF×XF⊥

+1
−−→ .

Using the fact that H•
c(R≥0;C) = 0, one can easily check that qF !jF !CUF

= 0, so
that the second map in this triangle is an isomorphism. Finally, qF ◦ iF : F ×Y
F⊥ → E⋄ identifies with the composition of the projection F ×X F⊥ → F⊥

with the embedding F⊥ →֒ E⋄. We deduce a canonical isomorphism

qF !CQF

∼= CF⊥ [−2rk(F )],

which finishes the proof.

We will mainly use these constructions in the following situation. Let V be an
A-module (which we will consider as an A-equivariant vector bundle over the
variety pt := Spec(C)), and let E := V × Y , an A-equivariant vector bundle
over Y . We denote by p : E → V , p̌ : E∗ → V ∗ the projections. As above, let
F ⊂ E be an A-stable subbundle.

Corollary 1.2.4. There exists a canonical isomorphism

FV (p!CF ) ∼= p̌!CF⊥ [−2rk(F )]. (1.2.5)

Proof. By [KS, Proposition 3.7.13] (see also [AHJR, §A.4]) we have a canonical
isomorphism of functors

FV ◦ p! ∼= p̌! ◦ FE .

In particular we deduce an isomorphism FV (p!CF )
∼= p̌!FE(CF ). Then the

result follows from Lemma 1.2.3.

1.3 Equivariant homology as an Ext-algebra

From now on we let G be a complex connected reductive algebraic group, X be
a smooth and proper complex algebraic variety, and V be a finite dimensional
G-module. Let E := V ×X , considered as a G×Gm-equivariant vector bundle
as in §1.2, and let F1, F2 be G-stable subbundles of the vector bundle E over
X . As in §1.2, we denote by p : E → V the projection, and by F⊥

1 , F
⊥
2 ⊂ E∗

the orthogonals to F1 and F2. Then there exists a canonical isomorphism

canF1,F2 : H
G×Gm

• (F1 ×V F2)
∼
−→ Ext

2 dim(F2)−•

DG×Gm

const (V )
(p!CF1

, p!CF2
).
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Let us explain (for future reference) how this isomorphism can be constructed,
following [CG, L3]. Consider the cartesian diagram

E ×V E
� � j

//

µ

��

E × E

p×p

��
V
� � ∆ // V × V

where ∆ is the diagonal embedding. Then in [CG, Equation (8.6.4)] (see also
[L3, §1.15 and §2.4]) the authors construct a canonical and bifunctorial isomor-
phism

µ∗j
!(DE(A1)⊠A2) ∼= RHomC(p!A1, p!A2)

for A1, A2 in DG×Gm

const (E). Applying equivariant cohomology, we obtain an
isomorphism

Ext•
DG×Gm

const (V )
(p!A1, p!A2) ∼= H•

G×Gm

(
E ×V E, j

!(DE(A1)⊠A2)
)
. (1.3.1)

Setting A1 = CF1
, A2 = CF2

we deduce an isomorphism

Ext•
DG×Gm

const (V )
(p!CF1

, p!CF2
) ∼= H

•
G×Gm

(
E ×V E, j

!(DF1
⊠ CF2

)
)
.

Let a : F1 × F2 →֒ E × E be the inclusion, and consider the cartesian diagram

F1 ×V F2
� � b //

� _

k

��

E ×V E� _

j

��
F1 × F2

� � a // E × E.

Then using the base change isomorphism we obtain

H•
G×Gm

(
E ×V E, j

!(DF1
⊠ CF2

)
)
∼= H•

G×Gm

(
E ×V E, j

!a∗(DF1
⊠ CF2

)
)

∼= H
•
G×Gm

(
E ×V E, b∗k

!(DF1
⊠ CF2

)
)
∼= H

•
G×Gm

(
F1 ×V F2, k

!(DF1
⊠ CF2

)
)
.

Now we use the canonical isomorphisms CF2
∼= DF2

[−2 dim(F2)] (since F2 is
smooth) and k!(DF1

⊠DF2
) ∼= k!(DF1×F2

) ∼= DF1×V F2
to obtain the isomorphism

canF1,F2 .

1.4 The Fourier isomorphism

We continue with the setting of §1.3, and denote by p̌ : E∗ → V ∗ the projection.
Then we have canonical isomorphisms

canF1,F2 : H
G×Gm

• (F1 ×V F2)
∼
−→ Ext

2 dim(F2)−•

DG×Gm

const (V )
(p!CF1

, p!CF2
);

canF⊥
1 ,F

⊥
2
: HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 )
∼
−→ Ext

2 dim(F⊥
2 )−•

DG×Gm

const (V ∗)
(p̌!CF⊥

1
, p̌!CF⊥

2
).
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On the other hand, through the canonical isomorphisms FV (p∗CFi
) ∼=

p̌∗CF⊥
i
[−2rk(Fi)] for i = 1, 2 (see (1.2.5)), the functor FV induces an iso-

morphism

Ext•
DG×Gm

const (V )
(p!CF1

, p!CF2
)

∼
−→ Ext

•−2rk(F2)+2rk(F1)

DG×Gm

const (V ∗)
(p̌!CF⊥

1
, p̌!CF⊥

2
).

We denote by

FourierF1,F2
: HG×Gm

• (F1 ×V F2)
∼
−→ H

G×Gm

•+2 dim(F⊥
2 )−2 dim(F1)

(F⊥
1 ×V ∗ F⊥

2 )

the resulting isomorphism. This isomorphism, considered in particular in [EM],
was the starting point of our work on linear Koszul duality.

1.5 Linear Koszul duality

Let us recall the definition and main properties of linear Koszul duality, fol-
lowing [MR1, MR2, MR3]. In this paper we will only consider the geometric
situation relevant for convolution algebras, as considered in [MR3, §4]. How-
ever we will allow using two different vector bundles F1 and F2; the setting of
[MR3, §4] corresponds to the choice F1 = F2.

We continue with the setting of §1.3, and denote by ∆V ⊂ V ×V the diagonal
copy of V . We will consider the derived category

Dc
G×Gm

(
(∆V ×X ×X)

R

∩E×E (F1 × F2)
)

as defined in [MR3, §3.1]. By definition this is a subcategory of the derived
category of G×Gm-equivariant quasi-coherent dg-modules over a certain sheaf
of OX×X -dg-algebras on X × X , which we will denote by AF1,F2 . Note that
the derived intersection

(∆V ×X ×X)
R

∩E×E (F1 × F2)

is quasi-isomorphic to the derived fiber product F1
R

×V F2 in the sense of [BR,
§3.7].
Similarly we have a derived category

Dc
G×Gm

(
(∆V ∗ ×X ×X)

R

∩E∗×E∗ (F⊥
1 × F⊥

2 )
)
.

We denote by ωX the canonical line bundle on X . Then by [MR3, Theorem
3.1] there exists a natural equivalence of triangulated categories

KF1,F2 : D
c
G×Gm

(
(∆V ×X ×X)

R

∩E×E (F1 × F2)
)

∼
−→ Dc

G×Gm

(
(∆V ∗ ×X ×X)

R

∩E∗×E∗ (F⊥
1 × F⊥

2 )
)op

.

Documenta Mathematica 20 (2015) 989–1038



998 Ivan Mirković, Simon Riche

More precisely, [MR3, Theorem 3.1] provides an equivalence of categories

κF1,F2 : D
c
G×Gm

(
(∆V ×X ×X)

R

∩E×E(F1 × F2)
)

∼
−→ Dc

G×Gm

(
(∆V ⋄ ×X ×X)

R

∩E⋄×E⋄(F⊥
1 × F⊥

2 )
)op

where ∆V ⋄ ⊂ V ⋄ × V ⋄ is the antidiagonal copy of V ⋄. (The construction of
[MR3] depends on the choice of an object E in DbCoh

G×Gm(X×X) whose image
in DbCoh(X ×X) is a dualizing object; here we take E = OX ⊠ ωX [dim(X)].)
Then KF1,F2 is the composition of κF1,F2 with the natural equivalence

Dc
G×Gm

(
(∆V ⋄ ×X ×X)

R

∩E⋄×E⋄ (F⊥
1 × F⊥

2 )
) ∼
−→

Dc
G×Gm

(
(∆V ⋄ ×X ×X)

R

∩E⋄×E⋄ (F⊥
1 × F⊥

2 )
)

(see [MR3, §4.3]) and the natural equivalence

Dc
G×Gm

(
(∆V ⋄ ×X ×X)

R

∩E⋄×E⋄ (F⊥
1 × F⊥

2 )
) ∼
−→

Dc
G×Gm

(
(∆V ∗ ×X ×X)

R

∩E∗×E∗ (F⊥
1 × F⊥

2 )
)

induced by the automorphism of Gm sending t to t−1.
Note that we have H0(AF1,F2) = (πF1,F2)∗OF1×V F2 , where πF1,F2 : F1×V F2 →
X × X is the projection (which is an affine morphism). Hence, using [MR3,
Lemma 5.1] and classical facts on affine morphisms, one can canonically identify

the Grothendieck group of the category Dc
G×Gm

(
(∆V ×X×X)

R

∩E×E (F1×F2)
)

with KG×Gm(F1×V F2). We have a similar isomorphism for F⊥
1 and F⊥

2 ; hence
the equivalence KF1,F2 induces an isomorphism

KoszulF1,F2 : K
G×Gm(F1 ×V F2)

∼
−→ KG×Gm(F⊥

1 ×V ∗ F⊥
2 ).

1.6 Duality and parity conjugation in K-homology

To obtain a precise relation between the maps FourierF1,F2
of §1.4 and

KoszulF1,F2 of §1.5 we will need two auxiliary maps in K-homology.
Our first map has a geometric flavour, and is induced by Grothendieck–Serre
duality. More precisely, consider the “duality” equivalence

DG×Gm

F⊥
1 ,F

⊥
2

: DbCoh
G×Gm(F⊥

1 × F⊥
2 ) → DbCoh

G×Gm(F⊥
1 × F⊥

2 )op

associated with the dualizing complex OF⊥
1
⊠ωF⊥

2
[dim(F⊥

2 )], which sends G to

RHomO
F⊥
1

×F⊥
2

(G, OF⊥
1
⊠ ωF⊥

2
)[dim(F⊥

2 )],

see e.g. [MR3, §2.1] and references therein. (Here, ωF⊥
2

is the canonical

line bundle on F⊥
2 , endowed with its natural G × Gm-equivariant structure.)
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This equivalence induces a (contravariant) auto-equivalence of the subcategory
DbCoh

G×Gm

F⊥
1 ×V ∗F⊥

2
(F⊥

1 × F⊥
2 ), which we denote similarly. We denote by

DF⊥
1 ,F

⊥
2
: KG×Gm(F⊥

1 ×V ∗ F⊥
2 )

∼
−→ KG×Gm(F⊥

1 ×V ∗ F⊥
2 )

the induced automorphism at the level of Grothendieck groups.
Our second map is a “correction factor”, with no interesting geometric
interpretation. Namely, the direct image functor under the projection
πF⊥

1 ,F
⊥
2
: F⊥

1 ×V ∗ F⊥
2 → X × X (an affine morphism) induces an equivalence

between Coh
G×Gm(F⊥

1 ×V ∗ F⊥
2 ) and the category of locally finitely generated

G × Gm-equivariant modules over the OX×X -algebra (πF⊥
1 ,F

⊥
2
)∗OF⊥

1 ×V ∗F⊥
2
.

Since Gm acts trivially on X × X , one can consider (πF⊥
1 ,F

⊥
2
)∗OF⊥

1 ×V ∗F⊥
2

as a graded G-equivariant OX×X -algebra, and this grading is concentrated
in even degrees. Hence if F is any module over this algebra, then we have
F = Feven ⊕Fodd where Feven, resp. Fodd, is concentrated in even, resp. odd,
degrees. We denote by

iF⊥
1 ,F

⊥
2
: KG×Gm(F⊥

1 ×V ∗ F⊥
2 )

∼
−→ K

G×Gm(F⊥
1 ×V ∗ F⊥

2 )

the automorphism which sends the class of a module F = Feven ⊕ Fodd as
above to [Feven]− [Fodd].

1.7 Reminder on the equivariant Riemann–Roch theorem

Let us recall the definition and the main properties of the “equivariant
Riemann–Roch morphism” for a complex algebraic variety, following [EG2].
(See also [BZ] for a more direct treatment, without much details.) Let A be a
complex linear algebraic group, acting on a complex algebraic variety Y . Then
we have a “Riemann–Roch” morphism

τAY : KA(Y ) → ĤA• (Y ).

More precisely, we define this morphism as the composition

KA(Y ) −→
∏

i≥0

Q⊗Z CH
i
A(Y ) −→

∏

i∈Z

HAi (Y ) = ĤA• (Y ), (1.7.1)

where CHiA(Y ) is the i-th equivariant Chow group, see [EG2, §1.2], the first ar-
row is the morphism constructed in [EG2, Section 3], and the second morphism
is induced by the “equivariant cycle map” of [EG1, §2.8].

Remark 1.7.2. It follows from [EG2, Theorem 4.1] that the first morphism
in (1.7.1) induces an isomorphism between a certain completion of Q⊗ZK

A(Y )
and

∏
i≥0 Q⊗ZCH

i
A(Y ). Hence, if the equivariant cycle map is an isomorphism,

a similar claim holds for our morphism τAY .

Below we will use the following properties of the map τAY , which follow from
the main results of [EG2].
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Theorem 1.7.3 (Equivariant Riemann–Roch theorem). If f : Y → Y ′ is an
A-equivariant proper morphism, then we have

τAY ′ ◦ pdif = pdif ◦ τ
A
Y .

Proof. By [EG2, Theorem 3.1(b)], the first arrow in (1.7.1) is compatible with
proper direct image morphisms (in the obvious sense). And by [Fu, p. 372] the
second arrow is also compatible with proper direct image morphisms, complet-
ing the proof. (More precisely, only the non-equivariant setting is considered
in [Fu], but the equivariant case follows, using the same arguments as in Foot-
note 4.)

If F is an A-equivariant vector bundle over Y , then one can define its (coho-
mological) equivariant Chern classes in H•

A(Y ), and define a (cohomological)

equivariant Todd class tdA(F ) ∈ Ĥ•
A(Y ), see [EG2, Section 3] or [BZ, §3] for

similar constructions. This element is invertible in the algebra Ĥ•
A(Y ). If Y is

smooth, we denote by TdAY the equivariant Todd class of the tangent bundle
of Y .
The following result can be stated and proved under much weaker assumptions,
but only this particular case will be needed.

Proposition 1.7.4. Let Y be a smooth A-variety, and let f : Z →֒ Y be the
embedding of a smooth subvariety with normal bundle N . Then we have

resf ◦ τ
A
Y (x) =

(
τAZ ◦ resf (x)

)
· tdA(N)

for any x ∈ KA(Y ), where resf : H
A
• (Y ) → HA•−2 dim(Y )+2 dim(Z)(Z) and

resf : K
A(Y ) → KA(Z) are the “restriction with supports” morphisms.

Proof. A similar formula for the first arrow in (1.7.1) follows from [EG2, The-
orem 3.1(d)]. To deduce our result we need to check that the equivariant cycle
map commutes with restriction with supports and with multiplication by a
Todd class. In the non-equivariant situation, the first claim follows from [Fu,
Example 19.2.1] and the second one from [Fu, Proposition 19.1.2]. The equiv-
ariant case follows, using the same arguments as in Footnote 4.

Remark 1.7.5. Note that, in the setting of Proposition 1.7.4, we have f∗TdAY =
TdAZ · tdA(N), where f∗ is as in (1.1.1). (In fact, this formula easily follows
from the compatibility of Chern classes with pullback and extensions of vector
bundles.)

Finally we will need the following fact, which follows from [EG2, Theo-
rem 3.1(d)] applied to the projection Y → pt (see also [BZ, Theorem 5.1]).

Proposition 1.7.6. If Y is smooth, then

τAY (OY ) = [Y ] · TdAY ,

where [Y ] is the equivariant fundamental class of Y (i.e. the image of the fun-
damental class in the Chow group from [EG1, §2.2] under the cycle map).
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1.8 Riemann–Roch maps

Following [CG, §5.11], we consider the “bivariant Riemann–Roch maps”

RRF1,F2
: K

G×Gm(F1 ×V F2) → Ĥ
G×Gm

• (F1 ×V F2),

RRF⊥
1 ,F

⊥
2
: KG×Gm(F⊥

1 ×V ∗ F⊥
2 ) → ĤG×Gm

• (F⊥
1 ×V ∗ F⊥

2 )

defined by

RRF1,F2
(c) = τG×Gm

F1×V F2
(c) ·

(
1⊠ (TdG×Gm

F2
)−1

)
,

RRF⊥
1 ,F

⊥
2
(d) = τG×Gm

F⊥
1 ×V ∗F⊥

2

(d) ·
(
(TdG×Gm

F⊥
1

)−1 · TdG×Gm

X ⊠ (TdG×Gm

X )−1
)
.

In the expression for RRF1,F2
, 1⊠ (TdG×Gm

F2
)−1 is considered as an element of

Ĥ•
G×Gm

(F1 ×V F2) through the composition

Ĥ
•
(G×Gm)2(F1 × F2) → Ĥ

•
G×Gm

(F1 × F2) → Ĥ
•
G×Gm

(F1 ×V F2)

where the first morphism is the restriction morphism associated with the
diagonal embedding of G × Gm, and the second morphism is the pullback
in equivariant cohomology. In the expression for RRF⊥

1 ,F
⊥
2
, first we con-

sider TdG×Gm

X as an element of Ĥ•
G×Gm

(E∗) using the Thom isomorphism

H•
G×Gm

(E∗)
∼
−→ H•

G×Gm

(X); then the same conventions as above allow to con-

sider (TdG×Gm

F⊥
1

)−1 ·TdG×Gm

X ⊠ (TdG×Gm

X )−1 as an element in Ĥ•
G×Gm

(F⊥
1 ×V ∗

F⊥
2 ).

1.9 Statement

The main result of this paper is the following.

Theorem 1.9.1. Assume that the proper direct image morphism

HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) → HG×Gm

• (F⊥
1 ×V ∗ E∗) (1.9.2)

induced by the inclusion F⊥
2 →֒ E∗ is injective. Then the following diagram

commutes:

KG×Gm(F1 ×V F2)
i
F⊥
1 ,F⊥

2
◦D

F⊥
1 ,F⊥

2
◦KoszulF1,F2

//

RRF1,F2

��

KG×Gm(F⊥
1 ×V ∗ F⊥

2 )

RR
F⊥
1 ,F⊥

2
��

ĤG×Gm

• (F1 ×V F2)
FourierF1,F2 // ĤG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ).

The proof of Theorem 1.9.1 is given in §5.3. It is based on compatibility (or
functoriality) results for all the maps considered in the diagram, which are
stated in Sections 3 and 4; some of these results might be of independent
interest. Let us point out that our assumption is probably not needed for the
result to hold.
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Remark 1.9.3. (Injectivity assumption.) The fiber product F⊥
1 ×V ∗ E∗ is iso-

morphic to F⊥
1 ×X , hence is a vector bundle over X2. In particular, by the

Thom isomorphism we have

HG×Gm

• (F⊥
1 ×V ∗ E∗) ∼= H

G×Gm

•−2rk(F⊥
1 )

(X ×X). (1.9.4)

Moreover, by [CG, Lemma 5.4.35] the following diagram commutes, where
m = dim(F⊥

2 ):

HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) //

��

HomH•
G×Gm

(pt)

(
HG×Gm

• (F⊥
2 ),HG×Gm

•−2m (F⊥
1 )

)

≀

��

H
G×Gm

•−2rk(F⊥
1 )

(X ×X) // HomH•
G×Gm

(pt)

(
H
G×Gm

•−2rk(F⊥
2 )

(X),HG×Gm

•−2m−2rk(F⊥
1 )

(X)
)
.

(1.9.5)
Here the horizontal arrows are induced by convolution, the left vertical arrow is
the composition of (1.9.2) and the isomorphism (1.9.4), and the right vertical
arrow is induced by the respective Thom isomorphisms. Assume now that
Hodd
c (X) = 0 (e.g. that X is paved by affine spaces). Then one can easily check

that the lower horizontal arrow in diagram (1.9.5) is an isomorphism. Hence
in this case our assumption is equivalent to injectivity of the upper horizontal
arrow. If moreover F1 = F2 = F , then HG×Gm

• (F⊥ ×V ∗ F⊥) is an algebra
and HG×Gm

• (F⊥) is a module over this algebra. In this case our assumption
amounts to the condition that the action on this module is faithful.

1.10 An injectivity criterion for (1.9.2)

The following result gives an easy criterion which ensures that the assumption
of Theorem 1.9.1 is satisfied.

Proposition 1.10.1. Assume that Hodd
c (F⊥

1 ×V ∗ F⊥
2 ) = 0. Then the proper

direct image morphism

HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) → HG×Gm

• (F⊥
1 ×V ∗ E∗)

induced by the inclusion F⊥
2 →֒ E∗ is injective.

Proof. Let T be a maximal torus of G. Then we have a commutative diagram

HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) //

��

HG×Gm

• (F⊥
1 ×V ∗ E∗)

��

HT×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) // HT×Gm

• (F⊥
1 ×V ∗ E∗)

where horizontal arrows are proper direct image morphisms, and vertical arrows
are forgetful maps. The left vertical arrow is injective: indeed, by our assump-
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tion and [L2, Proposition 7.2], there exist (non-canonical) isomorphisms

HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) ∼= H
−•
G×Gm

(pt)⊗C H•(F
⊥
1 ×V ∗ F⊥

2 ), (1.10.2)

HT×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) ∼= H
−•
T×Gm

(pt)⊗C H•(F
⊥
1 ×V ∗ F⊥

2 ) (1.10.3)

such that our forgetful morphism is induced by the natural morphism
H•
G×Gm

(pt) → H•
T×Gm

(pt), which is well known to be injective. Hence, to
prove that the upper horizontal arrow is injective it is sufficient to prove that
the lower horizontal arrow is injective.
If Q denotes the fraction field of H := H•

T×Gm

(pt), then using again isomorphism
(1.10.3), the natural morphism

HT×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) → Q⊗H HT×Gm

• (F⊥
1 ×V ∗ F⊥

2 )

is injective. We deduce that to prove the proposition it suffices to prove that
the induced morphism

Q⊗H H
T×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) → Q⊗H H
T×Gm

• (F⊥
1 ×V ∗ E∗)

is injective. Let Y := (X ×X)T denote the T -invariants in X ×X . Then we
have

Y = (F⊥
1 ×V ∗ F⊥

2 )T×Gm = (F⊥
1 ×V ∗ E∗)T×Gm .

Consider the commutative diagram

HT×Gm

• (F⊥
1 ×V ∗ F⊥

2 )
α // HT×Gm

• (F⊥
1 ×V ∗ E∗)

HT×Gm

• (Y )

β

hh❘❘❘❘❘❘❘❘❘❘❘❘❘ γ

66❧❧❧❧❧❧❧❧❧❧❧❧❧

where all morphisms are proper direct image morphisms in homology. Then
by the localization theorem (see [L3, Proposition 4.4] or [EM, Theorem B.2])
both β and γ become isomorphisms after applying Q ⊗H (·). Hence the same
is true for α; in particular idQ ⊗H α is injective, which finishes the proof.

Remark 1.10.4. Using a non-equivariant variant of isomorphism FourierF1,F2
,

one can check that the condition Hodd
c (F⊥

1 ×V ∗ F⊥
2 ) = 0 is equivalent to the

condition Hodd
c (F1 ×V F2) = 0.

2 The case of convolution algebras

In this subsection we study more closely the case F1 = F2. In this case, as
we will explain, all the objects appearing in the diagram of Theorem 1.9.1
are equipped with convolution products, and all the maps are compatible with
these products. In a particular case, these algebras are related to affine Hecke
algebras, and our diagram explains the relation between the categorifications
of Iwahori–Matsumoto involutions obtained in [EM] and [MR3], via maps in-
troduced in [L1].
None of the results of this section are used in the proof of Theorem 1.9.1.
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2.1 Convolution

We set F := F1 = F2. As explained in [CG, §5.2.20] or [MR3, §4.1], the
group KG×Gm(F ×V F ) can be endowed with a natural (associative and unital)
convolution product ⋆. In fact, for c, d ∈ KG×Gm(F ×V F ), with our notations
this product satisfies5

c ⋆ d = pdip1,3 ◦ res(c⊠ d)

where c⊠ d ∈ KG×Gm

(
(F ×V F )× (F ×V F )

)
is the exterior product of c and

d,

res : KG×Gm

(
(F ×V F )× (F ×V F )

)
→ K

G×Gm(F ×V F ×V F )

is the restriction with supports morphism associated with the inclusion F 3 →֒
F 4 sending (x, y, z) to (x, y, y, z), and p1,3 : F ×V F ×V F → F ×V F is the
(proper) projection on the first and third factors. (See [MR3, §4.2] for a similar
description at the categorical level.) The unit in this algebra is the structure
sheaf O∆F of the diagonal ∆F ⊂ F ×V F . The same constructions provide a
left, resp. right, action of the algebra KG×Gm(F ×V F ) on the group KG×Gm(F )
defined by

c ⋆ d = pdip1 ◦ resl(c⊠ d), resp. d ⋆ c = pdip2 ◦ resr(d⊠ c)

for c ∈ KG×Gm(F ×V F ) and d ∈ KG×Gm(F ). Here p1, p2 : F ×V F → F are the
projections on the first and second factor respectively, the exterior products
are defined in the obvious way, and

resl : K
G×Gm

(
(F ×V F )× F

)
→ KG×Gm(F ×V F ),

resp. resr : K
G×Gm

(
F × (F ×V F )

)
→ KG×Gm(F ×V F ),

is the restriction with supports morphism associated with the inclusion F 2 →֒
F 3 sending (x, y) to (x, y, y), resp. to (x, x, y).
Of course we have similar constructions for the subbundle F⊥ ⊂ E∗, and we
will use the same notation in this context.

Lemma 2.1.1. The morphisms KoszulF,F , DF⊥,F⊥ and iF⊥,F⊥ are (unital)
algebra isomorphisms.

Proof. The case of KoszulF,F follows from [MR3, Propositions 4.3 & 4.5].6

The case of DF⊥,F⊥ is not difficult, and left to the reader (see [L4, Lemma 9.5]
for a similar statement, with slightly different conventions in the definition of
Grothendieck–Serre duality). Finally, the case of iF⊥,F⊥ is obvious.

5Note that our convention for the definition of the convolution product is opposite to the
one adopted in [MR3].

6In [MR3] we use the dualizing complex ωX ⊠OX [dim(X)] instead of OX ⊠ωX [dim(X)].
But the results cited remain true (with an identical proof) with our present conventions.
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This convolution construction has a natural analogue in equivariant Borel–
Moore homology, see e.g. [CG, §2.7] or [L3, §2]. In fact, the convolution product
on HG×Gm

• (F ×V F ), which we will also denote ⋆, satisfies

c ⋆ d = pdip1,3 ◦ res(c⊠ d),

where res is defined as for res above (replacing K-homology by Borel–Moore
homology). The unit for this convolution product is the equivariant fundamen-
tal class [∆F ] of the diagonal ∆F ⊂ F ×V F . We also have a left and a right
module structure on HG×Gm

• (F ), defined via the formulas

c ⋆ d = pdip1 ◦ resl(c⊠ d), resp. d ⋆ c = pdip2 ◦ resr(d⊠ c)

for c ∈ HG×Gm

• (F×V F ) and d ∈ HG×Gm

• (F ). Finally we have similar structures
for the subbundle F⊥ ⊂ E∗.

Lemma 2.1.2. The morphism FourierF,F is a (unital) algebra isomorphism.

Proof. One can show that the isomorphism canF,F is a (unital) algebra iso-
morphism, where the right-hand side is endowed with the Yoneda product;
see [CG, Theorem 8.6.7], [L3, Lemma 2.5] or [Kat, Theorem 4.5] for similar
statements. Then the claim follows from the fact that FourierF,F is induced by
a functor.

2.2 Compatibility for the Riemann–Roch maps

Lemma 2.2.1. Assume7 that Hodd
c (F ×V F ) = 0. Then the morphisms RRF,F

and RRF⊥,F⊥ are unital algebra morphisms.

Proof. We only treat the case of RRF,F ; the case of RRF⊥,F⊥ is similar.
(Note that, by Remark 1.10.4, our “odd vanishing” assumption implies that
Hodd
c (F⊥ ×V ∗ F⊥) = 0 also.) The fact that our morphism sends the unit to

the unit follows from Theorem 1.7.3 and Proposition 1.7.6, using the projection
formula (1.1.1). It remains to prove the compatibility with products.
To prove the lemma we use “projective completions,” namely we set V :=
P(V ⊕C) and let F be the projective bundle associated with the vector bundle
F × C over X . Then we have a projection F → V , and open embeddings
F →֒ F , V →֒ V . Note that F ×V F = F ×V F , so that F ×V F is a closed
subvariety in F×F . Similarly, one can identify F×V F with a closed subvariety
in F × F , so that we have proper direct image morphisms

ı1 : H
G×Gm

• (F ×V F ) → HG×Gm

• (F × F ),

ı2 : H
G×Gm

• (F ×V F ) → H
G×Gm

• (F × F ),

ı3 : H
G×Gm

• (F ×V F ) → HG×Gm

• (F × F ).

7This assumption is probably unnecessary. However, to avoid it one would need a more
general variant of Proposition 1.7.4 (as in [CG, Theorem 5.8.14], for instance) for which we
could not find any reference or easy proof.
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Using the same arguments as in the proof of Proposition 1.10.1, one can check
that the morphism ı3 is injective under our assumption. There exists a natural
convolution product

⋆ : HG×Gm

• (F × F )× HG×Gm

• (F × F ) → HG×Gm

• (F × F )

defined by
c ⋆ d = pdip′1,3

◦ res′(c⊠ d),

where p′1,3 : F ×F ×F → F ×F is the (proper) projection on the first and third

factors, and res : HG×Gm

• (F ×F ×F ×F ) → HG×Gm

• (F ×F ×F ) is the restric-
tion with supports morphism associated with the inclusion sending (x, y, z) to
(x, y, y, z). Moreover one can check (using in particular Lemma A.5.1) that for
c, d ∈ HG×Gm

• (F ×V F ) we have

ı3(c ⋆ d) = ı1(c) ⋆ ı2(d).

We have a similar construction of a convolution product in equivariant K-
homology, for which we will use similar notations. Hence, using the injectivity
of ı3, Theorem 1.7.3 and the projection formula (1.1.1), to prove the lemma it
is enough to prove that

RR3(c ⋆ d) = RR1(c) ⋆ RR2(d) (2.2.2)

for c ∈ KG×Gm(F × F ) and d ∈ KG×Gm(F × F ), where

RR1 : K
G×Gm(F × F ) → ĤG×Gm

• (F × F )

is defined by
RR1(d) = τG×Gm

F×F
(d) ·

(
1⊠ (TdG×Gm

F
)−1

)
,

and RR2 and RR3 are defined similarly.
Now we have

RR3(c ⋆ d) = τG×Gm

F×F (pdip′1,3 ◦ res
′(c⊠ d)) · (1⊠ (TdG×Gm

F )−1)

= pdip′1,3

(
τG×Gm

F×F×F
(res′(c⊠ d))

)
· (1⊠ (TdG×Gm

F )−1)

= pdip′1,3

(
τG×Gm

F×F×F
(res′(c⊠ d)) · (1⊠ 1⊠ (TdG×Gm

F )−1)
)

= pdip′1,3

(
res′ ◦ τG×Gm

F×F×F×F
(c⊠ d) · tdG×Gm(N)

· (1⊠ 1⊠ (TdG×Gm

F )−1)
)
,

where N is the normal bundle to the embedding F × F × F →֒ F × F
2
× F .

(Here the second equality follows from Theorem 1.7.3, the third one from the
projection formula (1.1.1), and the last equality from Proposition 1.7.4.) On
the other hand we have

RR1(c) ⋆ RR2(d) =

pdip′1,3
◦ res′

(
τG×Gm

F×F×F×F
(c⊠ d) · (1⊠ (TdG×Gm

F
)−1)⊠ 1⊠ (TdG×Gm

F )−1)
)
.
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The normal bundle N is canonically isomorphic to the restriction to F ×F ×F

of the pullback of the tangent bundle of F under the projection F×F
2
×F → F

on the second factor. Using (1.1.2) and comparing the formulas for RR3(c ⋆ d)
and for RR1(c) ⋆ RR2(d) obtained above, we deduce (2.2.2).

2.3 Compatibility for the actions on the natural modules

In §2.1 we have defined (left and right) actions of the algebra KG×Gm(F ×V F ),
resp. KG×Gm(F⊥ ×V ∗ F⊥), resp. HG×Gm(F ×V F ), resp. HG×Gm(F⊥ ×V ∗

F⊥), on the module KG×Gm(F ), resp. KG×Gm(F⊥), resp. HG×Gm(F ),
resp. HG×Gm(F⊥). We now define “bivariant Riemann–Roch maps”

RRF : KG×Gm(F ) → ĤG×Gm

• (F ), RRF⊥ : KG×Gm(F⊥) → ĤG×Gm

• (F⊥)

by the formulas

RRF = τG×Gm

F , RRF⊥(c) = τG×Gm

F⊥ (c) · (TdG×Gm

X )−1

(where use the same conventions as in §1.8). The following technical lemma
will be used to compute explicitly some Riemann–Roch maps in §2.6.

Lemma 2.3.1. Assume that Hodd
c (F ×V F ) = 0. Then the morphisms RR

and RR are compatible with the module structures, in the sense that for c ∈
KG×Gm(F ×V F ) and d ∈ KG×Gm(F ), resp. for c ∈ KG×Gm(F⊥ ×V ∗ F⊥) and
d ∈ KG×Gm(F⊥), we have

RRF (c⋆d) = RRF,F (c)⋆RRF (d), resp. RRF⊥(d⋆c) = RRF⊥(d)⋆RRF⊥,F⊥(c).

Proof. We only prove the first equality; the second one can be proved by similar
arguments. First, we claim that

τG×Gm

F×V F
◦ resl(c⊠ d) =

(
resl ◦ τ

G×Gm

F×V F×F (c⊠ d)
)
· tdA(N)−1, (2.3.2)

where N is the normal bundle to the inclusion F×F →֒ F×F×F considered in
the definition of resl. Indeed, as in the proof of Lemma 2.2.1, our assumption
ensures that the proper direct image morphism

ı : HG×Gm

• (F ×V F ) → HG×Gm

• (F × F )

is injective. Hence it is enough to prove that the image under ı of both sides
in (2.3.2) are equal. Now by the projection formula (1.1.1), Theorem 1.7.3 and
Lemma A.5.1 we have

ı
((

resl ◦ τ
G×Gm

F×V F
(c⊠ d)

)
· tdA(N)−1

)
= ı

(
resl ◦ τ

G×Gm

F×V F×F (c⊠ d)
)
· tdA(N)−1

=
(
res′l ◦ τ

G×Gm

F×F×F (ı(c)⊠ d)
)
· tdA(N)−1,

where
res′l : H

G×Gm

• (F × F × F ) → HG×Gm

• (F × F )
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is the restriction with supports morphism associated with the embedding F 2 →֒
F 3 considered in the definition of resl.
On the other hand, by Theorem 1.7.3 and the obvious K-theoretic analogue of
Lemma A.5.1 we have

ı
(
τG×Gm

F×V F
◦ resl(c⊠ d)

)
= τG×Gm

F×F ◦ res′l(ı(c)⊠ d),

where res′l is defined as for res′l. Hence the desired equality follows from Propo-
sition 1.7.4.
Now we have

RRF (c ⋆ d) = τG×Gm

F (pdip1 ◦ resl(c⊠ d))

= pdip1 ◦ τ
G×Gm

F×V F
◦ resl(c⊠ d)

= pdip1

((
resl ◦ τ

G×Gm

F×V F×F (c⊠ d)
)
· tdA(N)−1

)

= pdip1

(
resl

(
(τG×Gm

F×V F
(c)⊠ τG×Gm

F (d)) · (1 ⊠ (TdAF )
−1

⊠ 1)
))

= RRF,F (c) ⋆ RRF (d).

(Here the second equality follows from Theorem 1.7.3, the third one
from (2.3.2), and the fourth one from (1.1.2).) This concludes the proof.

2.4 Affine Hecke algebras and their graded versions

From now on in this section we restrict to the case of the affine Hecke algebra
and its graded version. Our notation mainly follows [L1]. Namely, we fix
a semisimple and simply connected complex algebraic group G, with fixed
maximal torus T and Borel subgroup B with T ⊂ B. We denote by W the
Weyl group of (G, T ), and by S ⊂W the set of Coxeter generators determined
by the choice of B. We also denote by X the lattice of characters of T , and by
R ⊂ X the root system of (G, T ). We denote by R+ ⊂ R the system of positive
roots consisting of the roots opposite to the roots of B. Then the affine Hecke
algebra Haff (with equal parameters) attached to these data is the Z[v, v−1]-
algebra generated by elements Ts for s ∈ S and θx for x ∈ X, subject to the
following relations (where ms,t is the order of st in W ):

1. (Ts + 1)(Ts − v2) = 0 for s ∈ S;

2. TsTt · · · = TtTs · · · for s, t ∈ S (with ms,t factors on each side);

3. θxθy = θx+y for x, y ∈ X;

4. θ0 = 1;

5. Ts · θx − θsx · Ts = (v2 − 1) θx−θsx1−θ−α
for s ∈ S, where α ∈ R is the corre-

sponding simple root.
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Remark 2.4.1. 1. Relations (3) and (4) imply that the subalgebra gener-
ated by the generators θx for x ∈ X is isomorphic to the group algebra
Z[v, v−1][X]; then the quotient in the right-hand side in (5) denotes the
quotient in this integral ring.

2. The present notation differs slightly from the notation in [MR3]. In
fact the element denoted Ts here coincides with the element denoted
tα in [MR3, §5.2] (for α the corresponding simple root).

The following reformulation of relation (5) (see [L1, Proposition 3.9]) will be
useful:

(Ts+1) · θx− θsx · (Ts+1) = (θx− θsx) ·G (α) with G (α) =
v2θα − 1

θα − 1
. (2.4.2)

The subalgebra of Haff generated by the elements Ts (s ∈ S) can be identified
with the Hecke algebra HW of the Coxeter group (W,S). We will consider
the left module sgnl of this subalgebra which is (canonically) free of rank one
over Z[v, v−1], and where Ts acts by −1. The same recipe also defines a right
module sgnr over HW . Then we can define the “antispherical” left, resp. right,
module over Haff as

Masph
l := Haff ⊗HW

sgnl, Masph
r := sgnr ⊗HW

Haff .

For both modules, we will simply denote by 1 the “base point” 1⊗ 1.
We will also consider the associated graded affine Hecke algebra Haff (again,
with equal parameters). This algebra is the C[r]-algebra generated by O(t) =
S(t∗) (where t is the Lie algebra of T ) and elements tw for w ∈ W , subject to
the following relations:

1. t1 = 1;

2. tvtw = tvw for v, w ∈ W ;

3. ts · φ − s(φ)ts = (φ − s(φ)) · (g(α) − 1) for s ∈ S, where α ∈ R is the
corresponding simple root.

Here following [L1] we have used the notation

g(α) =
α̇+ 2r

α̇
,

where α̇ ∈ t∗ is the differential of the root α. In this case also, one can
reformulate relation (3) in the following form, see [L1, 4.6(c)]:

(ts + 1) · φ− s(φ) · (ts + 1) = (φ− s(φ)) · g(α). (2.4.3)

The subalgebra of Haff generated by the elements tw (for w ∈ W ) identifies
with the group algebra HW = C[r][W ]. As above one can define a “sign” left,
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resp. right, module over this algebra (where ts acts by −1 for s ∈ S), which we
will denote by sgnl, resp. sgnr, and corresponding “antispherical” modules

M
asph

l := Haff ⊗HW
sgnl, M

asph

r := sgnr ⊗HW
Haff .

Let m ⊂ O(t)[r] = O(t × A1) denote the maximal ideal associated with the

point (0, 0) ∈ t × A1, and let Ô(t)[r] be the m-adic completion of O(t)[r].

Then Ĥaff := Ô(t)[r]⊗O(t)[r]Haff has a natural algebra structure extending the

structure on Haff . With this notation introduced, the algebras Haff and Haff

are related by the Lusztig morphism

Lr : Haff → Ĥaff

defined in [L1, §9].8 Let us recall the definition of this morphism. First, we
denote by Y := X∗(T ) the lattice of cocharacters of T , and consider the map

e :

{
t = Y⊗Z C → T = Y⊗Z C×

λ∨ ⊗ a 7→ λ∨ ⊗ exp(a)
.

This map induces a map

Z[v, v−1][X] → Ô(t)[r]

sending x ∈ X to (the power series expansion of) x ◦ e and v to exp(r), which
can be used to define Lr on the subalgebra of Haff generated by the elements
θx (x ∈ X), see Remark 2.4.1(1). Then the description of Lr is completed by
the formula

Lr(Ts + 1) = (ts + 1) · g(α)−1 · G̃ (α), where G̃ (α) = Lr(G (α)).

In more concrete terms, we have (see [L1, Proof of Lemma 9.5]):

g(α)−1 · G̃ (α) =
exp(α̇ + 2r)− 1

α̇+ 2r
·

α̇

exp(α̇)− 1
.

From the defining relations of Haff (resp. Haff) one can see that there exists an
anti-involution of Haff (resp. Haff) as a Z[v, v−1]-algebra (resp. C[r]-algebra),
which fixes all generators Ts for s ∈ S and θx for x ∈ X (resp. the generators ts
for s ∈ S and the elements of O(t)). Conjugating the morphism Lr with these
anti-involutions we obtain a second Lusztig morphism

Ll : Haff → Ĥaff

which satisfies

Ll(θx) = Lr(θx), Ll(v) = Lr(v), Ll(Ts+1) = g(α)−1 · G̃ (α) · (ts+1).
8The setting considered in [L1, §9] is much more general than the case considered in the

present paper. With Lusztig’s notation, we only consider the case v0 = 1 (which is covered
by [L1, §9.7]), r0 = 0, t0 = 1, Σ = {0}. This case suffices (except in the case when v is
specialized to a non trivial root of unity) for the study of the representation theory of Haff

via the (more accessible) study of the representation theory of Haff ; see [L1] for details.
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2.5 Geometric realization of Haff and its antispherical module(s)

Let B := G/B be the flag variety of G. Then we can consider the constructions
of §2.1 for the data X = B, V = g∗, and with F being the subbundle

Ñ := {(ξ, gB) ∈ g∗ × B | ξ|g·b = 0},

where b is the Lie algebras of B. (This variety is isomorphic to the Springer
resolution of the nilpotent cone of G.) We will also consider

g̃ := {(ξ, gB) ∈ g∗ × B | ξ|g·[b,b] = 0}.

(This variety is isomorphic to the Grothendieck simultaneous resolution.) Note
that the Killing form defines a G-equivariant isomorphism (g∗)∗ ∼= g∗, hence a
G×Gm-equivariant isomorphism E ∼= E∗. Via this isomorphism, F⊥ identifies
with g̃.
The Steinberg variety is the fiber product

Z := Ñ ×g∗ Ñ .

If α is a simple root, we denote by Pα ⊂ G the corresponding minimal standard
parabolic subgroup, and by Pα := G/Pα the associated partial flag variety.
Then as in [Ri]9 we set

S′
α := {(X, g1B, g2B) ∈ g∗ × (B ×Pα

B) | Xg1·b+g2·b = 0}.

In other words, S′
α is the inverse image of B×Pα

B under the projection Z → B×
B. This scheme is reduced but not irreducible: its two irreducible components
are the diagonal ∆Ñ and

Yα := {(X, g1B, g2B) ∈ g∗ × (B ×Pα
B) | Xg1·pα

= 0},

where pα is the Lie algebra of Pα.
With these definitions, we obtain algebras KG×Gm(Z) and HG×Gm

• (Z). It fol-
lows from work of Kazhdan–Lusztig [KL], Ginzburg [CG] and Lusztig [L4] that
there exists an algebra isomorphism10

Haff
∼
−→ KG×Gm(Z) (2.5.1)

which satisfies

v 7→ [O∆Ñ 〈1〉], θx 7→ [O∆Ñ (x)], Ts 7→ −[OYα
(−ρ, ρ− α)]− [O∆Ñ ] = −[OS′

α
].

(In the middle term, O∆Ñ (x) is (the direct image of) the line bundle on ∆Ñ
obtained by pullback of the line bundle on B naturally associated with x. In

9Due to a typo, the subscript “Pα” is missing in the fiber product in the description of
S′
α in [Ri, §6.1].
10Due to our change of convention in the definition of the convolution product (see Foot-

note 5), the isomorphism (2.5.1) is the composition of the isomorphism considered in [MR3,
§5.2] with the anti-involution considered at the end of §2.4.
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the third term, α is the simple root associated with s, and ρ is the half-sum of
the positive roots; the equality follows from [Ri, Lemma 6.1.1].)
We also have isomorphisms of Z[v, v−1]-modules

Masph
l

∼
−→ K

G×Gm(Ñ ), resp. Masph
l

∼
−→ K

G×Gm(Ñ ), (2.5.2)

where vnθx · 1, resp. 1 · vnθx, corresponds to [OÑ (x)〈n〉] (for x ∈ X).

Lemma 2.5.3. The isomorphisms (2.5.2) are isomorphisms of left and right
Haff -modules respectively.

Proof. It is enough to prove that for α a simple root we have

[OS′
α
] ⋆ [OÑ ] = [OÑ ] = [OÑ ] ⋆ [OS′

α
].

By symmetry the two equalities are equivalent, so we restrict to the first one.
By definition we have [OS′

α
]⋆[OÑ ] = [Rp1∗(OS′

α
)]. If Sα ⊂ g̃×g̃ is the subvariety

defined in [Ri, §1.4], in the derived category of (equivariant) coherent sheaves
on g̃× g̃, by [Ri, Lemma 4.1] we have

OÑ×g̃

L

⊗Og̃×g̃
OSα

∼= OS′
α
.

Then, by the (non flat) base change theorem (e.g. in the form of [BR, Propo-
sition 3.7.1]), to prove our equality it is enough to prove that

Rq1∗OSα
∼= Og̃,

where q1 : g̃× g̃ → g̃ is the projection on the first factor. This is proved in [BR,
Lemma 2.7.2].11

One also has a similar geometric realization using g̃ instead of Ñ . In fact, if
we set

Z := g̃×g∗ g̃,

as explained in [MR3, Lemma 5.2], restriction with supports associated with

the inclusion Ñ × g̃ →֒ g̃ × g̃ induces an algebra isomorphism KG×Gm(Z)
∼
−→

KG×Gm(Z). Therefore, we have an algebra isomorphism

Haff
∼
−→ K

G×Gm(Z) (2.5.4)

which satisfies

v 7→ [O∆g̃〈1〉], θx 7→ [O∆g̃(x)], Ts 7→ −[OSα
].

(Here we use conventions similar to those for Ñ , and Sα is defined in [Ri, §1.4].)
As in Lemma 2.5.3, we also have isomorphisms of left, resp. right, Haff -modules

Masph
l

∼
−→ KG×Gm(g̃), resp. Masph

r
∼
−→ KG×Gm(g̃).

11The subvariety Sα is denoted Zs in [BR], where s is the corresponding simple reflection.
Also, in [BR, §2] the base field is assumed to be of positive characteristic; but the proof of
the cited lemma works over any algebraically closed field of coefficients.
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2.6 Geometric realization of Haff and its antispherical module(s)

Following [L2, L3], replacing K-theory by Borel–Moore homology in the con-
structions of §2.5 one obtains a geometric realization of Haff ; in fact, apply-
ing [L3, Theorem 8.11] in our situation (i.e. for the Levi subgroup T , its nilpo-
tent orbit {0}, and the cuspidal local system C{0} on {0}), we obtain an algebra
isomorphism

Haff
∼
−→ HG×Gm

• (Z) (2.6.1)

such that the subalgebra O(t)[r] is obtained as the image (under proper direct
image) of

HG×Gm

• (∆g̃) ∼= HG×Gm

• (B) ∼= HB×Gm

• (pt) ∼= HT×Gm

• (pt) ∼= O(t)[r]. (2.6.2)

(More concretely, if x ∈ X, then ẋ ∈ t∗ corresponds to [∆g̃] · cG×Gm

1 (Og̃(x)),

where cG×Gm

1 (−) is the first equivariant Chern class.) The image of C[W ] is
obtained via the “Springer isomorphism”

C[W ]
∼
−→ Hom

D
G×Gm

const (g∗)(p!Cg̃, p!Cg̃) →֒ HG×Gm

• (Z).

(Here the inclusion is induced by the isomorphism cang̃,g̃ of §1.3.) As in (2.6.2)
we also have a natural isomorphism of C[r]-modules

M
asph

l
∼
−→ HG×Gm

• (g̃), resp. M
asph

r
∼
−→ HG×Gm

• (g̃), (2.6.3)

where ẋ · 1, resp. 1 · ẋ, corresponds to [g̃] · cG×Gm

1 (Og̃(x)).

Lemma 2.6.4. The isomorphisms (2.6.3) are isomorphisms of left and right
Haff-modules respectively.

Proof. As in Lemma 2.5.3, by symmetry it is enough to prove the equivariance
in the first case. Using similar constructions as for HG×Gm

• (g̃), one can construct
an action by convolution of HG×Gm

• (Z) on HG×Gm

• (B), where B is seen as the
zero section of g̃; see [CG, Corollary 2.7.41] in the non-equivariant setting.
Moreover, the Thom isomorphism HG×Gm

• (g̃)
∼
−→ HG×Gm

• (B) is equivariant for
this action. Therefore, it is enough to prove that the natural isomorphism

O(t)[r]
∼
−→ HG×Gm

• (B) induces an isomorphism of left Haff -modules M
asph

l
∼
−→

HG×Gm

• (B). And for this it is enough to prove that ts · [B] = −[B] for s ∈ S.
Now the forgetful morphism H

G×Gm

2 dim(B)(B) → H2 dim(B)(B) is an isomorphism,

and so is the morphism H
G×Gm

2 dim(Z)(Z) → H2 dim(Z)(Z). Hence we have reduced

our question to a claim about non-equivariant Borel–Moore homology, which
can be solved using Springer theory.
By [CG, Proposition 8.6.16], if i0 : {0} →֒ g̃ denotes the inclusion, there exists
a canonical isomorphism H•(B)

∼
−→ H2 dim(g)−•(i!0p!Cg̃), which identifies the

action of H•(Z) with the natural action of Hom•
Db

const(g
∗)(p!Cg̃, p!Cg̃) via the

non-equivariant analogue of the isomorphism cang̃,g̃. Hence what we have to
show is that the 1-dimensional W -module

H2 dim(B)(B) ∼= H2 dim(g)−2 dim(B)(i!0p!Cg̃)
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is the sign representation. This fact is well known, see e.g. [AHJR, Lemmas
4.5 & 4.6].

As in §2.5, we have a similar story when g̃ is replaced by Ñ . In fact, construc-
tions similar to those in [MR3, Lemma 5.2] show that restriction with supports
induces an algebra isomorphism HG×Gm

• (Z)
∼
−→ HG×Gm

• (Z). (This property
can also be extracted from [L2, L3]; it is used implictly in [EM].) Therefore,
we obtain isomorphisms of algebras and modules over these algebras

Haff
∼
−→ H

G×Gm

• (Z), M
asph

l
∼
−→ H

G×Gm

• (Ñ ), M
asph

r
∼
−→ H

G×Gm

• (Ñ ).
(2.6.5)

Proposition 2.6.6. 1. Under the isomorphisms (2.5.1) and (2.6.5), the
morphism RRÑ ,Ñ identifies with Ll.

2. Under the isomorphisms (2.5.4) and (2.6.1), the morphism RRg̃,g̃ iden-

tifies with the morphism c 7→ eB · Lr(c) · e
−1
B , where

eB :=
∏

α∈R+

α̇

1− exp(−α̇)
.

Proof. First, we note that Z and Z are paved by affine spaces, so that the
“parity vanishing” assumptions in some of our statements above are satisfied
in these cases.
(1) Both of our maps are algebra morphisms (see Lemma 2.2.1), so it is enough
to check that they coincide on the generators of Haff . The case of v is obvious
(see [EG2, §3.3]), and the case of θx follows from Proposition 1.7.6. It remains
to consider the case of Ts; in fact it will be simpler (but equivalent) to prove
that

RRÑ ,Ñ (1 + Ts) = Ll(1 + Ts) = g(α)−1 · G̃ (α) · (ts + 1). (2.6.7)

By Remark 1.9.3 and Proposition 1.10.1, HG×Gm

• (Ñ ) is faithful as a mod-
ule over HG×Gm

• (Z). Therefore, the same is true for the completions, and to

prove (2.6.7) it is enough to prove that both sides act similarly on ĤG×Gm

• (Ñ ).
However, by Lemma 2.5.3 and (2.4.2), for x ∈ X we have (1 + Ts) · (θx · 1) =(
(θx − θsx) · G (α)

)
· 1. By Lemma 2.3.1, this implies that in M

asph

l we have

RRÑ ,Ñ (1 + Ts) · (exp(ẋ) · 1) =
(
(exp(ẋ)− exp(sẋ)) · G̃ (α)

)
· 1.

Using (2.4.3), this coincides with the action of g(α)−1 · G̃ (α) · (ts + 1). Since

the elements of the form rn exp(ẋ) · 1 form a topological basis of ĤG×Gm

• (Ñ ),
we deduce the equality in (2.6.7).

(2) The proof is similar to the proof of (1), using the right action on ĤG×Gm

• (g̃),
and using the fact that

TdG×Gm

B =
∏

α∈R+

α̇

1− exp(−α̇)
in Ĥ•

G×Gm

(g̃) = Ô(t)[r]
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(as follows from [EG2, §3.3], since the tangent bundle on B has a filtration with
associated graded the sum of the line bundles OB(α) for α ∈ R+).

Remark 2.6.8. In [L1, §0.3], Lusztig explains that his morphism Lr “is of the
same nature as the Chern character from K-theory to homology.” Proposi-
tion 2.6.6 is a concrete justification of this claim.

2.7 Commutative diagram for affine Hecke algebras

Finally we can consider the diagram of Theorem 1.9.1 in the geometric setting
of §§2.5–2.6:

KG×Gm(Z)
Koszul

Ñ ,Ñ //

RR
Ñ ,Ñ

��

KG×Gm(Z)
ig̃,g̃◦Dg̃,g̃ // KG×Gm(Z)

RRg̃,g̃

��

ĤG×Gm

• (Z)
Fourier

Ñ ,Ñ // ĤG×Gm

• (Z).

(2.7.1)

Note that Proposition 1.10.1 ensures that the assumption of Theorem 1.9.1
is satisfied in this case, since Z is paved by affine spaces, and that the re-
sults of §2.1–2.2 ensure that all the maps in this diagram are unital algebra
morphisms. Using Proposition 2.6.6 and the results of [EM] and [MR3] we
can describe explicitly all the maps in this diagram, and hence illustrate the
content of Theorem 1.9.1 in this particular situation.
The morphism KoszulÑ ,Ñ was studied in [MR3, §5.3]. In particular, [MR3,

Theorem 5.4] describes this automorphism algebraically, and shows that it
is closely related to the Iwahori–Matsumoto involution of Haff . Using the
identifications (2.5.1) and (2.5.4), we have

KoszulÑ ,Ñ (Ts) = θρ(−v
2T−1
s )θ−ρ, KoszulÑ ,Ñ (θx) = θ−x,

KoszulÑ ,Ñ (v) = −v

for s ∈ S a simple root and x ∈ X.12

Concerning the map Dg̃,g̃, one can check that, with the identification (2.5.4),
it satisfies

Dg̃,g̃(Ts) = T−1
s , Dg̃,g̃(θx) = θ−x, Dg̃,g̃(v) = v−1.

(See [L4, Lemma 9.7] for a similar computation, with different conventions.)
Finally, the morphism ig̃,g̃ is the same as the involution ι of [MR3, §5.3]; it
satisfies

ig̃,g̃(Ts) = Ts, ig̃,g̃(θx) = θx, ig̃,g̃(v) = −v.

12As noted in Footnote 6, the conventions in the definition of K
Ñ ,Ñ

used in the present

paper differ slightly from the conventions used in [MR3]. Our identification of KG×Gm (Z) is
also slightly different, see [MR3, Comments at the end of §5.2]. This explains the differences
with the formulas in [MR3].
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On the Borel–Moore homology side, the map FourierÑ ,Ñ was studied in [EM].
In that paper it was shown to be closely related to the Iwahori–Matsumoto
involution of Haff ; more precisely it satisfies

FourierÑ ,Ñ (tw) = (−1)ℓ(w)tw, FourierÑ ,Ñ (φ) = φ, FourierÑ ,Ñ (r) = −r

for w ∈W and φ ∈ O(t).
Using these formulas one can check the commutativity of (2.7.1) by hand. For
instance, for the element 1+Ts, the commutativity of the diagram amounts to
the following equality in Haff :

exp(α̇− 2r)− 1

α̇− 2r

α̇

exp(α̇)− 1
(−ts + 1) =

1− exp(−ρ̇− 2r)eB

(
(ts + 1)

exp(α̇+ 2r)− 1

α̇+ 2r

α̇

exp(α̇)− 1
− 1

)
e−1
B exp(ρ̇).

3 Compatibility of the Fourier isomorphism with inclusions

In this section and the next one we will consider compatibility properties of our
morphisms in two geometric situations. We use the same setting and notation
as in §§1.3–1.9.

3.1 Further notation

First we will consider a situation which we will refer to as Setting (A): here
we are given an additional subbundle F ′

2 ⊂ E containing F2 and such that F2,
F ′
2 and E can be locally simultaneously trivialized. Then we have “restriction

with supports” morphisms associated with the embedding F2 →֒ F ′
2, both in

K-homology and in Borel–Moore homology, which we denote as follows:

res
F1,F

′
2

F1,F2
: KG×Gm(F1 ×V F

′
2) → KG×Gm(F1 ×V F2);

res
F1,F

′
2

F1,F2
: HG×Gm

• (F1 ×V F
′
2) → H

G×Gm

•−2rk(F ′
2)+2rk(F2)

(F1 ×V F2).

We also have proper direct image morphisms associated with the embedding
(F ′

2)
⊥ →֒ F⊥

2 , again both in K-homology and in Borel–Moore homology, which
we denote as follows:

pdi
F⊥

1 ,(F
′
2)

⊥

F⊥
1 ,F

⊥
2

: KG×Gm(F⊥
1 ×V ∗ (F ′

2)
⊥) → K

G×Gm(F⊥
1 ×V ∗ F⊥

2 );

pdi
F⊥

1 ,(F
′
2)

⊥

F⊥
1 ,F

⊥
2

: HG×Gm

• (F⊥
1 ×V ∗ (F ′

2)
⊥) → HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ).

Secondly, we will consider a situation which we will refer to as Setting (B):
here we are given an additional subbundle F ′

1 ⊂ E containing F1 and such
that F1, F

′
1 and E can be locally simultaneously trivialized. Then we have
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proper direct image morphisms associated with the embedding F1 →֒ F ′
1, both

in K-homology and in Borel–Moore homology, which we denote as follows:

pdi
F1,F2

F ′
1,F2

: KG×Gm(F1 ×V F2) → K
G×Gm(F ′

1 ×V F2);

pdi
F1,F2

F ′
1,F2

: HG×Gm

• (F1 ×V F2) → HG×Gm

• (F ′
1 ×V F2).

We also have “restriction with supports” morphisms associated with the embed-
ding (F ′

1)
⊥ →֒ F⊥

1 , again both in K-homology and in Borel–Moore homology,
which we denote as follows:

res
F⊥

1 ,F
⊥
2

(F ′
1)

⊥,F⊥
2
: KG×Gm(F⊥

1 ×V ∗ F⊥
2 ) → K

G×Gm((F ′
1)

⊥ ×V ∗ F⊥
2 );

res
F⊥

1 ,F
⊥
2

(F ′
1)

⊥,F⊥
2
: HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) → H
G×Gm

•−2rk(F⊥
1 )+2rk((F ′

1)
⊥)
((F ′

1)
⊥ ×V ∗ F⊥

2 ).

3.2 Convolution algebras and inclusion of subbundles

Consider Setting (A) of §3.1. Then we have natural morphisms induced by
adjunction

adj∗F2,F ′
2
: CF ′

2
→ CF2

and adj!(F ′
2)

⊥,F⊥
2
: C(F ′

2)
⊥ → CF⊥

2
[2rk(F⊥

2 )−2rk((F ′
2)

⊥)].

The proof of the following result being rather technical (and the details not
needed), it is postponed to the appendix (see §§A.6–A.7).

Proposition 3.2.1. 1. The following diagram commutes:

HG×Gm

• (F1 ×V F ′
2)

canF1,F ′
2

∼
//

res
F1,F ′

2
F1,F2

��

Ext
2 dim(F ′

2)−•

DG×Gm

const (V )
(p!CF1

, p!CF ′
2
)

(p!adj
∗

F2,F ′
2
)◦(·)

��

H
G×Gm

•−2rk(F ′
2)+2rk(F2)

(F1 ×V F2)
canF1,F2

∼
// Ext

2 dim(F ′
2)−•

DG×Gm

const (V )
(p!CF1

, p!CF2
).

2. The following diagram commutes:

HG×Gm

• (F⊥
1 ×V ∗ (F ′

2)
⊥)

can
F⊥
1 ,(F ′

2)⊥

∼
//

pdi
F⊥
1 ,(F ′

2)⊥

F⊥
1 ,F⊥

2

��

Ext
2 dim((F ′

2)
⊥)−•

DG×Gm

const (V ∗)
(p̌!CF⊥

1
, p̌!C(F ′

2)
⊥)

(p̌!adj
!

(F ′
2
)⊥,F⊥

2
)◦(·)

��

HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 )
can

F⊥
1

,F⊥
2

∼
// Ext

2 dim(F⊥
2 )−•

DG×Gm

const (V ∗)
(p̌!CF⊥

1
, p̌!CF⊥

2
).

Consider now Setting (B) of §3.1. We have natural morphisms induced by
adjunction

adj∗F1,F ′
1
: CF ′

1
→ CF1

and adj!(F ′
1)

⊥,F⊥
1
: C(F ′

1)
⊥ → CF⊥

1
[2rk(F⊥

1 )−2rk((F ′
1)

⊥)].

The proof of the following proposition is similar to that of Proposition 3.2.1,
and is therefore omitted.
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Proposition 3.2.2. 1. The following diagram commutes:

HG×Gm

• (F1 ×V F2)
canF1,F2

∼
//

pdi
F1,F2
F ′
1
,F2

��

Ext
2 dim(F2)−•

DG×Gm

const (V )
(p!CF1

, p!CF2
)

(·)◦(p!adj
∗

F1,F ′
1
)

��

HG×Gm

• (F ′
1 ×V F2)

canF ′
1,F2

∼
// Ext

2 dim(F2)−•

DG×Gm

const (V )
(p!CF ′

1
, p!CF2

).

2. The following diagram commutes, where r1 =: rk(F⊥
1 ), r′1 := rk((F ′

1)
⊥)

and d2 = dim(F⊥
2 ):

H
G×Gm

• (F⊥
1 ×V ∗ F⊥

2 )
can

F⊥
1 ,F⊥

2

∼
//

res
F⊥
1 ,F⊥

2

(F ′
1
)⊥,F⊥

2

��

Ext2d2−•

D
G×Gm

const (V ∗)
(p̌!CF⊥

1
, p̌!CF⊥

2
)

(·)◦(p̌!adj
!

(F ′
1)⊥,F⊥

1

)

��

H
G×Gm

•−2r1+2r′1
((F ′

1)
⊥
×V ∗ F⊥

2 )
can

(F ′
1)⊥,F⊥

2

∼
// Ext

2d2+2r1−2r′1−•

D
G×Gm

const (V ∗)
(p̌!C(F ′

1)
⊥ , p̌!CF⊥

2
).

3.3 Fourier transform and inclusion of subbundles

In the next lemma G can be replaced by any linear algebraic group, X by
any smooth G-variety, and E by any G-equivariant vector bundle over X .
We consider subbundles F ⊂ F ′ ⊂ E which can be locally simultaneously
trivialized. (In practice, E and X will be as above, and we will take F = Fi,
F ′ = F ′

i for i ∈ {1, 2}.) Adjunction induces morphisms

adj∗F,F ′ : CF ′ → CF and adj!(F ′)⊥,F⊥ : C(F ′)⊥ → CF⊥ [2rk(F⊥)−2rk((F ′)⊥)].

Lemma 3.3.1. The following diagram is commutative:

FE(CF ′)

≀

��

FE(adj∗
F,F ′ )

// FE(CF )

≀

��
C(F ′)⊥ [−2rk(F ′)]

adj!
(F ′)⊥,F⊥

// CF⊥ [−2rk(F )],

where vertical isomorphisms are provided by Lemma 1.2.3.

Proof. It is equivalent to prove a similar isomorphism for FE ; for simplicity we
still denote by F⊥, (F ′)⊥ the orthogonals viewed in E⋄, and by ř : E⋄ → X the
projection. By the construction in the proof of Lemma 1.2.3 we have natural
isomorphisms

FE(CF ′) ∼= q̌!CQF ′
and FE(CF )

∼= q̌!CQF
,

where QF ′ := q−1(F ′), QF := q−1(F ). It follows from the definitions that
the morphism FE(adj

∗
F,F ′) is the image under q̌! of the morphism CQF ′

→
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CQF
induced by adjunction (for the inclusion QF →֒ QF ′). Hence what we

have to show is that the morphism ϕ in the following diagram coincides with
adj!(F ′)⊥,F⊥ , where the upper arrow is induced by adjunction as above, and the
vertical isomorphisms are as in the proof of Lemma 1.2.3:

q̌!CQF ′
//

≀

��

q̌!CQF

≀

��
q̌!CF ′×X (F ′)⊥

≀

��

q̌!CF×XF⊥

≀

��
C(F ′)⊥ [−2rk(F ′)]

ϕ
// CF⊥ [−2rk(F )].

Now we have canonical isomorphisms

ř!
(
C(F ′)⊥ [−2rk(F ′)]

)
∼= CX [−2rk(E)], ř!

(
CF⊥ [−2rk(F )]

)
∼= CX [−2rk(E)],

and one can check that the functor ř! induces an isomorphism

HomDG×Gm

const (E⋄)

(
C(F ′)⊥ [−2rk(F ′)],CF⊥ [−2rk(F )]

) ∼
−→

HomDG×Gm

const (X)

(
CX [−2rk(E)],CX [−2rk(E)]

)

sending adj!(F ′)⊥,F⊥ [−2rk(F ′)] to the identity morphism of CX [−2rk(E)].
Hence it is enough to prove that ř!ϕ[2rk(E)] is the identity of CX (through
the canonical isomorphisms above). The latter statement is about sheaves
(and not complexes), so that we can forget about equivariance and check the
claim locally overX . (This is allowed by combining [BL, Proposition 2.5.3] and
[Le, Proposition 4.2.7].) By local triviality, one can then assume that X = pt
(i.e. that E is a vector space and that F, F ′ ⊂ E are subspaces).
In this case the claim boils down to the fact that the dotted arrow in the
following diagram is the identity:

H
2 dim(E)
c (F ′ × (F ′)⊥)

≀

��

H
2 dim(E)
c (Q)

∼ //∼oo H
2 dim(E)
c (F × F⊥)

≀

��
C // C.

To prove this fact we regard E × E∗ as a real vector space, endowed with the
non-degenerate quadratic form given by q(x, ξ) := Re(〈ξ, x〉). The orthogonal

group H of this form stabilizes Q, hence acts on H
2 dim(E)
c (Q), and this action

factors through the group of components H/H◦. Now F ×F⊥ and F ′ × (F ′)⊥

are conjugate under the action of H◦, with finishes the proof.

In the following proposition we get back to the assumption that E = V ×X ,
and we let p : E → V be the projection. The following result is an immediate
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consequence of Lemma 3.3.1 and the isomorphism of functors FV ◦p! ∼= p̌! ◦FE,
see the proof of Corollary 1.2.4.

Proposition 3.3.2. The following diagram is commutative:

FV (p!CF ′)

(1.2.5) ≀

��

FV (p!(adj
∗

F,F ′))
// FV (p!CF )

(1.2.5)≀

��
p̌!C(F ′)⊥ [−2rk(F ′)]

p̌!(adj
!

(F ′)⊥,F⊥ )
// p̌!CF⊥ [−2rk(F )].

3.4 The Fourier isomorphism and inclusion of subbundles

We come back to Setting (A) of §3.1.

Proposition 3.4.1. We have an equality

FourierF1,F2
◦ res

F1,F
′
2

F1,F2
= pdi

F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

◦ FourierF1,F ′
2

of morphisms HG×Gm

• (F1 ×V F ′
2) → H

G×Gm

•+2 dim((F ′
2)

⊥)−2 dim(F1)
(F⊥

1 ×V ∗ F⊥
2 ).

Proof. By functoriality the following diagram commutes, where horizontal
maps are induced by the functor FV :

Ext
2 dim(F ′

2)−•

DG×Gm

const (V )
(p!CF1

, p!CF ′
2
)

(p!adj
∗

F2,F ′
2
)◦(·)

��

∼
// Ext

2 dim(F ′
2)−•

DG×Gm

const (V ∗)
(FV (p!CF1

),FV (p!CF ′
2
))

FV (p!adj
∗

F2,F ′
2
)◦(·)

��

Ext
2 dim(F ′

2)−•

DG×Gm

const (V )
(p!CF1

, p!CF2
) ∼

// Ext
2 dim(F ′

2)−•

DG×Gm

const (V ∗)
(FV (p!CF1

),FV (p!CF2
)).

Now by Proposition 3.3.2 the following diagram commutes, where vertical maps
are induced by the isomorphisms FV (p!CF )

∼= p̌!CF⊥ [−2rk(F )] for F = F1, F2

or F ′
2 (see (1.2.5)) and where d1 := dim(F1), d2 := dim(F2) and d

′
2 := dim(F ′

2):

Ext
2d′2−•

DG×Gm

const (V ∗)
(FV (p!CF1

),FV (p!CF ′
2
))

FV (p!adj
∗

F2,F ′
2
)◦(·)

��

∼
// Ext2d1−•

DG×Gm

const (V ∗)
(p̌!CF⊥

1
, p̌!C(F ′

2)
⊥)

(p̌!adj
!

(F ′
2)⊥,F⊥

2
)◦(·)

��

Ext
2d′2−•

DG×Gm

const (V ∗)
(FV (p!CF1

),FV (p!CF2
)) ∼

// Ext
2d1+2d′2−2d2−•

DG×Gm

const (V ∗)
(p̌!CF⊥

1
, p̌!CF⊥

2
).

Pasting these diagrams with the ones of Proposition 3.2.1 we obtain the desired
equality.

Now we consider Setting (B) of §3.1. The proof of the following proposition is
similar to that of Proposition 3.4.1 (replacing Proposition 3.2.1 by Proposition
3.2.2), and is therefore omitted.
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Proposition 3.4.2. We have an equality

FourierF ′
1,F2

◦ pdiF1,F2

F ′
1,F2

= res
F⊥

1 ,F
⊥
2

(F ′
1)

⊥,F⊥
2

◦ FourierF1,F2

of morphisms HG×Gm

• (F1 ×V F2) → H
G×Gm

•+2 dim(F⊥
2 )−2 dim(F ′

1)

(
(F ′

1)
⊥ ×V ∗ F⊥

2

)
.

4 Compatibility of the remaining constructions with inclusions

4.1 Compatibilities for linear Koszul duality

Consider Setting (A) of §3.1. Then we have equivalences of triangulated cat-
egories KF1,F2 and KF1,F ′

2
constructed as in §1.5. We also have natural mor-

phisms of dg-schemes

f : (∆V ×X ×X)
R

∩E×E(F1 × F2) → (∆V ×X ×X)
R

∩E×E(F1 × F ′
2),

g : (∆V ∗×X×X)
R

∩E∗×E∗(F⊥
1 ×(F ′

2)
⊥) → (∆V ∗×X×X)

R

∩E∗×E∗(F⊥
1 ×F⊥

2 )

associated with the inclusions F2 →֒ F ′
2 and (F ′

2)
⊥ →֒ F⊥

2 respectively, and
associated functors

Lf∗ : Dc
G×Gm

(
(∆V ×X ×X)

R

∩E×E(F1 × F ′
2)
)
→

Dc
G×Gm

(
(∆V ×X ×X)

R

∩E×E(F1 × F2)
)
,

Rg∗ : D
c
G×Gm

(
(∆V ∗ ×X ×X)

R

∩E∗×E∗(F⊥
1 × (F ′

2)
⊥)

)
→

Dc
G×Gm

(
(∆V ∗ ×X ×X)

R

∩E∗×E∗(F⊥
1 × F⊥

2 )
)

(see [MR3, §§3.2–3.3] for details). By [MR3, Proposition 3.5] there exists an
isomorphism of functors

KF1,F2 ◦ Lf
∗ ∼= Rg∗ ◦ KF1,F ′

2
.

It easily follows from definitions that the following diagram commutes:

Dc
G×Gm

(
(∆V ×X2)

R

∩E2(F1 × F ′
2)
) Lf∗

//

��

Dc
G×Gm

(
(∆V ×X2)

R

∩E2(F1 × F2)
)

��

DbCoh
G×Gm(F1 × F ′

2) // DbCoh
G×Gm(F1 × F2).

(Here the lower horizontal arrow is the usual pullback functor associated with
the embedding F1 × F2 →֒ F1 × F ′

2. The right vertical arrow is induced by
the “restriction of scalars” functor associated with the embedding A0

F1,F2
→֒

AF1,F2 , where the dg-algebra AF1,F2 is defined in §1.5; note that A0
F1,F2

is the
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direct image of the structure sheaf under the affine morphism F1×F2 → X×X .
The left vertical arrow is defined similarly.) We deduce that the morphism

induced by Lf∗ in K-homology is res
F1,F

′
2

F1,F2
. Similarly, the morphism induced

by Rg∗ in K-homology is pdi
F⊥

1 ,(F
′
2)

⊥

F⊥
1 ,F

⊥
2

(see the proof of [MR3, Lemma 3.3]). We

deduce the following result.

Proposition 4.1.1. We have an equality

KoszulF1,F2 ◦ res
F1,F

′
2

F1,F2
= pdi

F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

◦KoszulF1,F ′
2

of morphisms KG×Gm(F1 ×V F ′
2) → KG×Gm(F⊥

1 ×V ∗ F⊥
2 ).

Now, consider Setting (B) of §3.1. The same considerations as above allow to
prove the following result.

Proposition 4.1.2. We have an equality

KoszulF ′
1,F2

◦ pdiF1,F2

F ′
1,F2

= res
F⊥

1 ,F
⊥
2

(F ′
1)

⊥,F⊥
2

◦KoszulF1,F2

of morphisms KG×Gm(F1 ×V F2) → KG×Gm

(
(F ′

1)
⊥ ×V ∗ F⊥

2

)
.

4.2 Compatibilities for the other maps in K-homology

Consider Setting (A) of §3.1.

Proposition 4.2.1. We have equalities

DF⊥
1 ,F

⊥
2
◦ pdi

F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

= pdi
F⊥

1 ,(F
′
2)

⊥

F⊥
1 ,F

⊥
2

◦DF⊥
1 ,(F

′
2)

⊥ ,

iF⊥
1 ,F

⊥
2
◦ pdi

F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

= pdi
F⊥

1 ,(F
′
2)

⊥

F⊥
1 ,F

⊥
2

◦ iF⊥
1 ,(F

′
2)

⊥

of morphisms KG×Gm(F⊥
1 ×V ∗ (F ′

2)
⊥) → KG×Gm(F⊥

1 ×V ∗ F⊥
2 ).

Proof. The second equality is easy, and left to the reader. Let us consider the
first one. We denote the inclusion morphism by

hA : F⊥
1 × (F ′

2)
⊥ →֒ F⊥

1 × F⊥
2 ,

and consider the duality functor

DG×Gm

F⊥
1 ,F

⊥
2
: Db

Coh
G×Gm

F⊥
1 ×V ∗F⊥

2
(F⊥

1 × F⊥
2 ) → Db

Coh
G×Gm

F⊥
1 ×V ∗F⊥

2
(F⊥

1 × F⊥
2 )op

defined as in §1.6, and similarly for DG×Gm

F⊥
1 ,(F

′
2)

⊥ . Then the result follows from

the natural isomorphism

R(hA)∗ ◦D
G×Gm

F⊥
1 ,(F

′
2)

⊥
∼= DG×Gm

F⊥
1 ,F

⊥
2

◦R(hA)∗

provided by the duality theorem [Ha, Theorem VII.3.3]. More precisely we
need an equivariant version of the duality theorem, which can be derived from
the non-equivariant version by the arguments of [MR3, §2.1].
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Consider now Setting (B) of §3.1.

Proposition 4.2.2. We have equalities

D(F ′
1)

⊥,F⊥
2
◦ res

F⊥
1 ,F

⊥
2

(F ′
1)

⊥,F⊥
2

= res
F⊥

1 ,F
⊥
2

(F ′
1)

⊥,F⊥
2
◦DF⊥

1 ,F
⊥
2
,

i(F ′
1)

⊥,F⊥
2
◦ res

F⊥
1 ,F

⊥
2

(F ′
1)

⊥,F⊥
2

= res
F⊥

1 ,F
⊥
2

(F ′
1)

⊥,F⊥
2

◦ iF⊥
1 ,F

⊥
2

of morphisms KG×Gm(F⊥
1 ×V ∗ F⊥

2 ) → KG×Gm((F ′
1)

⊥ ×V ∗ F⊥
2 ).

Proof. The second equality is easy, and left to the reader. Let us consider the
first one. We denote the inclusion morphism by

hB : (F ′
1)

⊥ × F⊥
2 →֒ F⊥

1 × F⊥
2 ,

and consider the duality functors DG×Gm

F⊥
1 ,F

⊥
2

and DG×Gm

(F ′
1)

⊥,F⊥
2

defined as in §1.6.

The claim follows from an isomorphism of functors

L(hB)
∗ ◦DG×Gm

F⊥
1 ,F

⊥
2

∼= DG×Gm

(F ′
1)

⊥,F⊥
2

◦ L(hB)
∗

which can be proved by arguments similar to those of [Ha, Proposition II.5.8],
taking into account our assumption that X is a smooth variety (so that F⊥

1 ×
F⊥
2 and (F ′

1)
⊥ × F⊥

2 are also smooth), which implies that every object of
the bounded derived category of coherent sheaves is isomorphic to a bounded
complex of locally free sheaves.

4.3 Compatibilities for RR

First, consider Setting (A) of §3.1.

Proposition 4.3.1. Assume that the proper direct image morphism

HG×Gm

• (F1 ×V F2) → HG×Gm

• (F1 × F2)

is injective. Then we have an equality

RRF1,F2
◦ res

F1,F
′
2

F1,F2
= res

F1,F
′
2

F1,F2
◦ RRF1,F ′

2

of morphisms KG×Gm(F1 ×V F ′
2) → ĤG×Gm

• (F1 ×V F2).

Documenta Mathematica 20 (2015) 989–1038



1024 Ivan Mirković, Simon Riche

Proof. Consider the following cube:

KG×Gm(F1 ×V F ′
2)

res
F1,F ′

2
F1,F2

��

pdi

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

RR
F1,F ′

2 // ĤG×Gm

• (F1 ×V F ′
2)

res
F1,F ′

2
F1,F2

��

pdi

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

KG×Gm(F1 × F ′
2)

res

��

(1)
// ĤG×Gm

• (F1 × F ′
2)

res

��

KG×Gm(F1 ×V F2)

pdi

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

RRF1,F2 // ĤG×Gm

• (F1 ×V F2)

pdi

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

KG×Gm(F1 × F2)
(2)

// ĤG×Gm

• (F1 × F2).

Here the labels res and res, resp. pdi and pdi, indicate restriction with supports
(always with respect to the morphism induced by F2 →֒ F ′

2), resp. proper direct
image, the arrow labelled by (1) is given by τG×Gm

F1×F ′
2
·
(
1⊠(TdG×Gm

F ′
2

)−1
)
, and the

arrow labelled by (2) by τG×Gm

F1×F2
·
(
1⊠(TdG×Gm

F2
)−1

)
. The upper and lower faces

of this cube commute by Theorem 1.7.3 and the projection formula (1.1.1). The
left face commutes by definition, and the right one by Lemma A.5.1. The front
face commutes by Proposition 1.7.4, Remark 1.7.5 and formula (1.1.2). Using
our assumption, we deduce the commutativity of the back face, which finishes
the proof.

Now, consider Setting (B) of §3.1. The following proposition follows from
Theorem 1.7.3 and the projection formula (1.1.1).

Proposition 4.3.2. We have an equality

RRF ′
1,F2

◦ pdiF1,F2

F ′
1,F2

= pdi
F1,F2

F ′
1,F2

◦ RRF1,F2

of morphisms KG×Gm(F1 ×V F2) → ĤG×Gm

• (F ′
1 ×V F2).

4.4 Compatibilities for RR

The proofs in this subsection are analogous to those of the corresponding state-
ments in §4.3; they are therefore omitted.
First, consider Setting (A) of §3.1.

Proposition 4.4.1. We have an equality

RRF⊥
1 ,F

⊥
2
◦ pdi

F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

= pdi
F⊥

1 ,(F
′
2)

⊥

F⊥
1 ,F

⊥
2

◦ RRF⊥
1 ,(F

′
2)

⊥

of morphisms KG×Gm(F⊥
1 ×V ∗ (F ′

2)
⊥) → ĤG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ).

Now, consider Setting (B) of §3.1.
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Proposition 4.4.2. Assume that the proper direct image morphism

HG×Gm

• ((F ′
1)

⊥ ×V ∗ F⊥
2 ) → HG×Gm

• ((F ′
1)

⊥ × F⊥
2 )

is injective. Then we have an equality

RR(F ′
1)

⊥,F⊥
2
◦ res

F⊥
1 ,F

⊥
2

(F ′
1)

⊥,F⊥
2

= res
F⊥

1 ,F
⊥
2

(F ′
1)

⊥,F⊥
2

◦ RRF⊥
1 ,F

⊥
2

of morphisms KG×Gm(F⊥
1 ×V ∗ F⊥

2 ) → ĤG×Gm

• ((F ′
1)

⊥ ×V ∗ F⊥
2 ).

5 Proof of Theorem 1.9.1

5.1 A particular case

In this subsection we study the case when F1 = E and F2 = X (considered as
the zero-section of E), so that F⊥

1 = X , F⊥
2 = E∗. In this case, the assumption

of Theorem 1.9.1 is trivially satisfied.

Lemma 5.1.1. Under the identifications E ×V X = X ×X = X ×V ∗ E∗, the
isomorphism

FourierE,X : HG×Gm

• (E ×V X)
∼
−→ HG×Gm

• (X ×V ∗ E∗)

coincides with the automorphism of HG×Gm

• (X ×X) induced by the involution
of G×Gm sending (g, t) to (g, t−1).

Proof. The lemma is equivalent to the statement that the isomorphism
HG×Gm

• (E×V X)
∼
−→ HG×Gm

• (X×V ⋄ E⋄) induced by the equivalence FV of §1.2
is the identity morphism of HG×Gm

• (X ×X).
Using the canonical isomorphism of §1.3 in the case V = {0}, F1 = F2 = X we
obtain an isomorphism

α : HG×Gm

• (X ×X)
∼
−→ Ext

2 dim(X)−•

DG×Gm

const (pt)

(
(p0)!CX , (p0)!CX

)
,

where p0 : X → pt is the projection. Then the composition

HG×Gm

• (X ×X) = HG×Gm

• (E ×V X) ∼= Ext
2 dim(X)−•

DG×Gm

const (V )
(p!CE , p!CX)

sends each c ∈ H
G×Gm

i (X ×X) to the morphism

p!CE = CV ⊠ (p0)!CX
ϕ⊠α(c)
−−−−−→ C{0} ⊠ (p0)!CX [2 dim(X)− i]

= p!CX [2 dim(X)− i]

where ϕ : CV → C{0} is the (∗, ∗)-adjunction morphism for the inclusion {0} →֒
V , and we use the identification V = V × pt. Similarly, the composition

HG×Gm

• (X ×X) = HG×Gm

• (X ×V ⋄ E⋄) ∼= Ext
2 dim(E∗)−•

DG×Gm

const (V ⋄)
(p̌!CX , p̌!CE⋄)
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sends each c ∈ H
G×Gm

i (X ×X) to the morphism

p̌!CX = C{0} ⊠ (p0)!CX
ψ⊠α(c)
−−−−−→ CV ⋄ ⊠ (p0)!CX [2 dim(E∗)− i]

where ψ : C{0} → CV ⋄ [2 dim(V ∗)] is the (!,
!)-adjunction morphism for the in-

clusion {0} →֒ V ⋄, and we use the identification V ⋄ = V ⋄ × pt. Now using
Lemma 3.3.1 we obtain that FV sends ϕ ⊠ α(c) to ψ ⊠ α(c), and the lemma
follows.

With this result in hand we can prove Theorem 1.9.1 in our particular case.

Lemma 5.1.2. Theorem 1.9.1 holds in the case F1 = E, F2 = X.

Proof. We have F1 ×V F2 = X × X , and also F⊥
1 ×V ∗ F⊥

2 = X × X . There
exists a natural morphism of dg-schemes

(∆V ×X ×X)
R

∩E×E(E ×X) → (X ×X)
R

∩X×X(X ×X)

associated with the morphism of vector bundles p × p : E × E → X ×X , see
[MR3, §3.2]. In our case it is easily checked that this morphism is a quasi-
isomorphism, hence it induces an equivalence of triangulated categories

LΦ∗ : Dc
G×Gm

((X×X)
R

∩X×X(X×X))
∼
−→ Dc

G×Gm

((∆V ×X×X)
R

∩E×E(E×X)),

see [MR1, Proposition 1.3.2]. Moreover by definition the left-hand side co-
incides with the category DbCoh

G×Gm(X × X), so that LΦ∗ can (and will)
be considered as an equivalence from DbCoh

G×Gm(X ×X) to Dc
G×Gm

((∆V ×

X ×X)
R

∩E×E(E ×X)). It is easily checked that the induced automorphism of
KG×Gm(X ×X) is the identity.
Similarly, the morphism dual to p× p induces a quasi-isomorphism

(X ×X)
R

∩X×X(X ×X) → (∆V ∗ ×X ×X)
R

∩E∗×E∗(X × E∗),

hence an equivalence of triangulated categories

RΨ∗ : D
bCoh

G×Gm(X ×X)
∼
−→ Dc

G×Gm

((∆V ∗ ×X ×X)
R

∩E∗×E∗(X × E∗)),

which induces the identity morphism in K-homology.
If KX,X denotes the linear Koszul duality equivalence defined as in §1.5 (in the
case V = {0}, F1 = F2 = E = X), by [MR3, Proposition 3.4] there exists an
isomorphism

KE,X ◦ LΦ∗ ∼= RΨ∗ ◦ KX,X .

Using the remarks above and the definition of the equivalence KX,X , we deduce

that, if G is in DbCoh
G(X×X) (considered as an object of DbCoh

G×Gm(X×X)
with trivial Gm-action), the morphism KoszulE,X sends the class of G〈m〉 to
the class of

RHomOX×X
(G,OX ⊠ ωX)〈m〉[dim(X) +m].
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Using the compatibility of Grothendieck–Serre duality with proper direct im-
ages (as in the proof of Proposition 4.2.1) one easily checks that, with similar
notation, DX,E∗ sends the class of G〈m〉 to the class of

RHomOX×X
(G,OX ⊠ ωX)〈−m〉[dim(X)].

We deduce that DX,E∗ ◦ KoszulE,X sends the class of G〈m〉 to the class of
G〈−m〉[−m], and then that iX,E∗ ◦ DX,E∗ ◦ KoszulE,X identifies with the
automorphism of KG×Gm(X×X) induced by the involution of G×Gm sending
(g, t) to (g, t−1).
The statement in the lemma follows from this description, Lemma 5.1.1, and the
compatibility of the Riemann–Roch maps with inverse image (in K-homology
and Borel–Moore homology) under an automorphism of G×Gm.

5.2 Compatibility with inclusion

Consider first Setting (A) of §3.1.

Proposition 5.2.1. 1. We have an equality

RRF⊥
1 ,F

⊥
2
◦ iF⊥

1 ,F
⊥
2
◦DF⊥

1 ,F
⊥
2
◦KoszulF1,F2 ◦ res

F1,F
′
2

F1,F2
=

pdi
F⊥

1 ,(F
′
2)

⊥

F⊥
1 ,F

⊥
2

◦ RRF⊥
1 ,(F

′
2)

⊥ ◦ iF⊥
1 ,(F

′
2)

⊥ ◦DF⊥
1 ,(F

′
2)

⊥ ◦KoszulF1,F ′
2

of morphisms KG×Gm(F1 ×V F ′
2) → ĤG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ).

2. Assume that the proper direct image morphism

HG×Gm

• (F1 ×V F2) → HG×Gm

• (F1 × F2)

is injective. Then we have an equality

FourierF1,F2
◦ RRF1,F2

◦ res
F1,F

′
2

F1,F2
= pdi

F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

◦ FourierF1,F ′
2
◦ RRF1,F ′

2

of morphisms KG×Gm(F1 ×V F
′
2) → ĤG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ).

Proof. (1) follows from Propositions 4.1.1, 4.2.1 and 4.4.1. (2) follows from
Propositions 4.3.1 and 3.4.1.

Consider now Setting (B) of §3.1.

Proposition 5.2.2. 1. Assume that the proper direct image morphism

HG×Gm

• ((F ′
1)

⊥ ×V ∗ F⊥
2 ) → HG×Gm

• ((F ′
1)

⊥ × F⊥
2 )

is injective. Then we have an equality

RR(F ′
1)

⊥,F⊥
2
◦ i(F ′

1)
⊥,F⊥

2
◦D(F ′

1)
⊥,F⊥

2
◦KoszulF ′

1,F2
◦ pdiF1,F2

F ′
1,F2

= res
F⊥

1 ,F
⊥
2

(F ′
1)

⊥,F⊥
2

◦ RRF⊥
1 ,F

⊥
2
◦ iF⊥

1 ,F
⊥
2
◦DF⊥

1 ,F
⊥
2
◦KoszulF1,F2

of morphisms KG×Gm(F1 ×V F2) → ĤG×Gm

• ((F ′
1)

⊥ ×V ∗ F⊥
2 ).
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2. We have an equality

FourierF ′
1,F2

◦ RRF ′
1,F2

◦ pdiF1,F2

F ′
1,F2

= res
F⊥

1 ,F
⊥
2

(F ′
1)

⊥,F⊥
2

◦ FourierF1,F2
◦ RRF1,F2

of morphisms KG×Gm(F1 ×V F2) → ĤG×Gm

• ((F ′
1)

⊥ ×V ∗ F⊥
2 ).

Proof. (1) follows from Propositions 4.1.2, 4.2.2 and 4.4.2. (2) follows from
Propositions 4.3.2 and 3.4.2.

5.3 Proof of Theorem 1.9.1

By assumption, the proper direct image morphism

HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) → HG×Gm

• (F⊥
1 ×V ∗ E∗)

is injective. Hence the same is true for the induced morphism

ĤG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) → ĤG×Gm

• (F⊥
1 ×V ∗ E∗).

By Proposition 5.2.1 applied to the inclusion X ⊂ F2, we deduce that it suffices
to prove the theorem in the case F2 = X . (Note that the inclusion F1×V X →֒
F1 × X is the inclusion of the zero section in the vector bundle F1 × X over
X × X . Hence the injectivity assumption in Proposition 5.2.1(2) holds by
Lemma A.8.2.)
Now consider the inclusion of vector subbundles F1 ⊂ E (again with F2 = X).
In this case, the morphism

res
F⊥

1 ,E
∗

X,E∗ : HG×Gm

• (F⊥
1 ×V ∗E∗) → H

G×Gm

•−2rk(F⊥
1 )

(X×V ∗E∗) = H
G×Gm

•−2rk(F⊥
1 )

(X×X)

is the Thom isomorphism for the vector bundle F⊥
1 ×V ∗ E∗ ∼= F⊥

1 × X over
X × X ; in particular it is injective. Using Proposition 5.2.2 we deduce that
it suffices to prove the theorem in the case F1 = E, F2 = X . (Note that in
our situation the inclusion E⊥ ×V ∗ X⊥ →֒ E⊥ × X⊥ is the inclusion of the
zero section in the vector bundle X × E∗ over X ×X , so that the injectivity
assumption in Proposition 5.2.2(1) holds by Lemma A.8.2.) In this case the
theorem holds by Lemma 5.1.2, hence our proof is complete.

A Proofs of some technical results

A.1 Conventions

In §§A.2–A.4 we work in the A-equivariant constructible derived category of
some complex algebraic A-varieties (for some arbitrary complex linear alge-
braic group A). If X,Y, Z are A-varieties and f : X → Y , g : Y → Z are
A-equivariant morphisms, then there exist canonical “composition” isomor-
phisms

g∗f∗ ∼= (g ◦ f)∗, g!f! ∼= (g ◦ f)!, f∗g∗ ∼= (g ◦ f)∗, f !g! ∼= (g ◦ f)!,
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which we will all indicate by (Comp). Similarly, given a cartesian square

Y ′

g′

��

f ′

//

�

Z ′

g

��
Y

f // Z

of A-equivariant morphisms, there exist canonical “base change” isomorphisms

f∗g! ∼= (g′)!(f
′)∗, f !g∗ ∼= (g′)∗(f

′)!,

which we will indicate by (BC).

A.2 Some commutative diagrams

Consider a commutative diagram of A-varieties and A-equivariant morphisms

Y
g //

a

''◆◆
◆◆

◆◆
◆

c

��

Z
d

''◆◆
◆◆

◆◆
◆

f ��

Y ′ g′ //
b

ww♣♣♣
♣♣
♣

Z ′

exx♣♣♣
♣♣
♣

Y ′′ g′′
// Z ′′

where all squares are cartesian. The following lemma is a restatement of [AHR,
Lemma B.7(d)].

Lemma A.2.1. The following diagram of isomorphisms of functors commutes:

(g′′)!f∗
(Comp)

∼
//

(BC) ≀

��

(g′′)!e∗d∗
(BC)

∼
// b∗(g

′)!d∗

(BC)≀

��

c∗g
!

(Comp)

∼
// b∗a∗g

!.

Now, consider A-equivariant morphisms

W
f // X

g // Y
h // Z.

The following lemma is a restatement of [AHR, Lemma B.4(a) & Lemma
B.4(d)].

Lemma A.2.2. The following diagrams of isomorphisms of functors commute:

h∗g∗f∗
(Comp)

∼
//

(Comp) ≀

��

h∗(g ◦ f)∗

(Comp)≀

��
(h ◦ g)∗f∗

(Comp)

∼
// (h ◦ g ◦ f)∗,

f !g!h!
(Comp)

∼
//

(Comp) ≀

��

f !(h ◦ g)!

(Comp)≀

��

(g ◦ f)!h!
(Comp)

∼
// (h ◦ g ◦ f)!.
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A.3 Base change and adjunction

Consider a cartesian diagram

Y ′

g′

��

f ′

//

�

Z ′

g

��
Y

f // Z

(A.3.1)

of A-varieties and A-equivariant morphisms. Then there exists a canonical
morphism of functors

(f ′)!(g
′)! → g!f! (A.3.2)

which can be defined equivalently as the composition

(f ′)!(g
′)! → (f ′)!(g

′)!f !f!
(Comp)
−−−−−→

∼
(f ′)!(f ◦ g′)!f!

(Comp)
−−−−−→

∼
(f ′)!(f

′)!g!f! → g!f!

or as the composition

(f ′)!(g
′)! → g!g!(f

′)!(g
′)!

(Comp)
−−−−−→

∼
g!(g ◦ f ′)!(g

′)!
(Comp)
−−−−−→

∼
g!f!(g

′)!(g
′)! → g!f!

where the unlabelled arrows are induced by the appropriate adjunction mor-
phisms. (We leave it to the reader to check that these compositions coincide.)

As stated in [KS, Exercise III.9], the following diagram is commutative, where
vertical arrows are induced by the canonical morphisms f! → f∗ and (f ′)! →
(f ′)∗:

(f ′)!(g
′)!

(A.3.2)
//

��

g!f!

��

(f ′)∗(g
′)!

(BC)

∼
// g!f∗.

We deduce the following.

Lemma A.3.3. If f (hence also f ′) is proper, then the base change isomorphism
(f ′)∗(g

′)! ∼= g!f∗ coincides, under the natural identifications f! = f∗ and (f ′)! =
(f ′)∗, with morphism (A.3.2).

A.4 Some consequences

Consider again a cartesian diagram (A.3.1), and assume that f (hence also f ′)
is proper.
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First, one can consider the diagram of morphisms of functors

(f ′)∗(g
′)!f !

(Comp)≀

��

∼

(BC)
// g!f∗f

!

��

(f ′)∗(f ◦ g′)!

(Comp)≀

��

(f ′)∗(f
′)!g! // g!

(A.4.1)

where the right vertical arrow is induced by the adjunction morphism f∗f
! =

f!f
! → id and the lower horizontal arrow is induced by the adjunction morphism

(f ′)∗(f
′)! = (f ′)!(f

′)! → id.

Lemma A.4.2. Diagram (A.4.1) is commutative.

Proof. The claim follows from Lemma A.3.3 (using the first description of mor-
phism (A.3.2)) and the fact that the composition of adjunction morphisms

f ! → f !f!f
! → f !

is the identity.

One can also consider the diagram of morphisms of functors

g!(f
′)∗(g

′)!

(Comp)≀

��

∼

(BC)
// g!g

!f∗

��

(g ◦ f ′)!(g
′)!

(Comp)≀

��

f∗(g
′)!(g

′)! // f∗

(A.4.3)

where unlabelled arrows are induced by adjunction, and in the left-hand side
we use the identifications f! = f∗ and (f ′)! = (f ′)∗.

Lemma A.4.4. Diagram (A.4.3) is commutative.

Proof. The claim follows from Lemma A.3.3 (using the second description of
morphism (A.3.2)) and the fact that the composition of adjunction morphisms

g! → g!g
!g! → g!

is the identity.
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A.5 Restriction with supports in Borel–Moore homology

As in §1.1, let A be a complex linear algebraic group, let Y be a smooth complex
A-variety, and let Y ′ ⊂ Y be a smooth A-stable closed subvariety. Consider
another A-stable closed subvariety Z ⊂ Y , not necessarily smooth, and set
Z ′ := Z ∩ Y ′. Then we have a cartesian diagram of closed inclusions

Z ′ �
� i′ //

� _

g

��

Y ′
� _

f

��
Z
� � i // Y.

Set N := 2 dim(Y )− 2 dim(Y ′). The “restriction with supports” morphism

resZZ′ : HA• (Z) → H
A
•−N (Z ′)

associated with the inclusion Y ′ →֒ Y is defined as follows. Consider the
composition

i! → i!f∗f
∗ (BC)
−−−→

∼
g∗(i

′)!f∗

where the first morphism is induced by the adjunction morphism id → f∗f
∗.

Then applying this composition to DY and using the isomorphisms

i!DY
∼= DZ , f∗DY

∼= f∗CY [2 dim(Y )] ∼= CY ′ [2 dim(Y )] ∼= DY ′ [N ]

and (i′)!DY ′
∼= DZ′

we obtain a morphism

DZ → g∗DZ′ [N ].

Taking (equivariant) cohomology provides our morphism resZZ′ .

The same construction, applied to the subvariety Y ′ ⊂ Y instead of Z, provides
another morphism

resYY ′ : HA• (Y ) → HA•−N (Y ′)

Lemma A.5.1. The following diagram is commutative:

HA• (Z)
resZ

Z′
//

pdii

��

HA•−N (Z ′)

pdii′

��

HA• (Y )
resY

Y ′
// HA•−N (Y ′).
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Proof. Consider the following diagram:

i!i
! //

��

i!i
!f∗f

∗
(BC)

∼
//

��❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁

i!g∗(i
′)!f∗

(‡)≀

��

f∗(i
′)!(i

′)!f∗

��
id // f∗f

∗.

Here the unlabelled arrows are induced by the appropriate adjunction mor-
phisms, and the arrow labelled with (‡) is induced by the composition of natural
isomorphisms

i!g∗ ∼= i!g!
(Comp)
−−−−−→

∼
(i ◦ g)!

(Comp)
−−−−−→

∼
f!(i

′)! ∼= f∗(i
′)!.

The left part of the diagram is clearly commutative, and the right part is com-
mutative by Lemma A.4.4. Hence the diagram as a whole is commutative.
Now, when applied to DY and after taking equivariant cohomology, this dia-
gram induces the diagram of the lemma, hence these remarks finish the proof.
(In this argument we also use the left diagram in Lemma A.2.2, which allows to
forget about the “(Comp)” isomorphisms in the right-hand side of the diagram
once equivariant cohomology is taken.)

A.6 Proof of Proposition 3.2.1(1)

By functoriality of isomorphism (1.3.1) the following diagram commutes, where
the right vertical morphism is induced by adj∗F2,F ′

2
:

Ext•
DG×Gm

const (V )
(p∗CF1

, p∗CF ′
2
)

(p∗adj
∗

F2,F ′
2
)◦(·)

��

(1.3.1)

∼
// H•
G×Gm

(E ×V E, j!(DF1
⊠ CF ′

2
))

��

Ext•
DG×Gm

const (V )
(p∗CF1

, p∗CF2
)
(1.3.1)

∼
// H•
G×Gm

(E ×V E, j!(DF1
⊠ CF2

)).

(A.6.1)

Now, consider the following diagram, where all squares are cartesian and all
morphisms are closed inclusions:

F1 ×V F2
c //

k

��

b

((
F1 ×V F

′
2

k′

��

b′ // E ×V E

j

��
F1 × F2

d //

a

77F1 × F ′
2

a′ // E × E.
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Then under the natural identifications

H•
G×Gm

(E ×V E, j
!(DF1

⊠ CF2
)) ∼= H•

G×Gm

(E ×V E, j
!a∗(DF1

⊠ CF2
)),

H•
G×Gm

(E ×V E, j
!(DF1

⊠ CF ′
2
)) ∼= H•

G×Gm

(E ×V E, j
!(a′)∗(DF1

⊠ CF ′
2
)),

the right vertical morphism in (A.6.1) identifies with the morphism

H
•
G×Gm

(
E ×V E, j

!(a′)∗(DF1
⊠ CF ′

2
)
)
→ H

•
G×Gm

(
E ×V E, j

!a∗(DF1
⊠ CF2

)
)

(A.6.2)
induced by the adjunction morphism id → d∗d

∗ (through the “composition”
isomorphism (a′)∗d∗ ∼= a∗).
Consider the following diagram of morphisms of functors:

j!(a′)∗
(BC)

∼
//

��
(⋆)

''

(b′)∗(k
′)!

��
(†)

zz

j!(a′)∗d∗d
∗

(BC)

∼
//

(Comp) ≀

��

(b′)∗(k
′)!d∗d

∗

(BC)≀

��

j!a∗d
∗

(BC)

∼
// b∗k

!d∗
(Comp)

∼
// (b′)∗c∗k

!d∗.

Here the upper vertical arrows are induced by the adjunction morphism id →
d∗d

∗, and other arrows are either base change or composition isomorphisms
as indicated. The upper square is clearly commutative, and the lower square
is commutative by Lemma A.2.1. Hence the whole diagram is commutative,
which allows to define the dotted arrows uniquely. The arrow labelled with (⋆)
is the morphism which defines (A.6.2), and the arrow labelled with (†) is the

morphism used in the definition of restriction with supports res
F1,F

′
2

F1,F2
, see §A.5.

Applying this diagram to DF1
⊠CF ′

2
and taking equivariant cohomology allows

to finish the proof of Proposition 3.2.1(1). (In this argument we also use the
left diagram in Lemma A.2.2, which allows e.g. to forget about the “(Comp)”
isomorphism on the lower line once equivariant cohomology is taken.)

A.7 Proof of Proposition 3.2.1(2)

Consider the following diagram, where all squares are cartesian and all mor-
phisms are closed inclusions:

F⊥
1 ×V ∗ (F ′

2)
⊥ c̃ //

k̃

��

b̃

))
F⊥
1 ×V ∗ F⊥

2

k̃′

��

b̃′ // E∗ ×V ∗ E∗

j̃

��
F⊥
1 × (F ′

2)
⊥ d̃ //

ã

55F⊥
1 × F⊥

2
ã′ // E∗ × E∗.
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Then by functoriality of isomorphism (1.3.1) we have a commutative diagram

Ext•
D

G×Gm

const (V ∗)
(p̌∗CF⊥

1
, p̌∗C(F ′

2)
⊥)

∼ //

(p̌∗adj
!

(F ′
2
)⊥,F⊥

2

)◦(·)

��

H•
G×Gm

(

E∗ ×V ∗ E∗, j̃!ã∗(DF⊥
1

⊠ C(F ′
2)

⊥)
)

��

Ext
•+2r2−2r′2

D
G×Gm

const (V ∗)
(p̌∗CF⊥

1
, p̌∗CF⊥

2
)

∼ // H
•+2r2−2r′2
G×Gm

(

E∗ ×V ∗ E∗, j̃!(ã′)∗(DF⊥
1

⊠ C
F⊥
2
)
)

,

(A.7.1)
where horizontal arrows are induced by isomorphism (1.3.1) and the right ver-
tical morphism is induced by the adjunction morphism d̃!d̃

! → id (through
the isomorphisms (ã′)∗d̃! ∼= (ã′)∗d̃∗ ∼= ã∗ and C(F ′

2)
⊥
∼= D(F ′

2)
⊥ [−2 dim((F ′

2)
⊥)],

CF⊥
2

∼= DF⊥
2
[−2 dim(F⊥

2 )]), and where r2 := rk(F⊥
2 ), r′2 := rk((F ′

2)
⊥).

Consider the following diagram of morphisms of functors:

j̃!ã∗d̃
!

(BC)

∼
//

(Comp) ≀

��
(#)

  

b̃∗k̃
!d̃!

(Comp)≀

��

(♭)

rr

(b̃′)∗c̃∗k̃
!d̃!

(BC)≀

��

(Comp)

∼
// (b̃′)∗c̃∗(d̃ ◦ k̃)

!

(Comp)≀

��

j̃!(ã′)∗d̃∗d̃
!

(BC)

∼
//

��

(b̃′)∗(k̃
′)!d̃∗d̃

!

��

(b̃′)∗c̃∗c̃
!(k̃′)!

uu❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

j̃!(ã′)∗
(BC)

∼
// (b̃′)∗(k̃

′)!

Here all the unlabelled arrows are induced by the appropriate adjunction mor-
phisms (using the identifications c̃∗ = c̃! and d̃∗ = d̃!). The upper square is
commutative by Lemma A.2.1, the lower square is obviously commutative, and
the right square is commutative by Lemma A.4.2. Hence the diagram as a
whole is commutative, which allows to define the dotted arrows uniquely. The
arrow labelled with (#) is the one which induces the right arrow in diagram
(A.7.1) (when applied to DF⊥

1 ×F⊥
2
), while the arrow labelled with (♭) is the

one which induces the proper direct image morphism pdi
F⊥

1 ,(F
′
2)

⊥

F⊥
1 ,F

⊥
2

(again when

applied to DF⊥
1 ×F⊥

2
), see [CG, §8.3.19]. The result follows. (As in §A.6, in this

argument we also use the diagrams of Lemma A.2.2.)

A.8 A lemma on Euler classes

Let A be a complex linear algebraic group acting on a smooth complex algebraic
variety Y , and let F → Y be an A-equivariant vector bundle of rank r. We
consider F (hence also its zero-section Y ) as an A×Gm-variety with the Gm-
action defined as in §1.2. Note that, as Gm acts trivially on Y , there exists a
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canonical isomorphism of graded algebras

H•
A×Gm

(Y ) ∼= H•
A(Y )⊗C H•

Gm

(pt). (A.8.1)

Lemma A.8.2. The proper direct image morphism

HA×Gm

• (Y ) → HA×Gm

• (F )

associated with the inclusion Y →֒ F is injective.

Proof. It is well known that the composition of our morphism with the Thom
isomorphism HA×Gm

• (F ) ∼= H
A×Gm

•−2r (Y ) identifies with the action of the equiv-
ariant Euler class Eu(F ) ∈ H2r

A×Gm

(Y ) of F , see e.g. [L3, §1.19]. Since Y is

smooth, the equivariant homology HA×Gm

• (Y ) is a free module of rank one over
H•
A×Gm

(Y ), hence it is enough to prove that Eu(F ) is not a zero-divisor in
H•
A×Gm

(Y ). However one can check that (due to our choice of Gm-action) this
Euler class can be written, using isomorphism (A.8.1), as

Eu(F ) = 1⊗ (−2u)r + x

where 1 ∈ H0
A(Y ) is the unit, u ∈ H2

Gm

(pt) is the canonical generator and

x ∈
⊕

i≥2 H
i
A(Y ) ⊗ H

2r−i
Gm

(pt). It follows that this element is indeed not a
zero-divisor.
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