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Definition

Let G be a group and p a prime.

I A p-local subgroup of G is the normalizer of a non-trivial
p-subgroup of G .

I G has characteristic p if CG (Op(G )) ≤ Op(G ).

I G has local characteristic p if p divides |G | and all p-local
subgroups of G have local characteristic p.
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Notation

From now on p is prime, G is a finite Kp-group of local
characteristic p with Op(G ) = 1 and S is a Sylow p-subgroup of G .

Goal

Understand and classify the finite groups of local characteristic p
with Op(G ) = 1.

Disclaimer

For p odd we do not expect to be able to achieve a complete
classification. Some groups with a relatively small p-local structure
will remain unclassified.
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Definition

Let L be a finite group. A p-reduced normal subgroup of L is an
elementary abelian normal p-subgroup Y of L with

Op(L/CL(Y )) = 1.
YL is the largest p-reduced normal subgroup of L.

Notation

C̃ is a maximal p-local subgroup of G with NG (Ω1Z(S)) ≤ C̃ and

E = Op
(

F ∗p
(
CC̃ (YC̃ )

))
We now distinguish two cases:

¬E ! There exist two distinct maximal p-local subgroups M1 and
M2 with E ≤ M1 ∩M2.

E ! C̃ is the unique maximal p-local subgroup of G containing C̃ .

Groups 2012, Bielefeld, March 12th, 2012 4 / 42



The ¬E !-case

In the ¬E ! we choose suitable subgroups L1 and L2 with

E ≤ L1 ∩ L2 and Op(〈L1, L2〉) = 1.

We then use the amalgam method to determine the structure of L1

and L2. Given L1 and L2 one should be able to identify G up to
isomorphism.
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If C̃ is the unique maximal p-local subgroup of G containing S ,
then either C̃ is a strongly p-embedded subgroup of G or one can
apply the local CGT -theorem to obtain a p-local subgroup of a
very restricted structure. But we currently do not know whether
this information will be enough to identify G .
To avoid this problem we will assume from now on that S is
contained in at least two maximal p-local subgroups of G .
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The E !-case

Definition

A p-subgroup Q of G is called large, if CG (Q) ≤ Q,
(Q = Op(NG (Q))) and

NG (A) ≤ NG (Q) for all 1 6= A ≤ CG (Q)

Lemma

Suppose E lies in a unique maximal subgroup of G . Then Op(C̃ ) is
a large p-subgroup of G .
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Theorem (Structure Theorem)

Let Q be a large p-subgroup of G and M be a p-local subgroup of
G with Q ≤ S ≤ G and Q 5 M. Put M◦ = 〈QM〉,
M = M/CM(YM) and I = [YM ,M

◦].
Suppose that YM ≤ Q. Then one the following holds.

I M◦ ∼= SLn(q), Sp2n(q) or Sp4(2)′ and I is the corresponding
natural module.

I There exists a normal subgroup K of M such that

I K = K1 × · · · × Kr , Ki
∼= Sl2(q) and

YM = V1 × · · · × Vr

where Vi := [YM ,Ki ] is a natural Ki -module.
I Q permutes the Ki ’s transitively.

I There exists a p-local subgroup M∗ of G with M ≤ M∗ and
M∗ fulfills the previous case.
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Suppose that YM � Q. Then one of the following holds:

I There exists a normal subgroup K of M such that
K = K1 ◦ K2 with Ki

∼= SLmi (q), YM
∼= V1 ⊗ V2 where Vi is a

natural module for Ki and M◦ is one of K1,K2 or K1 ◦ K2.

I (M◦, p, I ) is as given in the following table:

M◦ p I

SLn(q) p nat

SLn(q) p
∧2(nat)

SLn(q) p S2(nat)

SLn(q2) p nat⊗ natq

3 Alt(6), 3 Sym(6), 2 26

ΓSL2(4), Γ GL2(4) 2 nat

Sp2n(q) 2 nat

Ω±n (q) p nat

M◦ p I

O+
4 (2) 2 nat

Ω±10(q) 2 spin

E6(q) p q27

M11 3 35

2M12 3 36

M22 2 210

M24 2 211
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Theorem (The H-Structure Theorem)

Suppose that Q is a large p-subgroup of G and let M be a p-local
subgroup of G with Q ≤ S ≤ G and YM � Q. Then there exists
H ≤ G such that M◦S ≤ H, Op(H) = 1 and H has the same
residual type as one of the following groups:

I A group of Lie-type in characteristic p.

I For p = 2: M24,He,Co2, Fi22, Co1, J4, Fi24, Suz, B, M,
U4(3) or G2(3).

I For p = 3: Fi24,Co3,Co1 or M.
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Let Q = Op(C̃ ). For L ≤ G put L◦ = 〈Qg | g ∈ G ,Qg ≤ L〉. In
view of the H-structure theorem we assume from now on that
YM ≤ Q for all p-local subgroups M of G with S ≤ M.

Definition

A finite group L is p-minimal if a Sylow p-subgroup of L is
contained in a unique maximal subgroup of L but is not normal in
L.

Theorem (The P!-Theorem)

Let P ≤ G such that

(*) S ≤ P ≤ G , P is p-minimal, Op(P) 6= 1 and Q 6EP.

Put P∗ := P◦Op(P) and Z0 := Ω1(Z (S ∩ P∗)). Then

I YP is a natural SL2(pm)-module for P∗.

I Z0 is normal in C̃ .

I Either P is unique with respect to (*) or P ∼ q2SL2(q).
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Theorem (The P̃!-Theorem)

Suppose that there exists more than one subgroup P̃ of G such
that S ≤ P̃, P̃ is p-minimal, P̃ � NG (P◦) and Op(M) 6= 1, where
M = 〈P, P̃〉.
Then p = 3 or 5 and M◦ ∼ p3+3∗+3∗SL3(p) for any such P̃.
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Theorem (The Isolated Subgroup Theorem)

Let H be a finite group, T ∈ Sylp(H) and P∗ be p-minimal

subgroup of H with T ≤ P∗. Put Y = 〈Op(P∗)H〉 and

L = 〈R | T ≤ R ≤ H,R is p-minimal,R 6= P∗.〉

Suppose that Op(L) � Op(P∗) and P∗ is narrow. Then Y /Op(Y )
is quasisimple.

Corollary

Put Y = 〈Op(P̃)C̃ 〉. Then Y /Op(Y ) is quasisimple.
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Theorem (The Small World Theorem.)

Let G be a finite group of local characteristic p with Op(G ) 6= 1.
Then one of the following holds.

1. E is contained in at least two maximal p-local subgroups of G .

2. S is contained in a unique maximal p-local subgroup of G.

3. There exist p-minimal subgroups P1 and P2 of G with
S ≤ P1 ∩ P2, Op(Pi ) 6= 1, P1 ≤ ES and Op(〈P1,P2〉) = 1.

4. There exists a p-local subgroup M of G with S ≤ M and
YM � Q.

5. There exists a p-minimal subgroup P of G with S ≤ P such
that YP ≤ Q and 〈Y C̃

P 〉 is not abelian.
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Theorem (The Rank 2 Theorem)

Suppose there exists p-minimal subgroups P1 and P2 of G with
S ≤ P1 ∩ P2, P1 ≤ ES, Op(Pi ) 6= 1 and Op(〈P1,P2)〉) = 1. Then
one of the following holds:

I (P1,P2) is a weak BN-pair.

I The structure of P1 and P2 is as in one of the following
groups.

I For p = 2: U4(3).2e , G2(3).2e , D4(3).2e , HS .2e , F3,
F5.2

e or Ru.
I For p = 3: D4(3n).3e , Fi23, F2.
I For p = 5: F2.
I For p = 7: F1.
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Theorem (Local Recognition of finite spherical buildigs)

Let Π be an irreducible spherical Coxeter diagram with index set I
with |I | ≥ 2 and let ∆ and ∆∗ be thick buildings with Coxeter
diagram Π. Let c and c∗ be chambers of ∆ and ∆∗ respectively.
Suppose that for each edge J = {x , y} of Π, there exists a special
isomorphism φJ from ∆J(c) to ∆∗J(c∗). Then there exists a special
isomorphism from ∆ to ∆∗.
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Notation

Let F be a finite group, let L be a finite simple group of Lie type
of rank at least 3 and let ∆ be the associated spherical building, so
L = Aut†(∆). Suppose as well the following:

I Π is the Coxeter diagram of ∆ and I is its index set.

I c is a fixed chamber in ∆.

I For T ⊆ J ⊆ I , LJ = Aut†(∆J(c)) and LJT = NLJ (∆T (c)).
Thus LJ∅ is a Borel subgroup of LJ and LJT is the parabolic
subgroup of type ΠT of LJ containing LJ∅.

I D is a set of subsets of I of size at least two. A subset J of I
is called a D-set if J ⊆ D for some D ∈ D.

I For each D ∈ D, FD is a subgroup of F , φD : FD → LD is a
homomorphism and KD is its kernel.

I For J ⊆ D ∈ D, FDJ = φ−1
D (LDJ), BD = FD∅ and

HDJ = Op(Op′(FDJ)).

I B = 〈BD | D ∈ D〉.
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Hypothesis

I Each irreducible subset of I of size at most 2 is a D-set.

I The homomorphism φD is surjective for each D ∈ D.

I If D,E ∈ D and i ∈ D ∩E , then HDi = HEi . Thus for i ∈ I we
can define Hi = HDi , where D ∈ D with i ∈ D. For J ⊆ I , let
HJ = 〈Hj | j ∈ J〉 and PJ = HJB (so H∅ = 1 and P∅ = B).

I If D,E ∈ D and i ∈ D then BE normalizes FDi .

I If i , j ∈ I and {i , j} is not a D-set, then HiHj = HjHi and
Hi 6= Hj .

I [KD ,FD ] ≤ Op(KD) for each D ∈ D.

I F = 〈FD | D ∈ D〉.
I |Op(B)| ≥ |Op(L∅)|.
I Op(F ) = 1.

I There exists D ∈ D with CF (Op(KD)) ≤ Op(KD).
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Theorem (Local Recognition of Finite Groups of Lie-type)

Under the above Notation and Hypothesis

Op′(F ) ∼= L.
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Theorem

Let M be a maximal p-local subgroup of G with S ≤ G and
[YM ,M] � Q. Suppose H ≤ G such that M◦S ≤ H,
H = NG (F ∗(H)), F ∗(H) is a simple group of Lie type in
characteristic p and rank at least two and H ∩ C̃ is not solvable.
Then NG (A) ≤ H for all 1 6= A E S.
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Theorem

Suppose H ≤ G such that S ≤ H, H = NG (F ∗(H)), F ∗(H) is a
simple group of Lie type in characteristic p and rank at least two
and (if p is odd) F ∗(H) � PSL3(pa), and CH(z) is soluble for
some 1 6= z ∈ Z (S). Then one of the following holds:

I NG (Q) = NH(Q);

I p = 2 and F ∗(G ) ∼= Mat11,Mat23,G2(3) or PΩ+
8 (3); or

I p = 3 and
F ∗(G ) ∼= PSU6(2),F4(2), 2E6(2),McL,Co2,Fi22,Fi23 or F2.
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Theorem

Suppose that p is an odd prime and H is a strongly p-embedded
subgroup of the finite group F . If F ∗(H) is a group of Lie type in
characteristic p of rank at least two, then F ∗(H) ∼= L3(p).
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The following groups have been characterized by their p-local
structure:

p G

2 Aut(G2(3))

2 Ω+
8 (3)

3 Mat12

3 SL3(3)

3 Ω+
8 (2)

3 Fi22,Fi23,Fi24,Fi ′24

3 Co3

3 U6(2)

p G

3 Alt(8)

3 McL

3 F2

3 Co1

3 F4(2)

3 E6(2)

5 Ly

3, 5, 7 F1
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Let H be a finite group and V finite dimensional FpH-module

Definition

Let A be a subgroup of H such that A/CA(V ) is an elementary
abelian p-group. A is a best offender of H on V if
|B| · |CV (B)| ≤ |A| · |CV (A)| for every B ≤ A.

Definition

The normal subgroup of H generated by the best offenders of H on
V is denoted by JH(V ).
A JH(V )- component is non-trivial subgroup K of JH(V ) minimal
with respect to K = [K , JH(V )].
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Theorem (FF-Module Theorem, Guralnick-Malle)

Let M be a finite group with F∗(M) quasisimple and V a faithful
simple FpM-module. Suppose that M = JM(V ).
Then (M, p,V ) is one of the following:

M p V

SLn(q) p nat

Sp2n(q) p nat

SUn(q) p nat

Ωε
n(q) p nat

Oε
2n(q) 2 nat

G2(q) 2 q6

SLn(q) p
∧2(nat)

M p V

Spin7(q) p Spin

Spin+
10(q) p Spin

3.Alt(6) 2 26

Alt(7) 2 24

Sym(n) 2 nat

Alt(n) 2 nat
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Theorem (J-Module Theorem)

Let M be a finite CK-group, V a faithful, reduced FpM-module.
Put J = JV (M) and let J = JV (M) be the set of JV -components
of V . Put W = [V ,J ]CV (J )/CV (J ) and let K ∈ J .

I K is either quasisimple or p = 2 or 3 and K ∼= SL2(p)′.

I [V ,K , L] = 0 for all K 6= L ∈ J .

I W =
⊕

K∈J [W ,K ].

I JpJ ′ = Op(J) = F∗(J) =×J .

I W is a semisimple FpJ-module.
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Theorem (J-Module Theorem, continued)

Let JK = J/CJ([W ,K ]). Then K ∼= Op(JK ) and one of the
following holds:

I [W ,K ] is a simple K -module and (JK , [W ,K ]) fullfills the
assumptions and so also the conclusion of FF-Module
Theorem

I JK and [W ,K ] are as follows (where N denotes a natural
module and N∗ its dual):

JK [W ,K ] conditions

SLn(q) N r ⊕ N∗s
√

r +
√

s ≤
√

n

Sp2n(q) N r r ≤ n+1
2

SUn(q) N r r ≤ n
4

Ωε
n(q) N r r ≤ n−2

4

Oε
2n(q) N r p = 2, r ≤ 2n−2

4
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Definition (The Fitting Submodule)

Let F be a field, H a finite group and V a finite dimensional
FH-module.

I radV (H) is the intersection of the maximal FH-submodules of
V

I Let W be an FH submodule of V and N E H. Then W is N-
quasisimple if W is H-reduced, W / radW (H) is simple for
FH, W = [W ,N] and N acts nilpotently on radW (H).

I SV (H) is the sum of all simple FH-submodules of V .
I EH(V ) := CF∗(H)(SV (H)).
I W is a component of V if either W is a simple
FH-submodule with [W ,F∗(H)] 6= 0 or W is an
EH(V )-quasisimple FH-submodule.

I The Fitting submodule FV (H) of V is the sum of all
components of V .

I RV (H) :=
∑

radW (H), where the sum runs over all
components W of V
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Theorem

I The Fitting submodule FV (H) is H-reduced.

I RV (H) is a semisimple FF∗(H)-module.

I RV (H) = radFV (H)(H).

I FV (H)/RV (H) is a semisimple FH-module

Theorem

Let V be faithful and H-reduced. Then also FV (H) and
FV (H)/RV (H) are faithful and H-reduced.
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Nearly Quadratic Modules

Definition

Let F be a field, A a group and V an FA-module. Then V is a
nearly quadratic FA-module (and A acts nearly quadratically on
V ) if [V ,A,A,A] = 0 and
[V ,A]+CV (A) = [vF,A]+CV (A) for every v ∈ V \[V ,A]+CV (A).

Theorem

Let F be field, H a group and V be a faithful semisimple
FH-module. Let Q be the set of nearly quadratic, but not
quadratic subgroups of H. Suppose that H = 〈Q〉. Then there
exists a partition (Qi )i∈I of Q such that

I H =
⊕

i∈I Hi , where Hi = 〈Qi 〉.
I V = CV (H)⊕

⊕
i∈I [V ,Hi ].

I For each i ∈ I , [V ,Hi ] is a simple FHi -module.
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Theorem
Let H be a finite group, and V a faithful simple FpH-module.
Suppose that H is generated by nearly quadratic, but not quadratic
subgroups of H. Let W a Wedderburn-component for Fp F∗(H) in
V and K := Z(EndF∗(H)(W )). Then W is a simple
FpF∗(H)-module and one of the following holds for H,V ,W ,K
and (if V = W ) H/CH(K)

H V W K H/CH (K)

(C2 o Sym(m))′ Fm3 F3 F3 − m ≥ 3,m 6= 4

SLn(F2) o Sym(m) (Fn2)m Fn2 F2 − m ≥ 2, n ≥ 3

Wr(SL2(F2),m) (Fn2)m Fn2 F4 − m ≥ 2

Frob(39) F27 V F27 C3

Γ GLn(F4) Fn4 V F4 C2 n ≥ 2

ΓSLn(F4) Fn4 V F4 C2 n ≥ 2

SL2(F2)× SLn(F2) F2
2 ⊗ Fn2 V F4 C2 n ≥ 3

3. Sym(6) F3
4 V F4 C2

SLn(K) ◦ SLm(K) Kn ⊗ Km V any 1 n,m ≥ 3

SL2(K) ◦ SLm(K) K2 ⊗ Km V K 6= F2 1 m ≥ 2

SLn(F2) o C2 Fn2 ⊗ Fn2 V F2 1 n ≥ 3

(C2 o Sym(4))′ F4
3 V F3 1

SU3(2)′ F3
4 V F4 1

F∗(H) = Z(H)K ? V ? 1

K quasisimple

Moreover, in case SU3(2) case, H is not generated by abelian, nearly quadratic subgroups.
(Here Wr(L,m) is the normal closure of Sym(m) in L o Sym(m))
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