Partial tilting complexes and beyond

Gabriella D'Este

About PLACES

BIELEFELD Universitität &

the University of PADOVA =

the most important places where

I studied, worked long time ago.

Results of this talk are

based of the hope and feeling that **INDECOMPOSABLE** complexes may play a big role [bigger than that of indecomp. modules]. Very often, the same holds for the complexes whose **INDECOMPOSABLE** summands have **INDECOMPOSABLE** non-zero components

(= "well - behaved" for short).

The **trick** to **delete** many complicated properties and to look only some of them, if possible of "**combinatorial**" type (concerning the **underlying vector spaces** of algebras,

modules, complexes) The trick I used several times from the very beginning in quite different situations.

More or less old situations :

Abelian Groups & finiteness conditions showed up in my "tesi di laurea" on " Abelian Groups whose endomorphism ring is locally compact in the finite topology " (under the direction of A. ORSATTI)

Adalberto ORSATTI =

- supervisor of the master (master + PhD)
 thesis of many italian colleagues who
 studied or worked in Padova for some time.
- organganizer of algebra meetings in Italy.

Endomorphism rings of abelian groups equipped with the **finite topology** - and

Corner's type realization theorems = subject of my first talk in BIELEFELD

.

and of my first conversation with

Claus Michael RINGEL

during a coffee break ...

Notation / Conventions

- **K** = algebraically closed field
- **MODULE** = left module over a **K** algebra
- **COMPLEX** = **right bounded** complex with projective components
- **MORPHISM of complexes** = morphism / homotopy
- M° = projective resolution of the module M
- **T** partial n tilting module =

With some hypothesis on the **Hom spaces of NON surjective morhisms** between

A **right bounded** string of integers > 0 [...., m(2), m(1)] stands for the indecomposable right bounded complex **C** ° s.t. (proceeding from right to left) the indecomp. projective modules, P(m(2)), P(m(1)) as the non - zero components of \mathbf{C}° .

The meaning of **PARTIAL TILTING** (or n - tilting) module in this talk

T PARTIAL TILTING :

- proj dim **T** at most n
- Ext $(\mathbf{T}, \oplus \mathbf{T}) = 0$ for all i > 0

The meaning of **TILTING (or** n-tilting) module **T** in this talk :

- the **projective** dimension of **T** is at most n.
- Ext (T, Σ) = 0 where Σ is any direct sum of copies of T and i = 1,, n.
- There is a long exact sequence of the form
 0 → R → * * → 0
 where the n+1 symbols * stand for direct summands of direct sums of copies of T.

The meaning of **LARGE** partial tilting module in this talk

T partial tilting module **s.t.**

Hom $(\mathbf{T}, \mathbf{X}) = Ext * (\mathbf{T}, \mathbf{X}) = 0$

implies X = 0.

FOR SHORT (in this talk)

C° is orthogonal to **T°**:

any morphism from T° to any shift

C°[i] of **C°** is homotopic to zero.

What is used to deal with complexes :

a characterization of tilting complexes given by Y. MIYACHI (in "Extensions of rings and tilting complexes ") which replaces a condition on triangulated categories by a condition on morphisms homotopic to zero.

Starting points :

- **BAZZONI** 's question on the relationship between tilting modules and **large** partial tilting modules (i.e. with the functorial property described in the abstract).
- MANTESE & TONOLO 's question on on the relationship between bounded and right bounded "real" complexes "orthogonal" to the projective resolutions of

Strategies used to deal with

RIGHT BOUNDED complexes of PROJECTIVE modules and their morphisms / homotopy : Use as many as possible NEW modules (with "dual" properties) NEW directions (if possible)

(A) Use as many as possible

- INJECTIVE modules
- indecomposable modules P, Q with
- a **rigid** structure [i.e. Hom (P,Q) is
- a vector space of **dimension** < 3, and
- < 2 if P and Q are not isomorphic].

FEW morphisms between ...

... indecomposable projective modules

reason why non - zero morphisms of this form (which are not isomorphisms) are uniquely determined up to scalar, so that strings [.....,m(2),m(1)] denote many useful complexes.

(B) Use as many as possible "directions"

to investigate morphisms between **BOUNDED** complexes (in the category of right bounded ones) : from **RIGHT to LEFT** (= **THE** obvious direction in the **WHOLE** category) from LEFT to RIGHT (= THE NEW possible & less natural direction)

A few words on **different points of view**:

- A. De Saint Exupery

A. De Saint Exupery 's assertion :

"To see clearly it is often enough to change our viewing direction."

sums up the strategy used to deal with complexes, and - more generally - to simplify complicated objects.

Part 1 (on modules)

A result on **CANCELLATIONS** of the **OBVIOUS** direct summands of tilting modules , used to obtain **LARGE** partial tilting modules.

The meaning of **LARGE PARTIAL TILTING** module in this talk

T partial tilting module **s.t.**

Hom (T, X) = Ext * (T, X) = 0

implies X = 0

COLPI 's result (the "classical" case)

LARGE partial TILTING modules of projective dimension at most 1

TILTING modules of

BAZZONI's result (the "general" case)

For any n , any TILTING module

of projective dimension **n**

LARGE PARTIAL TILTING module.

What I proved :

For any n > 1 (i.e. in all possible cases) there are LARGE partial tilting modules of projective dimension n which are NOT tilting modules.

Some properties of **LARGE partial tilting** modules T (of finite length)

These modules are **SINCERE** but **NOT** always **faithful**. They may be rather small, i.e. **indecomposable** injective, and their dimension / K may be equal to the **# of simples modules** (= least dimension for a sincere module).

No restriction on #:

runns over all n > 1

even under the additional hypotheses that

- T is INJECTIVE & uniserial
- The class of all modules X s.t.
 Ext * (T, X) = 0 for all * > 0 is the class of INJECTIVE modules.

Consequence :

LARGE partial tilting modules

proper direct summands of tilting modules may NOT be ALMOST COMPLETE tilting modules.

My answer to the following question:

- WHY LARGE partial tilting modules which are **NOT** tilting modules **?**

is that

Among many other things

(classes of modules, functors, ...) **AUSLANDER - REITEN quivers** make these modules **visible** & give the idea to find the "minimal" ones.

Idea suggested by : AUSLANDER - REITEN quivers : SOMETIMES

every SINCERE summand T of a
LARGE partial tilting module
M = T ⊕ P with P projective
inherits from M the property of being a
LARGE partial tilting module.

The following property :

" The class of all modules X **S.t.** Ext * (T, X) = 0 for all * > 0 is the class of INJECTIVE **modules** " is satisfied by many LARGE partial tilting modules (and "explains" why may be rather small).

THEOREM (possible choice of SOMETIMES)

(a) M large partial n- tilting module

such that the orthogonal class

$$M^{\circ} = \bigcap_{i \ge 1} Ker Ext^{i} (M, -)$$

is the class of all injective modules

(b) T SINCERE summand of M

with a **PROJECTIVE** complement

(a) & (b) IMPLY T LARGE

partial n - tilting

If n > 1, there is an A - module T s.t.

- **T** (= unique indecomp. **injective** module which is **NOT projective**) is a **NON faithful large** partial tilting module obtained from **D**(**A**), **the K - dual of A**, after **CANCELLATION of** all its indecomposable projective summands & **2**(**n** - **1**) = projective dimension of **T** =
 - = global dimension of A

Example

A K- algebra given by the following quiver with $n \ge 2$ vertices

with relation

d' . $1 \cdots d_1 = 0$ O

r

 $n \ge 2$, m = 2n - 2

The module **T**:

(unique indecomposable

injective module which is

NOT projective)

is a NON FAITHFUL large partial m - tilting module

Part 2 (on complexes)

By **RICKARD + MIYACHI `** s results:

the projective resolution **T** ^o of a **LARGE** partial tilting module **T** (which is **NOT** a tilting module) is a partial tilting complex **T**^o **s.t.** for every non - zero module **M** there is a morphism from **T**^o to shift **M°**[i] of **M°** which is **NOT** homotopic to zero, **BUT**

..... BUT

- there is a non zero complex **C** ° **s.t.**
- any morphism from T° to C°[i] is homotopic to zero for any integer i [i.e. "C° orthogonal to T°"].

Reasonable "conjectures" (more or LESS correct):

 The indecomposable right bounded complexes **C** ° (of projective modules) orthogonal to **T**[°] are as different as possible from "concealed" complexes, that is projective resolutions of indecomposable modules.

Natural question:

How many choices, up to shifts , for a well - behaved indecomp. complex
C ° orthogonal to T ° ?

[**well - behaved** complex : the non-zero components of its **indecomposable** summands are **indecomposable**].

ANSWER to the natural question :

With the special hypothesis that

T ^o is a **well-behaved complex**, the answer to the above question may be

0 1 finitely many but > 1

\aleph_0 (and only 1 left unbounded)

2^{\aleph_0} (and only \aleph_0 bounded)

3 possible constructions used to find C° orthogonal to T°:

CANCELLATIONS [2 or 3 different types]

ADDITIONS[2 different types]**LEGO - TYPECONSTRUCTIONS**

[oo - many types] to get more complicated (even **LEFT unbounded**) complexes from the minimal ones.

FOR ME

CANCELLATION = the **best & easy** construction

LEGO - TYPE construction = the best & more complicated construction RIGHT ADDITION = the less natural & oldest construction (sometimes the unique possible one)

2 (quite different) examples where the choice of C ° is unique and T ° has at most 2 indecomp. summands :

Ex. A = example with only 1

choice for **C** °, obtained by means of **RIGHT addition** from the **indecomposable** complex **T** °:

C°: [1222] T°: [122]

Ex. B = example with only 1

choice for **C** °, obtained by means of **LEFT cancellation & addition** from the unique **indecomposable** non stalk summand **X** ° of **T** °:

C°:[.....2222213] X°:[1213]

Ex. C = example with oo - many (but countably many)

- choices for **C** ° , where **T** ° has
- 2 indecomposable summands, i.e.
- the stalk complex [2] and
- the complex **X**^o = [3121] and

$\dots X^{\circ} = [3121]$

and the following strings describe all the possible choices of **C**^o:

[121], [1221], [1222],

[..... **2222** 2 1]

Remarks

- Only in one case (= Lego type case) one proceeds in the most obvious direction
 (from RIGHT to LEFT), but the ingredients (building blocks) are complexes and NOT "isolated" modules.
- The less obvious construction (= RIGHT addition) may be the unique possible one
 (Example A).

$\mathbf{Ex. D} = \mathbf{CANCELLATIONS}$

For any m > 1, there is a large partial tilting module T s.t. pdim T = 2m > 2 and T is injective & uniserial.
If P & Q are indec. projective and C ° is an indecomp. complex of the form

 $0 \longrightarrow P \longrightarrow Q \longrightarrow 0$, then **TFAE**:

TFAE:

1) C $^{\rm o}$ is orthogonal to T $^{\rm o}$.

2) P & Q injective, not isomorphic and we obtain C° from T° by means of cancellations (LEFT, RIGHT,....).
3) P & Q injective not isomorphic and

3) P & Q injective, not isomorphic and the morphism from P to Q is a composition of **IRREDUCIBLE** maps X → Y with either X or Y injective.

Continuation of **TFAE**:

(4) (reduction to an easy case) : for any morphism of complexes from T° to a shift of C° of the form (f, 0) where $f: X \longrightarrow P$ and X is the last non-zero components of T°, we have f = 0.

The complex T° in Ex. D is

the projective resolution of the uniserial module T , considered in the first
Example of this talk ,
2
3

n

Ex. E = example with uncountably many choices for C ° :

- **T** = direct sum of 2 indecomp. modules:
 - P uniserial & projective
 - **S** simple and pdim S = 5

4 = number of simple modules

- 5 = dimension of T over K
- Hom $(P, S) = 0 = Hom (S, P) \dots$

The shape of the proj. resol. S° of S is

[131214]

and the indecomp. projectives look like as follows: 1 2 3 4 P(1) = 2 P(2) = 3 P(3) = 1 P(4) = 13 1 2 3

Two types of indecomp. complexes orthogonal to the proj. resol. of T

(1) the "simple ones " (no indecomposable subcomplexes has the same property).

(2) the "non simple" indecomp. complexes, obtained from complexes of type
(1) by means of a Lego - type construction.

The shape of some complexes of type (1)

[3 2 2 3], **[3 2 2 2 3]**, **[3 2 2 2 2 3]**,

..... and their "limit"

[1214] subcomplex of **S** ° obtained after left cancellation of 2 components.

Remark

All possibile first (resp. last) non-zero

components, that is P(1) & P(3)

(resp. P(3) & P(4)) show up.

The shape of some complexes of type (2)

- complexes with **injective** components

.

[3 2 2 3 3 2 2 3], [3 2 2 3 3 2 2 3 3 2 2 3],

- complexes with NON injective components [3 2 2 3 1 2 1 4], [3 2 2 3 3 2 2 3 1 2 1 4], [.....2 ... 2 3 1 2 1 4]

THANKS & picture(s)

- Thank you very much to ALL the ORGANIZERS for the great hospitality & the informal atmosphere during
- this big & international Conference
- many other ----- meetings
- ----- less official -----

Possible meanings for me of less official ... :

- Seminar Darstellungstheorie

- Vorlesung

Picture taken by

ANNETTE HOEWELMANN and MONIKA HAENSCH

somewhere in this building in the last millennium

ų. Con Maria Enhalthing & line and Kylone Margar. (Inne 3 Jun

2 (unofficial) pictures Niagara Falls (ICRA X)

On the left: **BAROT**, **BRENNER**, **BUTLER**, **KRAUSE**, **SCHROER** On the right: young people attending **WYD2002** (World Youth Day 2002)

