
Cohomology of finite group schemes
Jordan type

Vector bundles
Elementary subalgebras

Vector bundles on E(r, g)

Elementary subalgebras of modular Lie algebras
and vector bundles on projective varieties

Julia Pevtsova, University of Washington
ICRA, Bielefeld, August 8-17, 2012

joint work with E. Friedlander and J. Carlson

Julia Pevtsova, Seattle, USA Elementary subalgebras of modular Lie algebras



Cohomology of finite group schemes
Jordan type

Vector bundles
Elementary subalgebras

Vector bundles on E(r, g)

Finite group schemes
Spectrum of the cohomology ring of G
Applications

Finite group schemes

k is an (algebraically closed) field of characteristic p > 0
G is a finite group scheme over k  

k[G ] is a finite-dimensional commutative Hopf algebra  
kG := k[G ]#, finite-dimensional cocommutative Hopf algebra

Representations of G ∼ k[G ]-comodules ∼ kG -modules

Examples

(1). G - finite group ∼ constant finite group scheme  kG -
group algebra
(2). g - restricted Lie algebra  u(g) restricted enveloping algebra
(3). G - algebraic group  G(r), the r th Frobenius kernel of G, an
infinitesimal finite group scheme
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Objective: study representation theory of G .

Problem: too hard! Almost always wild.
Possible solutions:

Quit - do something else entirely. Working for a Hedge fund
used to be a popular alternative although at this point in
history one might earn more respect from the general public
doing modular representation theory

Study invariants (cohomology, support varieties, local
behaviour, coherent sheaves associated to representations)

Classify coarser structures (thick subcategories)

Study special classes of representations (e.g., modules of
constant Jordan type)
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Cohomology

kG - Hopf algebra ⇒ H∗(G , k) := H∗(kG , k) is graded
commutative.

H•(G , k) =

{
Hev (G , k) p > 2

H∗(G , k) p = 2

Theorem (Friedlander-Suslin, ′95)

For any finite group scheme G over k, H∗(G , k) is a finitely
generated k-algebra. For a finite-dimensional G -module M,
H∗(G ,M) is a finite module over H∗(G , k).
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Precursor: Spectrum of the cohomology of a finite group

• G - finite group.

Theorem (Quillen stratification theorem ’71)

Let G be a finite group.

Spec H•(G , k) =
⋃
E⊂G

Spec H•(E , k),

where E runs through all elementary abelian p-subgroups of G .

Finite generation of cohomology was known since late 50s-early
60s (Golod ’59, Venkov ’61, Evens ’61).
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• g - restricted Lie algebra, a k-Lie algebra endowed with a [p]th

power map
[p] : g→ g

satisfying some natural pth-power conditions.

Theorem (Suslin-Friedlander-Bendel ’97)

Spec H•(g, k) = Np,

where Np = {x ∈ g | x [p] = 0}.

For g = LieG, G - reductive algebraic group, p > h, there is a

much stronger result: H•(g, k) ' k[N ] for N ⊂ g the nilpotent

cone (Friedlander-Parshall, Andersen-Jantzen, ’87)
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• G - infinitesimal (=connected) finite group scheme. Then

Spec H•(G , k) ' V (G ),

where V (G ) is the scheme of one-parameter subgroups of G
(Suslin-Friedlander-Bendel ’97). The Lie algebra result is a special
case of this more general identification.

• G - arbitrary finite group scheme.

Definition

A p-point α of a finite group scheme G is a flat map of algebras

k[x ]/xp α // kG

which factors through some unipotent abelian subgroup scheme
A ⊂ G .

p-points ∼ “one-parameter subgroups” of G .
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Definition

We say that two p-points α, β : k[x ]/xp → kG are equivalent,
α ∼ β, if the following condition holds: for any finite-dimensional
kG -module M, α∗(M) is free if and only if β∗(M) is free (as
k[x ]/xp-modules).

Π(G ) :=
〈p − points〉

∼
can be endowed with a (Zariski) topology and a scheme structure
in terms of representations of G .

Theorem (Friedlander-P., ’07)

Proj H•(G , k) ' Π(G )
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Applications

stmod kG = Dsg (kG ) is a tensor triangulated category  it has a
spectrum Spec(stmod kG ) in the sense of P. Balmer.

Theorem

Let G be a finite group scheme. There is an isomorphism of
schemes

Spec(stmod kG ) ' Proj H•(G , k)

Homeomorphism ∼ classification of thick tensor ideal
subcategories of stmod kG . For G a finite group, classification was
proved by Benson-Carlson-Rickard, ’97.

Theorem (Farnsteiner, ’07)

Let G be a finite group scheme. If dim Spec H•(G , k) ≥ 3, then
the representation theory of G is wild.
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JType(α,M)

A p-point α is a flat map of algebras α : k[x ]/xp → kG . Let

α∗(M) be the restriction of a kG -module M to k[x ]/xp via α.

p-points  local methods / local invariants of modules. Study M
by considering α∗(M) for all p-points α.

Definition

Let M be a finite dimensional kG -module. JType(α,M) = Jordan
type of α(x) as a p-nilpotent operator on M =

[p]ap . . . [1]a1 ,

where ai is the number of Jordan blocks of size i .
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Detection of projectivity

What does the Jodan type determine?

“Dade’s lemma” for finite group schemes:

Theorem

Let G be a finite group scheme, and M be a finite dimensional
kG -module. M is projective as a kG -module if and only if
JType(α,M) = [p]ap for any p-point α : k[x ]/xp → kG .

Local Jordan type also detects “endo-trivial modules”.
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New invariant: generic Jordan type

Recall: 〈p−points〉
∼ = Π(G ) ' Proj H•(G , k).

A p-point α : K [x ]/xp → KG is “generic” if the equivalence class
[α] of α is a generic point of Proj H•(G , k) (K/k is a field
extension).

Theorem (Friedlander-P.-Suslin, ’07)

Let α : K [x ]/xp → KG be a generic p-point of G . Then

[α]∗ : stmod kG → stmod K [x ]/xp

is a tensor-triangulated functor which is independent of a
representative of the equivalence class [α].

Julia Pevtsova, Seattle, USA Elementary subalgebras of modular Lie algebras



Cohomology of finite group schemes
Jordan type

Vector bundles
Elementary subalgebras

Vector bundles on E(r, g)

JType(α,M)
Detection
Generic and constant Jordan type

Modules of constant Jordan type

Definition

Let G be a finite group scheme, and M be a finite dimensional
kG -module. M has constant Jordan type if JType(α,M) is
independent of the p-point α : k[x ]/xp → kG .

Dave Benson’s lectures last week  many nice properties of the
class of modules of constant Jordan type; many open questions as
well.

Remark

This definition might look different from the one Dave Benson
gave since Dave’s definition depended on a choice of generators of
E . Theorem on the previous slide ⇒ SAME.
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Elementary abelian p-group as Lie algebra
Universal p-nilpotent operator
Construction

Modules of CJT ⇒ vector bundles on Proj H•(G , k)

To construct vector bundles on Proj H•(G , k) we need to restrict
to infinitesimal (=connected) finite group schemes. To avoid
technical details, we restrict further to restricted Lie algebras
(equivalently, infinitesimal group schemes of height 1).

Discrepancy: Dave Benson was talking about a finite (elementary
abelian) p-group E = Z/p×n.
Resolution: E is a Lie algebra in disguise. Let

ga := LieGa, g = (ga)⊕n.

Then
u(g) ' k[x1, . . . , xn]/(xp

1 , . . . , x
p
n ) ' kE .

kE -modules ∼ u(g)-modules .

Julia Pevtsova, Seattle, USA Elementary subalgebras of modular Lie algebras



Cohomology of finite group schemes
Jordan type

Vector bundles
Elementary subalgebras

Vector bundles on E(r, g)

Elementary abelian p-group as Lie algebra
Universal p-nilpotent operator
Construction

Modules of CJT ⇒ vector bundles on Proj H•(G , k)

To construct vector bundles on Proj H•(G , k) we need to restrict
to infinitesimal (=connected) finite group schemes. To avoid
technical details, we restrict further to restricted Lie algebras
(equivalently, infinitesimal group schemes of height 1).

Discrepancy: Dave Benson was talking about a finite (elementary
abelian) p-group E = Z/p×n.

Resolution: E is a Lie algebra in disguise. Let

ga := LieGa, g = (ga)⊕n.

Then
u(g) ' k[x1, . . . , xn]/(xp

1 , . . . , x
p
n ) ' kE .

kE -modules ∼ u(g)-modules .

Julia Pevtsova, Seattle, USA Elementary subalgebras of modular Lie algebras



Cohomology of finite group schemes
Jordan type

Vector bundles
Elementary subalgebras

Vector bundles on E(r, g)

Elementary abelian p-group as Lie algebra
Universal p-nilpotent operator
Construction

Modules of CJT ⇒ vector bundles on Proj H•(G , k)

To construct vector bundles on Proj H•(G , k) we need to restrict
to infinitesimal (=connected) finite group schemes. To avoid
technical details, we restrict further to restricted Lie algebras
(equivalently, infinitesimal group schemes of height 1).

Discrepancy: Dave Benson was talking about a finite (elementary
abelian) p-group E = Z/p×n.
Resolution: E is a Lie algebra in disguise. Let

ga := LieGa, g = (ga)⊕n.

Then
u(g) ' k[x1, . . . , xn]/(xp

1 , . . . , x
p
n ) ' kE .

kE -modules ∼ u(g)-modules .

Julia Pevtsova, Seattle, USA Elementary subalgebras of modular Lie algebras



Cohomology of finite group schemes
Jordan type

Vector bundles
Elementary subalgebras

Vector bundles on E(r, g)

Elementary abelian p-group as Lie algebra
Universal p-nilpotent operator
Construction

Modules of CJT ⇒ vector bundles on Proj H•(G , k)

To construct vector bundles on Proj H•(G , k) we need to restrict
to infinitesimal (=connected) finite group schemes. To avoid
technical details, we restrict further to restricted Lie algebras
(equivalently, infinitesimal group schemes of height 1).

Discrepancy: Dave Benson was talking about a finite (elementary
abelian) p-group E = Z/p×n.
Resolution: E is a Lie algebra in disguise. Let

ga := LieGa, g = (ga)⊕n.

Then
u(g) ' k[x1, . . . , xn]/(xp

1 , . . . , x
p
n ) ' kE .

kE -modules ∼ u(g)-modules .

Julia Pevtsova, Seattle, USA Elementary subalgebras of modular Lie algebras



Cohomology of finite group schemes
Jordan type

Vector bundles
Elementary subalgebras

Vector bundles on E(r, g)

Elementary abelian p-group as Lie algebra
Universal p-nilpotent operator
Construction

Let g be a restricted Lie algebra. Recall Np = {x ∈ g | x [p] = 0};

x ∈ Np(g)  k[x ]/xp → u(g)

{equiv. classes of p-points } ∼ {lines of p-nilpotent elements in g}.
Hence, for Lie algebras we consider Jordan type at x ∈ Np(g).

x1, . . . , xn - basis of g; y1, . . . , yn - dual basis of g#.
Np ⊂ g ⇒ S∗(g #) = k[y1, . . . , yn]� k[Np].

{Y1, . . . ,Yn}
def
= images of {y1, . . . , yn} in k[Np(g)].

Definition

Θ = x1 ⊗ Y1 + . . .+ xn ⊗ Yn ∈ u(g)⊗ k[Np]

- the universal p-nilpotent operator

Any x = a1x1 + . . .+ anxn ∈ Np(g) is a specialization of Θ for
some values (a1, . . . , an) of (Y1, . . . ,Yn).
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Universal p-nilpotent operator

For an g-module M, Θ determines a “global” p-nilpotent
homogeneous operator

ΘM : M ⊗ k[Np(g)]→ M ⊗ k[Np(g)]

m ⊗ f 7→
∑

xim ⊗ Yi f

Let P(g) = Proj k[Np(g)],

Θ̃M : M ⊗OP(g) → M ⊗OP(g)(1)
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Vector bundles

Theorem (Friedlander-P. ′11)

Let M be a g-module of constant Jordan type. Then

Ker{Θ̃i
M}, Im{Θ̃i

M},

for 1 ≤ i ≤ p − 1, and their various allowable quotients, are
algebraic vector bundles on P(g).

Dave Benson’s lectures  Examples, constructions, realization
questions, dreams...
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Definition and examples
Maximal elementary subalgebras

Elementary subalgebras of restricted Lie algebras

Definition

A restricted subalgebra ε ⊂ g is called elementary of dimension r if
ε ' (ga)⊕r (that is, ε is abelian with trivial restriction).

u(ε) ' k[x1, . . . , xr ]/(xp
1 , . . . , x

p
r ).

Definition

E(r , g) is a (projective) variety of elementary subalgebras of g.

Question: what can we say about the geometry of E(r , g)?

r = 1. E(1, g) = Proj k[Np(g)] ' Proj H•(g, k).

For g = LieG with G a connected reductive group, Np(g) is
irreducible.
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Definition and examples
Maximal elementary subalgebras

r = 2.

E(2, gln) is irreducible for p > n.

Let G be a simple algebraic group, g = LieG, and assume
p > h. Then E(2, g) is equidimensional, and
# irreducible components = # distinguished nilpotent orbits
(Premet, ′02)

g = LieG. E(r , g) is closely related to Proj H•(G(r), k) for
many classes of connected algebraic groups G
(Suslin-Friedlander-Bendel ′97, McNinch ′02, Sobaje ′12).

??Geometry of E(r , LieG) for r = 3??
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Definition and examples
Maximal elementary subalgebras

Maximal elementary subalgebras

Notation: rkel(g) = max{r | ∃ε ⊂ g, dim ε = r}

Examples

gln (or sln).

n = 2m. Then rkel(gl2m) = m2, E(m2, gl2m) ' Grassm,2m.
n = 2m + 1. Then rkel(gl2m+1) = m(m + 1),
E(m(m + 1), gl2m+1) ' Grassm,2m+1 tGrassm,2m+1

sp2n. Then rkel(sp2n) = n(n+1)
2 , E

(
(n(n+1)

2 , sp2n

)
' LGn,2n,

the Lagrangian Grassmannian.

In classical cases the elementary rank rkel(g) and the
corresponding variety E(r , g) are related to cominuscule parabolics;
hence, they are governed by the combinatorics of the Dynkin
diagram/root system.
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Constant rank modules
Construction
Vector bundles
Examples

Constant radical/socle rank modules

M - g-module. Consider M ↓ε where ε runs through elementary
subalgebras of g of dimension r .
Numerical invariants: dim Radj(M ↓ε), dim Socj(M ↓ε).

Definition

M is a module of constant (r , j) radical rank if the dimension
of Radj(M ↓ε) is independent of ε ∈ E(r , g).

M is a module of constant (r , j) socle rank if the dimension of
Socj(M ↓ε) is independent of ε ∈ E(r , g).

Take r = 1, and let j = 1, . . . , p − 1  modules of CJT.
For r > 1 the conditions of constant socle and constant radical
rank are independent.
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Representations of g ⇒ coherent sheaves on E(r , g).

We replace the operator Θ for r = 1 with a vector (Θ1, . . . ,Θr ).
Two (equivalent) constructions:

(1) Via patching local constructions on an affine covering of
E(r , g).

(2) Via equivariant descent, using

Θi : M ⊗ k[N r
p (g)]→ M ⊗ k[N r

p (g)][1]

for i = 1, . . . , r where N r
p (g) is the variety of p-nilpotent

commuting elements of g.
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Theorem (Carlson-Friedlander-P.)

There exist functors

Imj ,Kerj : u(g)−mod→ Coh(E(r , g))

such that the fiber of Imj(M) (resp. Kerj(M)) for a restricted
u(g)-module M at a generic point ε ∈ E(r , g) is naturally identified
with Radj(M ↓ε) (resp. Socj(M ↓ε)).

M - a g-module of constant (r , j) radical rank ⇒
Imj(M) is an algebraic vector bundle on E(r , g)
with fiber at ε ∈ E(r , g) naturally isomorphic to Radj(M ↓ε)

M - a g-module of constant (r , j) socle rank ⇒
Kerj(M) is an algebraic vector bundle on E(r , g)
with fiber at ε ∈ Er (g) naturally isomorphic to Socj(M ↓ε)
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Examples

g = sl2n (resp. sp2n), V - standard representation of g.

X = E(n2, g) = Grassn(V ) (resp. E(
(n+1

2

)
, g) = LGn(V )).

γn - tautological rank n bundle on X .

1 Im(V ) = γn

For any m ≤ n,

2 Imm(V⊗m) ' γ⊗mn ,

3 Imm(Sm(V )) ' Sm(γn),

4 Imm(Λm(V )) ' Λm(γn).
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Tangent and cotangent bundles

g = sl2n (or g = sp2n). Consider g acting as an adjoint
representation on itself.

X = E(n2, sl2n) ' Grassn,2n (or X = E(
(n+1

2

)
, sp2n) ' LGn,2n).

1 Coker(g) ' TX

2 Im2(g) ' ΩX

For a simple algebraic group G we can make analogous definitions
and calculations for bundles on homogeneous spaces associated
with cominuscule parabolics by considering G -orbits of E(r , g).

Challenge: Come up with interesting representations of constant
radical/socle rank (e.g., constant Jordan type) to exhibit
interesting “new” vector bundles on homogeneous spaces.
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THANK YOU
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