Elementary subalgebras of modular Lie algebras and vector bundles on projective varieties

Julia Pevtsova, University of Washington ICRA, Bielefeld, August 8-17, 2012

joint work with E. Friedlander and J. Carlson

- * B > * B

Jordan type Vector bundles Elementary subalgebras Vector bundles on $\mathbb{E}(r, \mathfrak{g})$ Finite group schemes Spectrum of the cohomology ring of *G* Applications

Finite group schemes

k is an (algebraically closed) field of characteristic p > 0G is a *finite group scheme* over $k \rightsquigarrow$

Jordan type Vector bundles Elementary subalgebras Vector bundles on $\mathbb{E}(r, \mathfrak{g})$ Finite group schemes Spectrum of the cohomology ring of *G* Applications

Finite group schemes

k is an (algebraically closed) field of characteristic p > 0G is a *finite group scheme* over $k \rightsquigarrow k[G]$ is a finite-dimensional commutative Hopf algebra \rightsquigarrow

Jordan type Vector bundles Elementary subalgebras Vector bundles on $\mathbb{E}(r,\mathfrak{g})$ Finite group schemes Spectrum of the cohomology ring of *G* Applications

Finite group schemes

k is an (algebraically closed) field of characteristic p > 0G is a *finite group scheme* over $k \rightsquigarrow k[G]$ is a finite-dimensional commutative Hopf algebra $\rightsquigarrow kG := k[G]^{\#}$, finite-dimensional *cocommutative* Hopf algebra

- 4 同 ト 4 ヨ ト 4 ヨ ト

Jordan type Vector bundles Elementary subalgebras Vector bundles on $\mathbb{E}(r, \mathfrak{g})$

Finite group schemes

Finite group schemes

k is an (algebraically closed) field of characteristic p > 0G is a finite group scheme over $k \rightsquigarrow$ k[G] is a finite-dimensional commutative Hopf algebra \rightsquigarrow $kG := k[G]^{\#}$, finite-dimensional *cocommutative* Hopf algebra

Representations of $G \sim k[G]$ -comodules $\sim kG$ -modules

(人間) (人) (人) (人) (人) (人)

Jordan type Vector bundles Elementary subalgebras Vector bundles on $\mathbb{E}(r, \mathfrak{g})$ Finite group schemes Spectrum of the cohomology ring of *G* Applications

Finite group schemes

k is an (algebraically closed) field of characteristic p > 0G is a *finite group scheme* over $k \rightsquigarrow k[G]$ is a finite-dimensional commutative Hopf algebra $\rightsquigarrow kG := k[G]^{\#}$, finite-dimensional *cocommutative* Hopf algebra

Representations of
$$G \sim k[G]$$
-comodules $\sim kG$ -modules

Examples

(1). *G* - finite group \sim *constant* finite group scheme \rightsquigarrow *kG* - group algebra

(2). \mathfrak{g} - restricted Lie algebra $\rightsquigarrow \mathfrak{u}(\mathfrak{g})$ restricted enveloping algebra (3). \mathcal{G} - algebraic group $\rightsquigarrow \mathcal{G}_{(r)}$, the r^{th} Frobenius kernel of \mathcal{G} , an *infinitesimal* finite group scheme

Jordan type Vector bundles Elementary subalgebras Vector bundles on $\mathbb{E}(r,\mathfrak{g})$ Finite group schemes Spectrum of the cohomology ring of *G* Applications

Objective: study representation theory of G.

イロト イポト イヨト イヨト

э

Finite group schemes Spectrum of the cohomology ring of *G* Applications

Objective: study representation theory of *G*. *Problem:* too hard! Almost always wild.

-

Finite group schemes Spectrum of the cohomology ring of *G* Applications

Objective: study representation theory of *G*. *Problem:* too hard! Almost always wild. Possible solutions:

 $\begin{array}{c} \mbox{Cohomology of finite group schemes} \\ \mbox{Jordan type} \\ \mbox{Vector bundles} \\ \mbox{Elementary subalgebras} \\ \mbox{Vector bundles on } \mathbb{E}(r,\mathfrak{g}) \end{array} \qquad \begin{array}{c} \mbox{Finite group s} \\ \mbox{Spectrum of t} \\ \mbox{Applications} \end{array}$

Finite group schemes Spectrum of the cohomology ring of *G* Applications

Objective: study representation theory of *G*. *Problem:* too hard! Almost always wild. Possible solutions:

• *Quit - do something else entirely*. Working for a Hedge fund used to be a popular alternative although at this point in history one might earn more respect from the general public doing modular representation theory

- 4 同 1 4 日 1 4 日

Finite group schemes Spectrum of the cohomology ring of *G* Applications

Objective: study representation theory of *G*. *Problem:* too hard! Almost always wild. Possible solutions:

- *Quit do something else entirely*. Working for a Hedge fund used to be a popular alternative although at this point in history one might earn more respect from the general public doing modular representation theory
- Study invariants (cohomology, support varieties, local behaviour, coherent sheaves associated to representations)
- Classify coarser structures (thick subcategories)
- Study special classes of representations (e.g., modules of constant Jordan type)

Jordan type Vector bundles Elementary subalgebras Vector bundles on $\mathbb{E}(r,\mathfrak{g})$ Finite group schemes Spectrum of the cohomology ring of *G* Applications

Cohomology

kG - Hopf algebra \Rightarrow $H^*(G, k) := H^*(kG, k)$ is graded commutative.

$$\mathsf{H}^{\bullet}(G,k) = \begin{cases} \mathsf{H}^{ev}(G,k) & p > 2\\ \mathsf{H}^{*}(G,k) & p = 2 \end{cases}$$

< 日 > < 同 > < 三 > < 三 >

э

Jordan type Vector bundles Elementary subalgebras Vector bundles on $\mathbb{E}(r, \mathfrak{g})$ Finite group schemes Spectrum of the cohomology ring of *G* Applications

Cohomology

kG - Hopf algebra \Rightarrow $H^*(G, k) := H^*(kG, k)$ is graded commutative.

$$\mathsf{H}^{\bullet}(G,k) = \begin{cases} \mathsf{H}^{ev}(G,k) & p > 2\\ \mathsf{H}^{*}(G,k) & p = 2 \end{cases}$$

Theorem (Friedlander-Suslin, '95)

For any finite group scheme G over k, $H^*(G, k)$ is a finitely generated k-algebra. For a finite-dimensional G-module M, $H^*(G, M)$ is a finite module over $H^*(G, k)$.

Cohomology of finite group schemes Jordan type Vector bundles Elementary subalgebras

Vector bundles on $\mathbb{E}(r, \mathfrak{g})$

Finite group schemes Spectrum of the cohomology ring of *G* Applications

Precursor: Spectrum of the cohomology of a finite group

• G - finite group.

Theorem (Quillen stratification theorem '71)

Let G be a finite group.

Spec
$$H^{\bullet}(G, k) = \bigcup_{E \subset G} Spec H^{\bullet}(E, k),$$

where E runs through all elementary abelian p-subgroups of G.

Finite generation of cohomology was known since late 50s-early 60s (Golod '59, Venkov '61, Evens '61).

• \mathfrak{g} - **restricted Lie algebra**, a *k*-Lie algebra endowed with a $[p]^{\mathrm{th}}$ power map

$$[p]:\mathfrak{g}
ightarrow\mathfrak{g}$$

satisfying some natural p^{th} -power conditions.

Theorem (Suslin-Friedlander-Bendel '97)

 $\operatorname{Spec} \operatorname{H}^{\bullet}(\mathfrak{g}, k) = \mathcal{N}_{p},$

where $\mathcal{N}_p = \{x \in \mathfrak{g} \, | \, x^{[p]} = 0\}.$

• \mathfrak{g} - **restricted Lie algebra**, a *k*-Lie algebra endowed with a $[p]^{\mathrm{th}}$ power map

$$[p]:\mathfrak{g}
ightarrow\mathfrak{g}$$

satisfying some natural p^{th} -power conditions.

Theorem (Suslin-Friedlander-Bendel '97)

Spec
$$\mathsf{H}^{\bullet}(\mathfrak{g}, k) = \mathcal{N}_{p},$$

where $\mathcal{N}_p = \{x \in \mathfrak{g} \, | \, x^{[p]} = 0\}.$

For $\mathfrak{g} = \text{Lie}\,\mathcal{G}, \,\mathcal{G}$ - reductive algebraic group, p > h, there is a much stronger result: $H^{\bullet}(\mathfrak{g}, k) \simeq k[\mathcal{N}]$ for $\mathcal{N} \subset \mathfrak{g}$ the nilpotent cone (Friedlander-Parshall, Andersen-Jantzen, '87)

・ロト ・同ト ・ヨト ・ヨト

 $\begin{array}{c} \mbox{Cohomology of finite group schemes} \\ \mbox{Jordan type} \\ \mbox{Vector bundles} \\ \mbox{Elementary subalgebras} \\ \mbox{Vector bundles on } \mathbb{D}(r, g) \end{array} \\ \begin{array}{c} \mbox{Finite group schemes} \\ \mbox{Spectrum of the cohomology ring of } G \\ \mbox{Applications} \end{array}$

• G - infinitesimal (=connected) finite group scheme. Then

 $\operatorname{Spec} \operatorname{H}^{\bullet}(G, k) \simeq V(G),$

where V(G) is the scheme of *one-parameter subgroups* of G (Suslin-Friedlander-Bendel '97). The Lie algebra result is a special case of this more general identification.

- 4 回 ト 4 ヨト 4 ヨト

 $\begin{array}{c} \mbox{Cohomology of finite group schemes} \\ \mbox{Jordan type} \\ \mbox{Vector bundles} \\ \mbox{Elementary subalgebras} \\ \mbox{Vector bundles on } \mathbb{D}(r, \mathfrak{g}) \end{array} \\ \end{array} \\ \begin{array}{c} \mbox{Finite group schemes} \\ \mbox{Spectrum of the cohomology ring of G} \\ \mbox{Applications} \end{array} \\ \end{array}$

• G - infinitesimal (=connected) finite group scheme. Then

 $\operatorname{Spec} \operatorname{H}^{\bullet}(G, k) \simeq V(G),$

where V(G) is the scheme of *one-parameter subgroups* of G (Suslin-Friedlander-Bendel '97). The Lie algebra result is a special case of this more general identification.

• *G* - arbitrary finite group scheme.

Definition

A *p*-**point** α of a finite group scheme *G* is a flat map of algebras

$$k[x]/x^p \xrightarrow{\alpha} kG$$

which factors through some unipotent abelian subgroup scheme $A \subset G$.

p-points \sim "one-parameter subgroups" of G_{\cdot}

Vector bundles

Elementary subalgebras Vector bundles on $\mathbb{E}(r, q)$ Finite group schemes Spectrum of the cohomology ring of *G* Applications

Definition

We say that two *p*-points $\alpha, \beta : k[x]/x^p \to kG$ are equivalent, $\alpha \sim \beta$, if the following condition holds: for any finite-dimensional kG-module M, $\alpha^*(M)$ is free if and only if $\beta^*(M)$ is free (as $k[x]/x^p$ -modules).

$$\Pi(G):=rac{\langle p-{\sf points}
angle}{\sim}$$

can be endowed with a (Zariski) topology and a scheme structure in terms of representations of G.

Cohomology of finite group schemes Jordan type

Vector bundles

Elementary subalgebras Vector bundles on $\mathbb{E}(r, q)$ Finite group schemes Spectrum of the cohomology ring of *G* Applications

Definition

We say that two *p*-points $\alpha, \beta : k[x]/x^p \to kG$ are equivalent, $\alpha \sim \beta$, if the following condition holds: for any finite-dimensional kG-module M, $\alpha^*(M)$ is free if and only if $\beta^*(M)$ is free (as $k[x]/x^p$ -modules).

$$\Pi(G):=rac{\langle p-{\sf points}
angle}{\sim}$$

can be endowed with a (Zariski) topology and a scheme structure in terms of representations of G.

Theorem (Friedlander-P., '07) $\operatorname{Proj} \operatorname{H}^{\bullet}(G, k) \simeq \Pi(G)$

Jordan type Vector bundles Elementary subalgebras Vector bundles on $\mathbb{E}(r,\mathfrak{g})$ Finite group schemes Spectrum of the cohomology ring of *G* **Applications**

Applications

stmod $kG = D_{sg}(kG)$ is a tensor triangulated category \rightsquigarrow it has a spectrum Spec(stmod kG) in the sense of P. Balmer.

- 4 同 6 4 日 6 4 日 6

Jordan type Vector bundles Elementary subalgebras Vector bundles on $\mathbb{E}(r, \mathfrak{g})$ Finite group schemes Spectrum of the cohomology ring of *G* **Applications**

Applications

stmod $kG = D_{sg}(kG)$ is a tensor triangulated category \rightsquigarrow it has a spectrum Spec(stmod kG) in the sense of P. Balmer.

Theorem

Let G be a finite group scheme. There is an isomorphism of schemes

 $\operatorname{Spec}(\operatorname{stmod} kG) \simeq \operatorname{Proj} \operatorname{H}^{\bullet}(G, k)$

Homeomorphism \sim classification of thick tensor ideal subcategories of stmod kG. For G a finite group, classification was proved by Benson-Carlson-Rickard, '97.

Jordan type Vector bundles Elementary subalgebras Vector bundles on $\mathbb{E}(r, \mathfrak{g})$ Finite group schemes Spectrum of the cohomology ring of *G* **Applications**

Applications

stmod $kG = D_{sg}(kG)$ is a tensor triangulated category \rightsquigarrow it has a spectrum Spec(stmod kG) in the sense of P. Balmer.

Theorem

Let G be a finite group scheme. There is an isomorphism of schemes

 $\operatorname{Spec}(\operatorname{stmod} kG) \simeq \operatorname{Proj} \operatorname{H}^{\bullet}(G, k)$

Homeomorphism \sim classification of thick tensor ideal subcategories of stmod kG. For G a finite group, classification was proved by Benson-Carlson-Rickard, '97.

Theorem (Farnsteiner, '07)

Let G be a finite group scheme. If dim Spec $H^{\bullet}(G, k) \ge 3$, then the representation theory of G is wild.

J**Type(***a*, *M***)** Detection Generic and constant Jordan type

$\mathsf{JType}(lpha, \pmb{M})$

A *p*-**point** α is a flat map of algebras $\alpha : k[x]/x^p \to kG$. Let $\alpha^*(M)$ be the restriction of a *kG*-module *M* to $k[x]/x^p$ via α .

p-points \rightsquigarrow local methods / local invariants of modules. Study *M* by considering $\alpha^*(M)$ for all *p*-points α .

Definition

Let *M* be a finite dimensional *kG*-module. JType(α , *M*) = Jordan type of $\alpha(x)$ as a *p*-nilpotent operator on *M* =

 $[p]^{a_p}\ldots [1]^{a_1},$

where a_i is the number of Jordan blocks of size *i*.

 $JType(\alpha, M)$ **Detection** Generic and constant Jordan type

Detection of projectivity

What does the Jodan type determine?

э

 $JType(\alpha, M)$ **Detection** Generic and constant Jordan type

Detection of projectivity

What does the Jodan type determine?

"Dade's lemma" for finite group schemes:

Theorem

Let G be a finite group scheme, and M be a finite dimensional kG-module. M is projective as a kG-module if and only if $JType(\alpha, M) = [p]^{a_p}$ for any p-point $\alpha : k[x]/x^p \to kG$.

- 4 同 6 4 日 6 4 日 6

 $JType(\alpha, M)$ **Detection** Generic and constant Jordan type

Detection of projectivity

What does the Jodan type determine?

"Dade's lemma" for finite group schemes:

Theorem

Let G be a finite group scheme, and M be a finite dimensional kG-module. M is projective as a kG-module if and only if $JType(\alpha, M) = [p]^{a_p}$ for any p-point $\alpha : k[x]/x^p \to kG$.

Local Jordan type also detects "endo-trivial modules".

- 4 回 ト 4 ヨト 4 ヨト

 $JType(\alpha, M)$ Detection Generic and constant Jordan type

New invariant: generic Jordan type

Recall: $\frac{\langle p-\text{points} \rangle}{\sim} = \Pi(G) \simeq \operatorname{Proj} H^{\bullet}(G, k)$. A *p*-point $\alpha : K[x]/x^p \to KG$ is "generic" if the equivalence class $[\alpha]$ of α is a generic point of $\operatorname{Proj} H^{\bullet}(G, k)$ (*K*/*k* is a field extension).

Theorem (Friedlander-P.-Suslin, '07)

Let $\alpha: K[x]/x^p \to KG$ be a generic p-point of G. Then

 $[\alpha]^*$: stmod $kG \rightarrow$ stmod $K[x]/x^p$

is a tensor-triangulated functor which is independent of a representative of the equivalence class $[\alpha]$.

・ロト ・同ト ・ヨト ・ヨト

 $JType(\alpha, M)$ Detection Generic and constant Jordan type

Modules of constant Jordan type

Definition

Let G be a finite group scheme, and M be a finite dimensional kG-module. M has constant Jordan type if $JType(\alpha, M)$ is independent of the p-point $\alpha : k[x]/x^p \to kG$.

 $JType(\alpha, M)$ Detection Generic and constant Jordan type

Modules of constant Jordan type

Definition

Let G be a finite group scheme, and M be a finite dimensional kG-module. M has constant Jordan type if $JType(\alpha, M)$ is independent of the p-point $\alpha : k[x]/x^p \to kG$.

Dave Benson's lectures last week \rightsquigarrow many nice properties of the class of modules of constant Jordan type; many open questions as well.

- 4 同 6 4 日 6 4 日 6

 $JType(\alpha, M)$ Detection Generic and constant Jordan type

Modules of constant Jordan type

Definition

Let G be a finite group scheme, and M be a finite dimensional kG-module. M has constant Jordan type if $JType(\alpha, M)$ is independent of the p-point $\alpha : k[x]/x^p \to kG$.

Dave Benson's lectures last week \rightsquigarrow many nice properties of the class of modules of constant Jordan type; many open questions as well.

Remark

This definition might look different from the one Dave Benson gave since Dave's definition depended on a choice of generators of E. Theorem on the previous slide \Rightarrow SAME.

・ロト ・同ト ・ヨト ・ヨト

Elementary abelian *p*-group as Lie algebra Universal *p*-nilpotent operator Construction

Modules of $CJT \Rightarrow$ vector bundles on $Proj H^{\bullet}(G, k)$

To construct vector bundles on $\operatorname{Proj} H^{\bullet}(G, k)$ we need to restrict to infinitesimal (=connected) finite group schemes. To avoid technical details, we restrict further to **restricted Lie algebras** (equivalently, infinitesimal group schemes of height 1).

- 4 周 ト 4 戸 ト 4 戸 ト

Elementary abelian *p*-group as Lie algebra Universal *p*-nilpotent operator Construction

Modules of $CJT \Rightarrow$ vector bundles on $Proj H^{\bullet}(G, k)$

To construct vector bundles on $\operatorname{Proj} H^{\bullet}(G, k)$ we need to restrict to infinitesimal (=connected) finite group schemes. To avoid technical details, we restrict further to **restricted Lie algebras** (equivalently, infinitesimal group schemes of height 1).

Discrepancy: Dave Benson was talking about a finite (elementary abelian) p-group $E = \mathbb{Z}/p^{\times n}$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Elementary abelian *p*-group as Lie algebra Universal *p*-nilpotent operator Construction

Modules of $CJT \Rightarrow$ vector bundles on $Proj H^{\bullet}(G, k)$

To construct vector bundles on $\operatorname{Proj} H^{\bullet}(G, k)$ we need to restrict to infinitesimal (=connected) finite group schemes. To avoid technical details, we restrict further to **restricted Lie algebras** (equivalently, infinitesimal group schemes of height 1).

Discrepancy: Dave Benson was talking about a finite (elementary abelian) *p*-group $E = \mathbb{Z}/p^{\times n}$. Resolution: *E* is a Lie algebra in disguise. Let

$$\mathfrak{g}_a := \operatorname{Lie} \mathbb{G}_a, \mathfrak{g} = (\mathfrak{g}_a)^{\oplus n}.$$

Then

$$\mathfrak{u}(\mathfrak{g})\simeq k[x_1,\ldots,x_n]/(x_1^p,\ldots,x_n^p)\simeq kE.$$

- 4 回 ト 4 ヨト 4 ヨト

Elementary abelian *p*-group as Lie algebra Universal *p*-nilpotent operator Construction

Modules of $CJT \Rightarrow$ vector bundles on $Proj H^{\bullet}(G, k)$

To construct vector bundles on $\operatorname{Proj} H^{\bullet}(G, k)$ we need to restrict to infinitesimal (=connected) finite group schemes. To avoid technical details, we restrict further to **restricted Lie algebras** (equivalently, infinitesimal group schemes of height 1).

Discrepancy: Dave Benson was talking about a finite (elementary abelian) *p*-group $E = \mathbb{Z}/p^{\times n}$. Resolution: *E* is a Lie algebra in disguise. Let

$$\mathfrak{g}_a := \operatorname{Lie} \mathbb{G}_a, \mathfrak{g} = (\mathfrak{g}_a)^{\oplus n}.$$

Then

$$\mathfrak{u}(\mathfrak{g}) \simeq k[x_1, \dots, x_n]/(x_1^p, \dots, x_n^p) \simeq kE.$$

$$\boxed{kE \text{-modules}} \sim \boxed{\mathfrak{u}(\mathfrak{g}) \text{-modules}}.$$

$$\boxed{kE \text{-modules}} \sim \boxed{\mathfrak{u}(\mathfrak{g}) \text{-modules}}.$$

Let \mathfrak{g} be a restricted Lie algebra. Recall $\mathcal{N}_{p} = \{x \in \mathfrak{g} \, | \, x^{[p]} = 0\};$

 $x \in \mathcal{N}_{p}(\mathfrak{g}) \quad \rightsquigarrow \quad k[x]/x^{p}
ightarrow \mathfrak{u}(\mathfrak{g})$

{equiv. classes of *p*-points } ~ {lines of *p*-nilpotent elements in \mathfrak{g} }. Hence, for Lie algebras we consider Jordan type at $x \in \mathcal{N}_p(\mathfrak{g})$.

- 4 同 6 4 日 6 4 日 6

Let \mathfrak{g} be a restricted Lie algebra. Recall $\mathcal{N}_{p} = \{x \in \mathfrak{g} \mid x^{[p]} = 0\};$

 $x \in \mathcal{N}_{p}(\mathfrak{g}) \quad \rightsquigarrow \quad k[x]/x^{p}
ightarrow \mathfrak{u}(\mathfrak{g})$

{equiv. classes of *p*-points } ~ {lines of *p*-nilpotent elements in \mathfrak{g} }. Hence, for Lie algebras we consider Jordan type at $x \in \mathcal{N}_p(\mathfrak{g})$.

 x_1, \ldots, x_n - basis of \mathfrak{g} ; y_1, \ldots, y_n - dual basis of $\mathfrak{g}^{\#}$.

A (B) A (B) A (B) A

 $\begin{array}{c} \mbox{Cohomology of finite group schemes} \\ \mbox{Jordan type} \\ \mbox{Vector bundles} \\ \mbox{Elementary subalgebras} \\ \mbox{Vector bundles on } \mathbb{E}(r, g) \end{array} \\ \end{array} \\ \begin{array}{c} \mbox{Elementary abelian p-group as Lie algebra} \\ \mbox{Universal p-nilpotent operator} \\ \mbox{Construction} \\ \mbox{Vector bundles on } \mathbb{E}(r, g) \end{array}$

Let \mathfrak{g} be a restricted Lie algebra. Recall $\mathcal{N}_{p} = \{x \in \mathfrak{g} \mid x^{[p]} = 0\};$

$$x \in \mathcal{N}_{\rho}(\mathfrak{g}) \quad \rightsquigarrow \quad k[x]/x^{\rho}
ightarrow \mathfrak{u}(\mathfrak{g})$$

{equiv. classes of *p*-points } ~ {lines of *p*-nilpotent elements in \mathfrak{g} }. Hence, for Lie algebras we consider Jordan type at $x \in \mathcal{N}_p(\mathfrak{g})$.

$$\begin{array}{ll} x_1, \dots, x_n \text{ - basis of } \mathfrak{g}; & y_1, \dots, y_n \text{ - dual basis of } \mathfrak{g}^\#. \\ \mathcal{N}_p \subset \mathfrak{g} & \Rightarrow & S^*(g^\#) = k[y_1, \dots, y_n] \twoheadrightarrow k[\mathcal{N}_p]. \end{array}$$

- 同 ト - ヨ ト - - ヨ ト

 $\begin{array}{c} \mbox{Cohomology of finite group schemes} \\ \mbox{Jordan type} \\ \mbox{Vector bundles} \\ \mbox{Elementary subalgebras} \\ \mbox{Vector bundles on } \mathbb{E}(r, g) \end{array} \\ \end{array} \\ \begin{array}{c} \mbox{Elementary abelian p-group as Lie algebra} \\ \mbox{Universal p-nilpotent operator} \\ \mbox{Construction} \\ \mbox{Vector bundles on } \mathbb{E}(r, g) \end{array}$

Let \mathfrak{g} be a restricted Lie algebra. Recall $\mathcal{N}_{p} = \{x \in \mathfrak{g} \mid x^{[p]} = 0\};$

$$x \in \mathcal{N}_p(\mathfrak{g}) \quad \rightsquigarrow \quad k[x]/x^p o \mathfrak{u}(\mathfrak{g})$$

{equiv. classes of *p*-points } ~ {lines of *p*-nilpotent elements in \mathfrak{g} }. Hence, for Lie algebras we consider Jordan type at $x \in \mathcal{N}_p(\mathfrak{g})$.

$$\begin{array}{ll} x_1, \dots, x_n \text{ - basis of } \mathfrak{g}; & y_1, \dots, y_n \text{ - dual basis of } \mathfrak{g}^\#. \\ \mathcal{N}_p \subset \mathfrak{g} & \Rightarrow & S^*(g^\#) = k[y_1, \dots, y_n] \twoheadrightarrow k[\mathcal{N}_p]. \\ \{Y_1, \dots, Y_n\} \stackrel{def}{=} \text{ images of } \{y_1, \dots, y_n\} \text{ in } k[\mathcal{N}_p(\mathfrak{g})]. \end{array}$$

- 同 ト - ヨ ト - - ヨ ト

 $\begin{array}{c} \mbox{Cohomology of finite group schemes} \\ \mbox{Jordan type} \\ \mbox{Vector bundles} \\ \mbox{Elementary subalgebras} \\ \mbox{Vector bundles on } \mathbb{E}(r, g) \end{array} \\ \begin{array}{c} \mbox{Elementary abelian p-group as Lie algebra} \\ \mbox{Universal p-nilpotent operator} \\ \mbox{Construction} \\ \mbox{Construction} \end{array}$

Let \mathfrak{g} be a restricted Lie algebra. Recall $\mathcal{N}_{p} = \{x \in \mathfrak{g} \mid x^{[p]} = 0\};$

$$x \in \mathcal{N}_p(\mathfrak{g}) \quad \rightsquigarrow \quad k[x]/x^p o \mathfrak{u}(\mathfrak{g})$$

{equiv. classes of *p*-points } ~ {lines of *p*-nilpotent elements in \mathfrak{g} }. Hence, for Lie algebras we consider Jordan type at $x \in \mathcal{N}_p(\mathfrak{g})$.

$$\begin{array}{ll} x_1, \dots, x_n \text{ - basis of } \mathfrak{g}; & y_1, \dots, y_n \text{ - dual basis of } \mathfrak{g}^\#. \\ \mathcal{N}_p \subset \mathfrak{g} & \Rightarrow & S^*(g^\#) = k[y_1, \dots, y_n] \twoheadrightarrow k[\mathcal{N}_p]. \\ \{Y_1, \dots, Y_n\} \stackrel{def}{=} \text{ images of } \{y_1, \dots, y_n\} \text{ in } k[\mathcal{N}_p(\mathfrak{g})]. \end{array}$$

Definition

$$\Theta = x_1 \otimes Y_1 + \ldots + x_n \otimes Y_n \in u(\mathfrak{g}) \otimes k[\mathcal{N}_p]$$

- the universal p-nilpotent operator

Any $x = a_1 x_1 + \ldots + a_n x_n \in \mathcal{N}_p(\mathfrak{g})$ is a specialization of Θ for some values (a_1, \ldots, a_n) of (Y_1, \ldots, Y_n) .

Elementary abelian *p*-group as Lie algebra Universal *p*-nilpotent operator Construction

Universal *p*-nilpotent operator

For an \mathfrak{g} -module M, Θ determines a "global" p-nilpotent homogeneous operator

$$\begin{split} \Theta_{M} &: M \otimes k[\mathcal{N}_{p}(\mathfrak{g})] \to M \otimes k[\mathcal{N}_{p}(\mathfrak{g})] \\ & m \otimes f \mapsto \sum x_{i}m \otimes Y_{i}f \end{split}$$

Let $\mathbb{P}(\mathfrak{g}) = \operatorname{Proj} k[\mathcal{N}_{p}(\mathfrak{g})],$
 $\widetilde{\Theta}_{M} : M \otimes \mathcal{O}_{\mathbb{P}(\mathfrak{g})} \to M \otimes \mathcal{O}_{\mathbb{P}(\mathfrak{g})}(1)$

Elementary abelian *p*-group as Lie algebra Universal *p*-nilpotent operator **Construction**

Vector bundles

Theorem (Friedlander-P. '11)

Let M be a g-module of constant Jordan type. Then

$$\mathcal{K}er\{\widetilde{\Theta}_{M}^{i}\}, \mathcal{I}m\{\widetilde{\Theta}_{M}^{i}\},$$

for $1 \leq i \leq p-1$, and their various allowable quotients, are algebraic vector bundles on $\mathbb{P}(\mathfrak{g})$.

Dave Benson's lectures \rightsquigarrow Examples, constructions, realization questions, dreams...

Definition and examples Maximal elementary subalgebras

Elementary subalgebras of restricted Lie algebras

Definition

A restricted subalgebra $\epsilon \subset \mathfrak{g}$ is called *elementary* of dimension r if $\epsilon \simeq (\mathfrak{g}_a)^{\oplus r}$ (that is, ϵ is abelian with trivial restriction).

$$\mathfrak{u}(\epsilon) \simeq k[x_1,\ldots,x_r]/(x_1^p,\ldots,x_r^p).$$

Definition

 $\mathbb{E}(r, \mathfrak{g})$ is a (projective) variety of elementary subalgebras of \mathfrak{g} .

Question: what can we say about the geometry of $\mathbb{E}(r, \mathfrak{g})$?

•
$$r = 1$$
. $\mathbb{E}(1, \mathfrak{g}) = \operatorname{Proj} k[\mathcal{N}_{\rho}(\mathfrak{g})] \simeq \operatorname{Proj} H^{\bullet}(\mathfrak{g}, k)$.

Definition and examples Maximal elementary subalgebras

Elementary subalgebras of restricted Lie algebras

Definition

A restricted subalgebra $\epsilon \subset \mathfrak{g}$ is called *elementary* of dimension r if $\epsilon \simeq (\mathfrak{g}_a)^{\oplus r}$ (that is, ϵ is abelian with trivial restriction).

$$\mathfrak{u}(\epsilon) \simeq k[x_1,\ldots,x_r]/(x_1^p,\ldots,x_r^p).$$

Definition

 $\mathbb{E}(r, \mathfrak{g})$ is a (projective) variety of elementary subalgebras of \mathfrak{g} .

Question: what can we say about the geometry of $\mathbb{E}(r, \mathfrak{g})$?

r = 1. 𝔼(1,𝔅) = Proj k[𝒫_p(𝔅)] ≃ Proj H[●](𝔅, k).
 For 𝔅 = Lie𝔅 with 𝔅 a connected reductive group, 𝒫_p(𝔅) is irreducible.

(日) (同) (日) (日) (日)

Definition and examples Maximal elementary subalgebras

• $\mathbb{E}(2,\mathfrak{gl}_n)$ is irreducible for p > n.

イロト イポト イヨト イヨト

э

• *r* = 2.

- $\mathbb{E}(2,\mathfrak{gl}_n)$ is irreducible for p > n.
- Let G be a simple algebraic group, g = Lie G, and assume p > h. Then E(2, g) is equidimensional, and # irreducible components = # distinguished nilpotent orbits (Premet, '02)

• *r* = 2.

- $\mathbb{E}(2,\mathfrak{gl}_n)$ is irreducible for p > n.
- Let G be a simple algebraic group, g = Lie G, and assume p > h. Then E(2, g) is equidimensional, and # irreducible components = # distinguished nilpotent orbits (Premet, '02)
- g = Lie G. E(r, g) is closely related to Proj H[●](G_(r), k) for many classes of connected algebraic groups G (Suslin-Friedlander-Bendel '97, McNinch '02, Sobaje '12).

・ロト ・同ト ・ヨト ・ヨト

• *r* = 2.

- $\mathbb{E}(2,\mathfrak{gl}_n)$ is irreducible for p > n.
- Let \mathcal{G} be a simple algebraic group, $\mathfrak{g} = \text{Lie } \mathcal{G}$, and assume p > h. Then $\mathbb{E}(2, \mathfrak{g})$ is *equidimensional*, and # irreducible components = # distinguished nilpotent orbits (Premet, '02)
- g = Lie G. E(r, g) is closely related to Proj H[●](G_(r), k) for many classes of connected algebraic groups G (Suslin-Friedlander-Bendel '97, McNinch '02, Sobaje '12).

??Geometry of $\mathbb{E}(r, \text{Lie }\mathcal{G})$ for r = 3??

Definition and examples Maximal elementary subalgebras

Maximal elementary subalgebras

Notation: $\mathsf{rk}_{el}(\mathfrak{g}) = \max\{r \mid \exists \epsilon \subset \mathfrak{g}, \dim \epsilon = r\}$

- 4 同 6 4 日 6 4 日 6

Definition and examples Maximal elementary subalgebras

Maximal elementary subalgebras

Notation:
$$\mathsf{rk}_{el}(\mathfrak{g}) = \max\{r \mid \exists \epsilon \subset \mathfrak{g}, \dim \epsilon = r\}$$

Examples

- \mathfrak{gl}_n (or \mathfrak{sl}_n).
 - n = 2m. Then $\operatorname{rk}_{el}(\mathfrak{gl}_{2m}) = m^2$, $\mathbb{E}(m^2, \mathfrak{gl}_{2m}) \simeq \operatorname{Grass}_{m, 2m}$.

Definition and examples Maximal elementary subalgebras

Maximal elementary subalgebras

Notation: $\mathsf{rk}_{el}(\mathfrak{g}) = \max\{r \mid \exists \epsilon \subset \mathfrak{g}, \dim \epsilon = r\}$

Examples

- \mathfrak{gl}_n (or \mathfrak{sl}_n).
 - n = 2m. Then $\operatorname{rk}_{el}(\mathfrak{gl}_{2m}) = m^2$, $\mathbb{E}(m^2, \mathfrak{gl}_{2m}) \simeq \operatorname{Grass}_{m, 2m}$.
 - n = 2m + 1. Then $\operatorname{rk}_{el}(\mathfrak{gl}_{2m+1}) = m(m+1)$, $\mathbb{E}(m(m+1), \mathfrak{gl}_{2m+1}) \simeq \operatorname{Grass}_{m,2m+1} \sqcup \operatorname{Grass}_{m,2m+1}$

(4月) (4日) (4日)

Definition and examples Maximal elementary subalgebras

Maximal elementary subalgebras

Notation: $\mathsf{rk}_{el}(\mathfrak{g}) = \max\{r \mid \exists \epsilon \subset \mathfrak{g}, \dim \epsilon = r\}$

Examples

• \mathfrak{gl}_n (or \mathfrak{sl}_n). • n = 2m. Then $\operatorname{rk}_{el}(\mathfrak{gl}_{2m}) = m^2$, $\mathbb{E}(m^2, \mathfrak{gl}_{2m}) \simeq \operatorname{Grass}_{m,2m}$. • n = 2m + 1. Then $\operatorname{rk}_{el}(\mathfrak{gl}_{2m+1}) = m(m+1)$, $\mathbb{E}(m(m+1), \mathfrak{gl}_{2m+1}) \simeq \operatorname{Grass}_{m,2m+1} \sqcup \operatorname{Grass}_{m,2m+1}$ • \mathfrak{sp}_{2n} . Then $\operatorname{rk}_{el}(\mathfrak{sp}_{2n}) = \frac{n(n+1)}{2}$, $\mathbb{E}\left(\frac{(n(n+1))}{2}, \mathfrak{sp}_{2n}\right) \simeq \mathsf{LG}_{n,2n}$, the Lagrangian Grassmannian.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition and examples Maximal elementary subalgebras

Maximal elementary subalgebras

Notation: $\mathsf{rk}_{el}(\mathfrak{g}) = \max\{r \mid \exists \epsilon \subset \mathfrak{g}, \dim \epsilon = r\}$

Examples

- \mathfrak{gl}_n (or \mathfrak{sl}_n).
 - n = 2m. Then $\operatorname{rk}_{el}(\mathfrak{gl}_{2m}) = m^2$, $\mathbb{E}(m^2, \mathfrak{gl}_{2m}) \simeq \operatorname{Grass}_{m,2m}$.
 - n = 2m + 1. Then $\operatorname{rk}_{el}(\mathfrak{gl}_{2m+1}) = m(m+1)$, $\mathbb{E}(m(m+1), \mathfrak{gl}_{2m+1}) \simeq \operatorname{Grass}_{m,2m+1} \sqcup \operatorname{Grass}_{m,2m+1}$
- \mathfrak{sp}_{2n} . Then $\mathsf{rk}_{el}(\mathfrak{sp}_{2n}) = \frac{n(n+1)}{2}$, $\mathbb{E}\left(\frac{(n(n+1))}{2}, \mathfrak{sp}_{2n}\right) \simeq \mathsf{LG}_{n,2n}$, the Lagrangian Grassmannian.

In classical cases the elementary rank $rk_{el}(\mathfrak{g})$ and the corresponding variety $\mathbb{E}(r,\mathfrak{g})$ are related to cominuscule parabolics; hence, they are governed by the combinatorics of the Dynkin diagram/root system.

Constant rank modules Construction Vector bundles Examples

Constant radical/socle rank modules

M - g-module. Consider $M \downarrow_{\epsilon}$ where ϵ runs through elementary subalgebras of g of dimension r. Numerical invariants: dim Rad^j $(M \downarrow_{\epsilon})$, dim Soc^j $(M \downarrow_{\epsilon})$.

Definition

- M is a module of constant (r, j) radical rank if the dimension of Rad^j(M↓_ϵ) is independent of ϵ ∈ 𝔼(r, 𝔅).
- M is a module of constant (r, j) socle rank if the dimension of Soc^j(M↓_ϵ) is independent of ϵ ∈ 𝔼(r,𝔅).

- 4 同 ト 4 ヨ ト 4 ヨ ト

Constant rank modules Construction Vector bundles Examples

Constant radical/socle rank modules

M - g-module. Consider $M \downarrow_{\epsilon}$ where ϵ runs through elementary subalgebras of g of dimension r. Numerical invariants: dim Rad^j $(M \downarrow_{\epsilon})$, dim Soc^j $(M \downarrow_{\epsilon})$.

Definition

- M is a module of constant (r, j) radical rank if the dimension of Rad^j(M↓_ϵ) is independent of ϵ ∈ 𝔼(r, 𝔅).
- M is a module of constant (r, j) socle rank if the dimension of Soc^j(M↓_ϵ) is independent of ϵ ∈ 𝔼(r,𝔅).

Take r = 1, and let $j = 1, ..., p - 1 \rightsquigarrow$ modules of CJT. For r > 1 the conditions of constant socle and constant radical rank are independent.

Constant rank modules Construction Vector bundles Examples

Representations of $\mathfrak{g} \Rightarrow$ coherent sheaves on $\mathbb{E}(r, \mathfrak{g})$.

We replace the operator Θ for r = 1 with a vector $(\Theta_1, \ldots, \Theta_r)$. Two (equivalent) constructions:

(1) Via patching local constructions on an affine covering of $\mathbb{E}(r, \mathfrak{g})$.

(2) Via equivariant descent, using

$$\Theta_i: M \otimes k[\mathcal{N}_p^r(\mathfrak{g})] \to M \otimes k[\mathcal{N}_p^r(\mathfrak{g})][1]$$

for i = 1, ..., r where $\mathcal{N}_p^r(\mathfrak{g})$ is the variety of *p*-nilpotent commuting elements of \mathfrak{g} .

イロト イポト イラト イラト

Constant rank modules Construction Vector bundles Examples

Theorem (Carlson-Friedlander-P.)

There exist functors

 $\mathcal{I}m^{j}, \mathcal{K}er^{j}: \mathfrak{u}(\mathfrak{g}) - \mathrm{mod} \to \mathsf{Coh}(\mathbb{E}(r, \mathfrak{g}))$

such that the fiber of $\mathcal{I}m^{j}(M)$ (resp. $\mathcal{K}er^{j}(M)$) for a restricted $\mathfrak{u}(\mathfrak{g})$ -module M at a generic point $\epsilon \in \mathbb{E}(r,\mathfrak{g})$ is naturally identified with $\operatorname{Rad}^{j}(M \downarrow_{\epsilon})$ (resp. $\operatorname{Soc}^{j}(M \downarrow_{\epsilon})$).

- 4 同 6 4 日 6 4 日 6

Constant rank modules Construction Vector bundles Examples

Theorem (Carlson-Friedlander-P.)

There exist functors

 $\mathcal{I}m^{j}, \mathcal{K}er^{j}: \mathfrak{u}(\mathfrak{g}) - \mathrm{mod} \to \mathsf{Coh}(\mathbb{E}(r, \mathfrak{g}))$

such that the fiber of $\mathcal{I}m^{j}(M)$ (resp. $\mathcal{K}er^{j}(M)$) for a restricted $\mathfrak{u}(\mathfrak{g})$ -module M at a generic point $\epsilon \in \mathbb{E}(r,\mathfrak{g})$ is naturally identified with $\operatorname{Rad}^{j}(M \downarrow_{\epsilon})$ (resp. $\operatorname{Soc}^{j}(M \downarrow_{\epsilon})$).

- M a g-module of constant (r, j) radical rank \Rightarrow $\mathcal{I}m^{j}(M)$ is an *algebraic vector bundle* on $\mathbb{E}(r, \mathfrak{g})$ with fiber at $\epsilon \in \mathbb{E}(r, \mathfrak{g})$ naturally isomorphic to $\operatorname{Rad}^{j}(M \downarrow_{\epsilon})$
- M a g-module of constant (r, j) socle rank \Rightarrow $\mathcal{K}er^{j}(M)$ is an *algebraic vector bundle* on $\mathbb{E}(r, \mathfrak{g})$ with fiber at $\epsilon \in \mathbb{E}_{r}(\mathfrak{g})$ naturally isomorphic to $\operatorname{Soc}^{j}(M \downarrow_{\epsilon})$

Constant rank modules Construction Vector bundles Examples

Examples

 $\mathfrak{g} = \mathfrak{sl}_{2n}$ (resp. \mathfrak{sp}_{2n}), V - standard representation of \mathfrak{g} . $X = \mathbb{E}(n^2, \mathfrak{g}) = \mathrm{Grass}_n(V)$ (resp. $\mathbb{E}(\binom{n+1}{2}, \mathfrak{g}) = \mathrm{LG}_n(V)$). γ_n - tautological rank n bundle on X.

Constant rank modules Construction Vector bundles Examples

Examples

- $\mathfrak{g} = \mathfrak{sl}_{2n}$ (resp. \mathfrak{sp}_{2n}), V standard representation of \mathfrak{g} . $X = \mathbb{E}(n^2, \mathfrak{g}) = \mathrm{Grass}_n(V)$ (resp. $\mathbb{E}(\binom{n+1}{2}, \mathfrak{g}) = \mathrm{LG}_n(V)$). γ_n - tautological rank n bundle on X.

For any $m \le n$, **2** $\mathcal{I}m^m(V^{\otimes m}) \simeq \gamma_n^{\otimes m}$, **3** $\mathcal{I}m^m(S^m(V)) \simeq S^m(\gamma_n)$, **4** $\mathcal{I}m^m(\Lambda^m(V)) \simeq \Lambda^m(\gamma_n)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Constant rank modules Construction Vector bundles Examples

Tangent and cotangent bundles

 $\mathfrak{g} = \mathfrak{sl}_{2n}$ (or $\mathfrak{g} = \mathfrak{sp}_{2n}$). Consider \mathfrak{g} acting as an adjoint representation on itself.

 $X = \mathbb{E}(n^2, \mathfrak{sl}_{2n}) \simeq \operatorname{Grass}_{n,2n}$ (or $X = \mathbb{E}(\binom{n+1}{2}, \mathfrak{sp}_{2n}) \simeq \operatorname{LG}_{n,2n}$).

- Coker $(\mathfrak{g}) \simeq T_X$
- $\ 2 \ \ \mathcal{I}m^2(\mathfrak{g}) \simeq \Omega_X$

For a simple algebraic group G we can make analogous definitions and calculations for bundles on homogeneous spaces associated with cominuscule parabolics by considering G-orbits of $\mathbb{E}(r, \mathfrak{g})$.

イロト イポト イラト イラト

Constant rank modules Construction Vector bundles Examples

Tangent and cotangent bundles

 $\mathfrak{g} = \mathfrak{sl}_{2n}$ (or $\mathfrak{g} = \mathfrak{sp}_{2n}$). Consider \mathfrak{g} acting as an adjoint representation on itself.

 $X = \mathbb{E}(n^2, \mathfrak{sl}_{2n}) \simeq \mathrm{Grass}_{n,2n} \text{ (or } X = \mathbb{E}(\binom{n+1}{2}, \mathfrak{sp}_{2n}) \simeq \mathrm{LG}_{n,2n}).$

- Coker $(\mathfrak{g}) \simeq T_X$
- $\ 2 \ \ \mathcal{I}m^2(\mathfrak{g}) \simeq \Omega_X$

For a simple algebraic group G we can make analogous definitions and calculations for bundles on homogeneous spaces associated with cominuscule parabolics by considering G-orbits of $\mathbb{E}(r, \mathfrak{g})$. **Challenge:** Come up with interesting representations of constant radical/socle rank (e.g., constant Jordan type) to exhibit interesting "new" vector bundles on homogeneous spaces.

ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Constant rank modules Construction Vector bundles Examples

THANK YOU

Julia Pevtsova, Seattle, USA Elementary subalgebras of modular Lie algebras

<ロ> <部> < 部> < き> < き> <</p>

3