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If F is a field with a (Krull) valuation, then the filtration of F induced by the

valuation yields an associated graded ring, which is a graded field. Conversely, if R

is a graded field with totally ordered grade group, then R is an integral domain and

there is a canonically associated valuation on the quotient field of R. The processes

of passing from valued field to graded field and vice versa are not quite inverses of

each other, but many properties in one setting are well-reflected in the other.

The goal of this paper is to describe an algebraic extension theory for graded

fields analogous to what is known for valued fields, and then to spell out the cor-

respondence between tame extensions of graded fields and Henselian valued fields.

This has the benefit that graded fields are easier to work with for many purposes
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than valued fields. But beyond this, there is a similar correspondence between

graded division rings and valued division rings, where the graded objects seem to

be significantly easier to work with than the valued objects. We first learned of this

correspondence from a paper by M. Boulagouaz [B2]. The correspondence for divi-

sion rings is actually far more extensive than what was described by Boulagouaz,

and we pursue that subject in a sequel to this paper [HW]. The choice of topics to

treat here was influenced by the needs of the study of division rings. But, we feel

that the commutative theory presented here is of interest in its own right.

§1 Graded fields (with totally ordered grade group)

Let
���

, +) be an abelian group and let R = ����� R
�

be a graded ring with

respect to
�

(i.e., R is a ring with 1, such that R
�

· R �
	 R
�
+� for all � , �� ����� We

set �
R = supp(R) = {�� � | R

���
= (0)}.

Also, let Rh = ����� R
�
, the set of homogeneous elements of R. If r  R

�
, r
�
= 0, we

write deg(r) = � .

The graded ring R is said to be a graded field if R is commutative with 1
�
= 0

and every nonzero homogeneous element of R is a unit. When this occurs,
�

R is

a subgroup of
���

and we call it the grade group of R. We will be interested exclu-

sively in the case where
�

R is totally ordered. We adopt as a standing hypothesis

throughout the paper that all the graded fields R we consider are equipped with a

total ordering on
�

R. (But, note that any torsion-free abelian group admits a total

ordering. Therefore, all the results in §§1-3 below on extensions of graded fields hold

if we merely assume that
�

R is torsion-free abelian. Only when we wish to build

a valuation ring on the quotient field of R will we need to specify an ordering on�
R.) A graded isomorphism R � R� of graded fields consists of an order-preserving

group isomorphism � :
�

R � �
R � and a ring isomorphism � : R � R� such that

� (R
�
) = R� � ( � ) for all �� � R. When such a graded isomorphism exists, we write

R �=g R� .
It follows from the total ordering of

�
R that a graded field R is an integral

domain and that its group of units R � = Rh − {0}. Let

QR = quotient field of R.

Since
�

R is totally ordered, it is a torsion-free abelian group, and we set

�
R = Q  Z

�
R, the divisible hull of

�
R.



We identify
�

R with its isomorphic image in
�

R (�"! 1  �� ). The total ordering

on
�

R extends uniquely to a total ordering on
�

R. Moreover, if # is any torsion-

free abelian group containing
�

R as a subgroup with # /
�

R torsion, then there is

a unique monomorphism #$� �
R extending the embedding

�
R % � �

R. We will

thus routinely view any such # as a subgroup of
�

R. The ordering on
�

R extends

uniquely to an ordering on # �
Since R is a graded field, it is clear that R0 is a field and each R

�
is a 1-

dimensional vector space over R0. For each �& � R, fix some nonzero t
�  R

�
.

Then for each � , �� � R there is c
�(' �) R �0, such that t

�
t � = c

�*' � t� + � . We call

{c
�(' � | � , �+ � R} a family of structure constants of R. The commutativity and

associativity of R imply

c
�*' � = c� ' � and c

�(' � c� + � ' , = c � ' , c�*' � +, for all � , � , -. � R. (1.1)

Conversely, it is clear that given any field F , any totally ordered abelian group
�/�

and any function
�

×
� � F � ((� , � ) 0� c

�(' � ) satisfying the conditions in (1.1), there

is a graded field R with R0 = F ,
�

R =
���

and structure constants given by the

specified function.

We say that a graded field R is of group-ring type if there is a family of structure

constants of R with c
�(' � = 1 for all � , �
 � R. Clearly, R is of group-ring type 132 R

is isomorphic (as a graded ring) to the group ring R0 4 �657�
Proposition 1.1. A graded field R is of group-ring type 8 9 the canonical short

exact sequence of abelian groups

0 � R �0 � R � � �
R � 0

is split exact.

Proof. Clearly, the exact sequence splits 1 2 there is a family {t
�

| �� � R} with

each t
�  R

�
− {0} and t

�
t� = t

�
+� . This is exactly what is needed so that the

structure constants relative to {t
�
} will all be 1. :

Prop. 1.1 shows that if
�

R �= Z, or
�

R is any free abelian group, then the

graded field R is of group-ring type (and hence determined up to isomorphism by

R0 and
�

R). But, not every graded field is of group-ring type, as the following

example shows.

Example 1.2. A graded field R with R0 = Q and
�

R = Z 1
2 , and R not of

group-ring type. Let t be an indeterminate, and let A = Q[t, t−1], the Laurent



polynomial ring in t over the rational numbers Q. This A is the group ring Q[Z],

so a graded field, with
�

A = Z and Ai = Qti, i  Z. Let p be any prime number.

In an algebraic closure of the quotient field of A, there are y1, y2, . . . satisfying

y2
1 = pt, y2

2 = p2y1, y2
3 = p4y2, . . . , y2

i = p2i−1

yi−1, . . . . Let B1 = A[y1], B2 =

B1[y2], . . . , Bi = Bi−1[yi], . . . , and let R =

;
i=1

Bi. Note that, as an A-module,

B1 = A < y1A, and B1 is a graded field with (B1)0 = Q,
�

B1
= 1

2
Z, and for j  Z,

(B1)j/2 = Qyj
1. Also, the gradings on A and B1 are compatible, so A is a graded

subfield of B1. Proceeding inductively, we have for each i, Bi = Bi−1 < Bi−1yi, Bi is

a graded field with (Bi)0 = Q,
�

Bi
= 2−iZ, (Bi)j/2i = Qyj

i for all j  Z, and Bi−1 is

a graded subfield of Bi. Hence, R is a graded field with R0 = Q and
�

R = Z 1
2

(the

additive group of the ring Z 1
2 , with the usual ordering). If R were of group-ring

type, then there would exist nonzero s1  R1 = Qt and s2−i  R2−i = Qyi such

that (s2−i)2
i

= s1, for all integers i > 0. However, observe that y2i

i = p(4i
−1)/3t.

Hence, s1 
;

i=1

(R2−i)2
i

=

;
i=1

Q2i

p(4i
−1)/3t = (0), a contradiction. Hence, R is not

of group-ring type.

Corollary 1.3. Let R be a graded field. Then R is integrally closed, and R0 is

algebraically closed in QR.

Proof. If R were not integrally closed, this would be detected by an equation

involving only finitely many elements of R, hence only finitely many homogeneous

elements. Thus, there is a finitely generated subgroup # of
�

R such that for the

graded subfield A = R|= = > � = R
>

of R, A is not integrally closed. Note that�
A = # and A0 = R0. As # is finitely generated and torsion-free, # �= Zn for some

n. So, Prop. 1.1 shows A �= A0 4 # 5 �= A0[x1, x
−1
1 , . . . , xn, x−1

n ], where x1, . . . , xn are

independent indeterminates. Since A is a localization of a polynomial ring over a

field, A is integrally closed, a contradiction. Hence, R must be integrally closed.

That R0 is algebraically closed in QR is proved in the same way, as R0 = A0, which

is algebraically closed in the rational function field QA �= R0(x1, . . . , xn). :
Let R be a graded field. By a graded R-module, we mean an R-module M such

that M has a direct sum decomposition as abelian groups M =
µ

���
M

Mµ, where�
R acts freely on the set

�
M , and for �? � R, µ  � M , we have R

�
· Mµ 	 M

�
+µ.

(Here � + µ denotes the image of µ under the action of � .) There is no group

structure assumed on
�

M . That
�

R acts freely on
�

M means that for all � , �@ � R,

µ  � M , we have � + µ
�
= � + µ whenever � �= � . Observe that every graded

module M over any graded field R is a free R-module, with a homogeneous base.



Indeed, any maximal R-linearly independent homogeneous subset of M is a base

(cf. [B1, Th. 3]). We write dimR(M) for the rank of M as a free R-module. Note

that if N is any graded R-submodule of M then, as M/N is a graded, hence free,

R-module, we have M �= N < (M/N); so dimR(M) = dimR(N) + dimR(M/N). In

particular, if N is a proper graded R-submodule of M and dimR(M) < A then

dimR(N) < dimR(M).

§2 Graded algebraic extensions of graded fields

Let R 	 S be graded fields (i.e., R is a graded subfield of S). We set

[S : R] = dimR(S).

Clearly, R0 is a subfield of S0,
�

R is a subgroup of
�

S , and QR is a subfield of QS.

The following proposition is easy but important.

Proposition 2.1. (cf. [B2, p. 4278]) Let R 	 S be graded fields with [S : R] < A .

Then,

[S : R] = [S0 : R0]|
�

S :
�

R| = [QS : QR],

and QS �= QR  R S.

Proof. If {si}i

�
I is an R0-base of S0, and {tj}j

�
J 	 S � with {deg(tj)} a set

of representatives for the cosets of
�

R in
�

S . It is easy to check that {sitj} is

an R-base of S. This gives the first formula for [S : R], and the second follows

from QS �= QR  R S. This isomorphism holds as S is an integral domain finitely

generated as an R-module; so S (a torsion-free R-module) embeds in its localization

QR  R S which is a field, since it is an integral domain finite-dimensional over the

field QR. :
We will want to consider infinite degree extensions of graded fields which are

algebraic in an appropriate sense. For this, we first look at gradings on the poly-

nomial ring R[x] over a graded field R. For any �@ � R, there is a unique grading

on R[x] extending that on R, such that x  R[x] � . We call this the � -grading of

R[x]. An f  R[x] is said to be homogenizable if there is �+ � R such that f is

homogeneous with respect to the � -grading of R[x] (cf. [B1, §3], [vGvO, p. 274]).

The following proposition is essentially in [vGvO, pp. 274–276] for
�

R �= Z.

Proposition 2.2. Let R be a graded field which is a subring of the (ungraded) field

F . For any �) F , the following are equivalent:

(i) � is algebraic over QR, the minimal polynomial of � over QR, denoted

mB�C ' � , lies in R[x] and m B/C ' � is homogenizable.



(ii) R[ � ] is a graded field extension of R, with �D R[ � ]h and [R[ � ] : R] < A .

(iii) There is a graded field extension S of R, with R 	 S 	 F , [S : R] < A ,

and �D Sh.

Proof. (i) E (ii) Suppose � is algebraic over QR and that m B/C ' � lies in R[x] and is

homogeneous with respect to the � -grading on R[x], for some �� � R. Then (m B/C ' � )
is a homogeneous ideal R[x], so the ring R[x]/(m B/C ' � ) inherits a grading from

R[x] which extends the grading on R. The canonical evaluation homomorphism

R[x] � F given by f 0� f( � ) has image R[ � ] and kernel {f  R[x] | f( � ) = 0} =

(mB�C ' � QR[x]) F R[x] = m B/C ' � R[x]. (The last equality holds as m B�C ' � is monic in

R[x].) Hence, the isomorphism R[ � ] �= R[x]/(mB�C ' � ) allows us to define a grading

on R[ � ] extending that on R, with respect to which �D R[ � ]h since � is the image

of x  R[x]h. Also, [R( � ) : R] = [R[x]/(mB�C ' � ) : R] = deg(m B�C ' � ) < A . Because

R[ � ] is a graded integral domain (since it lies in F ), with [R[ � ] : R] < A , R[ � ] is

actually a graded field. (For, if �� R[ � ]h , � �= 0, then the map G6H : R[ � ] � R[ � ]
given by c 0�I� c is an injective graded R-module homomorphism. Then, as im( G6H )
is a graded R-submodule of R[ � ] with dimR(im( GJH )) = [R( � ) : R] < A , so G6H is

surjective by dimension count. (See the remarks at the end of §1.) Hence �? R[ � ] � .
(ii) E (iii) Take S = R[ � ].
(iii) E (i) Assume �D Sh for a graded field S K R, with [S : R] < A . Then � is

integral over R, since [S : R] < A . So � is algebraic over QR, and mB�C ' �  R[x], as

R is integrally closed by Cor. 1.3. Write mB�C ' � = xn+cn−1x
n−1+. . .+c0. If we take

the n deg( � ) homogeneous component of the equation � n + cn−1 � n−1 + . . .+ c0, we

get another monic polynomial in � of degree n with coLNMPON1 L�Q ts in R, which equals 0.

The uniqueness of mB�C ' � assures that this polynomial must coincide with m B/C ' � .
Hence, each ci  R(n−i)deg(� ). So mB�C ' � is homogeneous for the deg( � )-grading of

R[x], and deg( � ) = 1
ndeg(c0)  � R. :

Definition 2.3. An � satisfying the equivalent conditions of Prop. 2.2 is said to

be gr-algebraic over the graded field R. For a graded field extension S of R, we say

S is gr-algebraic over R if each �R Sh is gr-algebraic over R. (In particular, by

Prop. 2.2, if [S : R] < A , then S is gr-algebraic over R.)

Corollary 2.4. Suppose � is gr-algebraic over a graded field R. Then,

(a) mB�C ' � determines deg( � ).
(b)

�
R[� ] = S deg( � ) T + � R.

(c) deg( � ) = 0 8 9 mB�C ' �  R0[x], 8 9U� is algebraic over R0.

(d) R[ � ]0 = R0 8 9V� m  R, where m is the order of the image of deg( � ) in



�
R/
�

R. This occurs 8 9 m B/C ' � = xn − d0, where d0  Rh and deg(d0) has

order n in
�

R/n
�

R. Then n = m = [R[ � ] : R].

Proof. (a) The proof of Prop. 2.2 shows deg( � ) = 1
ndeg(c0), where n = deg(mB�C ' � )

and c0 is the constant term of m B�C ' � . Part (b) holds since �W R[ � ]h. For (c), if

� is algebraic over R0, then �X R[ � ]0 by Cor. 1.3; the rest of (c) is clear from the

proof of Prop. 2.2.

(d) By (b), m = |
�

R[� ]/ � R|. If R[ � ]0 = R0, then R = �Y���
R

R[ � ] � , by

Prop. 2.1, since these graded fields have the same grade group and the same

degree 0 component. Since deg( � m)  �
R, this shows � m  R. Now, sup-

pose we just know � m  R. Let c0 = � m, so mB�C ' � | (xm − c0). But, using

Prop. 2.1, deg(xm − c0) = m = |
�

R[ � ]/ � R| Z [QR( � ) : QR] = deg(m B/C ' � ). Hence,

mB�C ' � = xm −c0. Since deg( � ) has order m in
�

R/
�

R, we have deg(c0) = m deg( � )
has order m in

�
R/m

�
R. Now, suppose instead that mB�C ' � = xn − d0, where

d0  Rh and deg(d0) has order n in
�

R/n
�

R. Then 1
n
deg(d0) has order n in�

R/
�

R. But deg( � ) = 1
ndeg(d0). Hence, m = n. Since m = |

�
R[� ]/ � R| and

n = [R[ � ] : R], the equality m = n forces R[ � ]0 = R0, by Prop. 2.1. :
Corollary 2.5. Let R 	 S be graded fields with S gr-algebraic over R. Then,

(a) S is the integral closure of R in QS.

(b) QR F S = R.

(c) If �X S and a is gr-algebraic over R, then �X Sh.

(d) If [ is any QR-automorphism of QS, then [ (S) = S and [ |S : S � S is a

graded field isomorphism.

Proof. (a) S is integral over R by Prop. 2.2, and is integrally closed by Cor. 1.3.

(b) is immediate from (a), as R is integrally closed.

(c) By Prop. 2.2 there is a grading on R[x] with
�

R[x] 	 � R and x  R[x]h,

such that m B/C ' �  R[x]h. This grading extends (uniquely) to a grading on S[x]

which extends the grading on S. Since
�

S[x] 	 � S ,
�

S[x] is totally ordered. Hence,

the factor x − � of m B/C ' � in S[x] must be homogeneous, as m B/C ' �  S[x]h. So,

�D Sh.

(d) For any QR-automorphism [ of QS, we have [ (S) = S as S is the integral

closure of R in QS. Take any �\ Sh. Then mB�C ' ] ( � ) = mB�C ' � . Since � is gr-

algebraic over R, Prop. 2.2 shows [ ( � ) is also gr-algebraic over R. Then [ ( � )  Sh

by (c) above, and deg([ ( � )) = deg( � ) by Cor. 2.4(a). So the ring isomorphism [ |S
maps each homogeneous component of S onto itself. :



Corollary 2.6. Let R 	 S be graded fields, and let K be a field containing S. If

�D K is gr-algebraic over R, then � is gr-algebraic over S.

Proof. There is a grading on R[x] extending that on R with x  R[x]h, such that

m B�C ' �  R[x]h. This grading extends (uniquely) to a grading on S[x] extending

that on S, with
�

S[x] 	 � S . Since � is integral over S, we have mB�^ ' �  S[x]; then

m B�^ ' � | m B�C ' � in S[x], since this divisibility holds in QS[x], and m B/^ ' � is monic.

Since mB�C ' �  S[x]h and
�

S[x] is totally ordered, we must have m B�^ ' �  S[x]h.

Hence, � is gr-algebraic over S. :
The following corollary can now be proved just as in the ungraded case:

Corollary 2.7. Let R be a graded field which is a subring of the ungraded field F .

Then,

(a) If � 1, . . . , � n  F and each � i is gr-algebraic over F , then R[ � 1, . . . , � n] is

a graded field graded algebraic over R, with

[R[ � 1, . . . , � n] : R] Z n

i=1

[R[ � i] : R] < A .

(b) If S is a graded field, R 	 S 	 F , with S gr-algebraic over R, and if �X F

is gr-algebraic over S, then � is gr-algebraic over R.

(c) Let A = R[{ �_ F | � is gr-algebraic over R}]. Then A is a graded field

which is gr-algebraic over R, and for every graded field S with R 	 S 	 F

and S gr-algebraic over R, S is a graded subfield of A.

Definition 2.8. We call the A of Cor. 2.7(c) the graded algebraic closure of R in

F .

Note that even if F is algebraic over QR, the field QA may be a proper subfield

of F . The following example is given in [vGvO, Ex. 3.10.2]: Let R = K[t, t−1], where

K is any field of characteristic not 2, t is transcendental over K, and R is graded with

R0 = K,
�

R = Z, Ri = Kti; so QR = K(t). Let F = K(t)( ` t + 1). For �D F −QR

write � = r+s ` t + 1, with r, s  QR, s
�
= 0; so, m B�C ' � = x2−2rx+(r2−s2(t+1)).

If � is integral over R, then r, s  R, but then mB�C ' � is not homogenizable, since

its constant term is not homogeneous in R. The gr-algebraic closure of R in F is in

this case R itself.

Now, for any graded field R, let QRalg denote the algebraic closure of QR. Let

A be the graded algebraic closure of R in QRalg. It is clear that for any gr-algebraic

extension field S of R, S is graded R-isomorphic to a graded subfield of A. Also,



from Cor. 2.7(b) it follows easily that A0 �= R0alg and
�

A =
�

R. Also, QA is

normal over QR, since for each �X Ah, Prop. 2.2 and Cor. 2.4 show that each root

of m B/C ' � in QRalg actually lies in Ah. However, QA need not be Galois over QR.

We call A the gr-algebraic closure of R, denoted Rgr-alg.

§3. Unramified, totally ramified, and tame graded field extensions

We now look at some specific types of gr-algebraic extensions of graded fields.

Let R 	 S be graded fields with S gr-algebraic over R. The torsion group
�

S/
�

R is

called the ramification group of S over R, and |
�

S/
�

R| the ramification index of S

over R. We say S is totally ramified over R if S0 = R0. At the other extreme, we say

S is unramified over R if
�

S =
�

R and S0 is separable over R0. (This is analogous to

the terminology for extensions of valued fields.) Note that every graded extension

of graded fields R 	 S has a unique subextension A with
�

A =
�

R and S totally

ramified over A, namely A = S0  R0
R.

Remark 3.1. If
�

S =
�

R, then clearly S �=g S0  R0
R, and QS �= S0  R0

QR. For any

intermediate graded field A, R 	 A 	 S, necessarily
�

A =
�

R, so A �=g A0  R0
R.

Thus, there is a one-to-one correspondence between intermediate graded fields A,

R 	 A 	 S, and intermediate fields A0, R0 	 A0 	 S0. Further QS is separable

(resp. purely inseparable, resp. Galois) over QR 1 2 S0 is separable (resp. purely

inseparable, resp. Galois) over R0. For the Galois case, use Cor. 2.5; note that then

G(QS/QR) �= G(S0/R0).

For any graded field R and any subgroup # of
�

R, we write R|= for �Y� = R
�
, a

graded subfield of R.

Proposition 3.2. Let R 	 S be graded fields with S gr-algebraic over R. Suppose

S is totally ramified over R. Then,

(a) R = S|
�

R
.

(b) Every intermediate graded field A, R 	 A 	 S has the form A = S|= , where

# is a group,
�

R 	a#b	 � S. Thus, there is a one-to-one correspondence

between subgroups of
�

S/
�

R and intermediate graded fields.

(c) Suppose [S : R] = n < A , so
�

S/
�

R �= Z/t1Z×. . .×Z/tkZ with t1 . . . tk = n.

Pick any si  Sh − {0} with deg(si) mapping to a generator of the i-th

component in the given cyclic decomposition of
�

S/
�

R, 1 Z i Z k. Then,

sti

i  Rh, [R[si] : R] = ti, and S �=g R[s1]  R . . .  R R[sk ]. Likewise,

QS �= QR(s1)  QR . . .  QR QR(sk), with [QR(si) : QR] = ti and sti

i  QR.



Proof. (a) is clear since (S|
�

R
)0 = S0 = R0 and also S|

�
R

and R have the

same grade group. (b) is immediate from (a), since for R 	 A 	 S, S is to-

tally ramified over A, since it is totally ramified over R. For (c), take any si as

described in (c). Since tideg(si)  � R, we have sti

i  Stideg(si) = Rtideg(si) (see

(a)). Then [R[si] : R] = ti by Cor. 2.4(d). The graded ring homomorphism

- : R[si]  R . . .  R R[sk ] � S has image a graded subfield of S with
�

im(

,
) =

�
S .

Hence im(- ) = S by (b). Because [S : R] = ti . . . tn = dimR(R[s1]  R . . .  R R[sk ]),

- must be an isomorphism. The isomorphism for QS follows from this by Prop. 2.1.

:
The Galois case deserves special attention:

Proposition 3.3. Let R 	 S be graded fields with [S : R] < A and S totally

ramified over R. Let c be the exponent of
�

S/
�

R, and let µ d denote the group of all

c -th roots of unity in QRalg. Then,

(a) QS is Galois over QR 8 9 char(R0) [S : R] and µ de	 R0.

(b) When QS is Galois over QR, there is a (well-defined) perfect pairing

�
S/
�

R × G(QS/QR) � µ d
given by (� +

�
R, [ ) 0� f [ (a), for any a  Sh, a

�
= 0, with deg(a) = � .

Furthermore, QS is an c -Kummer extension of QR, and if B = {b  QS � |
b
d  QR � }, then B/QR �g�= � S/

�
R and there is a commutative diagram

�
S/
�

R × G(QS/QR) −−−−� µd
h
=

B/QR � × G(QS/QR) −−−−� µd
with the lower row the perfect Kummer pairing, given by (b QR � , [ ) 0�iNj [ (b).

Proof. (a) From the description of QS in Prop. 3.2(c) as a radical extension of

QR, it is clear that QS is separable over QR 1 2 char(R0) [S : R]; further, as

c = lcm(t, . . . , tk) for the ti of Prop. 3.2(c), QS is Galois over QR 132 additionally

QR contains the required roots of unity, i.e., µdk	 QR. When this occurs, µ dk	 R0

by Cor. 1.3, since µ d is algebraic over R0. Also, QS is clearly an c -Kummer extension

of QR.

For (b) assume now that QS is Galois over QR. It is easy to check that the

map
�

S/
�

R × G(QS/QR) � µd is a well-defined pairing of finite abelian groups.



Also, there is a well-defined group homomorphism � :
�

S/
�

R � B/QR � given by

� +
�

R 0� a QR � for any a  S
�
, a

�
= 0. This � is clearly injective, and is an

isomorphism since |
�

S/
�

R| = [S : R] = [QS : QR] = |B/QR � |, the last equality

given by Kummer theory. The diagram of the proposition is clearly commutative,

and its vertical lines are isomorphisms. Since the bottom row of the diagram is the

perfect pairing of Kummer theory, the top row must also be a perfect pairing. :
The graded analogue to a tamely ramified extension of a valued field is of

particular interest here.

Definition 3.4. Let R 	 S be graded fields with S gr-algebraic over R. Then S

is said to be tame over R if char(R0) = 0 or char(R0) = p
�
= 0 and S0 is separable

over R0 and
�

S/
�

R has no p-torsion.

Clearly, for graded fields R 	 A 	 S, S is tame over R 1 2 S is tame over A

and A is tame over R.

Proposition 3.5. (cf. [B1, Th. 4]) Let R 	 S be a gr-algebraic extension of graded

fields. Then S is tame over R 8 9 QS is separable over QR.

Proof. Since this is clear if char(R0) = 0, assume char(R0) = p
�
= 0. Let I =

S0  R0
R. Since QI �= S0  R0

QR, I0 = S0, and
�

I =
�

R, we have I is tame over

R 1 2 I0 is separable over R0 132 QI is separable over QR. Since S is totally ramified

over I , Prop. 3.2 shows that for every finite degree subextension S � of S, QS � is a

radical extension of QI obtained by adjoining ti-th roots of homogeneous elements

of I , where lcm({ti}) = exp
���

S � / � I). Thus, QS is separable over QI 1 2 each QS �
is separable over QI 1 2 each

�
S � / � I has no p-torsion 1 2 � S/

�
I has no p-torsion 132

S is tame over I . The transitivity of tameness and of separable field extensions

completes the proof. :
Lemma 3.6. Let R 	 S be a graded algebraic extension of graded fields with

char(R0) = p. There is no proper tame extension of R in S 8 9 S0 is purely insepa-

rable over R0 and
�

S/
�

R is a p-primary torsion group, 8 9 QS is purely inseparable

over QR.

Proof. In the first equivalence, l is clear. For E , suppose R has no proper tame

extension in S. Let A0 be the separable closure of R0 in S0. Since A0  R0
R is a

tame extension of R in S, we must have A0 = R0, so S0 is purely inseparable over

R0. Suppose
�

S/
�

R is not p-primary. Then, there is �� � S −
�

R with image of

order n in
�

S/
�

R, where p n. Take any s  S
�
, s
�
= 0. Then deg(sn)  � R, so if



we take any r  R m � , r
�
= 0, we have sn/r  S0. Because S0 is purely inseparable

over R0, (sn/r)pk  R0 for some k. So, (spk

)n = (sn/r)pk

rpk  Rpk m � . Since

deg(spk

) = pk � , which has order n in
�

S/
�

R, R[spk

] is a proper tame and totally

ramified extension of R, by Cor. 2.4(b) and (d), a contradiction. Hence,
�

S/
�

R

must be p-primary. This proves the first equivalence.

Let A = S0  R0
R. Then, QA is purely inseparable over QR 1 2 S0 is purely

inseparable over R0 (see Remark 3.1). Also, as S is totally ramified over A and�
A =

�
R, QS is purely inseparable over QA 1 2 � S/

�
R is p-primary torsion, as QS

is built from QA by radical extensions of degrees the orders of elements in
�

S/
�

R,

by Prop. 3.2(a). :
Proposition 3.7. Let R 	 S be a gr-algebraic extension of graded fields. Let

T = L F S, where L is the separable closure of QR in QS. Then T is a graded field

gr-algebraic and tame over R. Also, for any graded field A with R 	 A 	 S, A is

tame over R 8 9 A 	 T .

Proof. Let U be a maximal tame graded field extension of R in S. Such a U

exists by Zorn’s Lemma, using the transitivity of the property of tameness. Then

QU is separable over QR, by Prop. 3.5, and QS is purely inseparable over QU by

Lemma 3.6. Hence, QU = L, so that by Cor. 2.5(b), U = QU F S = L F S = T .

This shows T is a graded field tame over R. Also, QT = QU = L. If A is any

graded field, R 	 A 	 S and A is tame over R, then QA is separable over QR by

Prop. 3.5. Hence, by Cor. 2.5(b) again, A = QA F S 	 L F S = T . Conversely, if

A 	 T , then A is tame over R, since T is tame over R. :
Definition 3.8. The T of Prop. 3.7 is called the tame closure of R in S. Note that

by Lemma 3.6, T0 is the separable closure of R0 in S0, and (if char(R0) = p
�
= 0)�

T/
�

R is the prime-to-p part of
�

S/
�

R. Also, QT is the separable closure of QR

in QS, as we saw in the proof of Prop. 3.7.

Theorem 3.9. Let R be a graded field. Let T be the tame closure of R in Rgr-alg.

Then,

(a) QT is the separable closure of QR in Q(Rgr-alg), so QT is Galois over QR.

(b) There is a one-to-one correspondence between the graded fields A such that

R 	 A 	 Rgr-alg with A tame over R and the fields L with QR 	 L 	 QT .

(The correspondence is given by A 0� QA and L 0� T F L.)

Proof. (a) Since Q(Rgr-alg) is normal over QR, as noted after Definition 2.8, and

QT is the separable closure of QR in Q(Rgr-alg), QT is Galois over QR (typically



of infinite degree).

(b) If A is a graded field with R 	 A 	 Rgr-alg and A tame over R, then A 	 T

by Prop. 3.7, so QA 	 QT and A = T F QA, by Cor. 2.5(b). On the other hand,

let L be any field with QR 	 L 	 QT . So QT is Galois over L. Let H = G(QT/L).

By Cor. 2.5(d), each [X H maps T to T by a graded field isomorphism. Hence, as

T F L = TH , the H-fixed points of T , T F L is a graded integral domain, which is a

graded field, since it is gr-algebraic over R. For any cn L, since c is algebraic over

QR, there is r  R, r
�
= 0 with rc integral over R. Then, as T is the integral closure

of R in QT , rco T F L. This shows L = Q(T F L), which proves the one-to-one

correspondence asserted in the Theorem. :
Note one somewhat surprising consequence of the theorem just proved: If t  T ,

then QR(t) F T is a graded field containing t, so all the homogeneous components

of t lie in QR(t). This requires the tameness of R[t] over R, as the next example

illustrates:

Example 3.10. Let R0 be a field, char(R0) = p
�
= 0, and let R = R0[s, t, s

−1, t−1],

where s and t are algebraically independent over R0. Then R is a graded field

with deg(s) = (1, 0) and deg(t) = (0, 1) in
�

R = Z × Z, and QR is the rational

function field R0(s, t). Let S = R[
p` s,

p` t], which is a totally ramified but not a

tame gr-algebraic graded field extension of R. Let u =
p` s +

p` t =
p` s + t  S.

Then,
p` s,

p` t / QR(u), since otherwise QR(u) = QS. This cannot occur, as

[QR(u) : QR] = p while [QS : QR] = p2. Here, QR(u) F S is not a graded subring

of S since it contains u but not its homogeneous components
p` s and

p` t. In fact,

the kind of one-to-one correspondence described in the theorem for the tame case

fails dramatically here, since there are infinitely many fields L with QR 	 L 	 QS,

but by Prop. 3.2(b) there are only finitely many graded fields A with R 	 A 	 S.

Theorem 3.11. Let R 	 S be graded fields with [S : R] < A . Then,

(a) S is separable over R 8 9 S is tame over R 8 9 QS is separable over QR.

(b) S is Galois over R 8 9 QS is Galois over QR. When this occurs, G(S/R) �=
G(QS/QR).

(c) If S is separable over R, there is a graded field A K S with [A : S] < A and

A Galois over R.

Proof. (b) If S is Galois over R, with group N , then by base extension (cf. [G,

p. 5, Lemma 1.11]) QS is Galois over QR, as QS �= QR  R S by Prop. 2.1. Also,

the general base extension result shows G(QS/QR) �= N . Conversely, suppose QS

is Galois over QR. Let G = G(QS/QR). By Cor. 2.5, each [U G restricts to



a graded automorphism of S. Furthermore, SG = S F QR = R by Cor. 2.5(b).

For [p G, [ �= idQS there is t  Sh, t
�
= 0 with [ (t) �= t. Since [ preserves

degrees [ (t) − t  Sh − {0} = S � . So, there is no maximal ideal M of S containing

{[ (s) − s | s  S}. This together with SG = R shows that S is Galois over R with

respect to G, by [CHR, Th. 1.3] or [G, pp. 2–3, Th. 1.6].

(a) and (c) Now, assume QS is separable over QR. Then S is tame over R

by Prop. 3.5, so we can assume S lies in the tame closure T of R in Rgr-alg. Since

QT is Galois over QR by Th. 3.9, the normal closure L of QS over QR lies in QT .

Furthermore, L is Galois over QR and [L : QR] < A . Let A = T F L, which is a

graded subfield of T with QA = L, by Th. 3.9, and [A : R] = [L : QR] < A by

Prop. 2.1. So, A is Galois over R with respect to (the restriction to A of) G(L/QR),

as we just proved. Let H = G(L/QS) 	 G(L/QR). Since AH = A F QS = S by

Cor. 2.5(b), S is separable over R by [CHR, Th. 2.2] or [G, p. 7, Th. 2.2]. On the

other hand, if S is separable over R, then QS �= QR  R S is separable over QR as

separability is preserved under base extension. By Prop. 3.5 this is equivalent to S

being tame over R. This yields (a), and also (c) along the way. :

§4. Tame extensions of valued fields

We now recall some facts about tame extensions of valued fields, which will

be needed for our comparison of valued fields and graded fields in the next section.

Everything we mention in this section is known, but a concise summary seems

worthwhile.

Let F be a field,
�

a totally ordered abelian group, and v : F � � �
a (Krull)

valuation on F . (That is, (i) v( �6� ) = v( � )+v(� ), and (ii) v( � +� ) q min(v( � ), v(� ))

for all ��rs�t F � (with � �= − � in (ii)).) Let
�

F = im(v), the value group of v; let VF

be the valuation ring of v; MF the unique maximal ideal of VF ; and F = VF /MF , the

residue field of v. The indexing by F will cause no confusion, because we will never

consider more than one valuation at a time on any given field. Let p = char(F ).

Now, let F 	 K be fields with K algebraic over F , and let v be a valuation

on F which has a unique extension (also called v) to K. If [K : F ] < A , we say

K is tame over F (with respect to v) if K is separable over F , p |
�

K :
�

F |, and

[K : F ] = [K : F ]|
�

K :
�

F |. In the terminology of Endler [E, pp. 178-180], K is

tamely ramified and defectless over F . If [K : F ] = A , we say that K is tame over

F if for every field L with F 	 L 	 K and [L : F ] < A we have L is tame over F

(with respect to the restriction of v from K to L). Recall that if K is tame over F ,



then K is separable over F . This follows at once from the fact that if L is purely

inseparable over F , then L is purely inseparable over F and
�

L/
�

F is a p-group (cf.

[E, Ex. III-6, pp. 228-229]). Note also that if [K : F ] < A and N is any field with

F 	 N 	 K, then K is tame over F 1 2 N is tame over F and K is tame over N .

This is immediate from the fundamental inequality [E, (13.10)].

Still assuming v has a unique extension from F to K, suppose [K : F ] < A
and K is Galois over F . Let G be the Galois group G(K/F ). Let GV = { uX G |
u (c)/c  MK for all c  K � } the ramification subgroup (= Verzweigungsgruppe) of

v, and let FV be the fixed field KGV

, which is called the ramification field of K over

F . Then it is known (cf. [E, (20.11), (19.12), (20.20), (19.14)]) that GV is a p-group

(if p = 0 this means |GV | = 1), GV is a normal subgroup of G, so FV is Galois over

F , and that FV is tame over F (since FV is tame over the inertia field FT and FT

is tame over F ), and that K purely inseparable over FV and
�

K/
�

F V is a p-group

(so
�

F V =
�

K if p = 0). Hence, FV can have no proper tame extension in K, so

FV is a maximal tame extension of F in K. For any field L with F 	 L 	 K, let H

be the corresponding group G(K/L). Since HV = GV F H , we have LV = L · FV .

If L is tame over F , then LV is also tame over F , by the transitivity of tameness,

so LV = FV , and hence L 	 FV . Thus, FV is the unique maximal tame extension

of F , and an intermediate field L is tame over F 1 2 L 	 FV . It follows that if

intermediate fields L1, L2 are each tame over F , then L1 · L2 is tame over F . Thus,

if N is any intermediate field, then there is a unique maximal tame extension N0

of F inside N , and we have N0 = FV F N . We call N0 the tame closure of F in N .

All of the preceding paragraph extends readily to the case of infinite degree

algebraic extensions (see [E, (20.12), (20.17), (20.18) ]) and leads to the following

in the Henselian case:

Suppose F is a field with a Henselian valuation v. We work in some fixed

algebraic closure Falg of F . That v is Henselian means that there is a unique

extension of v to Falg.

Proposition 4.1. Suppose a field F has a Henselian valuation v. Then,

(a) There is a unique maximal tame extension Ft of F in Falg, and Ft is the

compositum of all the finite degree tame extensions of F in Falg.

(b) Ft = (F )sep,
�

Ft
=
�

F  Z Z(p) (if p = 0, then
�

Ft
=
�

F  Z Q).

(c) For any field L, F 	 L 	 Falg, we have L is tame over F 8 9 L 	 Ft.

(d) For any field N , F 	 N 	 Falg, we have Nt = Ft · N , and N F Ft is the

unique maximal tame extension of F in N .



Proof. Since any tame extension of F is separable over F , this follows easily from

the preceding discussion, when we take Ft = FV , the ramification field with respect

to the (usually infinite degree) Galois extension Fsep over F , where Fsep is the

separable closure of F in Falg. :
Definition 4.2. We call the Ft of Prop. 4.1 the tame closure of F and N F Ft the

tame closure of F in N . Note that N F Ft is the separable closure of F in N , and�
N v Ft

/
�

F is the prime-to-p part of
�

N/
�

F . Also, [N : N F Ft] is a power of p

(N = N F Ft if p = 0).

§5 Correspondence between graded fields and valued fields

We now recall how valued fields can be obtained from graded fields, and vice

versa. We will then prove correspondences for the tame extensions of each kind of

field.

Let R = �Y���
R

R
�

be a graded field (with
�

R totally ordered, as we are always

assuming). Define a function v : R − {0} � �
R by

v � r
�

= the least � such that r � �= 0.

So, for a, a�w R − {0}, we clearly have

(i) v(aa� ) = v(a) + v(a� );
(ii) v(a + a� ) q min(v(a), v(a� )), if a� �= −a.

This function v extends canonically to a function v : QR − {0} � �
R by v(rs−1) =

v(r)−v(s), for r, s  R−{0}. Property (i) shows that v is well-defined on QR−{0}.

Properties (i) and (ii) hold for all a, a�  QR−{0}. Thus v is a valuation on QR, for

which clearly
�

QR =
�

R. Also, for the residue field, QR = R0. For, the canonical

injection R0 � QR is onto, since if v(rs−1) = 0, then v(r) = v(s), so r = r
�
+

higher degree terms, s = s
�

+ higher degree terms, for � = v(r) = v(s)), yielding

rs−1 = r
�
s−1
�  im(R0).

Let HR denote the Henselization of QR with respect to v (see, e.g. [E, p. 131]

for the Henselization of a valued field). If S is a gr-algebraic extension graded field of

R, then QS K QR canonically, and while HS is determined only up to isomorphism

in QSalg, we will assume HS has been chosen to be QS · HR.

Now, suppose instead we start with a field F with a valuation v on F . For each



�� � F , define

W

�
= {c  F � | v(c) q"� } x {0}

W y � = {c  F � | v(c) > � } x {0}.

Then set R
�

= W

�
/W y � . Define multiplication R

�
× R �z� R

�
+� by, for a  W

�
and b  W

�
: (a + W y � ) · (b + W y � ) = ab + W y � + � . This is well-defined, and

extends to a multiplication on all of �Y���
F

R
�
, making it a graded field. We denote

this graded field by GF . Clearly,
�

GF =
�

F and GF0 = F . Note that if K is a field

with a valuation extending v on F , then GK is a graded field extension of GF .

If we start with a graded field R, and build the valuation on QR as described

above, then form the associated graded field GQR, then GQR �=g R, canonically.

For, each R
�

maps bijectively onto (GQR)
�
. Likewise, GHR �=g R canonically. On

the other hand, if we start with a valued field F , we need not have QGF �= F , nor

HGF �= F , even if the valuation on F is Henselian. (For example, char(QGF ) =

char(F ), which need not equal char(F ). Also, if F and
�

F are countable, then QGF

is countable, though F might be uncountable.)

Proposition 5.1. Let R be a graded field, and let S be the tame closure of R

in Rgr-alg. Then HS is the maximal tame extension of HR, and G(HS/HR) �=
G(QS/QR). Hence, there are one-to-one correspondences

tame gr-algebraic graded field extensions of R in Rgr-alg

! field extensions of QR in QS

! tame field extensions of HR in (HR)alg.

Proof. Let T be a graded field with R 	 T 	 S and [T : R] < A . So, T is tame

over R by Prop. 3.7. Then, QT = T0 is separable over QR = R0, and

[QT : QR] = [T : R] = [T0 : R0]|
�

T :
�

R| = [QT : QR]|
�

QT :
�

QR| ;

hence QT is a tame valued field extension of QR. Since by convention HT =

QT · HR, we have

[HT : HR] Z [QT : QR] = [QT : QR]|
�

QT :
�

QR|

= [HT : HR]|
�

HT :
�

HR| Z [HT : HR] ;

the last inequality is the fundamental inequality for valued field extensions [E,

(13.10)]. So, equality holds throughout. Since HT = T0 is separable over HR = R0,



this shows HT is tame over HR. Also, the equality just proved shows QT and HR

are linearly disjoint over QR. Since S is the union of such finite-degree extensions

as T , HS is tame over HR, and QS and HR are linearly disjoint over QR. Further-

more, as HS = S0 is separably closed and
���

HS  Z Q)/
�

HS =
�

R/
�

S is p-primary

where p = char(R0) = char(HS), HS can have no proper tame field extensions.

Hence, HS is the maximal tame extension of the valued field HR. From the linear

disjointness, we have G(HS/HR) = G(QS · HR/HR) �= G(QS/QR).

We have seen in Th. 3.9(b) the one-to-one correspondence between tame gr-

algebraic graded field extensions of R and field extensions of QR in QS. The

isomorphism of Galois groups gives the one-to-one correspondence between field

extensions of QR in QS and the field extensions of HR in HS. The latter are

precisely the tame field extensions of HR in (HR)alg. :
Theorem 5.2. Let F be a field with Henselian valuation v, and let K be the max-

imal tame extension of F in Falg re v. Then GK is the tame closure of GF in

GFgr-alg, and G(QGK/QGF ) �= G(K/F ). There are one-to-one correspondences:

tame field extensions of F in Falg re v

! tame graded field extensions of GF in (GF )gr-alg

! field extensions of QGF in QGK.

Proof. Let p = char(F ) = char(GF ). Since GK0 = K = F sep = (GF0)sep and�
GK/

�
GF =

�
K/
�

F , which is the prime-to-p part of
�

GF /
�

GF , GK is tame over

GF and has no proper tame extensions. Hence, GK is the tame closure of GF .

We define a homomorphism � : G(K/F ) � G(QGK/QGF ) as follows: For

u{ G(K/F ), u (VK) = VK since VK is the unique extension of the Henselian

valuation ring VF to K. Moreover, as
�

K/
�

F is a torsion group, u must induce the

identity automorphism on
�

K . Hence, u (W
�
K) = W

�
K and u (W y �

K ) = W y �
K for each

�� � K . Thus, u induces a graded ring isomorphism u � : GK � GK which is the

identity on GF . This isomorphism extends to an isomorphism u : QGK � QGK

of the quotient field. Define � ( u ) = u� G(QGK/QGF ).

To show that � is an isomorphism, we proceed in stages. First, let I be the

maximal unramified extension of F in K, re v. Then I = F sep and
�

I =
�

F ,

and I is Galois over F with G(I/F ) �= G(I/F ) canonically. So, GI is the maximal

unramified graded field extension of GF , since GI0 = I = (F )sep = (GF0)sep and�
GI =

�
I =

�
F =

�
GF . Hence, QGI �= GI0  GF0

QGF , by Remark 3.1, showing

that QGI is Galois over QGF , with

G(QGI/QGF ) �= G(GI0/GF0) �= G(F sep/F ) �= G(I/F ) .



The inverse of this isomorphism corresponds to the mapping induced by � .
The field extension K/I is tame and totally ramified. Let | = {}~ Isep | } n =

1 for some n  N with p n}. Since VI is Henselian and I is separably closed, |�	 I

and | maps injectively to I , let |�� be the image of | in I = GI0. Let L be any

finite-degree field extension of I in K. Then, L is tame and totally ramified over I .

Because further VI is Henselian and I contains all c -th roots of unity for c = [L : I ],

L is an c -Kummer extension of I (cf. [S, p. 64, Th. 3] or [TW, Prop. 1.4(iii)]).

Likewise, QGL is an c -Kummer extension of QGI , by Prop. 3.3. Moreover, by [E,

(20.11)] or [TW, Prop. 1.4(i)] there is a perfect pairing
�

L/
�

I × G(L/I) ��| � given

by (� +
�

I, u ) 0� f j u (a) for any a  L with v(a) = � . With respect to the canonical

isomorphism
�

L/
�

I � �
GL/

�
GI and the map G(L/I) � G(QGL/QGI) induced

by � , the following diagram is evidently commutative,�
L/
�

I × G(L/I) −−−−� |e�
�

GL/
�

GI × G(QGL/QGI) −−−−� |e�
where the bottom row is the perfect pairing of Prop. 3.3(b). Because both rows

of the diagram are perfect pairings, the map G(L/I) � G(QGL/QGI) must be an

isomorphism. Since K is the union of fields such as L and QGK is the union of the

corresponding fields QGL, the restriction of � mapping G(K/I) to G(QGK/QGI)

is an isomorphism. Thus, we have a commutative diagram

1 −−−−� G(K/I) −−−−� G(K/F ) −−−−� G(I/F ) −−−−� 1

h
=

� h
=

1 −−−−� G(QGK/QGI) −−−−� G(QGK/QGF ) −−−−� G(QGI/QGF ) −−−−� 1

The 5-lemma shows that � is an isomorphism. The isomorphism � of Galois groups

gives the one-to-one correspondence between tame field extensions of F in Falg (i.e.,

subfields of K) and field extensions of QGF in QGK. The correspondence between

these fields and the tame graded field extensions of GF in GFgr-alg was given in

Th. 3.9. :
In the setting of Th. 5.2, it was shown in [B1, Th. 5] that if L is a field extension

of F with [L : F ] = n < A , then L is tame over F 1 2 QGL is separable over QGF

with [QGL : QGF ] = n.

Corollary 5.3. Let K be the maximal tame extension of a Henselian valued field

F . Then HGK is the maximal tame extension of HGF , and G(HGK/HGF ) �=
G(K/F ).



Proof. This is immediate from Prop. 5.1 and Th. 5.2. :
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