THE ASYMMETRY OF AN ANTI-AUTOMORPHISM

ANNE CORTELLA AND JEAN-PIERRE TIGNOL

ABSTRACT. The asymmetry of a nonsingular pairing on a vector space is an
endomorphism of the space on which the classification of arbitrary pairings
(not necessarily symmetric or skew-symmetric) is based. A general notion of
asymmetry is defined for arbitrary anti-automorphisms on a central simple
algebra, and conditions are given to characterize the elements which are the
asymmetries of some anti-automorphism. The asymmetry is used to define the
determinant of an anti-automorphism.

INTRODUCTION

The asymmetry of an arbitrary nonsingular pairing (not necessarily symmetric
or skew-symmetric) on a finite-dimensional vector space V is an invertible endo-
morphism of V' which is an important invariant of the pairing. It is 1 if and only if
the pairing is symmetric and —1 if and only if it is skew-symmetric. This invariant
was first considered by Williamson [9], and more recently by Riehm [6].

In the present paper, we determine under which conditions a linear map a €
GL(V) is the asymmetry of some nonsingular pairing on V: the map a must be
conjugate to its inverse and satisfy some conditions on the generalized eigenspaces
of eigenvalues +1 and —1, see Theorem 1. As pointed out by Ranicki, the property
that a is an asymmetry could be rephrased by saying that a certain asymmetric
Poincaré complex of dimension 1 is round simple null-cobordant. (See [5, Ch. 20]
for background information on Poincaré complexes.)

In section 2, we define the asymmetry of an anti-automorphism ¢ on a central
simple algebra A: it is an element a, € A* which is mapped, under scalar extension
to a splitting field of A, to the asymmetry of any nonsingular pairing to which o
is adjoint. It is defined up to sign by the properties that o2(x) = a,za; ! for all
r € A and that o(a,) = a,!. This element was incidentally used by Saltman
[7, Lemma 3.3, Theorem 4.4] to show that if an Azumaya algebra A carries an
anti-automorphism, then the ring of 2 x 2 matrices M2(A) carries an involution,
and that Azumaya algebras over connected semilocal rings which are isomorphic
to their opposite have an involution. We show that in a central simple algebra of
exponent 2, an invertible element is the asymmetry of some anti-automorphism if
and only if it is conjugate to its inverse (Theorem 2). Albert’s theorem that every
central simple algebra of exponent 2 has an involution is an immediate consequence,
since involutions are the anti-automorphisms of asymmetry £1. In the final section,
the asymmetry is used to define the determinant of an anti-automorphism.
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1. THE ASYMMETRY OF A NONSINGULAR PAIRING

Throughout this section, V' denotes a finite-dimensional vector space over an
arbitrary field F. We define the asymmetry and the adjoint anti-automorphism of
a nonsingular pairing on V', and determine which linear transformations of V' are
asymmetries.

1.1. Definitions. Let V* = Homp(V,F) be the dual of V. Every pairing (or
bilinear form) b: V x V. — F induces a linear map b: V — V* which carries
x € V to b(z,e) € V*. The transpose map b': V = V** — V* carries z € V to
b(e,x) € V*.
Proposition 1. For a pairing b on V', the following conditions are equivalent:

(a) if x € V is such that b(xz,y) =0 for ally € V, then x = 0;

(b) if y € V is such that b(x,y) =0 for all x € V, then y = 0;

(¢) the map b is bijective.

If these conditions hold, the pairing b is called nonsingular.
Proof. Condition (a) is equivalent to injectivity of b, and (b) to injectivity of bf,
hence also to surjectivity of b. Since dimV = dim V*, each of these conditions

implies that bis bijective. [l

All the pairings considered in the sequel are nonsingular. To every nonsingu-
lar pairing b on V we attach an anti-automorphism o, of Endr V and a linear
transformation a, € GL(V) as follows:

Proposition 2. Let b be a nonsingular pairing on V. There is a unique map
op: EndrpV — EndpV and a unique map ap: V — V such that

(1) b(f(a:),y) = b(z,crb(f)(y)) forallxz, yeV, f € EndpV
and
(2) b(z,y) = b(y, ap(x)) forallz, ye V.

The map oy is an F-linear anti-automorphism of Endp V' and the map ay is linear
and invertible. These maps satisfy the following properties:

(i) o2(f)=apo foay " for all f € Endp V;

(il) op(ap) = a; "
Proof. For f € Endp V., let oy (f) = (bo fob™1)t. Equality (1) is easily checked, and
the fact that oy, is an F-linear anti-automorphism of Endr V' follows. Uniqueness
of o} follows from the hypothesis that b is nonsingular.

On the other hand, let a; = (lA)’f)_1 o b. This map is clearly linear and invertible,
and it satisfies (2). Uniqueness of ay is clear. To check the additional properties,
observe that for f € Endp V

Ug(f) — (j)o (Bofo 3—1)1: o 5_1)15 _ ((Bt)—l o 5) ofo ((ét)—l 03)_1

and
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We call o} the anti-automorphism adjoint to b. Using the Skolem-Noether the-
orem, it is easily seen that every F-linear anti-automorphism of End ¢ V' is adjoint
to some nonsingular pairing, see [4, p. 1]. The map a; is called the asymmetry
of b. From the definition, it is clear that the adjoint anti-automorphism and the
asymmetry of any scalar multiple of b are the same as those of b. Moreover, the
map ap is determined up to sign by properties (i) and (ii).

We combine a; and o3, into a linear involution of End g V' as follows:

Proposition 3. Let b be a nonsingular pairing on V. There is a unique linear map
Y: EndpV — Endp V' such that

(3) bz, f(y)) =b(y, w(f)(z))  foralz, yeV, feEndrV.
This map satisfies the following additional properties:

(i) w(fogoh)=ou(h)ov(g)oa, (f) for f, g, h € EndpV;
(ii) 72 = Idgnav;
(lll) ’yb(ldv) = ap.

Proof. Set v(f) = o(f) o ay (= ap ooy ' (f)) for f € Endp V; then (iii) is clear
and (3), (i), (ii) follow from the properties of o} and ap. O

We call ~, the linear involution of Endp V' associated to b. As for the adjoint
anti-automorphism o, and the asymmetry ap, it is clear that ~, is also the linear
involution associated to any scalar multiple of b.

Remark. There are corresponding notions for pairings on faithfully projective mod-
ules with values in invertible modules (over an arbitrary commutative ring R):
see [3, Chap. III, (8.2)].

1.2. Characterization of asymmetries. The goal of this subsection is to answer
the following question: Under which conditions on a map a € GL(V) does there
exist a nonsingular pairing b on V whose asymmetry is a, i.e., such that a, = a?
Identifying Endp V' with a matrix algebra M, (F) through the choice of a basis
of V, this amounts to asking for which invertible matrices a € GL,,(F') the equation
a = (2')"'z has a solution 2 € GL,,(F), in view of the definition of a in terms of b
in the proof of Proposition 2.

The conditions involve the following vector spaces: for an arbitrary integer m > 1
and € = +1, we let

_ ker(a — eIdy )™
™ ker(a —eldy)™ 1 + (a — eIdy) (ker(a — e Idy )m+1)

Theorem 1. Suppose char F' # 2. A map a € GL(V) is the asymmetry of some
nonsingular pairing on V if and only if the following conditions hold:

(1) a is conjugate to a=' in GL(V);

(2) for every even integer m, dim V. I! is even;

(3) for every odd integer m, dimV,-1 is even.
If char F = 2, a map a € GL(V) is the asymmetry of some nonsingular pairing on
V' if and only if conditions (1) and (2) hold.

Proof. We first show that the conditions are necessary. Suppose b is a nonsingular
pairing on V such that a;, = a. Proposition 2 shows that oy(a) = a~!. To see how
this equality implies condition (1), we argue in terms of matrices. Using a basis
of V, we identify Endpr V' with the matrix algebra M, (F'). Since the transpose
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map ¢ is an anti-automorphism, o}, o ¢ is a linear automorphism of M, (F'), hence
the Skolem-Noether theorem yields an invertible matrix u such that o ot is the
conjugation by u. Then op(x) = uzlu~! for all z € M, (F). In particular, since
op(a) = a~! it follows that a~! is conjugate to a’. But it is well-known that every
matrix is conjugate to its transpose, hence condition (1) is proved.

To show that conditions (2) and (3) are necessary if char F' # 2, we show that
the nonsingular pairing b induces a nonsingular skew-symmetric pairing on V, It if
m is even and on V,-! if m is odd. Conditions (2) and (3) follow because only
even-dimensional vector spaces carry nonsingular skew-symmetric pairings if the
characteristic of the base field is different from 2.

Fix some integer m and € = £1. For the convenience of notation, we let

U, = ker(a —eldy)™,
so Ve =US /(U _y + (a—eldv) (UL, 1)) For o, y € US,, define
b (2, y) = b(z, (a — eTdy)™ ' (y)).
Since y € UZ,, we have
(4) ao(a—cldy)™ Hy) = e(a —eldy)™ H(y),
hence
b(y, (@ —eldy)™ Y(z)) = eb(y,a0 (a —eldy)™ ' (z))
(5) =eb((a—eldy)" ' (2),y).
On the other hand, equality (4) yields
(a—eldy)"H(y) = (ca™")"Ha—eIdy)"H(y) = (=1)"'op(a — e Idy)" " (y),
hence
(6) b((a — Eldv)m_l(:lc), y) = (—l)m_lb(x, (a — EIdv)m_l(y)).
Comparing (5) and (6), we obtain
by, @) = (1) eby, (2, ).

Therefore, b;, is a skew-symmetric bilinear form on U, if € = +1 and m is even,
and also if e = —1 and m is odd.

To see that b5, induces a nonsingular pairing on V,5,, we consider the radical of
b%,, which is

rad b, = {z € U, | b(z,2) =0 for all z € (a —eldy)™ " (US,)}.

Thus, rad bZ, is the intersection of US, with the orthogonal' complement for the
form b of

(a —eldy)™ YUE) = im(a — eIdy)™ * Nker(a — e Idy),
which is keroy(a — eIdy)™ ! + imoy(a — eldy). Since op(a) = a1, we have

kerop(a — eldy )™ ! = ker(a — eldy)™ ™! and imoy(a — eldy) = im(a — eIdy),

LIf b is not symmetric nor skew-symmetric, one has to distinguish orthogonality on the left
and on the right; the orthogonal complements of a-invariant subspaces coincide, however.
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hence
radbg, = (Ug,_, +im(a —eldy)) N U},
=U;,_ + (im(a — eldy) NU;,)
=Uy, 1+ (a—eldv)(Ug 1)
Therefore, b, induces a nonsingular pairing on UZ,/(Ug,_; + (a — e1dv)(US,41)) =
Ve
Suppose now char ' = 2. The arguments above still show that b%, induces a
nonsingular bilinear pairing on V5, but in characteristic 2 skew-symmetric pair-
ings are symmetric, hence we cannot conclude that dim V};, is even. To show that
dim V, 7! is even if m is even, we show that b}l is in fact alternating if m is even.
For z € U,};' we have

(a —Idy)™ %(x) € ker(a — Idy)? = ker(a® — Idy),

hence a? o (a — Idy)™ 2(x) = (a — Idy)™ 2(x). Since m is even, we obtain by
induction

a™ %o (a—1Idy)" ?(x) = (a — Idy)™ (),
hence
(a —Idy)™%(z) = a®* ™o (a —Idy)" 2(z) = o(a — Idy)" ?(x).
Therefore,
b(z, (a —Idy)™ ?(z)) =b((a — Idy)™ *(z),z) = b(z,a0 (a—1dyv)" *(z)).

It follows that b(z, (a — Idy )™ !(z)) = 0, hence b;! is alternating. This completes
the proof that the conditions are necessary.

To prove that the conditions are sufficient, we shall make V into a module
over the ring F[X, X ~!] of Laurent polynomials in one indeterminate X. As a
preparation, we make some observations on the prime ideals of this principal ideal
domain.

Let J be the automorphism of F[X, X ~!] which maps X to X~!. We also
denote by J the extension of this automorphism to the field of fractions F(X) and
to the factor module £ = F(X)/F[X, X ~!]. Every prime ideal P C F[X,X 1] is
generated by an irreducible polynomial of the form

T=ag+a X+ +agX? € F[X]

such that ag, aq # 0. If P/ = P, the Laurent polynomials 7, 77 differ by a factor
which is invertible in F[X, X ~!], hence 7 = a X7’ for some a € F*. Comparing
coefficients, we have

a; = aag—; fori=0,....,d,
hence ag = aay = o?aq and therefore o = £1. If d is odd, then
(d—1)/2
T = Z ai( X+ aX i),
i=0
hence 7 is divisible by 1+ aX. As 7 is irreducible, we may then choose 7 = X 41 if
a=1,and m = X —1if @« = —1. Suppose next d is even. If « = —1 and char F’ # 2,



6 ANNE CORTELLA AND JEAN-PIERRE TIGNOL

then aq 2 = —ag/o implies a4/2 = 0. In that case, we have
dj2—1
T = Z ai( X' — X471,
i=0

hence 7 is divisible by 1 — X. This is a contradiction, since 7 is assumed to be
irreducible. Therefore, @ = 1 and (X%2?7~1)’ = X%/27=1, We may then choose 7
of the form

m=1 +a1X+a2X2 +-~-+a2Xd_2 +CL1Xd_1 +Xd.

Let R1 be the set of irreducible polynomials of this form.

For each pair of prime ideals { P, P’} with P’ # P, we arbitrarily choose a gen-
erator T € F[X] of one of P, P’ and denote by R the set of irreducible polynomials
thus chosen. Thus, the set of prime ideals of F[X, X 7] is {7 F[X, X ]} where 7
runs over the set Ry UR2 URy U{X —1,X + 1}, and we have 7/ F[X, X 1] #
7F[X, X1 if and only if 7 € Ro URY.

Returning to the proof of Theorem 1, we define a structure of F[X, X ~!]-module
on V by letting

X -v=a(v) forallv e V.

Since F[X, X ~!] is a principal ideal domain, the F[X, X ~!]-module V decomposes
as a (finite) direct sum of quotients of F[X, X 1], as follows:

vV~ P (FIX, X am)

for some integers p(m, m) which all vanish except a finite number, where 7 runs
over R4 UR2 URY U{X —1,X + 1}, and m over the positive integers.
Condition (1) shows that the elementary divisors of a are the same as those of
~1
a” ", hence

Ve @(Fx, X/ ()
Therefore, we have u(m,m) = u(r’,m) for all m if T € Ro.
For all integers m and for € = +1 we have
dimV; = u(X —e,m).
Therefore, condition (2) says that u(X — 1,m) is even for all m even, and condi-
tion (3) says that u(X + 1,m) is even for all m odd. Assuming char F' # 2 and
conditions (1), (2) and (3) hold, we may decompose V into a direct sum of six

F[X, X~!]-submodules

V=VieoV,oVsoVid Vs Vs
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where
= @ LX)
TERLT m
Vo @ @FIX, X 1/rm & FIX, X1/ () o,
TERs m
Vs~ P (FIX, X /(X - 1)m)ﬂ(x—1=m>’
m odd
Vize @ (FIX.X /(X - 1) @ FIX, X 1/(x - 1m0 mr,
m even
Vi @ (PIX, X/(X + 1)),
u(X+1,m)/2

Vo~ (D (FIX.XT/(X +1)™ @ FIX, X71/(X +1)")
m odd
If char F' = 2 and conditions (1), (2) hold, there is a similar decomposition

V=VieaVdVadVy

where V1, ..., Vy are as above. We shall show below (see Lemma 1) that there are
nonsingular (—X)-hermitian forms with values in E (with respect to J) on
FIX, X~ /xm if 7€ Ry,
FIX, X7 Y/mm @ F[X, X /(x/)™ if m € Ra,
FIX, X Y/(X —1)m if m is odd,
(7) (FIX, X 1/(X — 1)m)2 if m is even,
FIX, X/ (X+1)m if m is even and char F' # 2,
(FIX, X1/(X +1)™)° if m is odd and char F # 2.

The orthogonal sum of these forms yields a nonsingular (—X)-hermitian form
h: VxV—=E

with respect to J. As Ischebeck-Scharlau [2] or Waterhouse [8], define an F-linear
map T: F — F by observing that every element in F is represented by a unique
rational fraction f which has a zero at co and does not have a pole at 0, and letting

T(f + F[X,X1) = £(0).

It is easily verified that T'(r/) = —T'(r) for all € E. Moreover, for every nonzero
r € F there exists an integer k such that T(X ~*r) # 0, hence T does not vanish
on any nonzero F[X, X ~!]-submodule of E.

Let Ti(h): V x V — F be the transfer bilinear map, defined by

T.(h)(z,y) =T (h(z,y)) forx,ye V.

If « € V is such that Ti(h)(x,y) = 0 for all y € V, then T vanishes on the
F[X, X ~Y-submodule h(z, V), hence h(z,V) = {0} and therefore z = 0 since h is
nonsingular. This shows that T, (h) is nonsingular.

Moreover, since h is (—X)-hermitian we have

To(h)(y, x) = T((=X)h(z,y)”) = =T (Xh(z,y)”) =
=T(X'h(z,y)) =T (h(z, Xy)) = Tu(h)(z,a(y))
for all x, y € V. Therefore, a is the asymmetry of T\ (h).
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To complete the proof, we prove the existence of nonsingular (—X)-hermitian
forms as asserted above.

Lemma 1. There are nonsingular (—X)-hermitian forms with values in E (with
respect to J) on the modules listed in (7).

Proof. Suppose first ™ € R1, hence (X4/?771)7 = X4/27=1 where d is the degree
of 7. For u, v € F[X, X 1], let

h(u,v) = (X — 1)(X¥27~Ymuv 4+ F[X, XY € E.

This map induces a sesquilinear form on F[X, X ~!]/7™. The induced form is
(—X)-hermitian since (X —1)7 = —X ~!1(X —1); it is nonsingular since h(1,v) = 0
implies 7™ divides (X — 1)v in F[X, X ~!], hence v = 0 in F[X, X ~!]/x™ since 7
is prime to X — 1.

Next, suppose m € Ra. For uy, ua, vi, v2 € F[X, X 71|, we let
h((ur,uz), (v1,v2)) =7 "ufvs — X(77) ™ujv; + FIX,X '] € E.

Computation shows that this map induces a nonsingular (—X )-hermitian form on
(FIX, X7 /7™) x (F[X,X/(x7)™).

Similarly, the following maps induce nonsingular (—X)-hermitian forms on the
corresponding modules (where e is an arbitrary non-negative integer):

h(u,v) = Xe—l(X — 1)—26—1UJU * F[X’X—l] cE on F[X,X_l]/(X . 1)2e+1;

h((ur,uz), (v1,v2)) = X¢(X — 1) (ufve — Xugvy) + FIX,X ' € E
on (F[X, X ~1/(X —1)%)%
and if char F' #£ 2,
h(u,v) = (X = DXYX +1)"*u/o+ F[X,X € FE on F[X,X /(X +1)*;

B((ur, uz), (01, 2)) = (X =12 (X +1) 72 (wfvs + Xufvy) + FIX, X '] € E
on (FIX, X /(X +1)%+1)%
We omit the straightforward verifications. |

Remark. The theory of hermitian forms over principal ideal domains can also be
used to show that the conditions in Theorem 1 are necessary.

2. THE ASYMMETRY OF AN ANTI-AUTOMORPHISM

2.1. Definition. Let A be a (finite-dimensional) central simple algebra over an
arbitrary field F', and let 0: A — A be an F-linear anti-automorphism of A. Our
goal is to attach to ¢ a unit a, € A* which plays the same role as the asymmetry
ap of a nonsingular pairing b with respect to the adjoint anti-automorphism oy.
The key to the definition is an analogue of the linear involution v, which we now
define.

Proposition 4. There is a unique linear map v,: A — A which satisfies the fol-
lowing property: for any splitting field K of A, any isomorphism
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and any nonsingular pairing b on V such that op = 0o (0 @ Idg) 0 671,
0o (v, @Idg) o™t =
This map satisfies the following additional properties:

(i) Yo (zyz) = 0(2)70(y)o~(x) for z, y, z € A;
(i) 72 = Ida.

Proof. 1t suffices to prove the existence of 7,. Uniqueness is then clear, and the
additional properties follow from those of ~; in Proposition 3.
Let T,: A x A — F be the nonsingular pairing defined by

Ty (z,y) = Trda(o(z)y) for x, y € A,

where Trd is the reduced trace. Let (e;)ic; be a basis of A and let (e?);c; be the
dual basis with respect to the pairing T, so that
Tg(eg,ej) = d;; for i, j € 1.
We let
Yo () = Zeizeg for z € A.
iel

In other words, v, is the image of Zie I ei®eg € A®p A under the “sandwich” map
Sand: A®p A — Endp A defined by Sand(z ® y)(z) = zzy. Observe that -, does
not depend on the choice of the basis (e;);es since Ziel e; ® eg is the element which
corresponds to Id 4 under the bijection Id 4 ®Ta: ARQr A— ARp A* = Endr A.

As a consequence, for every field extension K/F, the map vop1d,: A ® K —
A ® K satisfies

Yooldx = Vo @ ldk
since for x € A® K,
Yot (2) = Y (e @ (el @ 1) = (3 © i) (2).
iel

To show that v, is as required, assume that A is split: let A = Endp V and let b
be a nonsingular pairing on V such that o = o,. We have to show that 7, = v,. To
prove this equality, we use the identification V&®pV = Endg V defined by the linear
isomorphism Idy ®b: V@pV - V@pV* =Endp V. Then (v @ w)(x) = vb(w, x)
for v, w, x € V and moreover

fo(wew)=fw)@w, ocvew)=a(w) ®@v and Trd(v®w)=>blw,v)
for v, w € V and f € Endp V. Let (v;)1<i<n be a basis of V and let (v})1<i<n be
the dual basis for the pairing b, so that
(8) b(’l);,’l)j) :(51']‘ for i,j = 1,... , n.
Then (v; ® vj)1<i,j<n is a basis of Endp V, and the dual basis with respect to T,

is given by

(v ® v))F = v} @]
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Therefore, we have for f € Endp V

n

Yo(f) = D (i ®v;) 0 f o (v} ®V))
i,j=1

n

- Z v; ®v§ b(vj,f(vz’-))
ij=1

= v @) b(v), w(f)(vy)).

1,j=1

For all z € V we have = Y.I", v;b(v},z), hence Y1 v; b(v},w(f)(v;)) =
Yw(f)(v;) for all j, and the last equality above simplifies to

1) = Yo W) 9 =w(f) o (v @ 0)).

Since >0, v; ® v} = Idy, it follows that v, (f) = v(f). O
In view of property (i), we have

(9) Yo () = 0(2)75 (1) = 7o (1) (2) for all z € A.

Therefore, 7, is completely determined by the element v, (1) € A*.

Definition. The asymmetry of the anti-automorphism o is the element a, =
(1) € A%, where 7, is the linear involution defined in Proposition 4.

If A=EndprV and o = 0} is the anti-automorphism adjoint to some nonsingular
pairing b on V, it follows from Proposition 4 and property (iii) of Proposition 3
that a, is the asymmetry of the nonsingular form b, i.e.,

g = Qyp.

In the general case, equation (9) shows that
(10) o?(r) = ayxa; " for all z € A.

Moreover, since 72 = Id4 we have
(11) 1=79,(a,) = 0o(as)ae.
The element a, is uniquely determined up to sign by (10) and (11).

Recall that an anti-automorphism o is called an involution if 02 = Id 4.
Proposition 5. A linear anti-automorphism is an involution if and only if its
asymmetry is +1 or —1.

Proof. If a, = +1, equation (10) shows that 02 = Id4. Conversely, if o is an

involution, (10) shows that a, € F*. It then follows from (11) that a2 = 1, hence
a, = *1. O

If char F' # 2, a linear involution o is called orthogonal (resp. symplectic) if
after scalar extension to a splitting field it is adjoint to a symmetric (resp. skew-
symmetric) bilinear pairing. Therefore, orthogonal involutions are exactly the lin-
ear anti-automorphisms with asymmetry 41, and symplectic involutions are those
with asymmetry —1. Therefore, equations (10) and (11) are not sufficient to de-
termine the type of the involution. This observation suggests that the sign of a. is
meaningful for arbitrary anti-automorphisms.
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The following proposition yields an alternative definition of the asymmetry a,,
without reference to the linear involution 7, and without scalar extension to a
splitting field.

Let 0,.: A®r A — Endp A be the F-algebra homomorphism defined by

o«(a®b)(z) = axo(b) for a, b, z € A,

and recall (from [4, (3.5)], for instance) the Goldman element of A: this is the
element g € A @ A such that Sand(g)(x) = Trda(z) for all z € A. Thus, there is
a well-defined linear endomorphism o,(g): A — A.

Proposition 6. The asymmetry of o is the unique element a, € A* such that

a(o(9)(f)) = acf
for all f € A.

Proof. 1t suffices to prove that a, satisfies the property above, since uniqueness
is clear. To do this, we may extend scalars to a splitting field. Therefore, we
may assume A = EndpV for some F-vector space V, and ¢ = o} is the anti-
automorphism adjoint to some nonsingular pairing b on V.

For all f € A and all x, y € V we have

b(f(2).y) =b(y, a0 o f(z)),

by definition of the asymmetry (see (2)), hence we have to show

b(f(2),y) = bly, o (0-(9)())) (@)

or, equivalently (by definition of o = oy),

(12) b(f(@),y) = b(o-(9)(f)(y), )

forall fe Aand all z, y € V.

In order to compute the right-hand side, we identify A = Endp V to V®@pV via
the linear isomorphism Idy ®b: VopV —V@pV* =Endg V', as in the proof of
Proposition 4. If (v;)1<i<n is a basis of V and (v})1<;<n is the dual basis for the
pairing b (see (8)), then the Goldman element is

9= (v ®v)) ® (v; @ v])
@]

since it is easily computed that for all u, w € V'

Sand(g)(u@w) = Y (1 ® v)) 0 (uD w) o (v, @) =

= (Z v ® v;) (Z b(v}, u)b(w, vj)) = b(w, u) Z v; @ v = Trd(u @ w) Idy .

Now, for u, w € V,
o) u@w) =3 (v @) o (u@w) o o(v; @ ).
,J
Since (u ® w) o o(f) = u® f(w) for f € Endp V, the right-hand side of the last
equality simplifies to

Z((vz ® vj (w) @ ((v; @ v})(w)) = Zvi ® vib(v}, u)b(v;, w),

2% 2%
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hence
o.(g)(u@w) =w  u.

Therefore, for u, w, x, y € V,
b(o4(9)(u @ w)(y), x) = b((w @ u)(y), x) = b(w, )b(u,y).

Since we also have b((u ® w)(z),y) = b(u,y)b(w, ), equation (12) holds for f =
u® w. Since EndpV =V ®@p V, it follows that (12) holds for all f € A, and the
proof is complete. O

Remark. Asymmetries can be defined on the same model for anti-automorphisms
of Azumaya algebras; one may avoid the use of a basis of A in Proposition 4 by
defining v, = Sand(&,) where £, € A® A is the element mapped to Id 4 by Id 4 QT.
Alternatively, we may set &, = (Ida ®071)(g) where g € A ® A is the Goldman
element. This is the approach taken by Saltman in [7] (see also [3, Chap. III, §8]).

2.2. Characterization of asymmetries. In this subsection, we show that in a
central simple algebra of exponent 2, every unit which is conjugate to its inverse is
the asymmetry of some anti-automorphism.

We first compare the asymmetries of two anti-automorphisms o, 7 on a central
simple algebra A. The Skolem-Noether theorem shows that the automorphism
7 o0~ ! is the conjugation by some unit u € AX, i.e.,

(13) 7(z) = uo(z)u" for all z € A.

Proposition 7. Let o, 7 be anti-automorphisms of a central simple algebra A, and
let u € A* be such that (13) holds. The asymmetries a,, ar of o and T are related

by
ar; = uo(u) ta,.
Proof. We use the definition of asymmetry provided by Proposition 6. For a, b,
r € A, we have
7.(a @ b)(z) = axT(b) = aruc(b)u~!
hence
T (a ® b)(x) = 0.(a @ b)(zu)u~".

Therefore, denoting by r,,: A — A the linear map of multiplication on the right by
u, we have

T (a®b) = (ry) too(a®@b)or,
for all a, b € A, hence also
7(g) = (ru) " o oulg) 07w
for g the Goldman element of A. It follows that for all f € A,
(14) 7(9)(f) = o (fu)u™".
By Proposition 6, the asymmetry a, satisfies

arf =71(1(9)(f)) for all f € A.
Using (14), we obtain

a-f =7(ou(g)(fu)u™") = uo (0. (9)(fu)u™)u™" = uo(u)~ o (on(g)(fu))u™".
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Proposition 6 also yields o (o* (g)(fu)) = ay fu, hence
arf =uo(u) tagf for all f € A.
The proposition follows. [l

Theorem 2. Let A be a central simple algebra of exponent 2 over an arbitrary field
F. A unit is the asymmetry of some anti-automorphism of A if and only if it is
conjugate to its inverse.

Proof. Suppose a € A* is the asymmetry of some anti-automorphism . We have
to show that the F-vector space

U={rcA|ra=a'2}

contains an invertible element. This amounts to proving that the restriction of the
reduced norm polynomial Nrd 4 does not vanish on U. Theorem 1 shows that this
polynomial does not vanish on U ® K, for any splitting field K of A, since a is the
asymmetry of ¢ ® Idx. Therefore, the reduced norm does not vanish on U, since
F' is an infinite field. (Note that every central simple algebra over a finite field is
split, hence of exponent 1.)

For the converse, suppose a € A* is conjugate to a~!. Let K be a splitting field
of A; identify A ® K = Endg V for some K-vector space V. We first show, by
using Theorem 1, that ¢ (= a® 1) is the asymmetry of some anti-automorphism of
Endg V. With the same notation as in Theorem 1, we have to prove that dim j V1
is even if m is even, and moreover that dimg V,; lig even if m is odd and char F' # 2.
For every integer m > 1 and € = +1, we have an exact sequence of K-vector spaces

ker(a —eldy )™ 4_c1ay  ker(a —eldy)™ Ve
N
ker(a —eIdy)™ ker(a — eIdy)™—1 m

0—

— 0,

hence
(15) dim V¢ =rk(a — eIdy)™ ! — 2rk(a — e Idy)™ + rk(a — e Idy)™

where rk denotes the rank.

For all b € A we have

deg(A® K) deg A’

hence rkb is divisible by the Schur index ind A (see [4, (1.9)]). Since A has expo-
nent 2, ind A is even, by [1, Theorem 5.17]. Therefore, rkb is even for all b € A,
and equation (15) shows that dim V¢ is even for every integer m and for e = +1.
By Theorem 1, it follows that a is the asymmetry of some anti-automorphism 6 of
A® K.

Now, fix some anti-automorphism o of A. Let a, be its asymmetry and consider
the F-vector space

W={x€A|za=o0(z)as}.

If u € (A® K)* is such that 0(z) = u(c ® ldg)(z)u~" for all z € A ® K, then
u~! € W® K, by Proposition 7. Therefore, the same arguments as in the first part
of the proof show that W contains an invertible element w. Using Proposition 7
again, we see that a is the asymmetry of the anti-automorphism z — w ~to(z)w. O
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Corollary 1 (Albert). Fvery central simple algebra of exponent 2 carries an in-
volution. Moreover, if the characteristic of the base field is different from 2, every
central simple algebra of exponent 2 carries involutions of both orthogonal and sym-
plectic types.

Proof. Tt readily follows from Theorem 2 that +1 and —1 are asymmetries of some

anti-automorphisms. These anti-automorphisms are involutions, by Proposition 5.
O

2.3. The determinant of an anti-automorphism. Let o be a linear anti-
automorphism of a central simple algebra A over an arbitrary field F'. Let a, € A%
be the asymmetry of A and ~, the linear involution of Proposition 4. Consider the
vector spaces

Alt(A,0) ={x —c(x)as |z € A} ={z —v,(z) | x € A}
and
Sk(A,0) ={x € A|o(z) +za;' =0} ={z € A|y,(x) = —x}.

From equations (10) and (11), it follows that Alt(A, o) C Sk(A, o). Moreover, we
have © — 7, (z) = 2z for all x € Sk(A4, ), hence Alt(A, o) = Sk(A, o) if char F' # 2.

Lemma 2. Suppose o, T are anti-automorphisms of A, and let uw € A* be such
that

7(z) = uo(z)u™" for all x € A.
Then
Alt(A,7) =uAlt(A,0) and Sk(A4,7) =uSk(4,0).

lay and a, = u='7(u)a,. Therefore, for

Proof. Proposition 7 yields a, = uo(u)~
all x € A we have
z—1(x)ar =u(u 'z —o(u'z)a,) and u(r—o(z)as) = uz — r(uz)a,,

proving that Alt(A4, 7) = uw Alt(A4, o). The proof that Sk(A4, 7) = uSk(A, o) is along
the same lines. g

Lemma 3. If deg A is even, Alt(A, o) contains invertible elements. Moreover,
the square class Nrda(x) - F*2 € F*/F*? does not depend on the choice of x €
A*NAIt(A, o).

Proof. Let T be an anti-automorphism of A with asymmetry +1 and let u € A* be
such that

-1

7(2) = uo(x)u for all x € A.

By Lemma 2, we have
(16) Alt(A, o) = u™t Alt(A, 7).

Since 7 is an involution, Corollary (2.8) of [4] shows that Alt(A,7) contains in-
vertible elements if deg A is even, hence Alt(A, o) also contains invertible elements.
Moreover, from [4, (7.1)], it follows that all the invertible elements have the same re-
duced norm up to a square of F; therefore, if v € AXNAIt(A, 7) it follows from (16)
that Nrda(x) € Nrda(u=tv) - F*2 for all z € A* N Alt(4, o). O
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This last lemma allows us to define the determinant of an anti-automorphism o
of a central simple algebra A of even degree, as follows:

det o = Nrda(z) - F*? € F*/F*?

for any x € A* NAlt(4,0).
This definition is consistent with [4, (7.2)], where the determinant of an orthog-
onal involution is defined.

Ezample 1. Since clearly 1 — a, € Alt(A, o), we have
det o = Nrda(1 — a,) - F*?

if 1 — a, is invertible. Therefore, the determinant of ¢ is entirely determined by its
asymmetry in this particular case.

Ezample 2. The transpose involution on a matrix algebra M, (F) (with n even)
has trivial determinant. Indeed, the matrix

mq 0
_ _ _ (01
Wherem1—~-~—mn/2—(,10)

0 mn/g
is in Alt (]\4,L(F)7 t) and has determinant 1.

Proposition 8. Let o, 7 be anti-automorphisms of a central simple algebra A of
even degree, and let u € A* be such that

7(z) = uo(z)u™" forallz € A.
Then
det 7 = Nrd 4 (u) det 0.

Proof. This readily follows from Lemma 2. [l

Proposition 9. Let V' be an even-dimensional vector space over an arbitrary field
F and let b be a nonsingular pairing on V. For every basis (v;)1<i<n of V,

det o, = det (b(vs,v;)) F*2,

1<, j<n

Proof. Identify Endp V' with the matrix algebra M, (F) by means of the basis
(vi)1<i<n. The anti-automorphism o is then given by

op(m) = u'mlu for all m € M, (F),

where u = (b(v;,v;)) € M, (F). Therefore, Proposition 8 yields

1<i,j<n
det o, = det u™! det .

Since it was observed in Example 2 above that dett is trivial, the proposition
follows. .
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