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Abstract

We construct a functor from the category of modules over the trigonometric (resp. rational)
Cherednik algebra of type gl; to the category of integrable modules of level | over a Yangian
for the loop algebra sl,, (resp. over a subalgebra of this Yangian called the Yangian deformed
double loop algebra) and we establish that it is an equivalence of categories if I + 2 < n.

1 Introduction

One of the most important classical results in representation theory is an equivalence, called Schur-
Weyl duality, between the category of modules over the symmetric group .S; and the category of
modules of level [ over the Lie algebra sl,, if ] <n —1. When quantum groups were invented in the
1980’s, it became an interesting problem to generalize the Schur-Weyl correspondence and similar
equivalences were obtained between finite Hecke algebras and quantized enveloping algebras [Ji],
between degenerate affine Hecke algebras and Yangians [Drl, Chl], between affine Hecke algebras
and quantized affine Lie algebras [ChPrl], and between double affine Hecke algebras and toroidal
quantum algebras [VaVa]. In this paper, we prove a similar equivalence of categories between the
trigonometric (resp. rational) Cherednik algebra associated to the symmetric group S; and a (resp.
subalgebra L of a) Yangian LY for the loop algebra Lsl,, = s, ®c Clu,u"}].

The algebra on the other side of our equivalence from the Cherednik algebra is barely known. The
author is not aware of any paper devoted to a study of Yangians of affine type; the only mention
he could find of this notion anywhere in the literature is in [Va]. By contrast, there has been a
recent surge of interest in the representation theory of Cherednik algebras and their relations to
the geometry of Hilbert schemes, integrable systems and other important mathematical objects.
Our duality theorem indicates a new route to those questions via a careful study of the Yangian
and makes the study of this algebra more relevant and interesting.

Affine Hecke algebras are very important in representation theory and have been studied extensively
over the last few decades, along with their degenerate (graded) version introduced in [Drl] and in
[Lu]. About fifteen years ago, I. Cherednik introduced the notion of double affine Hecke algebra
[Ch2], abbreviated DAHA, which he used to prove important conjectures of I. Macdonald. His
algebra also admits degenerate versions, the trigonometric one and the rational one, which are called
Cherednik algebras. The trigonometric DAHA is generated by two subalgebras, one isomorphic to
a degenerate affine Hecke algebra and the other one isomorphic to the group algebra of an affine
Weyl group. For this reason, and because of the results mentioned above, we can expect its Schur-
Weyl dual to be built from one copy of the Yangian Y for sl,, and from one copy of the loop algebra
Lsl,,. This is indeed true for LY.

An epimorphic image of L, defined in terms of operators acting on a certain space, appeared for
the first time in [BHW]; this was known to P. Etingof and V. Ginzburg. However, the algebra



considered in that paper is not described in a very precise way and no equivalence of categories
is established. One motivation for the present article comes from our desire to find exactly the
relations between the generators of the Schur-Weyl dual of a Cherednik algebra of type gl;.

In the next two sections, we define Cherednik algebras and Yangians and explore some of their
basic properties. The fourth section states the main result (theorem 4.2) for the trigonometric
case, which is proved in the following one. After that, we look more closely at the action of certain
elements of LY since this is useful in the last section, which concerns the rational case (theorem 7.1).
Most of our results in the rational case follows from the observation that the rational Cherednik
algebra of type gl; is contained in the trigonometric one. Furthermore, our equivalence restricts to
an equivalence between two categories of BGG-type (theorem 7.2).
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2 Hecke algebras and Cherednik algebras

The definitions given in this section could be stated for any Weyl group W. However, in this
paper, we will be concerned only with the symmetric group S;, so we will restrict our definitions
to the case W = S;. We set h = C'. The symmetric group S; acts on h by permuting the
coordinates; associated to h are two polynomial algebras: C[h] = Sym(h*) = Clzy,..., ;] and
C[h*] = Sym(h) = Cly1,...,u], where {x1,...,2;} and {y1,...,y;} are dual bases of h* and b,
respectively. For i # j, we set a;; = x; — CEj,Oé;g- =y —yj, R = {a]l <i# 35 <1} and
RT = {a;j]1 <i<j<lI}. Theset Il = {z; — z;41|1 <i < n— 1} is a basis of simple roots. The
reflection in h with respect to the hyperplane a = 0 is denoted s4, 50 s4(y) =y — (o, y)a", where
(,):b" x h — C is the canonical pairing. We set s;; = So; -

The finite Hecke algebra H, associated to S; is a deformation of the group algebra C[S;] and the
affine Hecke algebra ﬁq is a deformation of the group algebra of the (extended) affine Weyl group
S; = P x S; where P is the lattice ®l_,Zx; C h* (so C[S)] = Clat, ... ,a:li] x S;). The algebra ﬁq
admits a degenerate form H. first introduced by Drinfeld [Drl] and by Lusztig [Lu].

Definition 2.1. The degenerate affine Hecke algebra H. of type gl; is the algebra generated by the
polynomial algebra Sym(h) = Clz1, ..., 2] and the group algebra C[S;| with the relations

Sa -2 — Sa(2)sq = —cla, z) Vz € h,Va €1l

Remark 2.1. The algebras He, and H., are isomorphic if c; # 0 and ca # 0. Clearly, Hy = C[h] % .S;.

The double affine Hecke algebra H introduced by I. Cherednik [Ch2] also admits degenerate versions:
the trigonometric one and the rational one. Recall that the group S; is generated by s, Va € R
and by the element m = 21512823 -+ 51-1-

Definition 2.2 (Cherednik). Let t,c € C. The degenerate (trigonometric) double affine Hecke
algebra of type gl; is the algebra Hy . generated by the group algebra of the (extended) affine Weyl



group C[gl] and the polynomial algebra Clzy,. .., z] = Sym(h) subject to the following relations:
Sa 2 — Sa(2)sq = —c(a,z) Vz € hVaell
7wz =zipm, 1<i<l—1 mz=(z1—t)m

Remark 2.2. The subalgebra generated by C[S;] and the polynomial algebra Clzy,...,z] is iso-

morphic to the degenerate affine Hecke algebra H..

The rational version of the double affine Hecke algebra has been studied quite intensively in the past
few years (see, for example, [BEG1],[GGOR]) and is usually referred to as the rational Cherednik
algebra.

Definition 2.3. Lett,c € C. The rational Cherednik algebra Hy . of type gl; is the algebra generated
by Clb], C[h*] and C[S)] subject to the following relations:

w-r-w ' =wx) w-y-wl=wly) Vreht, Vyeh

[yw%'] =Yyr — 2y = t<y71’> +c Z <a7y><x7av>804
aERT

Remark 2.3. The rational Cherednik algebra of type A;_; is the subalgebra of Hy. generated by
Clz; — zj] € Clxy, ..., zq), by Cly; — y;] C Cly1, ...,y and by C[S)].

The exists a simple relation between H; . and H; .. (See also [Su].)

Proposition 2.1. The algebra (C[xli, .. ,a:li] ®c(y He,c is isomorphic to Hy.

Before giving a proof of this proposition, we need to introduce elements in H; . which will be very
important later. For 1 <¢ <, set U; = % + 2y + czj<i sij and Yy = U + § Zj# sign(j —i)s;; =
ST+ 52 i

Proposition 2.2. [DuOp/,[EtGi]

1. Yy = §(@iyi + yiwi).
2. UU; = U;U; for any i, ].
ow-Yw = V(i) -

4. The elements U;,1 < i <1, and C[S]] generate a subalgebra of Hy. isomorphic to the degen-
erate affine Hecke algebra H..

Remark 2.4. The elements Y; are not pairwise commutative if ¢ # 0:

9 1
Vi, Vel = Cz > [sigs sinl-

i=1
i#g,k



Proof. The first statement follows from the equality

! !
Yiti — Ty = t+c Z (xi — x5 ya) @i, yi — yj)sij =t +c Z Sij-
J=1j#1 J=1,j#i

The second part is proved in [DuOp]. The third part is obvious, so we prove only the fourth one.
If |k —i| > 1, then s p+1U; = Uisk k+1, so the non-trivial relations that we have to check involve
si—1,; and s;;41:

t
Si—1,:U; = (5 + i 1Yi—1)Si—14 + ¢ E 8i-1,j8i—1; +c=Ui—15i1;+¢
j<i—1

t
5 T T 1Yit1)Siit1 + C Z 8i41,jSi+1, — ¢ = Uj118i 541 — ¢

Si i1l = (2
j<itl

These two equalities, combined with the PBW-property of H; . [EtGi] and of H., complete the proof
of part 4. O

In the proof of the two main theorems, we will need the following identities.

Proposition 2.3. 1. Ifi # j, then [y, x;] = —csi; and [a:;l,yj] = —cx;lxj*lsij.

2. lyi,zi] =t + CZk;éz sij and [ i ayz] = ;2 + Czj‘;éi x;lxglsij-

8. If i # j, then [V, 2] = —5(2; +x5)si5 and [v; 1, V)] = —§(a] —i—x Dsij.

b Whmi =t + § 3 (i + m))sy and [w7 V] =ty + § 3 (a7 + 2 sy
Proof. These are all immediate consequences of the definition of Hy . ]

Proof. (of proposition 2.1) Because of proposition 2.2, part 4, and the PBW-property of H; . and
H; ., we only have to check the relation involving 7 in definition 2.2. First, assume that ¢ # .

Uy = (x1512---51-10)(Us) = 21(Ui1 — €S1i41)512 - S1—1y
([x1,Ui1] + U121 — cx181541)512 - 811,

= (Cl“z+151 it1 + clxr, S1i41] U121 — €151 z+1)512 ©S1-1,0
= (Uipr)z1812- - 511 = Ui

If i = [, we obtain:

l
iy = x (U + CZ s15)812 - s1-10 = (121, 1] + can Zsl,j +Uiz1)S12 - S1-1
j=2 j=2
l
= (ml(—t - Cz Si,l) + cxq Z 81,5+ L{lxl)slg e S—1l = (u1 - t)T('
i#1 =2



Corollary 2.1 (of proposition 2.1). The algebra Hy . can also be defined as the algebra generated

by the elements Cﬂli, e ,xli, Vi,..., V1 and S; with the relations
2
weai o w T =w,e we Vi w = Vu ViVl = 1 Z (SjkSik — SkjSij)
ik

c
;Y — Vjx; = tdijx; + 2 Z (0, yj) (@i, ) (@580 + Sali).

aeRt

3 Finite and loop Yangians

The Yangians of finite type are quantum groups, introduced by V. Drinfeld in [Drl], which are
quantizations of the enveloping algebra of the polynomial loop algebra g ®c C[u] of a semisimple
Lie algebra g. The second definition in [Dr2] is given in terms of a finite Cartan matrix. If we
replace it with a Cartan matrix of affine type, we obtain algebras that we call loop Yangians LY} ).
(The only occurrence of these algebras in the literature that the author could find is in a remark in
[Va].) Let C' = (cij)i<ij<n—1 (C = (¢ij)o<i,j<n—1) be a Cartan matrix of finite (resp. affine) type
Ap—1 (resp. Xn_l). Ifn>3:

2 -1 0 0 -1
-1 2 -1 0 0
0o -1 2 -1 0 0
C =
0 0o -1 2 -1 0
0 o -1 2 -1
-1 0 0o -1 2
Definition 3 1. [Dr?], [ChPr2] Let A € C. The Yangian Yy associated to C' is the algebra generated
by XZ o Hip, ...n— 1,7 € Z>q, which satisfy the following relations :
[Hi,r, Hj,s] = 0’ [HZ 0 X ] :l:CZJXi (1)
A
[H; r+1,X | — [H:, T,X]isﬂ] 25 (H;, TXi + Xi H;,) (2)
(X3 X5 = GijHirys (X5, XG0 =0 1< |j—il<n—1 (3)
A
+ + vt + vt + vyt
[XZ r+1’X ] [Xz T’X] s+1] i§cij(Xi,er,s + Xj,in,r) (4)
(X5 X X)) + (X5 (X X)) =0 Wy ra,s > 0 df j—i = £1 mod n (5)

Remark 3.1. The Yangian Yy, is isomorphic to Yy, if A1 # 0 and Ay # 0.



Definition 3.2. Let 3,A € C. The Yangian LYg ) associated to C is the algebra generated by
Xlir, H;,,i=0,...n—1,7 € Z>o, which satisfy the relations of definition 3.1 fori,j € {0,...,n—1}

except that the relations (2),(4) must be modified for i =0 and j = 1,n — 1 in the following way
when n > 3:

A A A A
[Hy i1, X)) = [Huie Xoo 1] = (8 — 5 §)H1 P Xos + (5 5 B)Xg Hyr (6)
A A A A
[HO r+1 X ] [HO ) X1 s+1] (5 5 5)H0 T (ﬁ - 5 + §)X1i,sH0,7" (7)
A A A A
[Hort1, Xpy o) = [How, Xy y1q] = (B - 5 §)H0 G (5 T3~ B) X, Hor  (8)
n 1 A A 1 A Ao
[anl,rJrl,X(),s] - [anl,TaX07s+1] = (5 + 5 - ﬂ)anl,rX()’s + (B - 5 + E)X()’anfl,r (9)
+ + + + A A + + A A + +
[Xl 410 XO,S] [Xl Kl XO s—i—l] (ﬁ - 5 + §)X1,7"X0,s + (5 + 5 - ﬁ)XQsXLr (10)
+ + + + A A + + A A + +
[XO r+17Xn 1 s] [XO,NXn—l,s-l—l] = (ﬁ - 5 + §)X077’Xn—1,s + (5 +35 9 B)Xn 1 SXOJ’ (11)
We will also impose the relation Y ;. ' H; 0=0.

Remark 3.2. We will write XijE and H; instead of X;EO and H;o. If B = %, the relations defining
LY}p y are the same as those in definition 3.1 with i,j € {0,...,n—1}. Note also that the relations
(6),(7),(8) and (9) all follow from (10) and (11) using relation (3); they were added above as a
convenient reference since they will be useful later in our computations. We should also note that
LYg, \, & LY, », if B2 = np1 and Ay = Ny for some n # 0.

Remark 3.3. When 3 = 0, LY) g is isomorphic to the enveloping algebra of the universal central
extension of sl,(Ag) where Ag is isomorphic to the ring of algebraic differential operators on C*

(see [Gu)).

Let A = {¢;;,1 < i # j < n} be the root system of type A, _1. For a positive root € € AT, we
denote by XF the corresponding standard root vector of sl,. If ¢ = €ij,i < j, then X = Ej;

and X = Eﬂ, where F,¢ is the matrix with 1 in the (r, s)-entry and zeros everywhere else. In
particular, Xe = FE1, and X, = E,1, where 0 is the longest root of sl,,. If € = ¢; = ¢;;11, then
X =XF

One useful observation is that these two Yangians are generated by XZ o Hipi=1,...n—1 (resp.
i=0,...,n—1) with r = 0,1 only. The other elements are obtained 1nductively by the formulas:

1
:i—

X 5

1
+ + + —
i,r41 Hi717Xi,r] - §(HZX1,T + Xi,rHi)7 Hi,7"+1 - [XJr Xi,l]' (12)

i,r)

Furthermore, the subalgebra generated by the elements with r = 0 is isomorphic to the enveloping
algebra of the Lie (resp. loop) algebra sl,, (resp. Lsl, = sl, ®c Clu,u"!]). We identify X with
Xy @u and X with X; ® u~!. The subalgebra Y;\) generated by the elements with ¢ £ 0 is a
quotient of the Yangian Y.



The two subalgebras Y)? and U(Lsl,) generate LY . Indeed, combining the observations in the
previous two paragraphs, we see that we only have to show that the subalgebra they generate
contains ngl. From the relation (1) in definition 3.2 with i = 1, we know that [H7, ngl] = :FX6|7:17
so, substituting into equation (6), we obtain

A A A A
[HI,I’X(T] iX(i = (8- 5T §)H1X0i + (5 T3~ ﬂ)XgEHl.

Thus ngl (hence also Hy 1) belongs to the subalgebra of LY} generated by Yy and U4(Lsl,,). When
no confusion is possible, we will write LY and Y instead of LYy and Y).

For1<i<n-—1, set

1 1
J(XF) = X5+ M where w =+ 3 7 ([X XFIXT + XFIXF, XF]) - L(X[H; + HiXF)
ee AT

1 1
J(H;) = Hi1 + A\v; where v; = 1 Z (&) (XFX7 + X7 X)) — §HZQ

eEAT
More explicitly, since XZT" =FE;i1, X, =Ejj1,and Hy = B — Eiypq ;41 for 1 <i <n—1, we can
write
I B 1
wi' =7 > sign(j —i)(EBjir1Eij + EijEji) — 7 Eiir1Hi + HiEiiv1) (13)
J?ZZ:zlJrl
Sl = 1
wi =7 > sign(j — i) (Bir1;Eji + EjiBiga 5) — 7Bl + HiEiga i) (14)
];éjz:llJrl

It is possible to define elements J(z) € Y for any z € sl,, in such a way that [J(21), z2] = J([21, 22]):
this follows from the isomorphism given in [Dr2] between two different realizations of the Yangian
Y): the one given above and the one first given in [Drl] in terms of generators z, J(z) Vz € sl,, (the
J(z)’s satisfy a“deformed” Jacobi identity).

In the proof of our first main theorem, the following algebra automorphism will be very important.

Lemma 3.1. It is possible to define an automorphism p of LY by setting

i) =3 (1) (5) Mo s =2(5)(5) X wrizon

s=0 —0
s r r .
i) =3 (1) etinn sy =30 (7)o, prizon
s=0 5—0

We use the convention that XfLr = erf_w and H_;, = H,_1,. Note that, in particular, p(Xii) =
X1, p(Hy) = Hiy Viand p(X;) = X;= | + 3 X;5 1, p(Hi1) = Hi11 + 3 H; 1 if i # 0,1, whereas
p(Xfl) = Xijil,l + ﬁXil, p(H;1) = H;—11+ fH;—1 if i = 0,1 The automorphism p is very similar

to the automorphism 7 (or 75) in [ChPr2| followed by a decrement of the indices.
2

7



Proof of lemma 3.1. We have to verify that p is indeed an automorphism of LY, that is, that it

respects the defining relations of LY. In the case when 7,5 # 0,1 in the relations (1)-(5), this

follows from the fact that p is the same as the automorphism 7, from [ChPr2] followed by a
2

decrement of the indices. A short verification shows that p preserves the relations (1),(3) and (5)
when ¢ = 0,1 or j = 0,1. (In the case of equation (3) and i = j, , one has to use the identity

Za—f—bk( " > ( Z ) = ( 7“—]1:—3 >) Since the relations (6)-(9) follow from (10) and (11) by

a
applying [-, er o7 =0,1,n —1, there are three cases left that require a more detailed verification.

Wewillusetheidentity<2>=<T;1>+<2:1 >

Case 1: We start with the relation (4) with ¢ = 2,5 = 1. We find that p([ijfrJrl,XfS] -

[X;r,stJrl]) is equal to
s A r+l—a
+ —by=*
()[G) i)

SR E]G) o)
BRI
SECG) (L)) ) o
- S ()6) G-
T )

o
«n o

+ |
= O

s

> r s A\
(L0 (E) e

N
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<_> B X Xo)
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S]
Il
w O
o>

2
|
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o
o
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ot
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) 2()1;()(5)(% G - X X

B ()Y et
) E%ZQ( () G) G-

() (5)(3) g G ey )
- 22 (2) () (G) T (53) et it

A
= o((73) it xix))

Case 2: i = 1,7 = 0. We have to prove that

A A A A
p([Xli,qul’ngs] - [XliW’X&erl]) = p((ﬁ D) + §)Xer§s + (5 + 9 B)X(%lei,r)
This case is analogous to case 1, but a little bit simpler since the term (% — () above becomes
(B-p)=0.
Case 3: i =0,7 =n — 1. We have to show that

A A A

A

+ + + - X X
p([XO’TJrl,Xnil’S] N [Xovr’X”*LSJrl]) = p((ﬁ o 5 + §)X0,an71,s + (5 + 5 o ﬁ)anl,sXO,r).
The computations are again very similar to those of case 1: the main difference is that the factor
(% — [3) gets replaced by (5 — %) u

4 Schur-Weyl duality functor

The Schur-Weyl duality established by M. Varagnolo and E. Vasserot [VaVa] involves, on one side,
a toroidal quantum algebra (a quantized version of the enveloping algebra of the enveloping algebra
of the universal central extension of the double-loop algebra s, [si, ti]) and, on the other side, a
double affine Hecke algebra for S;. Theorem 4.2 establishes a similar type of duality between the
trigonometric DAHA H; . and the loop Yangian LY} ), which extends the duality for the Yangian
of finite type due to V. Drinfeld [Drl].

Before stating the more classical results on the theme of Schur-Weyl duality, we have to define the
notion of module of level [ over sl,, and the quantized enveloping algebra ,sl,,. Fix a positive
integer n and set V = C".

Definition 4.1. A finite dimensional representation of sl, or Ugsl, (g not a root of unity) is of
level | if each of its irreducible components is isomorphic to a direct summand of V&L.



Theorem 4.1. [Ji, Dri1, ChPr1] Fix 1 > 1,n > 2 and assume that ¢ € C* is not a root of unity.
Let A be one of the algebras C[S], Hy(S1),H1(S1), Hy(S:), and let B be the corresponding one (in
the same order) among ﬂs[n,ﬂqsln,Y(sln),ﬂq;[n. There exists a functor F from the category of
finite dimensional right A-modules to the category of finite dimensional left B-modules which are
of level | as sl,-modules in the first and third case (and as Ugysl,-modules in the second and fourth
case) which is given by

F(M)=M@c V®

where C = C[S]] (first and third case) or C = H4(S;) (second and fourth case). Furthermore, this
functor is an equivalence of categories if | <n — 1.

The sl, module structure on V® commutes with the S;-module structure obtained by simply
permuting the factors in the tensor product. Let M be a right module over H, .. Since C[S;] C Hy,
we can form the tensor product F(M) = M ®¢g, Vel

On one hand, since H; . contains the degenerate affine Hecke algebra H., M can be viewed as a
right module over H, so it follows from [Drl] that F(M) is a module of level [ over the Yangian
Y, of sl, with A = c¢. On the other hand, H; . also contains a copy of the group algebra of the
extended affine Weyl group S, so it follows from [ChPrl] (the case ¢ = 1) that F(M) is also a
module of level [ over the loop algebra Lsl,. These two module structures can be glued together
to obtain a module over LY. This is the content of our first main theorem. Before stating it, we
need one definition.

Definition 4.2. A module M over Lsl, is called integrable if it is the direct sum of its integral

weight spaces under the action of b and if each generator Xl-j; acts locally nilpotently on M.

Theorem 4.2. Suppose that | > 1,n > 3 and set A = ¢, = % — 5 + 5. The functor F : M —
M ®cig Ve sends a right H, .-module to an integrable LY x-module of level | (as sl,-module).
Furthermore, if l +2 < n, this functor is an equivalence.

Remark 4.1. This theorem is very similar to the main result of [VaVa] where Hy . is replaced
by a double affine Hecke algebra and LYy ) is replaced by a toroidal quantum algebra, under the
assumption that the parameter q is not a root of unity.

5 Proof of theorem 4.2

The proof of theorem 4.2 consists of two parts. First, we show how to obtain an integrable LYj y-
module structure on F(M), and then we prove that any integrable representation of LY of level
l is of the form F(M). If there is no confusion possible for the values of the parameters, we will
write H,H,H, LY instead of Hy ., H¢, Hy ¢, LY} 5.

5.1 Proof of theorem 4.2, part 1

FixmeM,v=1v;,Q® - -Qu; € Ve where {vy,...,v,} is the standard basis of C* and 1 < ij < n.
The subalgebra sl,, generated by the elements Xl-i, H;)1 <i<n-—1,acts on V® as usual. The

10



element z ® u* € Lsl, acts on F(M) in the following way:

l
Feu)mev) =Y mi* v, @ - @ (20;,) @ @ v,
j=1

For z € sl,, we will write 2/(v) for v; ® --- ® (2v;;) ® - ® v;,. The elements J(XF), J(H;) and
XF,Hi1,1 <i<n—1,act on F(M) in the following way (see [Dr1],[ChPr2]):

i1

I
J(Xzi)(m ®V) = Zmyj ® Xl.i’j(v), Xfl(m RV) = J(Xzi)(m ®V) — )\wii(m R V),
j=1

l
J(H;))(m®v) = Zmyj ® Hij(v), Hii(m@v) =JH;)(mv)—Ay(mev).
j=1

Following one of the main ideas in [VaVa], we define a linear automorphism 7" of M ®¢g)] Ve in
the following way:

iy, .

751',71
Tm®uy, ® - Qu;) = (mx, ey ) @ Vi1 ® - @ V4,

with the convention that v,41 = v1. (Here, §;; is the usual delta function.) One can check
that T o (Xt ,) = @(XF) oT and T o p(H;—1) = @(H;) o T for any 0 < i < n — 1, where
¢ Y — Endc(F(M)) is the algebra map coming from the Y-module structure on F(M). Recall
the automorphism p from section 3.

The following lemma will be crucial.

Lemma 5.1. Let M be a module over H. For any 2 < ¢ < n —1 and any r > 0, the following
identities between operators on F (M) hold:

e(p(X;5) =T op(X})oT @(p(Hiy)) =T ' op(H)oT (15)

e(PA(XT,) =T 2op(Xi,)oT? ¢(p*(Hyy)) =T 20 @(Hy,)oT? (16)

Proof. Since the elements XZ%T, H;, with r = 0,1 generate LY (see equation (12)), it is enough to
prove the lemma for » = 0,1. First, we prove relation (15) for X:'l with 2 <4 <n — 1. The proof
for X1 exactly the same and we omit it, and the proof for H;; follows from either of these two
cases using identity (3). The following observation will be used repeatedly throughout this article:

the action of s on V@ if given in terms of matrices by: Sjk = Zf =1 EﬂsEfr.

Recall that X;; = J(X;") — Aw;". To simplify the notation, will not use ¢ in the proof. (We used
it only to state the lemma in a convenient way.) We have to check the equality

(IEF) — X)) (T(m © v)) = T ) — Moty + 5K )(m o v)). (17)
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With v as before, suppose that j; < --- < j, are exactly the values of j for which 7; = n. Then
T(71n ®RvVv) = mx{ll e CCJ;I ® Vi 1Whelre Vil = Vij4+1 @ -+ @ v;41. We will use the abbreviation

- -1
L5 for the product ;) T

l

_ -1 k
.]17 7jp ® V+1) - Z mxj17"'7jl7yk ® E272+1(V+1)
k=1

I p
—1 —1 -1 —1 -1 k
= > > maytapt o Vg g @ Bl (v) (18)
k=1r=1

l
+ D MGy © Bl (Vi) (19)
k=1

JX)(Tmev) = JX)(mz

Note that E; j11(v41) = (Ei_l,i(v))+1 since we are assuming that 2 < ¢ <n — 1.
l
Z mykx;l{ Jp ® E@ yit+1 V+1 Z mykle Jp ® (Ezlil,i(v))jq = T(J(thl)(m ® V)) (20)

Therefore, it follows from (18), (19) and (20) that the identity (17) that we must prove can be
written as

(18) — )\w;r (T(m ® v)) = —)\T( (m® v)) + )\T(X;L (m® v)) (21)

In the sum (18), note that if k = js for some s, then EZ@'H(VH) = 0 since v;, +1 = v, +1 = v1 and
FE; i+1(v1) = 0. Therefore, using proposition 2.3, we can simplify expression (18):

p l
Z Z ) ]rl 1 <_§> (x;rl + xil)swwﬁl T xj;l ® Ezk,i-i—l(VJrl)
r=1 712:
CN- N -1 -1 -1 -1 —1 jr
= _52 > magtoeapt aptert capt @ Bl (kg (ve)) (22)
k=1
k#jsVs
¢ v l -1 -1 ,-1,.-1
) Z Z m;, ...xjr—lxk Ljogr ™" El1;+1 (Sk,jr(V+1)) (23)
k=1
k#jsVs

We now turn to the second term on the left-hand side in (21). We distinguish two cases: when

Ej;1 and E;; act on the same tensorand, and when they act on different ones.

12



nool
Aw;t (T(m ® V)) = % Z Z sign(j — z)mﬂ:;lljp ® E5i+1(v+1) (24)
i
y oo I
+§ Z Z Z sign(j — i)m Jl} ip © Ef i1 (ska(v+1)) (25)
G ik dai
—%mxj_ll]p ® (Eiip1Hi + HiE; 1) (V1) (26)

The term (24) can be simplified:

l
A
(24) = 5 (n — 2i) )Y mayt @B (vi) —)\< ) <Zm® ) (27)
k=1
We now consider )\T( (m® v)) As for w;™ above, we distinguish two cases.
M (whj(m®v) = T A Zn: Zl:sign(j—i—kl)m@Ekl (V) (28)
i— 4 ‘;Z'A:ll = i—1,i
jFi—1,i

Z ZZSI%HJ—ZH)WL@EZ 1i(sxa(v)) (29)

j=1 k=1 d=1
#z 1,0 t=7 iq=1

A
_ZT((Ei—l,iHi—l + Hi 1Ei 1) (m @ V)) (30)

The expressions (26) and (30) are identical and the difference between the sums (28) and (24) is
equal to 37T <Z§€:1 me Eﬁu(")) (see (27)), that is, 37(X;",(m ® v)). Therefore, the equality
(21) that we have to prove simplifies to (18) = (25) — (29).

In expression (25), we consider two different cases: j # 1 and j =1 (hence i, = n):

Z Z Z&gng—z oL@ (B (sa() (31)

=2 k=1
#zz—f—lzk =j— lzd z

A _
D) Z Z m%%...,jp ® Eﬁi+1(3kd("+1)) (32)

k=1 d=1
anldl

We can also decompose expression (29) into two sums by considering separately the cases j # n

13



and j = n.

l

(29) = %T Z ZZSIgH]—Z m@ EF 1i(ska(v)) (33)

j=1 k=1 d=1
];él 1,4i=J1q=1

l

!
+%T Z Z m @ Ef i (ska(v)) (34)

k=1 d=1
=N 14—1

Note that the sums (31) and (33) are equal, so the difference (25) — (29) is equal to (32) — (34).
The equality (18) = (25) — (29) is now a consequence of the observation that the sums (22) and
(32) are identical, and so are (23) and —(34). (Indeed, if ix, = n, then k = j, for some r and we
have to interchange the roles of d and k to see that these expressions are indeed equal.) We also
need our hypothesis that A = c.

We now consider the case i = 1 in our proof of lemma 5.1. The identity (13) gives the following

expression for w and w

n

1 1
+ _
wr =7 Z;(Eszlj + B3 Bjp) — 2 (EraHy + HiEno)
j:
1= leE1+E Ei) = B + o B1)
n— 4 - ntin—17 n—1,7n g \n—1ntin— n—1Ln—1n
Suppose that ji,...,7, (resp. Y1, --,%) are exactly the values of j (resp. of 7) such that i; = n
(resp. iy =n—1). Then T?(m®v) = mx]_ll x]_lx,;ll a5 @ vy, Since X1 L= J(X]) = Mot
we obtain:
l
Xftl (Tz(m @v)) Z J17 dp 7117 e Tk ® Efy(vV42) (35)
=1
A
4 Z Jl, -Jp “/1, e ® (Ej2Erj + EjEj2) (Vo) (36)
=3
)\ _
+ M j, s dp wl, e @ (EroHy + Hi1E12)(V42) (37)

In the summation (35), we can assume that k = j, for some s, since otherwise E¥,(vi2) = 0.

szxjh 7.717 _1 ) x'Yu 1[ y]s] vu+1" _1®E12(V+2) (38)

s=1 u=1

+Zme et e Vgt et @ Bl (vas) (39)
s=1r=1
l

> m¥ayl L, @ B (vis) (40)
k=1

14



The last term is equal to T2 (J(X,/_;)(m®v)). The term (37) above is equal to 2T ((Ep—1nHpo1+
Hy 1Enp 1) (m® v)) Therefore,

Xft1 (Tz(m ®V))

(The expression (50) appears explicitly below.)

We need to decompose the sums (38) and (39).

(38)

= (38) + (39) + (36) + T*(X,_, 1 (m ® v)) + (50).

P e
-1 1.t c -1 -1 -1 -1 j
szlev---vjpx’ﬂ 'Yu 1 <_§) (x')/u +x]s )S'Yuvjsx“/u-kl o ‘x’)/e ® E{%(V‘FQ)
s=1u=1
71 1 -1 -1 1 ’y
__sz Ji,-- 7]17 ’ x'}/u—lx'\/u ’Yu-o—ln'x’)/e ®E15 (S'Yuyjs(v+2)) (41)
s=1u=1
e s B G| -1 v
__sz .717 7.]17 ’yl ’ ’yuflxjs Yu+1 ”'x’Ye ®E15 (57u7]5(v+2)) (42)
s=1u=1
p p '
-1 —1,-1 J
szxh o x]d 1[ Ja ’yﬂa] Jd+1"'x Ly, ,WE®E1§(V+2)
a=1 d=1
d#a
p
1 - -1 -1,_-1
+me]1 x]a 1[ yja] ]a+1 . .xjp x'yl,.--er ®E12(V+2)
a=1
P P C .
—1 -1 - -1 L1
szlewwjd—l <_§) (.%']d +x_] )SJdvja ]d+17 Jp ’Yl, 7*\/6®E{%(v+2)
a=1 d=1
d#a
P C
-1 —1 —1 1 1 1
+Zm$j17"'7ja71 tl‘ja +§ Z(l‘ja +l‘q )Sjavq ]a+17 7_]1)3:’)/17 Ve ®E12(V+2)
a=1 qFja
p p
¢ —1 -1 -1 -1 j
_5 mley---vjdflxjd Sjavjd( Gt 1yemslip “/1,---,%) ®E{%(5ja7jd(v+2)) (43)
a=1 d=1
d#a
p p
c -1 —1 1 1 j
3 oS mayt o witsil ) st ) @ Bl(si..(vi2) (44)
a=1 d=1
d#a
p
—1 —1 j
+tzmxj17---7]p ViseeerVe ® E{5(vi2) (45)
a=1
p l
#5202 TS5 T Trn) © BlaSia(v42) (46)
2 wJa—1 ]a Jasq Ja+1s---Jp "/1,---,’\/5 12\9Ja,q\ V42
1
qq?éja
p l
¢ —1 -1 -1 -1
520 2 M e i@, 5 © Bla(sjg(vi)) (47)
a—

q#Ja
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We now focus on wi (T?(m®v)) and T2 (w,'_;(m®v)). We've used the equality wi (T*(m®v)) =
—(36) — (37) earlier. We can decompose (36) by considering the cases when E;; and Ejs act on
the same tensorand and on different ones:

n—2 _
—(36) = A ( 1 > my, . i jpx7117--we ® E12(v+2) (48)
A n l P
5D D Mm@ Bl (s5,(Vi2) (49)
j=3 g¢=1 b=l
iqt+2=j]
A n—2
AT? (i (m@v)) = —ZTQ > (EjnEn1j+ En1;Ejn)(m®v) (50)
j=1
A 2
_ZT ((En—l,an—l + Hn—lEn—l,n)(m ® V)) (51)

We observe that —(37) = (51). As with (36), we can decompose (50):

n—2 _ B
(50) = —A ( 4 > mle%wjpx’hl,m,% ® (E"—Ln(v))—i—Q (52)
n—2 1 p
_§T2 Z Zm®En ln(SQ7]b( )) (53)
j=1 g¢=1 b=1
19=J

We observe that (48) — (52) = A (%52) T?(Ep—1,n(m @ v)).
l p .
DD omag! g R ® Blh(se,(ve2)
q

To obtain the last expression, note that i, # j,, s for any a, h since i, = j and we consider values
of j different from n and n — 1.

We now decompose the sums (46) and (47) into three different sums. In the first case, ¢ = jg # Jja;
in the second one, ¢ = 75; and in the third case q # j,, v for any a, h.

p P
c -1 -1 -1 j
(46) - §szx1h da—1Tja Sﬂavﬂd(xja+1,--.,jpx717---7%)®E{%($ja’jd(v+2)) (54)
a=1 d=
d

e

p
c —1 -1 -1 -1 —1,-1 Yh
+_Z MLj,....ja1"ja xjaﬂ,---,]p Ve Vh=1Cja TVht1seerVe ®El2 (SJav“/h (V+2)) (55)

p
¢ -1 -1,.-1 —1
+§ Z Z mler"vjaflxja xja+17---7jpx71y---77e ® Ei]2 (Sja7q(V+2)) (56)

qFjdTh
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p P
c -1 -1 -1 -1 ]
“n = 522””]17 wda-1%j4 Sjara (2 Jat1s-- ,Jpx%---,%)®E{%(Sﬂ'ayﬂ'd(v+2)) (57)

a=1 d=1
d#a
C P °
§ -1 —-1,.—1 —1 —-1,.—1
+2 mlev"'vja—lx’)/h xja-’—ly---yjpxﬂﬂv"w’)/hflxja x7h+17~~~776 ® E12 (SJG Yh (V+2)) (58)
a=1 h=1
C P !
= -1 -1,.—1 -1 q .
+2 Z Z mlev---yjaflxq xja+1,---7jpx71y---77e ® E12 (8]a7Q(V+2)) (59)
a=1 g¢=1
q#jdTh

The following equalities hold since we are assuming that A = ¢:

(37) = —(51), (56) = (49), (59) = —(53), (58) = —(41), (42) = —(55), (43) = —(57), (44) = —(54)

t _ An—2)
2 4

Using our assumption that 8 = , we can prove that Xfl (T2(m ® v)) = T2((X+_171 +

2ﬁX:_1)(m ® V)):

X (TP (mev)) —T*(X} (m@v)) = (35) + (36) + (37)

(38) + (39) + (41) + T*(J(X,/_ ) (m @ v)) = T*(X,[_; 1 (m ©v))

= (41)+...+47) + (36) + (37) + (50) + (51)
(41) + .. ( 5) + (54) + (55) + (56) + (57) + (58) + (59) — (48) — (49)

+(37) + (5 )+(52)+(53)

= ((37) + (51)) + ((41) + (58)) + ((42) + (55)) + ((43) + (57)) + ((44) + (54)) + (45) — (48)
+(—(49) + (56)) + ((53) (59)) + (52)

= (45) — (48) + (52) = ( ( 5 2>>T2 n—1a(mev)) =28T%* (X, | (meV))

Using the lemma, we can now define the action of ngl and of Hy; on F(M) by setting
Xi(m@v) =T (XE (Tm @ v)) = 6XE (m o v)

and
Hoiy(m@v)=T""! (Hl,l (T(m® V))) — BHy(m @ v).

Note that lemma 5.1 implies that Xoffl (T(m @ v)) = T(erf_u(m @v) + XE (m® v)) and
similarly for Hg ;. In other words, and more generally, we set

<p(X0jfT) =To Lp(p(XOi’r)) 0T o(Hor) =T o <p(p(H07r)) o Tt vr > 0.

We now have to check that this indeed gives F(M) a structure of integrable module over LY.
Choose 4,7,k € {0,1,...,n — 1} with k # i,k # j. We have to verify that @(Xij;), o(Hir), w(st)
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and ¢(Hj ;) satisfy the defining relations of LY. This is true when k& = 0 from theorem 1 of [Drl].
Using lemma 5.1, we conclude that it is also true for k£ # 0. This means that we have a well-defined
algebra homomorphism ¢ from LY to Endc(F(M)). That F(M) is integrable follows from the
fact that V® is an integrable sl,-module, and that it is of level [ follows from theorem 4.1 in the
case of C[S;] and Usl,,.

5.2 Proof of theorem 4.2, part 2

For the rest of this section, we assume that [ + 2 < n. In the second step of the proof, we have
to show that, given an integrable module M of level [ over LY, we can find a module M over H
such that F(M) = M. Integrable Usl,-modules are direct sums of finite dimensional ones, so, by
the results of Drinfeld [Dr1] and Chari-Pressley [ChPrl], we know that there exists modules M*
and M? over, respectively, H and C[S)], such that M = F(M?) as Y-module and M = F(M?) as
Lsl,-module. Since C[S;] C H and C[S}] C C[S}], we have an isomorphism M* 2 M2 of S;-modules,
so we can denote them simply by M. We have to show that M is actually a module over H.

The following observation will be useful.

Lemma 5.2. If v=v;, ®- - - ®wv;, 15 a generator of Ve as a module over Usl, (that is, if ij # U
forany j #k), thenm®@v=0=— m=0.

Fix 1 < j,k < 1,j # k. We choose v to be the following generator of V& as {sl,-module:
vV =10; QU @ @u;, whereig =d+3ifd<jd#k, ig=d+2ifd> j,d#k,i; =2and i = 1.

We can express w, as an operator on V& in the following way:

n l l l l l
Grlver= =5 3 D simn(z - (BB - (“10) - 5 303 Fh

d=1 r=1 s=1 r=1 r=1 s=1

d#2,3 s#r S#T

Therefore, [E?

¢ wy | = —% ZIT;I E3 Ely — % le? E$, E? 4 and applying this to m® v with a = j, k
r+a SFa
gives

_ 1 ; _ 1 .
(B wyl(m®@v) = _§E§1Efz2(m ®v) and [EZMWQ J(m®v) = —§E§1E312(m ® V).

MN
MN

(X2_71X3L — X0+X2_’1)(m V) = (ma, Vs @ Xoy Epy (V) = mYsz, ® E;lXQ_bS(V))

\3
I
A
vl
I
A

|
>

&
W]

, Xg l(m @ v)

m[xra ys] & Egs,QE:;l(V) + A Z mre & [Egla WQ_](V)

a=1

I
MN
MN

\3
I
A
vl
I
A
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- - , A )
(X2,1X8L - X0+X2,1)(m ®v) = mlzg, V] ® BBy (v) — 5MTj B3 B2y (v)
A .
s ELEL()
A —~
= ([xkay]] (xj + xk)s]k) Qv

where v = EgQE,’jl(v) = Vg ® - Q Vg, With ag = iq if d # j,k, a;j = 3 and ap, = n. We
know from relation (3) that [Xil,X(ﬂ = 0, so the last expression is equal to 0. Since Vv is a
generator of V& as a isl,-module, it follows, from lemma 5.2 and our assumption that A\ = ¢, that
m([zk, Vj] = §(xj + 2x)sjk) = 0.
We consider now the relation between x; and V.. From the definition of vq:
1 — 1 1 — 1.,
v =~ Z(EldEdl + Eq Era) + §(E12E21 + En F1a) — — Z(Eszdz + Eg2Eaq) — 5 Hi

4 4
d=3 d=3

whence, as an operator on V' it is equal to

nol1 ol ol
vilyer = EZZZ E{dEfll - Enggz) + ZZE{QE% 2 ZZHfo + (n

2\ <
>ZH{.
j=1

TG = “574
Therefore,
1 1 n—2
En,v =5 Z dE§1+§Z(H0 nl T En By +Z b3 — Z niHT + <T> i
d=3 s=1 s=1
sAr sAT oZr otr

Fix k, 1 < k <. We now choose v to be equal to v =1v;; ® --- ® v;, with iy =d +2if d <k,
ig =d+1if d > k and i, = 1. Note that v;, # 2,n,n — 1Vd since [ + 1 < n — 1 by assumption.
Applying the previous expression for [E],,v1] to v, we obtain the following:

o Z WER() = o BR () ifr 2k (Bl = (C77) Ba) o0

Note that Hy o(v) = 0 if s # k. We need (60) to obtain equation (61) below.

I
(Hia Xy — Xg Hip)(m@v) = Z Z ma, Vs ® Hi gEpy (V)
r=1 s=1
I

_Z mYsxr @ B HY o(v) — A, XgJ(m @ v)
s=1r=1

!
= —myrE® EﬁlHﬁO(v) + A mer ® [Erq,v1](V)
r=1
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l
A
(Hia Xy — XgHi)(mev) = —mYgry ® EF(v) + 5 Z ma, @ speEr (V)
r=1
r#k

-2
+ACQ_>m®E%W)

n —

l
~ A - -
= —mYpxL OV + Ez;mxrskr@)v—l—)\( 1 >m®v (61)
2k
where v = Eﬁl(v) = Uy, @ - @ Vg, With ag = iq if d # k and a;, = n. We want to obtain a similar
relation with Hy ; replaced by H,_1 1.

From the definition of v,,_1,

n—2

Vn—1 =

1
(EdnEnd + EndEdn) + §(En71,nEn,n71 + En,nflEnfl,n)

FN-

d=1
1 n—2 1
(Ean-1En—14+ En-1,4FEqn-1) — §H72~;—1
d=1

whence, as an operator on V® it is equal to
l l

1 n—2 1 l . . '
vmalver = 53 3 > By Bra— By Era )+ D (B nBr)
d=1 _]:1 s=1 _]:1 s=1

S#£] s#
1~ n—2
SIDIREE CS Dol
j=1 s=1 j=1
S#]
Therefore,
1 n—2 1 1 l
[Enivn—1] = ) Z Z EqEnq+ B Z(HS w1 — Enn1En_11)
= o
! I 0o
S EraaBian - X Euti - (M) B
ok o

Applying the previous expression for [E], v,—1] to v, we conclude that [E) | v,_1](v) =0if r # k

and
12 n—2 1< n—2
B nl) = =3 3 Y Eh B - (70 ) Bh) =3 s - (7 )
=2 Tk
(62)
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The equation (62) allows us to compute [Hy,—1.1, X |(m ® v):

l
(Hp-11Xg — Xg Hp—11)(m@v) = Z (ma, Vs @ Hyy_y 0By (V) = mYsr @ Efy Hyy (V)

r,s=1

—Avn—1, Xo](m ®v)

S
= mzpVp ® Hﬁ,l’oEﬁl(v) + A Z mx, Q [E) 1, Vp-1](V)

r=1

l
A n—2
— s By - 5 Soman (st 57 ) @ Bl )
7

!
A n—2 ~
= —mx) @ EX (v) — B E mxy <sks + T) ®v (63)

s=1
s#k
From the relations (1), (6) and (9) in LY, we know that
-Xo, = [Hi, Xg1+ (A= B)Hi Xy + BX{ Hy) (64)
= [Hp-1,1, X{ ]+ (BHn—1 Xg + (A= B) Xy Hp—1) (65)

Applying these two expressions for —XOJT | to m ® v, using equalities (61),(63) and the fact that
Hy1X) (v) =0 and X H,—1(v) = 0 because of our choice of v, we obtain:

l
~ A - n—2 —
_mykxk@)v—i—Emer@skrv—i—)\(T)mxk®v+BXJH1(m®v):
rZk
A ! n—
—MTpYe @V — 5 meksks RV —A (T) mz @V + ﬁHn_lXJ(m ® V)
s=1

s#k

n—2

l
~ A ~ ~ ~
= mrg, Vi) @V + §Zm(3€r + z)Spr @V + A < > mxy @V +20mx, v =0
vk
Since Vv is a generator of V® as a Usl,-module, it follows from lemma 5.2 and our assumptions

that Qﬁ—l—@:t,)\:ctha‘c

!
C
m([@g, Vi) + 3 Zl(l“r + @k)Spr + tag) =0
ok

We proved above that m([zy,V;] — §(x; + x1)s;,) = 0 if j # k. These last two equalities imply
that M is a right module over H.
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Therefore, we have shown that the H- and the C[gl]—module structure on M can be glued to yield
a module over H. To prove that F is an equivalence, we are left to show that it is fully faithful.
That F is injective on morphisms is true because this is true for the Schur-Weyl duality functor
between C[S;] and $(Lsl,), so suppose that f : F(M;) — F(My) is a LY -homomorphism. From
the main results of [ChPrl] and [Drl], f is of the form f(m; ® v) = g(m1) ® v,Vm; € My, where
g € Homc(Mi, M3) is a linear map which is also a homomorphism of right C[gl]— and H-modules.
Since H is generated by its two subalgebras C[S;] and H, ¢ is even a homomorphism of H-modules.
Therefore, f = F(g) and this completes the proof of theorem 4.2. O

6 Action of the elements X(fl, Hy

Now that we know that F(M) is a module over LY, it may be interesting to see explicitly how the
elements ngl and Hop 1 act on it. What we will discover will be useful in the next section. We will

assume throughout this section that A = c and g = % -7 +53.

6.1 Action of X,
Equations (64) and (65) yield

X({l = _%[Hl,l + Hn7171,X6r] — %((()\ — ﬂ)Hl + ﬂanl)Xar + Xar(ﬁHl + ()\ — ﬂ)anl))

We will use the notation K,.(z) to denote the element z ® u" € Lsl, for z € sl,; in particular,
K1(En) = X; and K_1(E1,) = X; . The element K,(z) maps to the operator in Endc(F(M))
given by K,(z)(m®v) = 22:1 ma?l @ zF(v). Writing Hy 1 as Hy11 = J(H1) — Avy, and similarly
for H,—11, we can express Xthl in the following way. (We will use that [H,_1 — Hq, XOJF] =0.)

Xo1 = —5lJ(HL+ Hy), Xg] -

| >

n—1
Z (K1(Eng)Ea1 + Eqi K1(Eng))
d=3

_l’_

(Ki(En) — Ki(Enn)) En + Eny (K1 (E1) — Kl(Enn))> + %(HlXOJr + X Hy)

A
K1 (En2)En + En K1 (Ey2)) — g(Kl(E21)En2 + Eno K1 (E2))

/N

—

0> B> 00|l> N
0
[N}

(Kl(Edl)End + EndKl(Edl)) + %((Kl(Ell) - Kl(Enn))Enl

+
u
M)

A
4
+= (K1 (Enn-1)En-1,1 + En—11K1(Enpn-1))

(X Hoor + Hor X5) = 2 (A= B)H1 + BHu ) XS+ X (BHy + (A= 9)Ho 1))

+En1 (K1 (E1) — Kl(Enn))> + = (K1 (En—11)Enn-1+ Enn-1K1(Ep-1,1))

>

| > oo

_l’_
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2
(K1(Eng)Ea + Eq1 K1 (Eng))
3

n

1
Xg = _§[J(H1 + H,q), X5 ] —

| >

a
Il

s
— 5 (E1(Bn2) Ea1 + En K (En)) + 3 Z K1(Eq1)Eng + EngK1(Eq))
d=

+

VR

(K1 (B11) = K (Ban)) Bt + But (Ki(B1t) = Ki(Fan)) )

+

—~

Ki\(En-1,1)Enn-1+ Enn1K1(Ep-1,1))

1 1
—=[J(E11 — Enn), Xg | + §[H2,1 o Hpyo1, X1+ 2o+ 4 Voo, X | (66)

2

i
N}
|

—

n

oo >

(K1(Ena)Ea1 + Eq K1(Ena)) + (K1(Ea1)Eng + EnaK1(Eq))

3

o
[|
o
IS
Il

%(Kl(Ho)Enl + Eni K1(Ho))

_l’_

K1(En2)E21 + En Ky (En2)) —

—_—~ o~

+
0| > 00> | > MI*—‘»&IV&IV .-l>|>/

K1(En—11)Enn-1+ Enn-1K1(En_1,1))

NE
[J(Eppn — E11), End)Ea + EqK1(Eng))
d:2

DN | =
—

i
L

(K1(Eq1)Eng + EngK1(Ea1)) — %(KI(HO)Enl + En1K1(Ho))

+
| >
g

Il
¥

A

I
=

|

|

A
> (X XX+ XX, X)) - g(Kl(Ho)Enl + En1 K1 (Ho)).
€EAT

We define J(X) to be equal to 3[J(Ey, — E11), X ]. In line (66), we used the fact that

1 1
5[1/2 ot e, X = g[E12E21 + Eo1Fio — F1n_1Ep_11 + EopnEpo + EpoEoy,
- nfl,lEl,nfl - En,nflEnfl,n - Enfl,nEn,nfly Xar]
Recall that Hy = F,,, — F11 = —Hy — ... — H,_1. Set jivj = %(xjyj + Yjz;). The element J(X0+)

acts on F(M) in the following way:

>

J=1

l
, 1 .
mlzy, V)] © HYEE (v) + 5 > “m(x;V; + Vizj) @ Bl (v)
j=1

J(Xa')(m ®Rv) =

MN

N |

£j

T
(SR

l

4>|>/

MN

m(xy + )8k @ HgEﬁl(v) + ijj ® Efﬂ(v)

J=1 J=1

L

2

T
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ol !
A , _ A
J(XJ)(mov) = 1 E E m(xy + ;) ® (B, B — Eanfl)(V) + E mY; @ B}, (v)
J=1 k=1 j=1
k#j

!
A
= Zy RE), += (XSLHO + HoX{ + En1K1(Ho) + K1(Ho)En1) | (m@v)

Jj=1

Set J(Xg) = J(XJ) — 2(XJ Ho + Ho Xy + EniKi(Ho) + K1(Ho)Ept), so

~ A _ _ A
Xoo = J(X) = 5 D (X3 XFIXT + XTIXG X)) + S (X5 Ho + HoX)
ee AT
6.2 Action of Hy,
We set g = —€1 — ... — €51 = —0 and ® = (¢,¢q) for e € AT. From relation (3), we know that
[Xo1, X1 = Hoya, so
¥ + _ )\ 2 )\ + _ _ + )\
Hop = [J(XO )7X0 ]+ ZHO - Z(XO Xy +Xo Xq )+ Z(ElnEnl + En1Enn)
A A +y— - v+
—ZKl(Ho)Kfl(Ho) —3 Z (e,€0) (X Xo + X X))
eeAt
e£—ep
A + - - +
+§ Z (6? 60)(K€O(Xe )Kféo(XE )+K760(X€ )KeO(XE ))
eeAt
e£—e€p
= [J(Xg): Xg] = Ain (67)
where
- 1 _ _ _ _
o = ¢ 3 () (XEXT + X7 XF — KKK (X)) ~ K_a(X))Ka(X[)
ee AT
1., 1
— 7 Ho +  Ki(Ho)K-1(Ho)

We can use this to find how Hp acts on F(M), so let us see explicitly how [j(XOJr), X acts on
F(M):

l l
[j(XJ),X&](m@V) = sz[xk 7y]]®E]1E1n( )

!
+ me}lyj ® E) B (v) — Zm)@-x{l ® {nE,]ﬂ( )
=1
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1 l

ZZm xj+ xp)( +$;1)Sjk®E3ﬂEfn(v)
=i
1< 1 ¢

+2 m(Y; +a; YYz) @ F (v) — QZm(wij

[J(X5), Xplm@v) =

»My

<.
—_
T
[y

'+ ® By (v)

] !
A
C SIS b ) BB+ Y0, Bt

=l =1
1

+§Zm[xj_1,y]]xj®E] ——mej Vi ]®E (v)
j=1 j=1

\ l l

!
= ——ZZmQ—l—m T+ Ty, x])®Ej EF ( )—i—Zmyj@Ho(v)

4 1 k=1 i—1
Jj= =
k#j J

l l
A .
+7 2 D mak(@y a3k @ B (v)
7=1 k=1
k#j

Lo
A ; t
1 > D may(ayt a)sie @ B (v) + 5 (Enn + En1)(m @v)

7=1 k=1
k#j

1 1 1
= _)\(§E11Enn + ZK—l(Ell)Kl(Enn) + ZK—l(Enn)Kl(Ell))(m ® V)

l
—i—Zmyj ®H0(V) — 1

j=1 d=1

)\ n
+2 D (BunaBan + EinBna + K1 (Ena) K1 (Ban) + K1 (Ean) K1 (Bn

An A An
—Enn(m ®V) — 5 ZEdd(m ®V) — ZEll(m@)V)

4))(m®v)

A n
t3 > (EwaBar + EqErg + K_1(E1g)K1(Eq1) + K_1(Eq)K_1(E1q)) (m @ v)
d=1

t
+§(Enn + E1)(m®v)

Putting together equations (67) and (68), we conclude that Hy; acts on F(M

way:

(68)

) in the following

A A
Hox(m®v) = J(Ho)(m@v) =3 > Eulmev)+ 5 (En1 Bty + B Ent)(m @ v)

d=1

i
L

+
o> >
(]

(EnaBin + EgnEng + E14Eq1 + Eq1 E1q)(m ® v)

i
[\o}

&

(mev)+ (8- %)(Eu + Epn)(m @ v)
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Hoyi(m®v) = J(Ho)(m®v)—)\yo(m®v)—l<%—)\> (m®v)

Ha- B B By gy

=1 "
where
1 1 1
v = —y > (BnaEan + EanEna + EraEa + EqE1a) — 5 (En1 Bin + BipEn1) — §H02
d=2
_ 1 Z 6, 6)(XF X"+ XF X~ )—1H2
4 270

6.3 Action of Xj,;

Our goal now is to find elements that act on F(M) by m @ v — Z;ZI my; ® BV (v),E € sl,. Set
YVOJr = %[X(;’ fIO,l] where ﬁo@ = J(H(]) + )‘50 and

n—1

1 1
§0 =7 D (EraBa + B Bra + EnaBan + EinEnd) + 5 (Em Eun + ErnEn)
d=2
1 A 1~ o
Y (mev) = SIXg JHy)mev) + J1Xg &lm@v) =5 >y mlYx '@ B H(v)
7=1 k=1

k#j

1
+%Zm(yj +a; lyj)®E (v )+A[X07,50](m®v)

j=1 2
A l l
- Zzzm( +xk )Sjk®E1nHj ZmyJ®E1n( )
=L 23

l
1 )\ _
+Z E m(mjyj +$ ijj) ®E [Xo &ol(m @ v)

j=1
A l l 1
-1 Z Zm(:cj g sie @ B HY (V) + Zmy] ® By, (v)
j=1 2;3 j=1
1 A
+7 > mialyg a4 gt ygleg) © B (v) + S(Xg &l (m e v)
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l l l
A _ _ ; ; D
= 12> mlay s @ BELH(v) + D my; © B, (v) + 515 &lm @ v)

= =1
l
1 .
+Z Zm<wj( — tx;2 _ )\Zx;lxlzlsjk) + (m]ﬂ + )\Zm;1x;18jk)xj> @ E{n(v)
jZI ki k2
P | z |
= 1 Z Z m(:ﬂ;l + :CI;I)Sjk & Ean(J] (v) + Zmyj ® E{n(v)
j=1 2;1 et
J

! !
A ey — s © Blu(v) + 5 1Xg &olm @ v)

=g
UL A A
= T2 mlay! o) @ (BB, — B E)(W)
=
I ‘ ) PO ‘
+Y_my; @ By, (v) + SIXg L &lmev) + 23 Y Y omay! — o) @ Bl B,
Jj=1 j=1 k=1 d=1
=
A
= g(Enanl(Eln) + Kfl(Eln)Enn + Kfl(Enn)Eln + Eanfl(Enn))(m ® V)
A
s (E1nK_1(E11) + K_1(En) B + K_1(Ew)En + EnK_1(Ew))(m @ v)
I ‘ \
+D_my; ® B, (v) + 5[0, &
=1
A n\
+3 > (BwK 1(Ean) + K_1(Egn) Erg)(m @ v) — < K-1(Bw)(m @ v)
d=1
P nA
~3 (K-1(E1q)Egn + EgnK_1(E1q))(m @ v) + ?K—l(Eln)(m ®vV)
d=1
l .
= > my; @ E,(v)
j=1

It is actually easy to express YojL in terms of the generators of LY given in definition 3.2. Since
Hy=-Hy—...— H,_1, we can write

Hoy = J(Ho)+ Mo =—J(Hy) —...— J(Hpo1) + Ao
= —(Hl,l +.. -anl,l) — )\(Vl 4+ ...+ I/nfl) + )\50

A
= _(Hl,l + .. -anl,l) + §(H12 + ...+ H?L*l)
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Therefore, using relations (6) and (9), we obtain

Y'O-f—

1 o~
515 Ho.l
A

1 1
CCXo Hya - -
2[ 0> 171] 2 4

A

(X, Hn11] — 5 (Xg Hi + HiX() — - (Xg Hp1 + Hoo1 X))

4

1_ 1 _ _ 1 1 _ _
§X0,1 + 5(5H1X0 + (A= B)Xy Hi) + §Xo,1 + 5(()\ = B)Hn-1Xy + BXy Hp1)

A _ A _
—Z(Xo Hy + Hi X ) — Z(Xo Hy 1+ Hp 1 X )
= X()_,l

The element X, ; will become important in the next section.

It can be seen from the relations in LY that the subalgebra of LY generated by Y(fL and sl,
is isomorphic to U(sl, ®c Clu]). (See also proposition 7.1 below.) We introduce the notation
Qr(2),7 € Z>p, to denote z @ u” as an element of this subalgebra; in particular, Q(F1,) = Yy'.
There are three types of operators in Endc(M ®cg)] V®!) which are of particular interest to us:
those coming from the action of J(z), K,(z) and Q,(z). They are related to each other in the
following way.

Proposition 6.1 (See also [BHW]). Suppose that a # b and ¢ # d. Then we have the equality
[Q1(Eab), K1(Eeq)] + [K1(Eab), Q1(Eca)] = 2(0ped (Bad) — 0da (Ecp)) -

Proof. First, we will prove the equality

[Q1(E1n), K1(Ho)] + [K1(E1n), Q1(Ho)| = 47 (E1n) (69)

Q1 (Frn), Ky (Ho)] + [Ka(Bu), @ (o)l = [Xou, (X, Baal] + 5[ [Fun (X5, Eaal], [Bur, X

1 -
= —[Ho, Bl - 5| [Ho, [X7", Bul], X,
-5 [Eln, [Xg—a HO]] ) X(]_,l]

5 | Bt [Buns XS X5, vl |

= _[HO,laEln] + [[ElnyXa_]aXO_,l]

10
+3 Ent, [En, [HO,laElnH]

1
= 2[E,, Hoq1] + 3 [Enh [Ern, [Hop, ElnH]

(70)

[Ho1, Evn] = [[Hop, Fral, Ban] + [Elz, [Eas, [+ [En—2n-1, [Ho,1, En—1,n] }
= [_Xi—l — (BHoX{ + (A — B)X{ Hy), Eay]
+ [Eu, (B3, [+ [Br—2n-1, = Xp 11 — (A= B)Ho X,y + BX,_ 1 Ho) }
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[Ho, Ern] = [=J(X]) + ) — (BHoX| + (A — 8) X\ Hy), E2y] +
[Em [Bos, [+ [Bn—on—1, —J (X)) + Moty = (A= B)Ho X,y + BX, Hp)] - }

[(Hoa, Ein] = —J(Ew) — (BHoEwy + (A= B)E1Ho) + (BE2,Er12 + (A — B)Er12Eo,)
+ AW, Bon] — J(E1n) + A[B1n—1,w, 4]
~[Biz, [Bos, [+ [Buane1, (A = B)HOXGE, + BX, Ho)] - | (71)

The expression |:E127 [Egg, [ [En—2n-1, (A — 6)H0X:_1 + 6X:{_1H0)] } is equal to

[Ei2, (A = B)HoE2, + BE2,Ho) = (A = B)E12E2, + BE2E12) + (A — 8)HoEvy, + fE1,Ho) (72)

12 1
[Ein-1,w)i 4] = 1 (EjnErj + E1jEj,) — Z(Eln(Ell — En—1n-1) + (B11 — Ep—1,n-1)E1n)
=2
1 1
_Z(Elan—l + H, 1E,) — Z(En—LnEl,n—l +Eip-1En_1n)
1 1
= _Z (Eanlj + Ele]’n) + Z(ElnHO + H()Eln) (73)
=2
1 1
[wii—a EZn] = Z (Eanlj + Elejn) - Z((EQQ - Enn)Eln + Eln(EQZ - Enn))
7j=3
1 1
_Z(ElnHl + H Ey,) + Z(E12E2n + E9nE12)
1= 1
= 1 (EjnEr; + EijEjn) + Z(EmHo + HoE1y) (74)
=2

Therefore, combining equations (71),(73),(74) and (72), we obtain the following simple expression
fOI‘ [H071, Eln]l

A
[Ho, Ein] = —2J(Eqy,) — §(HOE1n + Ev,Hyp) (75)

Putting together equations (70) and (75) yields equality (69):
[Q(Ern), K1(Ho)| + [K1(Ewn), Q(Ho)] = 4J(E1n) + MHoEwn + E1nHo)
1 A
—5En1, [E1n, 20 (Ern) + 5 (HoErn + Ein )]

= 4J(E1n) + )\(HOEln + ElnHO) - )‘[Enh E%n]
= 4J(E1,)
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Applying [E,1, ] to both sides of equation (69) yields

[K1(En1), Q1(F1n)] + [Q1(En1), K1(E1,)] = 2J(Ho) (76)

This proves proposition 6.1 when a = n,b = 1,¢c = 1,d =n. If a = n,b = ¢ = 1,d # 1,n,
we apply [, E,q4] to the previous equation to obtain [Kl( 1), Q1(E1q)] + [Q1(En1), K1(F1q)] =
2J(E,q). To obtain equation (6.1) for a = n,b = 1,c¢ # 1,d,d # n, 1, we use [E.1,-|, which yields
[K1(En1), Q1(Ecq)] + [Q1(En1), K1(Eeq)] = 0. Under the assumption ¢ # 1, we apply [-, E41] to the
previous equation and get [Kl( 1), Q1(Ea)] + [@Q1(En1), K1(Ea)] = 0. Apply [Ee,-] if ¢ # 1,n
to (76) give [K1(En1), Q1(Een)] + [Q1(En1 ), Ki(Ee,)] = —2J(Ec1). We have covered all the cases
with a = n,b = 1.

Now suppose that a = n but b # 1. Equation (6.1) in the case a = n,b = c =1,,b #n,d # 1
along with [7E151 yields [Kl (En5)7 Ql(Eld)] + [Ql(EnB)’ Kl (Eld)] = —25adJ(E15). To recover the
case when ¢ # 1,b, we apply [E.1,] to the previous equation, so we have shown the equality

[Kl(EnB)’ Ql(Ecd)] + [Ql(EnB)’Kl(Ecd)] = _25adJ(ECE)' (77)
Using equation (77) along with [Ej ,-| yields equation (6.1) in the case a = n and b = ¢,d are
arbitrary. The remaining cases can be obtained using similar computations. U

7 Schur-Weyl dual of the rational Cherednik algebra

Our goal in this section is to establish an equivalence of categories for the rational Cherednik
algebra similar to the one given in theorem 4.2 and to identify the Schur-Weyl dual of H with a
subalgebra of LY.

7.1 Case of type gl

Definition 7.1. The subalgebra of LY generated by XjE 1<i<n-—1 X0 and Y+ 1s denoted by
Lg\ and called a Yangian deformed double-loop algebm as suggested in [BHW]. The polynomial
loop algebra generated by X1 <i <n—1 and X (resp. Yy") is denoted Lx (resp. Ly ).

Remark 7.1. The algebra LYy y is the same as the subalgebra generated by z Kl( ), Q1(2),Vz €
sl,. Furthermore, proposition 6.1 implies that Ly contains all the elements X”,HM for 1 <

i < n,r >0 and relation (12) shows that it also contains Xo,r,V’I“ >0 and Xo,r,V’I“ > 1. We will
abbreviate g ) by L.

The computations for the action of Xy, on M ®c(g] V! and the anti-symmetric role of h and h*
in the definition of Hy ., along with the last proposition of the previous section, suggest that the
following result is true.

Proposition 7.1. There exists an anti-involution ¢ of I which interchanges Lx and Ly and which
is given on the gemerators by the formulas

UXE) = X7 ifi £0, «(Hiy) = Hiy
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L(Xa:r) = X&TH forr >0, L(X&r) = X(ir—l forr>1

Proof. This can be checked using the relations given in definition 3.2. U

Theorem 7.1. Suppose that Il > 1,n > 3. Set A\ = ¢ and B = % - G + 5. The functor M

M ®cs Ve sends a right H-module to an integrable left L-module of level 1. Furthermore, if
I+ 2 < n, this functor is an equivalence.

Proof. As for theorem 4.2, the proof is in two parts. First, it is enough to take M = H and show
that F(M) is a module over L. We can view H ®¢(g, C®! as a subspace of H Rc[s)] C®!; the later is
a module over L since it is even a module over LY. The subspace F(H) is stable under the action
of the subalgebras Lx and Ly, so it is a module over the subalgebra of LY generated by Lx and
Ly, which is exactly L. The fact that F(M) is integrable of level [ follows from the same argument
as in the proof of theorem 4.2.

Now let N be an integrable module of level [ over IL and suppose that [+2 < n. We have to show that
there exists a module M over H such that (M) = N. We can argue as for the trigonometric case
to conclude that there exists an S;-module M, which is also a C[h] x W- and a C[h*] x W-module,
such that F(M) = N. As before, we must show that M is actually a module over H.

Fix 1 < j,k <1,j # k. Choose v = v;; ® --- ® v;, such that i, = 2,i; =n -1, 4, = r+2if
r<jrZk i.=r+1ifr>jr#£k SetV:E&E{’nﬂ(v).

On one hand,

(Q1(E1,n-1)K1(En2) — K1(Ep2)Q1(E15-1))(m®@v) =

Il
DO o many @ By 1 Bo(v) = Y Y mysae @ EfoBf (V) = m(ky; — yiak) @V (T8)
s=1r=1 s=1r=1
On the other hand, Q1(F1,-1) = [Yy, Enn-1] and Ki(En2) = [X{, F12), so:
[Q1(E1n-1), Ki(En2)] =[5 Eun1l, (X0 Eral] = [[Xo.1, XG5 Eral], Bt

= |60 X3 1 XY ] B | = = [[Hon, X{7), Buea]
= —[—Xfl - (ﬂHOXfr + (A - ﬁ)XfLHO)aX;ﬂ]
= [BHoX; + (A — B)X] Ho, X,,_,]
= BE,n-1E12+ (A= B)EnE, 1

Therefore,

Qi1(E1n-1), Ki(Ep2)[(m®@v) = m® (BE,n—1E12+ (A= B)E12En n—1)(V)
= Mm@ELE (v)= AmsjE @V (79)

n,n—1

Equations (78) and (79) imply that m(xzry; — y;xr — Asji) ® v = 0. From lemma 5.2 and our
assumption that A = ¢, we conclude that

m(xry; — yjTr — csj) = 0. (80)
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Now let v be determined by i, =n —1,4; =7+ 1if j #k. Set v = EF . (v). On one hand,

n,n—1
[K1(Ep1), Q1(B1n—1)](m ® v) = mypxy, @ B EY, (V) = mygay, @V (81)
On the other hand,
[Ki(En), Qu(Ern-1)] = (X, Yy Bnpal] = [Xo, [Xo 1, Xp]]
= [Hop, X, 1] =X, 11+ (BHoX, 4 + (A — B8)X,_1Ho)
= J(X,_ 1) — A, + (BHoX, | + (A= p)X, 1 Ho)
where
. 12 1 .
W=7 ;(EndEdml t Ban-1Bnd) = (X0 Hooy + Hoa X, ).
Therefore, we also have:
[K1(En), Qu(B1p-1)|(mev) = (J(X, 1) = M,y + (BHoX,,_; + (A = B)X,_Hp))(m @ V)

= mYp® By, (v )—Am®( 1 (V) + fm® Hi By (V)
2

n l

= mYpV+ = Zzzm@) naBan—1)(v)

le’ 1 s=1
s#d

n—2 A _
+A (T) m® Epn_1(v) + Zm ® (X, _1Hn-1

+Hp 1 X, 1)(V) +pm® HgErli,n—l(v)

n—2 1
= RT3 Y me (BBl )W) A (T ) mes
=
A k k k
+Zm(En,n71En71,n71 - E Enn 1)(V) + Bm ® En,nfl(v)
1 !
= 3 m(Tryr + ypor) @V + = stjk RV

A -
+(——§+ﬁ)m®v (82)
From the equations (81) and (82) and our hypothesis that 8 = £ — 2% 4 2. we deduce the following
equality:
l
& = sm(mys + )®“+AZ @Y+ imev
myrxr @ Vv =—-m(z T V+=) msjp@vVv+-mev
Yk 9 kYk T YLk 2 1 jk 9
i=
7k
which implies that m(ykack —Tpyp —t— A lezl sjk) ® v = 0. Since A = ¢ by assumption and V is
Tk

a generator of V® as isl,-module, we conclude, using again lemma 5.2, that the equality
l
m(ykack —Tpyp — t — CZ sjk) =0 (83)
j=1
7k
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must be satisfied. Equations (80) and (83) show that M is a right module over H. Finally, that
F is bijective on the set of morphisms follows from an argument similar to the one used in the
trigonometric case. U

7.2 Category O

One important category of modules over H¢ . (when ¢ # 0) is the category O studied in [GGOR].

Definition 7.2. We define O fort # 0 to be the category of right modules over Hy . which are
finitely generated over Hy . and locally nilpotent over C[h*]. We set O = Oy .

We see from the definition of the L-module structure on F (M) that if M € O then F(M) is locally
nilpotent over the subalgebra A of L. generated by Q,(z),Vz € sl,,Vr > 1. This leads us to our
last theorem.

Theorem 7.2. Assume thatl+2 <n, A=c and 8 = % — G + 5. The functor F establishes an
equivalence between the category O and the category of finitely generated left modules over I which
are locally nilpotent over the subalgebra A and integrable of level [.

Proof. We prove this theorem for H. If mg,...,my are generators of M, then {m; ® v,1 < i <
k,v € V'} is a finite set of generators for F(M). To see this, we can assume that M is generated
over C[h] by my,...,my. Take an element m ® v € F(M) with m = miz{* ---z;". We suppose
first that v=1 @y Q@3 ®@ - - Qv and set v = v @ v3 Q@ vy @ -+ @ vy 1. Then

m®v =Ko (Eii1) - Kay (B23) Ko, (H1)(m1 @ V).

Now we can apply elements of isl, to v; ® v ® --- ® v; to obtain any other element of V!. The
general case when m = 25:1 mjx(fl’j ---x?l’j ® v; follows from this. Conversely, suppose that N
is a finitely generated integrable module over L of level [ and N = F(M). Let {n1,...,nx} be a
set of generators of N and write n; = 25;1 m;j ® v;j for some m;; € M and some v;; € Vi, Then

{m;;|1 <i<k,1<j<k;}is aset of generators of M.

Now suppose that N is an integrable left module over L of level [ which is locally nilpotent over
A. By theorem 7.1, we know that N = F(M) for a right module M over H. Pick m € M. It is
enough to show that my; = 0 for some s. Set v =11 ® -+ ® v; ® Vj42 ® - - - ® v;41 and choose s so
that Q1(H;)*(m®v) = 0. Then Q1(H;)(m®@v) =my; @v, so my @v = Q1(H;)*(m®v) =0 and
lemma 5.2 implies that my; = 0. O
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