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Abstract. We compute the Witt ring kernel for an arbitrary field extension of

degree 4 and characteristic different from 2 in terms of the coefficients of a polynomial
determining the extension. In the case where the lower field is not formally real we

prove that the intersection of any power n of its fundamental ideal and the Witt ring

kernel is generated by n-fold Pfister forms.

Let F be a field of characteristic different from 2. As usual denote by W (F ) the
Witt ring of F , i.e. the ring of equivalence classes of quadratic forms over F . In
this note we compute the kernel W (L/F ) of the restriction map W (F ) → W (L),
where L/F is an arbitrary field extension of degree 4. This kernel was computed
in [2] in the case where L/F is a tower of two quadratic extensions, and our result
can be considered as its generalization. The main step is to show that W (L/F ) is
generated as an ideal by 1-fold and 2-fold Pfister forms. The last statement is a
particular case of a stronger result (see Corollarry 2), which as far as we know, has
not been known even for biquadratic extensions.

Our notation is standard, and the main reference is the book [4]. Notice only
that all the fields considered below are of characteristic different from 2. We write
ϕ ≃ ψ if quadratic forms ϕ and ψ are isomorphic, and ϕ = ψ if their classes in the
Witt ring are equal. The anisotropic part of a form ϕ is denoted by ϕan. We use
the sign ⊥ for the direct sum of two forms and the signs + and − for the sum and
the difference of elements of the Witt ring. For a form ϕ over a field F we denote
by DF (ϕ) the set of nonzero values of F represented by ϕ. By the n-fold Pfister
form 〈〈a1, . . . , an〉〉 we mean the product 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉. If V is a linear
space over a field F and L/F is a field extension, then by definition VL = L⊗F V .

We begin by the following statement, which plays the main role in the sequel.
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Proposition 1. Suppose p(t) is an irreducible even degree polynomial over a field
F , and θ is its root. Let k be a nonnegative integer, ϕ an anisotropic quadratic form
over F such that dimϕ ≥ k

2 deg p + 1 and dim(ϕF (θ))an = k. Then there exists a

subform ϕ0 ⊂ ϕ and x ∈ F ∗ such that dimϕ0 ≤ 1
2

deg p+1 and xp(t) ∈ D(ϕ0F (t)).
In particular, the form ϕ0F (θ) is isotropic.

Proof. Let U be the linear space associated to ϕ, U = 〈e1, . . . , edim ϕ〉. Let fur-
ther V = 〈v1, . . . , v 1

2
(dim ϕ−k)〉 be a totally isotropic subspace of UF (θ). Put W =

1

2
deg p∑
i=0

θiU . We can consider V and W as F - linear subspaces of the F - linear space

UF (θ). Obviously,

dimF UF (θ) = dimϕ deg p, dimF V =
1

2
(dimϕ−k) deg p, dimF W = (

1

2
deg p+1) dimϕ.

Since dimϕ > 1
2k deg p, we have

dimF V + dimF W > dimF UF (θ).

Hence V ∩W 6= 0. Let 0 6= v =

1

2
deg p∑
i=0

θiui ∈ V , where ui ∈ U . Denote by ϕ0

the subform of ϕ determined by the F -linear subspace U0 = 〈u0, . . . u 1

2
deg p〉 ⊂ U .

Obviously, dimϕ0 ≤ 1
2

deg p+ 1. Put ṽ =

1

2
deg p∑
i=0

tiui ∈ F [t] ⊗F U0. Since ϕ(v) = 0,

we have p|ϕ0(ṽ). Since degϕ0(ṽ) ≤ deg p, we get that ϕ0(ṽ) = xp for some x ∈ F .
Finally, x 6= 0, because v 6= 0, and ϕ is anisotropic over F . �

We apply Proposition 1 to field extensions of degree 4.

Corollary 2. Under hypothesis of Proposition 1 suppose deg p = 4. Then ϕ =
ψ+

∑
πi, where dimψ ≤ 2k, each πi is similar to either a 2-fold or a 1-fold Pfister

form and πiF (θ) = 0. Moreover, we can assume that each πi is similar to a 2-fold
Pfister form except the case where k = 0, the extension F (θ)/F contains a quadratic

subextension F (
√
d)/F such that ϕF (

√
d) = 0, and disc(ϕ) = d. In this case we

can assume that exactly one πi is similar to a 1-fold Pfister form ( obviously, then
disc(πi) = d).

In particular, if k = 0, i.e. ϕ ∈W (F (θ)/F ), we have ψ = 0, and ϕ =
∑
πi.

Proof. Assume first that k ≥ 1. By Proposition 1 we get ϕ ≃ ϕ0 ⊥ ϕ1, where
dimϕ0 = 3 and ϕ0F (θ) is isotropic. Let π ≃ ϕ0 ⊥ det(ϕ0). Then

ϕ = ϕ1 + 〈−det(ϕ0)〉 + π,

π is similar to a 2-fold Pfister form, πF (θ) = 0, and

dim(ϕ1 + 〈−det(ϕ0)〉)an ≤ dimϕ− 2.

Therefore, we can go on by induction on dimϕ. In the case k = 0 and dimϕ ≥ 3
the same argument works. Finally, if k = 0 and dimϕ = 2, then ϕ is similar to a
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1-fold Pfister form. It is obvious that in this case the field F (θ) contains the field
F (

√
discϕ). �

Remark. Let us call a form ϕ minimal with respect to an extension F (θ)/F , if
dimψ ≥ dimϕ for any form ψ such that ϕ − ψ ∈ W (F (θ)/F ). Corollary 2 claims
that if deg p = 4, dimϕ > 2k and dim(ϕF (θ))an = k, then ϕ is not minimal. On
the other hand, it is easy to see that if forms ϕ1 and ϕ2 over F are minimal with
respect to the extension F (θ)/F , then the form ϕ1 ⊥ xϕ2 over F ((x)) is minimal
with respect to the extension F ((x))(θ)/F ((x)). Let τ be a 4-dimensional form over
F such that the form τF (θ) is isotropic, but for any subform τ ′ ⊂ τ of codimension 1
the form τ ′F (θ) is anisotropic. (The existence of such an extension F (θ)/F of degree

4 and a form τ has been established in [1] and [5]). In particular, τ is minimal.
Therefore, the forms ψ1 ≃ τ ⊗ 〈x1, . . . , xm〉 and ψ2 ≃ τ ⊗ 〈x1, . . . , xm〉 ⊥ 〈xm+1〉
over the field K = F ((x1))((x2)) . . . ((xm+1)) are minimal, which shows that the
inequality dimψ ≤ 2k in Corollary 2 can not be improved. Therefore, in the case
deg p = 4 the inequality dimϕ ≥ k

2
deg p+ 1 in Proposition 1 can not be improved

as well.

It remains to determine 2-fold Pfister forms in W (F (θ)/F ). This can be done in
terms of the coefficients of p.

Lemma 3. Let p(t) = t4 + at2 + bt+ c be an irreducible polynomial over F , θ its
root, π an anisotropic 2-fold Pfister form over F . Suppose that πF (

√
d) 6= 0 for any

d ∈ F ∗ such that F (
√
d) ⊂ F (θ). Then the following two conditions are equivalent:

1) πF (θ) = 0.

2) there exist x, y ∈ F ∗ such that det




−x 0 1

2
(y − ax)

0 −y −1
2bx

1
2 (y − ax) −1

2bx −cx



 ∈ F ∗2

and π ≃ 〈〈x, y〉〉.

Proof. 1) =⇒ 2). Assume that πF (θ) = 0. Let (V, π′) be the quadratic space of the
pure subform of π, i.e. π ≃ 〈1〉 ⊥ π′. All 3-dimensional subforms of π are similar
to each other. Therefore, by Proposition 1 there are x ∈ F ∗ and v0, v1, v2 ∈ V such
that

π′(t2v2 + tv1 + v0) = −xp.

We have ϕF (θ) 6= 0 for any 2-dimensional subform ϕ ⊂ π′. Indeed, otherwise

we would have F (
√

discϕ) ⊂ F (θ), hence πF (
√

disc ϕ) = 0, a contradiction to the
hypothesis of the proposition. Therefore, the vectors v0, v1, v2 are linearly inde-
pendent. Comparing the coefficients at the powers of t on both sides of the last
equality we get 




π′(v2, v2) = −x,
π′(v1, v2) = 0,

π′(v1, v1) + 2π′(v0, v2) = −ax,
2π′(v0, v1) = −bx,
π′(v0, v0) = −cx.

Let π′(v0, v2) = 1
2(y − ax). Then the matrix of the form π′ with respect to the
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basis (v2, v1, v0) is




−x 0 1
2(y − ax)

0 −y −1
2
bx

1
2(y − ax) −1

2bx −cx


. Since det π′ = 1, we get

π′ ≃ 〈−x,−y, xy〉, hence π ≃ 〈〈x, y〉〉.
2) =⇒ 1). We have π′(t2v2 + tv1 + v0) = −xp for some vectors v0, v1, v2 ∈ V . In

particular, π′
F (θ) is isotropic, which means that πF (θ) = 0. �

Corollary 4. Suppose a polynomial p(t) = t4 + at2 + bt + c is irreducible over a
field F , and π is an anisotropic 2-fold Pfister form over F such that πF (θ) = 0.
Then at least one of the following two conditions hold:

1) π ≃ 〈〈d, e〉〉, where F (
√
d) ⊂ F (θ), e ∈ F ∗.

2) π ≃ 〈〈α(α− a)
2−4cα+b2,−α〉〉 where α ∈ F , and (α(α− a)

2−4cα+b2)α 6= 0.
Conversely, if π is a 2-fold Pfister form of one of two types above, then πF (θ) = 0.

Proof. Assume that πF (θ) = 0, and condition 1) does not hold. Then, as we have
noticed already, the vectors v0, v1, v2 introduced in Lemma 3 are linearly indepen-
dent. Put α = y

x
. Since

det




−x 0 1
2 (y − ax)

0 −y −1
2
bx

1
2 (y − ax) −1

2bx −cx


 = x(

1

4
α(α− a)

2 − αc+
1

4
b2) ∈ F ∗2,

and 〈〈x,−x〉〉 = 0, we have

π ≃ 〈〈x, y〉〉 ≃ 〈〈x, αx〉〉 ≃ 〈〈x,−α〉〉 = 〈〈α(α− a)
2 − 4cα+ b2,−α〉〉.

Conversely, if (α(α− a)
2 − 4cα+ b2)α 6= 0, then put x = α(α− a)

2 − 4cα+ b2,
y = xα. The implication 2) =⇒ 1) of Lemma 3 shows that

〈〈α(α− a)
2 − 4cα+ b2,−α〉〉F (θ) = 0.

�

Remark. The polynomial f(α) = α(α− a)
2 − 4cα + b2 is a cubic resolvent of

the polynomial p.

Example. Suppose a ∈ F ∗ \ F ∗2, b, c ∈ F , b + 2c
√
a /∈ F (

√
a)

2
. Consider the

quartic extension F (
√
b+ 2c

√
a)/F . If θ =

√
b+ 2c

√
a, then

p(θ) = θ4 − 2bθ2 + (b2 − 4ac2) = 0.

Let π be a 2-fold Pfister form such that πF (θ) = 0, πF (
√

a) 6= 0. By Corollary 4 we
get that

π ≃ 〈〈α(α+ 2b)
2−4(b2−4ac2)α,−α〉〉 ≃ 〈〈(α+ 2b)

2−4(b2−4ac2),−α〉〉 ≃ 〈〈ae2+be+c2,−e〉〉,

where e = 4c2

α
. In fact we have got the result of theorem 3.9 from [1].
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Proposition 5. Let L/F be a field extension of degree 4, and F is not formally
real. Then for any n

W (L/F ) ∩ In(F ) = (W (L/F ) ∩ I2(F ))In−2(F ).

Hence in terminology of [1] the ideal W (L/F ) ∩ In(F ) is an n-Pfister ideal.

Proof. For any field K denote by GK its absolute Galois group. Unfortunately the
proof depends on a very deep result of Voevodsky, which claims that there exists
an isomorphism In/In+1(K) ≃ Hn(GK ,Z/2Z), which takes an n-fold Pfister form
〈〈a1, . . . , an〉〉 to the cup product (a1) ∪ · · · ∪ (an) ([6], [7]). First we need a couple
of lemmas.

Lemma 6. Let F be a field. The following two conditions are equivalent:
1) F is not formally real.
2) There exists a subfield F1 ⊂ F and a positive integer N such that IN (F1) = 0.

Proof. 2) =⇒ 1). If F is formally real, then so is any subfield F1 of F , hence
IN (F1) 6= 0 for any N .

1) =⇒ 2). Assume that F is not formally real, and s(F ) = m = 2k is its level,
i.e. the minimal number m such that there exist x1, . . . , xm ∈ F with the equality
x2

1 + · · · + x2
m = −1. Let F0 be the prime subfield of F , i.e. F0 is either Q or

Z/pZ. Put F1 = F0(x1, . . . , xm) ⊂ F , and N = m + k + 3. Let us show that
IN (F1) = 0. Since cd2(F0(

√
−1)) ≤ 2, we have cd2(F1(

√
−1)) ≤ m + 2, hence

Im+3(F1(
√
−1)) = 0. Therefore, for any a1, . . . , am+3 ∈ F ∗

1 we get

〈〈a1, . . . am+3〉〉 ≃ 〈〈−1, b1, . . . , bm+2〉〉

for some b1, . . . bm+2 ∈ F ∗
1 . From this it follows at once that for any a1, . . . aN ∈ F ∗

1

〈〈a1, . . . aN 〉〉 ≃ 〈〈−1〉〉⊗(k+1) ⊗ 〈〈b1, . . . , bN−k−1〉〉

for some b1, . . . , bN−k−1 ∈ F ∗
1 . On the other hand, since x1, . . . xm ∈ F1, we have

〈〈−1〉〉⊗(k+1) = 0 ∈ W (F1). This implies that 〈〈a1, . . . , aN〉〉 = 0 ∈ IN (F1), which
finishes the proof. �

Lemma 7. The kernel of the restriction map I2/I3(F ) → I2/I3(L) is generated
by 2-fold Pfister forms belonging to W (L/F ).

Proof. Assume that α ∈ ker(I2/I3(F ) → I2/I3(L)) = ker(2Br(F ) →2 Br(L)).
Obviously, indα ≤ 4. Let ϕ be an Albert form associated to α. Then ϕL ∈ I3(L).
Since dimϕ = 6, we conclude that ϕ ∈W (L/F ). In view of Corollary 2 the lemma
is proved. �

We return to the proof of Proposition 5. It is proven in [3] (cor.18 and the
remark after conjecture 20) that the kernel of the restriction map of the graded
rings H∗(GF ,Z/2Z) → H∗(GL,Z/2Z) is generated in degrees 1 and 2 as an ideal in
H∗(GF ,Z/2Z). Let α ∈W (L/F )∩In(F ). Assume that the conditions of Lemma 6

are fulfilled. Then it is easy to see that there is an intermediate subfield F1 ⊂ F̃ ⊂ F

such that α ∈ W (LF̃/F̃ ) ∩ In(F̃ ) and cd2(F̃ ) < ∞. Interpreting the graded
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ring H∗(G eF
,Z/2Z) (resp. H∗(G

L eF
,Z/2Z)) as the graded ring I∗/I∗+1(F̃ ) (resp.

I∗/I∗+1(LF̃ )) and using Lemma 7 we can prove Proposition 5 straightforwardly by
decreasing induction on n.

Open question. Does Proposition 5 remain valid for a formally real field F ?
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