THE PROCESI-SCHACHER CONJECTURE AND HILBERT'S 17TH
PROBLEM FOR ALGEBRAS WITH INVOLUTION

IGOR KLEP AND THOMAS UNGER

AsstracT. In 1976 Procesi and Schacher developed an Artin—Schrgier theory
for central simple algebras with involution and conjectltieat in such an algebra a
totally positive element is always a sum of hermitian sgsahethis paper elementary
counterexamples to this conjecture are constructed ared @as studied where the
conjecture does hold. Also, a Positivstellensatz is eistaddl for noncommutative
polynomials, positive semidefinite on all tuples of matsicé a fixed size.

Dedicated to David W. Lewis on the occasion of his 65th bayhd

1. INTRODUCTION

Artin’s 1927 dfirmative solution of Hilbert's 17th problemds every nonnegative
real polynomial a sum of squares of rational functions&guably sparked the be-
ginning of the field of real algebra and consequently reaélaigic geometry (cf.
[BCR, PD]).

Starting with Helton’s seminal paper [Hel], in which he pedvthat every posi-
tive semidefinite real or complex noncommutative polyndnsiaa sum of hermitian
squares opolynomials variants of Hilbert’s 17th problem in aoncommutativeet-
ting have become a topic of current interest with wide-raggpplications (e.g. in
control theory, optimization, engineering, mathematpaysics, etc.); see [dAOHMP]
for a nice survey. Most of these results have a functiondlyéindlavour and are what
Helton et al. caldimensionfregthat is, they deal with evaluations of noncommutative
polynomials in matrix algebras of arbitrarily large size.

Procesi and Schacher in their 1976 Annals of Mathematicerd®&s] introduce a
notion of orderings on central simple algebras with invioluitprove a real Nullstellen-
satz, and a weak noncommutative version of Hilbert’'s 17dbleam. A strengthening
of the latter is proposed as a conjecture [PS, p. 40v& central simple algebra with
involution, a totally positive element is always a sum ohhiéan squares.

We explain in Section 5 how these results can be applied tly ston-dimensionfree
positivity of noncommutative polynomials. Roughly speaki a honcommutative
polynomial all of whose evaluations mx n matrices (forfixed r) are positive semi-
definite, is a sum of hermitian squares with denominatorsraights.
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A brief outline of the rest of the paper is as follows: in Seot we fix terminology
and summarize some of the Procesi—Schacher results in armizaiguage. Then
in Section 3 we present counterexamples to the ProcesieBehaonjecture, while
Section 4 contains a study of examples (mainly in the spsietavhere the conjecture
is true.

For general background on central simple algebras withlitkm we refer the
reader to [KMRT] and for the theory of quadratic forms oveldgewe refer to [Lam].

2. THe PrOCESI—ScHACHER CONJECTURE

Let F be a formally real field and IeA be a central simple algebra with involution
o and centrK. Assume thaF is the fixed field of (i.e.,o|r = idg). The involution
o is of thefirst kindif K = F, and of thesecond kindalso calledunitary) otherwise.
In this caseK : F] = 2 ando| is the non-trivial element in G&(/F).

Let D be a division algebra ové€ with involution r and fixed fieldF. Let h be an
n-dimensional hermitian or skew-hermitian form ove, £). Thenh gives rise to an
involution onM, (D), theadjoint involutionad,, defined by

ad(X) = H-r(X)' - H?,

for all X € M,(D), whereH is the Gram matrix oh, t denotes the transpose map on
Mn(D) andr(X) signifies applyingr to the entries oi. It is well-known that every
central simple algebra with involutioA(¢) is of the form M,(D), ad,), wheren is
unigue,D is unigue up to isomorphism amds unique up to multiplicative equivalence
(see [KMRT, 4.A)]).

If o is of the first kind, thernr is calledorthogonalor symplectiaf o- becomes ad-
joint to a quadratic or alternating form, respectivelyeaficalar extension tosplitting
field of A (i.e., an extension fieltl of K such thatA ®« L = M,(L)). We denote the
subspace af-symmetric elements &k by Sym@, o).

Let < be an ordering oir. We identify< with its positive cone P= {x € F |0 < x}
via

X<yey-xeP
forall x,y € F. In this case we also writgp instead of<.

Procesi and Schacher [P&l] consider central simple algebras equipped with
a positive involutioro, i.e., an involution whosewvolution trace form T is positive
semidefinite with respect to the orderigg on F,

T,(X) :=Trd(c(X)x) >p 0 forallx e A.

Here Trd : A — F (thetrace) denotes the reduced trace Ixdif o is of the first
kind and the composition Tkge o Trda« if o is of the second kind. The forf, is a
nonsingular quadratic form ovér, cf. [KMRT, §11]. If dimx A = n, then dimT,, = n
if o is of the first kind and dinT,, = 2nif o is of the second kind.

Remark 2.1. The notion of positive involution seems to have been comediérst by
Weil in his groundbreaking paper [Wei].
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Procesi and Schacher also define a notiopasitive elements (A, o), cf. [PS,
§V]. For greater clarity we have adapted their definitionscdi®ws:

Definition 2.2.

(1) An ordering<p of F is called ac-orderingif it makes the involutioro- positive,
ie., if
0 <p Trd(c(X)x) forall x € A.
(2) Supposesp is ac-ordering onF. An elementa € Sym(A, o) is calledo-positive
with respect to<p if the quadratic form Trd(x)ax) is positive semidefinite with
respect ta<p. That is, if

0 <p Trd(c(x)ax) forall x e A.

(3) An elementa € SymA, o) is calledtotally o-positiveif it is positive with respect
to all o-orderings orf.

Elements of the forma-(X)x with x € A are callechermitian squaresThe set of her-
mitian squares oA is clearly a subset of SymA(o). It is also clear that the hermitian
squares oK are all inF.

Example 2.3. Sums of hermitian squares and sums of traces of hermiticarsgjare
examples of totallyr-positive elements, as easy verifications will show.

One of the main results in [PS] explains that these are @afigtihe only examples.
It can be considered as a noncommutative analogue of Agwlistion to Hilbert’'s
17th problem:

Theorem 2.4.[PS, Theorem 5.4 et A be a central simple algebra with involution
centre K and fixed field F. Let,...,an € F be elements appearing in a diago-
nalisation of the quadratic fornfrd(c(x)X). Then for ac Sym(A, o) the following
statements are equivalent:

() ais totallyo-positive;

(ii) there exist . € A with

DI PILCRLE
eefo,m i
(As usualp® denotesy(" - - - ayy'.

In the casen = degA = 2, the weightsy; are superfluous (we will come back to this
later). Procesi and Schacher [PS, p. 404] conjecture tisistalso the case far > 2:

The PS Conjecture. In a central simple algebra A with involutian, every totallyo-
positive element is a sum of hermitian squaf&sjuivalently: the trace of a hermitian
square is always a sum of hermitian squayes.

Remark 2.5. The two statements in the PS Conjecture are indeed equivaien
necessary direction follows from the fact that traces ofrhian squares are totally
o-positive, as observed in Example 2.3.
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For the stficient direction, assume that the trace of a hermitian sqgsaaévays
a sum of hermitian squares. Late Sym(A, o) be totally o-positive. Thena can
be expressed in terms of the entries in a diagonalizatioheofdrm Trd¢-(x)x) as in
Theorem 2.4(ii). Lep be such an entry. Thug, = Trd(c(y)y) for somey € A. By
the assumption there arg, ..., X, € A such thai = }, o(x)x. Sinces € F, the
expression in Theorem 2.4(ii) can now be rewritten as a suneohitian squares.

As mentioned a few lines earlier, Procesi and Schacher ge®upporting evidence
for their conjecture for the case dég= 2. Another case where the PS Conjecture is
true has been well-known since the 1970s:

Example 2.6.Let A be the full matrix ringM,(F) over a formally real field endowed
with the transpose involutioor = t. Since Trd= tr, every ordering ofF is ao-
ordering. We claim thaa € Sym(A, o) is totally o-positive if and only ifa is a
positive semidefinite matrix iA @ R = M,(R) for any real closed fiel&R containing
F (equivalently: for any real closure &1).

Indeed, ifa is totally o--positive, then for alk € A, tr(x'ax) is positive with respect
to every ¢-)ordering ofF, i.e., trkax) € Y F2. A diagonalisation of the quadratic
form tr(xtax) will contain only sums of squares iR (as it would otherwise violate
the totalo-positivity). Hence this quadratic form remains positieersdefinite under
every ordered field extension Bt

The converse implication is also easy:aifs positive semidefinite ovavl,(R) for
every real closed fiel® 2 F, then the trace offaxfor x € Ais nonnegative under the
ordering ofR and hence under all orderings I6f By definition, this means thatis
totally o-positive.

Moreover, every totallyr-positive element of4, o) is a sum of hermitian squares.
Essentially, this goes back to Gondard and Ribenboim [GR]teas been reproved
several times [Djo, FRS, HN, KS]. It also follows easily froineorem 2.4 for it
sufices to show that the trace of a hermitian square is a sum ofiti@mraquares. But
this is clear: ifa = [ajj], ;., € A then

Trd((@)a) = > a?
i,j=1
is obviously a sum of (hermitian) squaresHn
The reader will have no problems extending this example¢actsek = F(V-1)
andA = Mp(K) endowed with the conjugate transpose involufitn

3. Tue COUNTEREXAMPLES

When the transpose involution in the previous example ikoggl by an arbitrary
orthogonal involutioro- on M,(F) (i.e., an involution which is adjoint to a quadratic
form overF), the equivalence between totaliypositive elements and sums of her-
mitian squares is in general no longer true, as we procedubiw B this section. We
assume throughout thit, is a formally real field.
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Lemma 3.1. Let F = Fo(X)(Y), the iterated Laurent series field in two commuting
variables X and Y. The quadratic form

q= (XY, XY)

does not weakly represettover F. In fact this is already true over the rational
function field B(X,Y).

Proof. Assume for the sake of contradiction timat< g represents 1 for some positive
integerm. Then the form

¢ :=(1) L mx (=X =Y, -XY)

is isotropic ovelF. This leads to a contradiction by repeated application oinger’'s
theorem on fields which are complete with respect to a discrafuation, cf. [Lam,

Chapter VI,§1]. SinceFy(X, Y) embeds intd- the proof is finished. [
Theorem 3.2.Let F = Fo(X,Y). Let A= M3(F) ando = ad,, where
q= (XY, XY).

The (o-symmetrig¢ element XY is totally--positive, but is not a sum of hermitian
squares inA, o).

Proof. Itis clear thatXY € Sym(A, o) sinceXY € F.
We first show thaKY is totally o-positive. Sincel,, ~ q® q (see [Lew, p. 227] or
[KMRT, 11.4]) we have

sign T, = (signs 0)° € {1, 9}
for any orderingP € Xg. (Here sign T, denotes the signature of the quadratic form
T, with respect to the orderinB.) Hence, the set af-orderings orf is not empty. It
is exactly the set oP € Xg with sign. T, = 9. (Note thatF has orderings for which
both X andY, and thusXY, are positive so that the value sigh, = 9 can indeed be
attained.)
Let P be anyo-ordering onF. Then we have for ang € A,

Trd(c(a)a) >p O
(by definition) and so for ang € A,
Trd(o(@Q)XYa = XY Trd(c(a)a) >p O,

sinceXY >p O (for otherwise signT, = 1 andP would not be ar-ordering onF).
Hence, XY is totally o-positive. An alternative argument showing thaY is totally
o-positive can be given by observing th&¥ = Trd(o(b)b) for
b:[Sé%}
000

Next we show thaKY is not a sum of hermitian squares iy, ") = (Ms(F), ad,).
We identify XY with XY k in M3(F), wherel; denotes the 33 identity matrix. Assume
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for the sake of contradiction thatY k; is a sum of elements of the form(a)a with
a = [a]1qij<3 € Ma(F). Recall that

s(a)a=ad(@a=|"v
The (3 3)-entry ofo(a)a is equal to

Ye; + Xy + ags.
By our assumption there agg, s, 3 € 3, F*? such that

¢ [X -1
]-a-[ Y ] .a
XY XY

XY=Y5+ XS + S,
which is equivalent with
1=X"'s+ Yl g+ XY s
Thus, 1 is weakly represented by the quadratic form
XLYEXY ) = (X Y XY) = q,
which is impossible by Lemma 3.1. This finishes the proof. [

The previous theorem gives us a counterexample to the P®€arg. It shows that
the conjecture is in general not true for full matrix algebeguipped with an orthog-
onal involution. In contrast, when we equip a full matrix ethga with asymplectic
involution, we will show in Theorem 4.7 below that the cortjge does hold.

Thus, we could ask if the PS Conjecture also holds for noit-sphtral simple
algebras with symplectic involution. The answer is “no”:

Theorem 3.3.Let F = Fo(X,Y). Let A= M3(F)® H = M3(H), where H= (-1, -1)¢
is Hamilton’s quaternion division algebra over F. Equip Atkvihe involutiono =
ad, ®y, wherey is quaternion conjugation ana = ad, for

q= (XY, XY).

The algebra A is central simple over F of degfeand the involutionr is symplectic.
The (o-symmetrig element XY is totally--positive, but is not a sum of hermitian
squares inA, o).

Proof. The assertion aboulA(o) is clear, as is the fact thafY € Sym(A, o) since
XY eF.

It is easy to verify that the involution trace form ¢f T, is isometric to(2) ® Ny,
whereNy = (1,1, 1, 1) is the norm form oH. HereNy(X) := Nrdy(x) for all x € H,
where Nrg; denotes the reduced norm bn SinceT,; = Tag,oy = Taq, ® T,, We have

Signs Ty = (SIgne Tag,)(Signs Ty) = 4 signp Tag, € {4, 36}
for any orderingP € Xg. Hence, the set of-orderings onF is not empty. It is
exactly the set oP € Xg with sign, T, = 36. (Note again that this value can indeed
be attained since there are orderingsFofor which bothX andY, and thusXY, are
positive.) Arguing similarly as in the proof of Theorem 3.2 wan verify thatXY is
totally o-positive.
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Before proceeding, note that the involutipns adjoint to the hermitian forngl),
over H,y). Hence o is adjoint to the hermitian forrh = q® (1), = (X Y, XY), over
(H,y). Thus

h(x,y) = y(X)Xy1 + y(%) Y Yo + y(X3s) XY s
for vectorsx = (Xq, %o, X3) andy = (yi, Yo, y3) in the rightH-vector spacéi?.

Next we show thaKY is not a sum of hermitian squares i, ¢-) = (M3(H), ad,).
We identify XY with XY k in M3(H), wherel; denotes the 83 identity matrix. Assume
for the sake of contradiction thatY k is a sum of elements of the form(a)a with
a = [a]1<ij<3 € M3(H). Recall that

c@a=ad@a=["v |- v@ v | a

wherey(a) = [y(aij)] i j<3- The (3 3)-entry ofc(a)ais equal to
y(a13)Y &z + y(a23) Xags + y(azz)azs = Y Ny (a13) + XNy (zs) + Nn(ass).

SinceNy = (1,1,1,1), each ofNy(az3), Ny (az3), Nn(ags) is a sum of four squares in
F. Thus, by our assumption there aes,, s; € 3. F*2 such that

XY=Y5 + XS + S.

We can now finish the proof with an appeal to Lemma 3.1, as irpthef of Theo-
rem 3.2. ]

Remark 3.4. By tensoring Ms(F), ad,) with Hamilton’s quaternion division algebra,
equipped with ainitary involution one obtains a counterexample in the non-spii un
tary case. We leave the details, which are similar to thoffesiproof of Theorem 3.3,
to the diligent reader.

Remark 3.5. From a real algebra perspective it is clear that these coaxamples to
the PS Conjecture can easily be seen to work over any formeslfieldF that admits

a proper semiordering (see [PBB] for details and unexplained terminology). Given
such a fieldF, endowed with a proper semiordering, take negail®ee F such that
abis negative as well. Theg = (a, b, ab) does not weakly represent 1 (the quadratic
module generated bly-a, —b, —ab} is proper) and thus iM3(F), endowed with the
involution o = ad,, the elementb is totally o-positive, but not a sum of hermitian
squares (as the proof of Theorem 3.2 shows).

4. Positive ResuLTs

Procesi and Schacher [PS, p. 404 and 405] prove their congefdr central simple
algebrasA of degree two, i.e., quaternion algebras, with arbitramoliation o= by
appealing to matrices and the Cayley—Hamilton theorem. Al this section by
giving an alternative argument motivating some of the galimations that follow.

Throughout this section we assume that the base Fiesdformally real.
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Proposition 4.1. Let A be a quaternion algebr@ot necessarily divisigrwith centre
K, equipped with an arbitrary involution. Let F be the fixed field A, o). Each
entry occurring in a diagonalisation of,Tis a sum of hermitian squares.

Proof. (i) We first consider involutions of the first kind da Let A be the quaternion
algebra &, b)r with F-basis{1, i, j, k} wherei, j andk anti-commuteij = k, i> = aand
j2=Dh.
If o is symplectic, themr is the unique quaternion conjugation involutigpron A.
An easy computation givek, = T, =~ (2) ® (1, —a, —b, ab). We have
1=y(D)1L —a=y()i, -b=1y(j)j, ab=y(kk
If o is orthogonal, themr = Int(u) o y, whereu € A satisfiesy(u) = —u. From
[KMRT, 11.6] we know that
To = (2) ® (1, Nrda(u), — Nrda(s), — Nrda(su))
for somes € A with o(s) = s= —y(s). Now,
Nrda(u) = uy(u) = wy(uutu = o(u)y;
—Nrda(s) = —y(g)s = o(9)s,
— Nrda(su) = = Nrda(s) Nrda(u) = —y(S)sSNrda(u) = o(S)o(U)us= o(u9us

(ii) Finally, let K = F(V6) and letA be a quaternion algebra ovrwith unitary
involution o~ whose restriction td& is 7, wherer is determined byr(V6) = — 6.
By a well-known result of Albert [KMRT, 2.22] there exists aigue quaternior-
subalgebra, € A such that

A= Ay®c K ando =Y09®T,
wherey, is quaternion conjugation of. ThenT, ~ T, ® T, = T, ® (1, -§). Since
7(V6) V6 = —6, we are finished by the symplectic part of the proof. .
This shows in particular that the PS Conjecture is true fdrrhatrix algebras of

degree two over a formally real fiekd since these are just split quaternion algebras.
Part (ii) of the proof of Proposition 4.1 motivates the faliog more general result:

Theorem 4.2. Let A and B be central simple algebras with centre K, equippid
arbitrary involutionso and , respectively. Assume théd, o) and (B, r) have the
same fixed field F. If the PS Conjecture holds(faro) and (B, 7), it also holds for
the tensor produdfA ®x B, o ® 7).

Proof. This is a simple computation, using the fact tAgt, ~ T, ® T, and that
elements oA commute with elements @ in the tensor produch ®¢ B. m

Corollary 4.3. Let(Qq,0),...,(Qy, o) be quaternion algebras with arbitrary invo-
lution over K and with common fixed field F. The PS Conjectutdshior the tensor

product®f:1(Qi,o-i).
Proof. This is an immediate consequence of Proposition 4.1 andréhed.2. n
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Corollary 4.4. Let A= M(F) be a split algebra o2-power degree = 2/, equipped
with an orthogonal involutio- which is adjoint to an n-fold Pfister form over F. The
PS Conjecture holds fqA, o).

Proof. By Becher’s proof of the Pfister Factor Conjecture [BeA],«f) decomposes as

l
(A )= (X)Q. ),
i=1

where Qi,01),...,(Q, 0/) are quaternion algebras with involution. An appeal to
Corollary 4.3 finishes the proof. n

Corollary 4.5. Let A= My(K) be a split algebra oR-power degree = 2, equipped
with a hyperbolic involutionr of any kind. Let F be the fixed field OA, o). The
PS Conjecture holds fqA, o).

Proof. Recall from [BST, Theorem 2.1] that the involutienis hyperbolic if there
exists an idempoterg € A such thato(e) = 1 — e or, equivalently, if the adjoint
(quadratic, alternating or hermitian) form @fis hyperbolic.

If £ = 1 this is just the split version of Proposition 4.1. Assume/tioats > 2. By
[BST, Theorem 2.2],A, o) decomposes as

{
(A o) = (X)Q.0),
i=1

whereQ = My(K) ando,...,o0, are involutions oM. An appeal to Corollary 4.3
finishes the proof. [

Corollary 4.6. Let A= M,(F) be a split algebra oR-power degree 1= 2/, equipped
with a symplectic involution-. The PS Conjecture holds foA, o).

Proof. If o is a symplectic involution, it is hyperbolic (since it is adjt to an alter-
nating form over which is automatically hyperbolic) and we are finished bydlor
lary 4.5. [

In fact, the PS Conjecture is true fany split algebra with symplectic involution.
Such an algebra is always of even degree.

Theorem 4.7.Let A= M,(F) be a split algebra of even degree-ni2m, equipped with
a symplectic involutionr. The PS Conjecture holds fOA, o).

Proof. Sinceo is symplectic, the quadratic forii, is hyperbolic (see [Lew, p. 227]
or [KMRT, Proof of 11.7]). Thusl, ~ mx (1, -1) and it sufices to show that1 is
a sum of hermitian squares M We identify—1 with —I,,, wherel,, denotes th@& x n
identity matrix inA = M, (F).

Sinceo is symplectic, we have = Int(S) o t, wheret denotes transposition and
S € GL,(F) satisfiesS' = —S. SinceS is skew-symmetric, there exists a matrix
P € GL,(F) such thatP'S P= B, whereB is the block diagonal matrix witi blocks
[ & &] on the diagonal.
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Let X be the block diagonal matrix witm blocks[$ 3] on the diagonal. Then
X'BX = B™. Hence withY = PXP, we haveY'SY= S-%. Thus

c(SY)SY=S(SY'SISY=SYSY = SY(-S)Y = -SS = I, -

5. POSITIVE NONCOMMUTATIVE POLYNOMIALS

5.1. Algebras of generic matrices with involution. After studying the PS Conjec-
ture in the setting of central simple algebras with invalaotiwe proceed to interpret
these results as well as Theorem 2.4 for non-dimensionbsiéyty of noncommuta-
tive (NC) polynomials.

Motivated by problems in optimization and control theorgltdn [Hel] proved that
a symmetric real or complex NC polynomial, all of whose inmgeder algebra-
homomorphisms intdM,(R), n € N, are positive semidefinite (i.e., a dimensionfree
positive NC polynomial), is a sum of hermitian squares. Wimiare interested in, is
positivity under evaluations iM,(R) for afixed n

To tackle this problem we introduce the language of geneatrices [Row]. Veri-
fying a condition on evaluations of an NC polynomial in thgeddra ofnxn matrices is
often conveniently done in the algebra of generic matribethis subsection we recall
the definition of generic matrices with involution, whileromain result on positive
NC polynomials (i.e., a Positivstellensatz) is presentettheé next subsection.

As in the classical construction of the algebra of generitrices (see e.g. [Row,
§1.3]), it is possible to construct the algebra of genericriv@swith involution[PS,
§ll]. To each type of involution (orthogonal, symplectic anditary) an algebra of
generic matrices with involution can be associated, as we explain. We assume
from now on thaK is a field of characteristic 0 with involutionand fixed fieldF.

Let K(X,X ) be the free algebra with involution ove(x), i.e., the algebra with
involution, freely generated by the noncommuting variabfe:= (X, Xp,...). Its
elements (calledNC polynomial¥ are (finite) linear combinations of words in (the
infinitely many) lettersX, X .

Fix a type J {orthogonal, symplectic, unitayyLeta;, € K(X, X ') denote the ideal
of all identities satisfied by degreecentral simple-algebras with type J involution.
Thatis, f = f(Xg,..., X X5, ..., X)) € K(X, X'y is an element ofy; if and only
if for every central simple algebrA of degreen with type J involutiono- and every
Q,...,a €A,

f(a,...,a 0(a),...,0(&)) =0.
Then GM\(K,J) = K(X, X )/a,, is thealgebra of generic x n matrices with type
involution

Remark 5.1. An alternative description of the algebra of generic masiwith involu-
tion can be obtained as follows. Lét= ({i(f) | 1<1, ] <n, ¢eN)denote commuting
variables and form the polynomial algelf’] endowed with the involution extending
« and fixingZ{? pointwise. Consider thix n matricesY, := [£{],; ., € Ma(K[Z]),

|
¢ € N. EachyY, is called ageneric matrix
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(a) If J € {orthogonal, unitarly, then the (unitalK-subalgebra oM,(K[{]) generated
by theY, and their transposes is (canonically) isomorphic to@#J).
(b) If 3 = symplectic, them is even, sayn = 2m. Consider the usual symplectic

involution
Xy wo -y
[z W]'_) -z X

on Mon(K[£]). Then the (unital)K-subalgebra oM,(K[/]) generated by th&,
and their images under this involution is (canonicallynhmwphic to GM,(K, J).

If n = 1, then Je {orthogonal, unitaryand GM(K, J) is isomorphic tK][Z] en-
dowed with the involution introduced above. Hence in theuséave will always as-
sumen > 2.

Let J e {orthogonal, symplectic, unitayyForn > 2, GM,(K, J) is a Pl algebra and
a domain (cf. [PS§lI]). Hence its central localization is a division algebr®\K, J)
with involution, which we call thegeneric division algebrawvith type J involution
of degreen. As we will only consider the canonical involution on G, J) and
UD,(K, J) we use: to denote it.

5.2. A Positivstellensatz. Let K € {R, C} be endowed with the complex conjugation
involution™. Our aim in this subsection is to deduce a non-dimensioneesion of
Helton’s sum of hermitian squares theorem. We will descs§pametric NC polyno-
mials f all of whose evaluations iM,(K) are positive semidefinite, see Theorem 5.3.

We start with a lemma characterizing totapositivity in the algebra of generic
matrices GM(K,J). The proof of the following proposition uses some elermgnt
model theory, e.g. Tarski's transfer principle for realsed fields. All the necessary
background can be found in [PB1 and§2] or, alternatively, [BCR§1].

Lemmab5.2.Letne N. If K = R, letJ = orthogonal and ifK = C, letJ = unitary. If
a=a' € GMy(K, J)is totally o-positive under eack-homomorphism froreM, (K, J)
to My(K) endowed with a positive typkinvolution o, then a is totally«-positive(in
UDy(K, J)).

Proof. Supposea € GM, (K, J) is not totally=-positive. Then there is &ordering<

of the fixed fieldZ of the centre of UK, J)) under which Trd{*ax) is not positive
semidefinite. LeXas,...,amn) be the diagonalisation of Trd(x) with ¢; = o] € Z.
(Herem = n? if the involution is of the first kind andh = 2n? otherwise.) Given that

is the field of fractions of the symmetric cen#Zgof GM,(K, J), we may even assume
ai € Zg. We also diagonalise Tr&{ax) as{Bi, ..., Bm) with 8 € Z,. Clearly,a; > 0
and one of thes;, sayp, is negative with respect to the giverordering<. Let zZ
denote the real closure @fwith respect to this ordering and for:= UD,(K, J)®ZZrC
endowed with the involutionr = « ® id. ThenA'is a central simple algebra over a real
closed (if J= orthogonal) or algebraically closed field (i=Junitary). Moreover, its
involutiono is positive. Hence by the classification result [PS, Theate2zhof Procesi
and Schached is eitherMn(Zrc) endowed with the transpose (if<J orthogonal) or
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Mn(Z) endowed with the complex conjugate transpose involuifah=£ unitary). Here
Z is the algebraic closu@rc( V-1) ofZ and the complex conjugate mapst V-1 -
r—tv—iforrteZ ..

Forb € GMy(K, J) letb € K(X, X'y denote a preimage dfunder the canonical map
K(X, XY = GMy(K,J). Everys-homomorphism GMK,J) — Mu(L) for a *-field
extension_ of K, whereM,(L) is given a type J involution, yieldssahomomorphism
K(X, X ) — M,(L), so is essentially given by a poist M,(L)" describing the images
of the X; under this induces map.

By construction, the imagg; ® 1 of §; under the embedding of algebras with in-
volution GM, (K, J) — Ais noto-positive. Lets denote the corresponding evaluation
point. By Example 2.6, this means th&(s, 3) = 81 ® 1 is not positive semidefinite.
Consider the following elementary statement:

Inx nmatricesx = (X4, . .., Xn) : &i(x, X) is positive semidefinite

(1)

B1(x, %) is not positive semidefinite

(N is the maximal number of variables appearing in one of#hg,’)

Obviously such x n matricesx can be found oveZ = or Z; just takex = s. By
Tarski’s transfer principle, the above elementary statén(i®) can be satisfied ii.
This yields as-homomorphisnk(X, X ) - My(K) endowed with the (positive) invo-
lution "t and in turn (by universality) a-homomorphism GMK, J) —» (M,(K), t).
By the construction, the image afunder this mapping will not be positive semidefi-
nite. This finishes the proof. [

In order to state the Positivstellensatz, we need to rdwalhbtion ofcentral polyno-
mialsfor n x n matrices. These arke K(X, X ) whose image in GMK, J) is central.
Equivalently, the image of under ax-homomorphism fronK¢X, X ) to Mn(K) en-
dowed with a type J involution, is always a scalar matrix. tlisinonzero, we call
f nonvanishing The existence of nonvanishing central polynomials is raat; we
refer to [Row,§1; Appendix A] for details.

Theorem 5.3 (Positivstellensatz)Suppos& € {R, C} is endowed with the complex
conjugate involutiorm. Let g= g* € K(X, X ), n € N and fix a type] € {orthogonal,
unitary} according to the type of involution oK. Chooseay,...,am € K(X, X
whose images i6G6M, (K, J) form a diagonalisation of the quadratic forfird(x*x) on
UD, (K, J). Then the following are equivalent:

(i) for any se Mn(K)Y, g(s, ) is positive semidefinite;

(ii) there exists a nonvanishing central polynomiat H(X, X'y for n x n matrices

and p, € KX, X') with

h*gh= Z a® Z PP (moday).

g€{0,1)M
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Proof. Given a congruence as in (ii), it is clear that (i) holds whemé(s, §) # 0. As
the set of all suclsis Zariski dense, (i) holds for ai € M,(K)".

For the converse implication note that by Lemma §.2,q;, is totally «-positive in
UD, (K, J). Hence by Theorem 2.4 we obtain a positivity certificate

g+ay= ), (a+ajn)82(x AR

£€{0,1}m

for somex, € UD,(K, J). Clearing denominators, there ag € GM,(K, J) and a
nonzero central e GM, (K, J) with

SCEIS SR P CEL N T

g€{0,1)m i

Lifting this equality to the free algebra yields the desicediclusion. [

Whenn = 2, the weightsr are redundant (c§4 or [PS, p. 405]) and we obtain the
following strengthening:

Corollary 5.4. SupposK e {R,C} is endowed with the complex conjugate involu-
tion”. Letg= g* € K(X, X'y, ne N and fix a typel € {orthogonal, unitary according
to the type of involution of. Then the following are equivalent:
(i) for any se My(K)Y, g(s, ) is positive semidefinite;
(ii) there exists a nonvanishing central polynomiad lK(X, X' for 2 x 2 matrices
and p € KX, X') with

h*gh= Z p'pi (moday).

Remark 5.5. By Tarski’s transfer principle, Theorem 5.3 and Corollarg Bold with
K replaced by any real closed or algebraically closed fielchafacteristic 0.

We conclude the paper with an open problem: can Theorem 5u3édxt to give a
proof of Helton’s sum of hermitian squares theorem?
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