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Abstract. The cohomology of the classifying space BU(n) of the unitary group can be
identified with the the ring of symmetric polynomials on n variables by restricting to the
cohomology of BT , where T ⊂ U(n) is a maximal torus. In this paper we explore the
situation where BT = (CP

∞)n is replaced by a product of finite dimensional projective
spaces (CP

d)n, fitting into an associated bundle

U(n) ×T (S2d+1)n → (CP
d)n → BU(n).

We establish a purely algebraic version of this problem by exhibiting an explicit system of
generators for the ideal of truncated symmetric polynomials. We use this algebraic result
to give a precise descriptions of the kernel of the homomorphism in cohomology induced
by the natural map (CP

d)n → BU(n). We also calculate the cohomology of the homotopy
fiber of the natural map E Sn ×Sn

(CP
d)n → BU(n).
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1. Introduction

One of the nicest calculations in algebraic topology is that of the cohomology of the
classifying space BU(n) of the unitary groups as the ring of symmetric polynomials on n
variables (see [3]). In fact the restriction map identifies H∗(BU(n), Z) with the invariants in
the cohomology of the classifying space BT of a maximal torus under the action of the Weyl
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group Sn. This leads to a beautiful description of the cohomology of the flag manifold U(n)/T
and more specifically a detailed understanding of the fibration U(n)/T → BT → BU(n).

In this paper we explore the situation where BT = (CP∞)n is replaced by a product of
finite dimensional projective spaces (CP d)n, fitting into an associated bundle

U(n) ×T (S2d+1)n → (CP d)n → BU(n).

This requires an analysis of truncated symmetric invariants and in particular a precise de-
scription of the kernel I(n, d) of the algebra surjection H∗(BU(n), F) → H∗((CP d)n, F)Sn .
The purely algebraic version of this problem is studied in §5 and §6. In particular, Theo-
rem 5.1 allows us to exhibit an explicit set of generators for I(n, d) as follows.

Theorem 1.1. Let F be a field and I(n, d) be the kernel of the map H∗(BU(n), F) →
H∗((CP d)n, F).

(a) If n! is invertible in F then I(n, d) is generated by the elements Pd+1, Pd+2, . . . , Pd+n

(b) If n < 2 char(F)−1 then I(n, d) is generated by Pd+1, Pd+2, . . . , Pd+n and Pd + 1, . . . , d + 1
︸ ︷︷ ︸

p times

.

For the definition of Pd+i and Pd + 1, . . . , d + 1
︸ ︷︷ ︸

pi times

, see §5. Note that the degree of Pd+i is 2(d + i)

and the degree of Pd + 1, . . . , d + 1
︸ ︷︷ ︸

p times

is 2p(d + 1).

If n! is invertible in a field F, then we show that the elements Pd+i, 1 ≤ i ≤ n form a
generating regular sequence for I(n, d). In contrast, using Theorem 6.1 we show that in most
other cases I(n, d) cannot be generated by a regular sequence:

Theorem 1.2. If n ≥ char(F) > 0 and d > 1, then I(n, d) cannot be generated by a regular
sequence.

There is a free action of Sn on the fiber space W (n, d) = U(n) ×T (S2d+1)n arising from
the normalizer of the maximal torus in U(n). The orbit space X(n, d) can be realized as the
fiber of the natural map E Sn ×Sn

(CP d)n → BU(n). Our algebraic calculations allow us to
calculate the cohomology of this space in good characteristic.

Theorem 1.3. If F is a field where n! is invertible, then the cohomology of X(n, d) is an
exterior algebra on n generators

H∗(X(n, d), F) ∼= ΛF(Ed+1, . . . , Ed+n)

where Ej is a cohomology class in dimension 2j − 1.

This has an interesting computational consequence.

Theorem 1.4. For any field F of coefficients, the Serre spectral sequence for the fibration
(S2d+1)n → W (n, d) → U(n)/T collapses at E2 if and only if d ≥ n − 1. Consequently, we
obtain an additive calculation

H∗(W (n, d), F) ∼= H∗(U(n)/T ) ⊗ H∗((S2d+1)n, F)
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whenever d ≥ n − 1. In particular if n! is invertible in F, then

H∗(X(n, d), F) ∼= [H∗(U(n)/T ) ⊗ H∗((S2d+1)n, F)]Sn ∼= ΛF(Ed+1, . . . , Ed+n) .

These results follow from a general theorem about the cohomology of fibrations which,
although “classical” in nature, seems to be new.

Theorem 1.5. Let F be a field and let π : E → B denote a fibration with fiber F of finite
type such that B is simply connected. Assume

• H∗(B, F) is a polynomial algebra on n even dimensional generators,
• π∗ : H∗(B, F) → H∗(E, F) is surjective,
• the kernel of π∗ is generated by a regular sequence u1, . . . , un, where |ui| = 2ri.

Then H∗(F, F) is an exterior algebra on n odd dimensional generators e1, . . . , en, where
|ei| = 2ri − 1.

It is natural to ask whether the results of this paper can be extended to compact Lie groups,
other than U(n). We thus conclude this introduction with the following open problem.

Problem: Let G be a compact Lie group with maximal torus T of rank n and Weyl group W .
Describe generators for the kernel IG(n, d) of the natural map H∗(BG, F) → H∗((CP d)n, F)
and use this to describe the cohomology of the homotopy fiber of (CP d)n → BG when |W |
is invertible in F.

Theorems 5.1(a) and 6.1(a) have been independently proved in a recent preprint [4] by A.
Conca, Ch. Krattenthaler, J. Watanabe. We are grateful to J. Weyman for bringing this
preprint to our attention.

2. Bundles and symmetric invariants

A classical computation in algebraic topology is that of the cohomology of the classifying
space BU(n) where U(n) is the unitary group of n × n matrices. We briefly recall how
that goes; details can be found, e.g., in the survey paper [3] by A. Borel. Let T = (S1)n ⊂
U(n) denote the maximal torus of diagonal matrices in U(n); its classifying space is BT =
(CP∞)n. The inclusion T ⊂ U(n) induces a map between the cohomology of BU(n) and the
cohomology of BT . Note that the normalizer NT of the torus is a wreath product S1 ≀ Sn,
where the symmetric group Sn acts by permuting the n diagonal entries. Thus the Weyl
group NT/T is the symmetric group Sn. Recall that H∗(BT, Z) ∼= Z[x1, . . . , xn] where the
x1, . . . , xn are 2-dimensional generators.

Theorem 2.1. The inclusion T ⊂ U(n) induces an inclusion in cohomology with image the
ring of symmetric invariants in the graded polynomial algebra

H∗(BU(n), Z) ∼= H∗(BT, Z)Sn = Z[x1, . . . , xn]Sn

where the action of Sn arises from that of the Weyl group. �
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Now recall that the complex projective space CP d is a natural subspace of CP∞; this
induces a map

F̃ (n, d) : (CP d)n → BT → BU(n).

The permutation matrices Sn ⊂ U(n) act via conjugation on U(n); this restricts to an action
on the diagonal maximal torus T which permutes the factors. Applying the classifying space
functor yields actions of Sn on BT and BU(n) which make the map F̃ (n, d) equivariant.
Note however that the conjugation action on U(n) is homotopic to the identity on BU(n).

We conclude that F̃ (n, d) induces the natural map

F̃ (n, d)∗ : H∗(BU(n), Z) ∼= Z[x1, . . . , xn]Sn → Z[x1, . . . , xn]/(xd+1
1 , . . . xd+1

n )

in integral cohomology whose image is precisely the ring of truncated symmetric invariants.
We should also note that the map F̃ (n, d) is (up to homotopy) the classifying map for the
n–fold product of the canonical complex line bundle over CP d.

To make this effective geometrically, we need to describe the map F̃ (n, d) explicitly as
a fibration. The space (CP d)n is a quotient of (S2d+1)n by the free action of the maximal
torus T . Using a standard induction construction we can view our map as a fibration which
lies over the classical fibration connecting U(n)/T , BT and BU(n). Indeed, the following
commutative diagram has fibrations in its rows and columns:

(S2d+1)n

��

(S2d+1)n

��

W (n, d) U(n) ×T (S2d+1)n //

��

(CP d)n
F̃ (n,d)

//

��

BU(n)

U(n)/T // BT // BU(n)

Note that we also have a bundle

U(n) → U(n) ×T (S2d+1)n → (CP d)n

and its classifying map is F̃ (n, d).
In some of our applications it will also make sense to take a quotient by the action of the

symmetric group Sn. However for technical reasons this requires taking a homotopy orbit

space which we now define.

Definition 2.2. Let G denote a compact Lie group acting on a space X, its homotopy orbit
space XhG is defined as the quotient of the product space EG×X by the diagonal G–action,
where EG is the universal G–space.

Remark 2.3. It should be noted that if G is a finite group, X is a G–space and |G| is in-
vertible in the coefficients, then the natural projection XhG → X/G induces an isomorphism
in cohomology (this follows from the Vietoris-Begle theorem). Hence for example if |G| is
invertible in a coefficient field F, then H∗(XhG, F) ∼= H∗(X, F)G (the algebra of invariants).
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In our context, the symmetric group Sn acts by permuting the factors in (CP d)n and we
can consider the associated homotopy orbit space

(CP d)n
h Sn

= E Sn ×Sn
(CP d)n.

More precisely, the map BT → BU(n) naturally factors through the classifying space of
the normalizer NT , as we have T ⊂ NT ⊂ U(n). The space BNT can be identified with
BTh Sn

= (CP∞)n
hSn

, where Sn acts by permuting the factors, as before. This homotopy
orbit space restricts to the truncated projective spaces, yielding a map

F (n, d) : (CP d)n
hSn

→ BU(n) ,

which is surjective in rational cohomology. We would also like to describe this map as a
fibration.

The map (CP d)n → BT is an Sn-equivariant fibration, with fiber (S2d+1)n. This arises
from the free T–action on the product of spheres, which extends in the usual way to an
action of the semidirect product NT . If we take homotopy orbit spaces we obtain a fibration
sequence

(S2d+1)n → (S2d+1)n
hNT → BNT .

Dividing out by the free T–action we can identify (S2d+1)n
hNT ≃ (CP d)n

h Sn
. This makes

the fiber of the map (CP d)n
hSn

→ BNT very explicit. As before, in order to describe the
fibration with target BU(n), it suffices to induce up the action on the fiber to a U(n)–action
by taking the balanced product Z = U(n) ×NT (S2d+1)n. This yields a fibration sequence

Z → ZhU(n) → BU(n) .

Note that

ZhU(n) ≃ EU(n) ×NT (S2d+1)n ≃ (S2d+1)n
hNT ≃ (CP d)n

hSn

where the last equivalence follows from taking quotients by the free T–action, as before.
Our discussion is summarized in the following diagram of fibrations, analogous to the non–
equivariant situation:

(S2d+1)n

��

(S2d+1)n

��

X(n, d) U(n) ×NT (S2d+1)n //

��

E Sn ×Sn
(CP d)n

F (n,d)
//

��

BU(n)

U(n)/NT // BNT // BU(n)

Hence we have

Proposition 2.4. Up to homotopy the map F̃ (n, d) : (CP d)n → BU(n) is a fibration with
fiber the compact simply connected manifold

W (n, d) = U(n) ×T (S2d+1)n
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of dimension equal to n(n+2d). There is a free Sn–action on this manifold, and its quotient

X(n, d) = U(n) ×NT (S2d+1)n

is homotopy equivalent to the fiber of F (n, d) : (CP d)n
hSn

→ BU(n). �

Remark 2.5. Note that there are fibrations

(S2d+1)n → X(n, d) → U(n)/NT

and
U(n) → X(n, d) → (CP d)n

hSn

where the second one is obtained from pulling back the universal U(n) bundle over BU(n)
using F (n, d).

One of our main results in this paper will be to calculate the cohomology of the fibers
W (n, d) and X(n, d) associated to the fibrations F̃ (n, d) and F (n, d) respectively.

3. Cohomology calculations when n! is invertible

Our standing assumption in this section (unless stated otherwise) will be that F is a field
such that n! is invertible in F, and cohomology will be computed with F–coefficients. A
good example is the field Q of rational numbers. In this situation we have H∗(X(n, d), F) ∼=
H∗(W (n, d), F)Sn; it is this cohomology algebra that we will be most interested in.

We begin by considering the limit case d = ∞. In this case X(n,∞) = U(n)/NT and we
are looking at the classical fibration

U(n)/NT → BNT → BU(n)

Proposition 3.1. The map BNT → BU(n) induces an isomorphism in cohomology and
U(n)/NT is F–acyclic.

Proof. Indeed, both maps in the sequence

H∗(BU(n), F) → H∗(BNT, F) → H∗(BT, F)Sn

are isomorphisms. Since BU(n) is simply connected, this can only happen if U(n)/NT is
acyclic. �

Note that this computation is very different from what the cohomology of the flag manifold
U(n)/T looks like; when we divide out by the action of the symmetric group all the reduced
cohomology vanishes.

We now consider the unstable case of this result, namely when d is finite. This is consider-
ably more interesting, as we know that the cohomology must be non–trivial. This calculation
will be a special case of a more general result about the cohomology of fibrations.

Theorem 3.2. Let π : E → B denote a fibration with fiber F of finite type such that B is
simply connected and

• H∗(B, F) is a polynomial algebra on n even dimensional generators,
• π∗ : H∗(B, F) → H∗(E, F) is surjective,
• the kernel of π∗ is generated by a regular sequence u1, . . . , un where |ui| = 2ri.
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Then H∗(F, F) is an exterior algebra on n odd dimensional generators e1, . . . , en, where
|ei| = 2ri − 1.

Proof. The cohomology of the fiber F in a fibration

F → E → B

can be studied using the Eilenberg–Moore spectral sequence. We refer the reader to [7],
Chapter VIII for details. It has the form:

E∗,∗
2 = TorH∗(B,F)(F, H∗(E, F)).

On the other hand, the hypotheses imply that

H∗(E, F) ∼= H∗(B, F)/(u1, . . . un)

where u1, . . . , un form a regular sequence of maximal length in H∗(B, F), a polynomial
algebra on n even dimensional generators. In other words the cohomology of B is free
and finitely generated over F[u1, . . . , un]. Thus the spectral sequence simplifies to

E∗,∗
2 = TorH∗(B,F)(F, H∗(B, F) ⊗F[u1,...,un] F) ∼= TorF[u1,...,un](F, F)

This can be computed using the standard Koszul complex, yielding

E2 = ΛF(e1, . . . , en)

where the ei are exterior classes in degree 2ri − 1. There are no further differentials, as the
algebra generators for E∗,∗

2 represent non–trivial elements in the cohomology of F which by
construction must transgress to the regular sequence {u1, . . . , un} in H∗(B, F) in the Serre
spectral sequence for the fibration

F → E → B.

Therefore the Eilenberg–Moore spectral sequence collapses at E2 = E∞. Now this algebra
is a free graded commutative algebra, hence there are no extension problems and it follows
that

H∗(F, F) ∼= ΛF(e1, . . . , en)

as stated in the theorem. �

We now apply this result to the spaces X(n, d).

Theorem 3.3. The cohomology of X(n, d) is an exterior algebra on n generators

H∗(X(n, d), F) ∼= ΛF(Ed+1, . . . , Ed+n) ,

where Ej is a cohomology class in dimension 2j − 1.

Proof. As observed previously we have a fibration

X(n, d) → (CP d)n
hSn

→ BU(n) .

The Eilenberg–Moore spectral sequence can therefore be applied to compute the cohomology
of X(n, d). The map F (n, d) : (CP d)n

hSn
→ BU(n) induces a surjection of algebras

H∗(BU(n), F) → H∗((CP d)n
hSn

, F) → 0
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which can be identified with the natural map

F[x1, . . . , xn]Sn → (F[x1, . . . , xn]/(xd+1
1 , . . . xd+1

n ))Sn.

The kernel of this map is precisely the ideal

In,d = (xd+1
1 , . . . , xd+1

n ) ∩ F[x1, . . . , xn]Sn .

By Theorem 6.1(a), In,d is generated by a regular sequence of elements Pd+1, . . . , Pd+n. Here
each Pj is a homogeneous polynomial in x1, . . . , xn of degree j; its degree as a cohomology
class is 2j. These classes form a regular sequence of maximal length in the polynomial algebra
H∗(BU(n), F). Thus the hypotheses of Theorem 3.2 hold, and the proof is complete. �

Corollary 3.4. If d < ∞, then X(n, d) is a compact, connected, orientable manifold.

Proof. According to our calculation, for m = n(n + 2d) we have Hm(X(n, d), Q) ∼= Q. This
is precisely the dimension of the compact manifold X(n, d) = U(n) ×NT (S2d+1)n, whence
the result follows. �

Remark 3.5. Note that as d gets large, the connectivity of the space X(n, d) increases; this
is consistent with the stable calculation, namely the acyclicity of U(n)/NT . Also note that
the manifold U(n)/NT is not orientable, as it is Q–acyclic.

For the case of W (n, d) we offer the following general result:

Theorem 3.6. For any field F of coefficients, the Serre spectral sequence for the fibration
(S2d+1)n → W (n, d) → U(n)/T collapses at E2 if and only if d ≥ n − 1, from which we
obtain an additive calculation

H∗(W (n, d), F) ∼= H∗(U(n)/T ) ⊗ H∗((S2d+1)n, F).

In particular if n! is invertible in F, then

H∗(X(n, d), F) ∼= [H∗(U(n)/T ) ⊗ H∗((S2d+1)n, F)]Sn ∼= ΛF(Ed+1, . . . , Ed+n) .

Proof. Consider the Serre spectral sequence with F coefficients for the fibration (S2d+1)n →
W (n, d) → U(n)/T . The base is simply connected and the cohomology of the fiber is gener-
ated by the natural generators for the 2d + 1–dimensional cohomology of each sphere. The
first differential in the spectral sequence can be computed as follows: if ei ∈ H2d+1((S2d+1)n)
is a natural generator then

d2d+2(ei) = [xd+1
i ] ∈ H∗(U(n)/T ) ∼= H∗(BT )/(s1, s2, . . . , sn)

where the s1, s2, . . . , sn are the symmetric polynomials. This follows from the diagram of
fibrations in the previous section and the well-known calculation of the cohomology of (CP d)n

and U(n)/T as quotients of H∗(BT ). We now need the following algebraic lemma.

Lemma 3.7. Let F be a commutative ring and I be the ideal of F[x1, ..., xn] generated by the
elementary symmetric polynomials s1, ..., sn in x1, ..., xn. Then (a) xn

1 ∈ I but (b) xn−1
1 6∈ I.
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Suppose Lemma 3.7 is established (we only need it in the case where F is a field). Then
we conclude that d2d+2(ei) = [xd+1

i ] = 0 in H∗(U(n)/T ) for all i = 1, . . . , n if and only if
d ≥ n − 1. This implies that all the differentials in the spectral sequence are zero and so it
collapses at E2. The assertions of Theorem 3.6 follow from this and Theorem 3.3.

It thus remains to prove Lemma 3.7.
(a) Recall that x1, . . . , xn are, by definition, the roots of the polynomial

xn − xn−1s1 + xn−2s2 − ... + (−1)nsn = 0 .

Thus xn
1 = xn−1

1 s1 − xn−2s2 + ... − (−1)nsn, and since every term in the right hand side lies
in I, part (a) follows.

(b) Assume, to the contrary, that

(3.1) xn−1
1 = f1s1 + ... + fnsn

for some polynomials f1, ..., fn ∈ F[x1, . . . , xn]. If such an identity is possible over F, and
α : F → L is a ring homomorphism then, applying α to each of the coefficients of f1, . . . , fn,
we obtain an identity of the same form over L. Thus, for the purpose of showing that (3.1)
is not possible, we may, without loss of generality, replace F by L. In particular, we may
take L to be the algebraic closure of the field F/M , where M is a maximal ideal of F. After
replacing F by this L, we may assume that F is an algebraically closed field.

Equating the homogeneous terms of degree n−1 on both sides, we see that after replacing
f1, f2, . . . , fn−1 by their homogeneous parts of degrees n − 2, n − 3, . . . , 0, respectively, we
may assume that fn = 0.

Since F is an algebraically closed field, xn − 1 factors into a product of linear terms

(3.2) xn − 1 = (x − ζ1)(x − ζ2) · . . . · (x − ζn) .

for some ζ1, . . . , ζn ∈ F. (As an aside, we remark that ζ1, . . . , ζn ∈ F are distinct if p =
char(F) does not divide n but not in general; at the other extreme, if n is a power of p then
ζ1 = · · · = ζn = 1.) By (3.2)

si(ζ1, . . . , ζn) = (−1)i (coefficient of xn−i in xn − 1) = 0

for every i = 1, . . . , n − 1. Hence, substituting ζi for xi in (3.1), and remembering that
fn = 0, we obtain ζn−1

1 = 0, i.e., ζ1 = 0. Since ζ1 is a root of xn − 1 = 0, we have arrived at
a contradiction. This shows that (3.1) is impossible. The proof of Lemma 3.7 and thus of
Theorem 3.6 is now complete. �

Calculations with field coefficients can be pieced together to provide information on the
integral cohomology of X(n, d).

Proposition 3.8. The cohomology ring H∗(X(n, d), Z) has no p–torsion if p > n.

Proof. By our previous results if p > n then

dimFp
H∗(X(n, d), Fp) = dimQ H∗(X(n, d), Q) = 2n.

Hence by the universal coefficient theorem, there can be no p–torsion in the integral coho-
mology of X(n, d). �
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The situation is more complicated if n ≥ p = char(F). In particular, we will show that in
this case the kernel I(n, d) of the map H∗(BU(p), Fp) → H∗((CP d)p, Fp) cannot be generated
by a regular sequence for any d ≥ 2 (and, in most cases for d = 1 as well); see Theorem 6.1(b).
We now provide an explicit calculation in the case where n = d = p = 2.

Example 3.9. Consider the map F̃ (2, 2) : S2 × S2 → BU(2). Its fiber is

W (2, 2) = U(2) ×T (S3 × S3)

which itself fibers over U(2)/T = S2 with fiber S3 × S3. Hence for dimensional reasons
H∗(W (2, 2), Z) ∼= H∗(S3 × S3 × S2, Z). The S2–action on this space exchanges the two 3-
spheres and applies the antipodal map on S2. Thus the orbit space X(2, 2) will be rationally
cohomologous to S3 × S5, as predicted by Theorem 3.3. However, it can be shown that
H∗(X(2, 2), F2) has Poincaré series

p(t) = 1 + t + t2 + t3 + t5 + t6 + t7 + t8 .

On the other hand, the corresponding Poincaré series for rational cohomology is

q(t) = 1 + t3 + t5 + t8

which accounts for the torsion free classes in the integral cohomology. This example illus-
trates the presence of 2–torsion in the cohomology of X(2, 2). Of course in this case we
have π1(X(2, 2)) = Z/2, which accounts for the classes in degrees one and two in mod 2
cohomology, and by Poincaré duality for the classes in degrees six and seven.

On the other hand, recall that if H∗(BU(2), F2) ∼= F2[c2, c4] and H∗(S2×S2, F2) ∼= Λ(u2, v2)

then F̃ (2, 2)∗(c2) = u2+v2 and F̃ (2, 2)∗(c4) = u2v2. Thus we see that F̃ (2, 2)∗ is not surjective
and that its kernel is generated by the classes c2

2, c
3
2 + c2c4, c

2
4. These classes correspond to

the symmetric polynomials P2 = x2
1 + x2

2, P3 = x3
1 + x3

2 and P2,2 = x2
1x

2
2. Note that if 2 is

invertible in the coefficients then

P2,2 =
P 2

2 − (x1 + x2)P3 + (x1x2)P2

2
,

and the third generator is redundant.

More generally, using the algebraic calculations in Theorem 5.1, Theorem 6.1 and Corol-
lary 6.3 we obtain the following.

Theorem 3.10. Assume that p ≤ n ≤ 2p−1 and d ≥ 2. Then the kernel of the map induced
by F̃ (n, d) in cohomology

F̃ (n, d)∗ : H∗(BU(n), Fp) → H∗((CP d)n, Fp)

is generated by the following n + 1 elements:

• Pd+i, where 1 ≤ i ≤ n and |Pj| = 2j
• Pd + 1, . . . , d + 1

︸ ︷︷ ︸
p times

and |Pd + 1, . . . , d + 1
︸ ︷︷ ︸

p times

| = 2p(d + 1)

Moreover these elements cannot form a regular sequence, and this kernel cannot be generated
by less than n + 1 elements. �
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4. The orthogonal groups and more calculations at p = 2

The situation for p = 2 is somewhat different, as there are specific geometric models
which are special to this characteristic. Here we consider the standard diagonal inclusion
V = (Z/2)n →֒ O(n) into the group of orthogonal n × n matrices. The group V is self-
centralizing in O(n); its normalizer NV is the wreath product NV = Z/2 ≀ Sn. The Weyl
group W = NV/V of V in O(n) is thus isomorphic to Sn; it acts on V = (Z/2)n by
permuting the n factors of Z/2. The classifying space for V is BV = (RP∞)n, its mod 2
cohomology is a polynomial algebra on n one dimensional generators F2[x1, . . . , xn]. The
inclusion induces a map from the cohomology of BO(n) to this algebra, which gives rise to
an isomorphism onto the symmetric invariants. As before, the truncated projective space
RP d is a natural subspace of RP∞, and Theorem 5.1 provides a description of the kernel of
the homomorphism induced by the map H(n, d) : (RP d)n → BO(n) for n = 1, 2, 3.

The classifying space for NV = Z/2 ≀ Sn is BNV = (RP∞)n
hSn

. However, as our calcula-
tions are at p = 2 and | Sn | is even, the homotopy orbit space has a lot more cohomology than
just the truncated symmetric invariants (for example, it contains a copy of H∗(Sn, F2)). The
wreath product NV acts on (Sd)n extending the coordinatewise antipodal action of V . Thus
we have a fiber bundle (Sd)n → (RP d)n

hSn
→ BNV where we identify (Sd)n

hNV ≃ (RP d)n
h Sn

.

Example 4.1. For n = 2 we can identify NV with the dihedral group D8 and its cohomology
has generators e, u v in degrees 1, 1, 2 respectively with the single relation e · u = 0 (see
[1]). The elements u, v can be identified with the standard symmetric generators x1 + x2

and x1x2 in H∗(V, F2)
S2 via the restriction map. In fact we have isomorphisms (see [1], page

118) H∗(BD8, F2) ∼= H∗(S2, H
∗(V, F2)) and H∗((Sd)2

hD8
, F2) ∼= H∗(S2, H

∗((RP d)2, F2). Using
these descriptions and Theorem 5.1 it can be shown that the the kernel of the homomorphism
H∗(BD8, F2) → H∗((Sd)2

hD8
, F2) is the ideal generated by the three elements Pd+1 = xd+1

1 +

xd+2
2 , Pd+2 = xd+2

1 + xd+2
2 and Pd+1,d+1 = xd+1

1 xd+1
2 . This ideal is called the Fadell–Husseini

index (see [6]) of the D8–space Sd × Sd; it has some interesting applications in topology and
it has been fully calculated in [2].

Geometrically, the fibration which our mod 2 calculations can be applied to is described
by the diagram:

(Sd)n

��

(Sd)n

��

Y (n, d) O(n) ×V (Sd)n //

��

(RP d)n
H(n,d)

//

��

BO(n)

O(n)/V // BV // BO(n)

Here we recall some classical results. First, from the homotopy long exact sequence of
the fibration we see that O(n)/V is path–connected because π1(BV ) → π1(BO(n)) ∼= Z/2
is surjective (the dual map in mod 2 cohomology is injective). Its fundamental group acts
homologically trivially on H∗((Sd)n, F2), as it acts through its image in V . Therefore the
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Serre spectral sequence for the fibration (Sd)n → Y (n, d) → O(n)/V has the form

E∗,∗
2 = H∗(O(n)/V ) ⊗ H∗((Sd)n, F2) =⇒ H∗(Y (n, d), F2) .

Using Lemma 3.7, we see that this spectral sequence collapses at E2 if and only if d ≥ n−1.

Theorem 4.2. If d ≥ n − 1 then we have an additive isomorphism

H∗(Y (n, d), F2) ∼= H∗(O(n)/V ) ⊗ H∗((Sd)n, F2).

�

5. Truncated symmetric polynomials

We will now state and prove the algebraic results used in the previous sections. For the
rest of the paper we will use the following notations:

n, d positive integers
Sn the symmetric group on n letters
F base field
x1, . . . , xn independent variables over F

F[x1, . . . , xn] polynomial ring in n variables
Rn := F[x1, . . . , xn]Sn ring of symmetric polynomials in n variables
In,d := (xd+1

1 , . . . , xd+1
n ) ∩ Rn ideal of Rn.

If a1, . . . , an are non-negative integers, we will write Pa1,...,an
for the orbit sum of xa1

1 . . . xan
n .

In other words, Pa1,...,an
is the sum of monomials xa′

1 . . . x
a′

n
n , as a′

1, . . . , a
′

n range over all

possible permutations of a1, . . . , an. This sum has
n!

λ1! · · ·λm!
terms, where λ1, . . . , λm is the

partition of n associated to a1, . . . , an. (Recall that this means that that there are m distinct
integers among a1, . . . , an, occurring with multiplicities λ1, . . . , λm, respectively.)

Permuting a1, . . . , an does not change Pa1,...,an
, so we will always assume that a1 ≥ · · · ≥ an.

With this convention, the orbit sums Pa1,...,an
clearly form a basis of Rn := F[x1, . . . , xn]Sn

as an F-module. The multiplication rule in this basis is given by

(5.1) Pa1,...,an
· Pb1,...,bn

=
∑

kc1,...,cn
Pc1,...,cn

,

where c1 ≥ . . . ≥ cn and there are exactly kc1,...,cn
different ways to write

(c1, . . . , cn) = (a′

1, . . . , a
′

n) + (b′1, . . . , b
′

n)

for some permutation a′

1, . . . , a
′

n of a1, . . . , an and some permutation b′1, . . . , b
′

n of b1, . . . , bn.
To make our formulas less cumbersome, we will often abbreviate Pa1,...,ar ,0,...,0 as Pa1,...,ar

.
As long as the number of variables n is fixed, this will not lead to any confusion. For example,
in this notation,

Pi = xi
1 + · · ·+ xi

n
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is the usual power sum of degree i and

(5.2)

P1 = x1 + · · ·+ xn,
P1,1 = x1x2 + · · ·+ xn−1xn,
. . .
P1, . . . , 1
︸ ︷︷ ︸
n times

= x1x2 . . . xn

are the elementary symmetric polynomials.
The main result of this section is the following theorem.

Theorem 5.1. Let F be a field of characteristic p ≥ 0.

(a) If p = 0 or n < p then the ideal In,d := (xd+1
1 , . . . , xd+1

n ) ∩ F[x1, . . . , xn]Sn of Rn :=
F[x1, . . . , xn]Sn is generated by Pd+1, . . . , Pd+n.

(b) If n ≤ 2p − 1 then In,d is generated by Pd+1, . . . , Pd+n and Pd + 1, . . . , d + 1
︸ ︷︷ ︸

p times

.

The rest of this section will be devoted to proving Theorem 5.1. First we note that every
element of In,d is an F-linear combination of orbit sums Pa1,...,an

, where a1 ≥ d + 1. Thus in
order to prove Theorem 5.1 it suffices to show that every Pa1,...,an

lies in I. Our first step in
this direction is the following lemma.

We define the weight of the orbit sum Pa1,...,an
as the largest integer r ≤ n such that ar ≥ 1.

As mentioned above, we will abbreviate such an orbit sum as Pa1,...,ar
.

We define the leading multiplicity of Pa1,...,an
as the largest integer s ≤ n such that a1 =

· · · = as. Here, as always, we are assuming that a1 ≥ a2 ≥ . . . ≥ an ≥ 0.

Lemma 5.2. Let F be a field and Jn,d be the ideal of Rn = F[x1, . . . , xn]Sn generated by
Pd+1, . . . , Pd+n. Then Jn,d contains every orbit sum Pa1,...,an

with a1 ≥ d + 1, whose leading
multiplicity is invertible in F.

The leading multiplicity of Pa1,...,an
is, by definition, an integer between 1 and n. Theo-

rem 5.1(a) is thus an immediate consequence of this lemma.

Proof. We will argue by induction on the weight r of Pa1,...,an
. For the base case, let r = 1.

That is, we claim that Pi ∈ Jn,d for every i ≥ d + 1. For i = d + 1, . . . , d + n this is given.
Applying Newton’s identities,

Pm+n+1 = P1 · Pm+n − P1,1 · Pm+n−1 + · · · + (−1)n+1P1, . . . , 1
︸ ︷︷ ︸
n times

· Pm+1

recursively, with m = d, d + 1, d + 2, etc., we see that Pm+n+1 ∈ Jn,d for every m ≥ d. This
settles the base case.

For the induction step assume that r ≥ 2. By (5.1),

(5.3) Pa1
· Pa2,...,ar

= sPa1,a2,...,ar
+ Pa1+a2,a3,...,ar

+ Pa1+a3,a2,a4,...,ar
+ · · · + Pa1+ar ,a2,a3,...,ar−1

.

Each of the terms

Pa1+a2,a3,...,ar
, Pa1+a3,a2,a4,...,ar

, . . . , Pa1+ar ,a2,a3,...,ar−1
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is an orbit sum of leading multiplicity 1 and weight r − 1. By the induction assumption
each of them lies in Jn,d. Since we also know that Pa1

∈ Jn,d, equation (5.3) tells us that
Pa1,...,ar

∈ Jn,d whenever s is invertible in F. �

We are now turn to the proof of Theorem 5.1(b). In view of part (a), we may assume that
p < n ≤ 2p − 1. Let I be the ideal of Rn = F[x1, . . . , xn]Sn generated by the polynomials
listed in the statement of Theorem 5.1(b). Recall that it suffices to show that

(5.4) Pa1,...,an
∈ I whenever a1 ≥ d + 1.

Denote the leading multiplicity of Pa1,...,an
by s. We will now consider three cases.

Case 1. s 6= p. Since we are assuming that p < n ≤ 2p − 1, this is equivalent to s being
invertible in F. Clearly, Jn,d ⊂ I; Lemma 5.2 thus tells us that (5.4) holds.

Case 2. s = p and Pa1,...,an
has weight p. In other words, we want to show that

(5.5) Pa, . . . , a
︸ ︷︷ ︸
p times

∈ I .

Let e = a − (d + 1). By (5.1) we see that

(5.6) Pd + 1, . . . , d + 1
︸ ︷︷ ︸

p times

· Pe, . . . , e
︸ ︷︷ ︸
p times

= Pa, . . . , a
︸ ︷︷ ︸
p times

+ Γ ,

where Γ is a positive integer linear combination of orbit sums of leading multiplicity ≤ p−1.
By Lemma 5.2 Γ ∈ I. Since by definition, Pd + 1, . . . , d + 1

︸ ︷︷ ︸
p times

lies in I, the left hand side also lies

in I. Thus (5.5) holds as well.
Note that the above argument depends, in a crucial way, on our assumption that n ≤

2p − 1. For n ≥ 2p the sum Γ in (5.6) would contain a term of the form Pd+1,...,d+1,e,...,e (or
Pe,...,e,d+1,...,d+1, if e > d + 1), with each e and d + 1 repeating exactly p times. This orbit
sum has leading multiplicity p, and in the case we cannot conclude that Γ ∈ I.

Case 3. s = p, general case. Denote a1 = · · · = ap by a. Using formula (5.1) once again,
we see that

Pa1,...,an
= Pa, . . . , a

︸ ︷︷ ︸
p times

· Pap+1,...,an
+ ∆ ,

where ∆ is an integer linear combination of orbit sums Pc1,...,cn
of leading multiplicity ≤ p−1.

Note that Pa, . . . , a
︸ ︷︷ ︸
p times

∈ I by Case 2 and ∆ ∈ I by Lemma 5.2. We thus conclude that Pa1,...,ap
∈ I

as well. This completes the proof of Theorem 5.1. �

6. Regular sequences

We now turn to the question of whether or not the ideal In,d = (xd+1
1 , . . . , xd+1

n ) ∩ Rn

of Rn = F[x1, . . . , xn]Sn can be generated by a regular sequence. Our goal is to prove the
following theorem.
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Theorem 6.1. Let F be a field of characteristic p ≥ 0.

(a) If n! is not divisible by p then In,d is generated by the regular sequence Pd+1, . . . , Pd+n

in Rn.

(b) Assume that n ≥ p > 0 and either (i) n 6≡ −1 (mod p) and d ≥ 1 or (ii) n ≡ −1 (mod
p) and d ≥ 2. Then In,d is not generated by any regular sequence in Rn.

The assumptions on d in part (b) cannot be dropped; see Remark 6.4. Our proof of
Theorem 6.1 will rely on the following elementary lemma.

Lemma 6.2. (a) The elements Pa1,...,an
, with d ≥ a1 ≥ · · · ≥ an ≥ 0 form a basis for Rn/In,d

as an F-vector space.

(b) The Krull dimension of Rn/In,d is 0.

(c) Suppose In,d is generated by r1, . . . , rm ∈ Rn, as an ideal of Rn. Then m ≥ n.
Moreover, r1, . . . , rm form a regular sequence in Rn if and only if m = n.

Proof. (a) The power sums Pa1,...,an
with a1 ≥ · · · ≥ an ≥ 0 form an F-basis of Rn. The

power sums Pa1,...,an
with a1 ≥ · · · ≥ an ≥ 0 and a1 ≥ d + 1 form an F-basis of In,d, and part

(a) follows.
(b) By part (a) Rn/In,d is a finite-dimensional F-vector space.
(c) Recall that Rn is a polynomial ring over F generated by the elementary symmetric

polynomials in x1, . . . , xn. In particular, Rn is a Cohen-Macauley ring. Part (c) now follows
from part (b). �

Proof of Theorem 6.1. (a) If p = char(F) does not divide n! then Theorem 5.1(a) tells us
that In,d is generated, as an ideal of Rn, by the n elements Pd+1, . . . , Pd+n. By Lemma 6.2(c)
these elements form a regular sequence in Rn.

(b) If In,d is generated by a regular sequence then Socle(Rn/In,d) is a 1-dimensional F-
vector space; see, e.g. [8, p. 144] or [5, Section 21.2]. It is an immediate consequence of the
multiplication formula (5.1) that

Pd, . . . , d
︸ ︷︷ ︸
n times

∈ Socle(Rn/In,d)

for any F, d and n. Thus in order to show that In,d is not generated by a regular sequence
it suffices to exhibit an orbit sum Pa1,...,an

∈ Socle(Rn/In,d), with (a1, . . . , an) 6= (d, . . . , d).
(Indeed, Pa1,...,an

and Pd, . . . , d
︸ ︷︷ ︸
n times

are F-linearly independent in Rn/In,d by Lemma 6.2(a).)

(i) Suppose d ≥ 1 and n = pq + r, where q ≥ 1 and r ∈ {0, 1, . . . , p − 2}. We claim that
in this case Pa1,...,an

lies in Socle(Rn/In,d), if

a1 = · · · = apq−1 = d and apq = apq+1 = · · · = an = d − 1.

In other words, we claim that

(6.1) Pa1,...,an
· Pb1,...,bn

∈ In,d

for every b1 ≥ b2 ≥ · · · ≥ bn ≥ 0, with b1 ≥ 1. To prove this claim, we will examine the
product Pa1,...,an

· Pb1,...,bn
using the multiplication formula (5.1).
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First of all, note that we may assume without loss of generality that

(6.2) (b1, . . . , bn) = (1, . . . , 1
︸ ︷︷ ︸

s times

, 0, . . . , 0)

for some 1 ≤ s ≤ r + 1. For all other choices of (b1, . . . , bn) 6= (0, . . . , 0) every term Pc1,...,cn

appearing in the right hand side of the formula (5.1) will have c1 ≥ d + 1 and thus will lie
in In,d (for any base field F).

If (b1, . . . , bn) is as in (6.2), the only orbit sum Pc1,...,cn
with c1 ≤ d appearing in the right

hand side of (5.1), will have c1 = · · · = cpq+s−1 = d and cpq+s = cpq+s+1 = · · · = cn = d − 1.
This sum will appear with coefficient kc1,...,cn

= number of ways to write (c1, . . . , cn) as
(a′

1, . . . , a
′

n)+ (b′1, . . . , b
′

n), where (a′

1, . . . , a
′

n) is a permutation of (a1, . . . , an) and (b′1, . . . , b
′

n)
is a permutation of (b1, . . . , bn). We claim that kc1,...,cn

is divisible by p and hence, is 0 in F;
this will immediately imply (6.1). Indeed, in this case kc1,...,cn

is simply the number of ways
to specify which s of the elements b′1, . . . , b

′

pq+s−1 should be equal to 1 (the remaining ones
will be 0). Thus

kc1,...,cn
=

(
pq + s − 1

s

)

.

Since q ≥ 1 and 1 ≤ s ≤ r + 1 ≤ p − 1, this number is divisible by p, as claimed.

(ii) Now suppose d ≥ 2 and n = pq+p−1, where q ≥ 1. We claim that in this case Pa1,...,an

lies in Socle(Rn/In,d), if a1 = · · · = apq−1 = d and apq = apq+1 = · · · = apq+p−2 = d − 1 and
apq+p−1 = d − 2.

Once again, we need to show that (6.1) holds for every b1 ≥ b2 ≥ · · · ≥ bn ≥ 0, with
b1 ≥ 1. The analysis of the product Pa1,...,an

· Pb1,...,bn
, based on formula (5.1), is similar to

part (i) but a bit more involved. First of all, we may assume without loss of generality that

(6.3) (b1, . . . , bn) = (2, 1, . . . , 1
︸ ︷︷ ︸

t times

, 0, . . . , 0)

for some t ∈ [0, p − 1] or

(6.4) (b1, . . . , bn) = (1, . . . , 1
︸ ︷︷ ︸

s times

, 0, . . . , 0)

for some s ∈ [1, p]. For other (b1, . . . , bn) 6= (0, . . . , 0), every orbit sum Pc1,...,cn
appearing in

the right hand side of (5.1) will lie in In,d, so that (6.1) will hold over any base field F.
In case (6.3) the only term Pc1,...,cn

with c1 ≤ d appearing in the right hand side of (5.1) will
have c1 = · · · = cpq+t = d and cpq+t+1 = · · · = cpq+p−1 = d − 1. This term will appear with
coefficient kc1,...,cn

= number of ways to write (c1, . . . , cn) as (a′

1, . . . , a
′

n)+ (b′1, . . . , b
′

n), where
(a′

1, . . . , a
′

n) is a permutation of (a1, . . . , an) and (b′1, . . . , b
′

n) is a permutation of (b1, . . . , bn).
One of the elements b′1, . . . , b

′

pq+t should be equal to 2, t of these elements should be equal
to 1, and the remaining pq − 1 should be equal to 0. Thus

kc1,...,cn
= (pq + t)

(
pq + t − 1

t

)

.
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If t = 0 then the first factor is divisible by p. If 1 ≤ t ≤ p − 1 then the second factor is
divisible by p. Either way, kc1,...,cn

= 0 in F, as desired.
In case (6.4) exactly two orbit sums will appear in the right hand side of (5.1), namely

P d, . . . , d,
︸ ︷︷ ︸

pq + s − 2

d − 1, . . . , d − 1
︸ ︷︷ ︸

p − s + 1

and
P d, . . . , d,

︸ ︷︷ ︸
pq − 1 + s

d − 1, . . . , d − 1
︸ ︷︷ ︸

p − s − 1

, d−2

with coefficients

k d, . . . , d,
︸ ︷︷ ︸

pq + s − 2

d − 1, . . . , d − 1
︸ ︷︷ ︸

p − s + 1

=

(
pq + s − 2

s − 1

)

(p − s + 1)

and

k d, . . . , d,
︸ ︷︷ ︸

pq + s − 1

d − 1, . . . , d − 1
︸ ︷︷ ︸

p − s − 1

, d−2 =

(
pq + s − 1

s

)

,

respectively. (The second orbit sum does not occur if s = p.) Both of these coefficients are
divisible by p and hence, are 0 in F. This completes the proof of Theorem 6.1. �

Corollary 6.3. Suppose (i) p ≤ n ≤ 2p − 2 and d ≥ 1 or (ii) n = 2p − 1 and d ≥ 2. Then
the ideal In,d can be generated by n+1 elements of Rn but cannot be generated by n elements.

Proof. Theorem 5.1(b) tells us that In,d is generated by n + 1 elements. If In,d could be
generated by n elements then by Lemma 6.2(c) these n elements would form a regular
sequence in Rn, contradicting Theorem 6.1(b). �

Remark 6.4. The conditions that d ≥ 1 and d ≥ 2 in parts (i) and (ii) of Theorem 6.1(b)
respectively, cannot be dropped. The same goes for conditions (i) and (ii) in Corollary 6.3.

Indeed, suppose d = 0. Recall that Rn = F[x1, . . . , xn]Sn is a polynomial algebra F[s1, . . . , sn],
where s1 = P1, s2 = P1,1, etc., are the elementary symmetric polynomials in x1, . . . , xn. In,0

is clearly the maximal ideal of Rn generated by the regular sequence s1, . . . , sn. Thus Theo-
rem 6.1(b) fails if d = 0.

Now suppose d = 1 and n = 2p − 1, where char(F) = p. By Theorem 5.1(b), In,1 is
generated by the n + 1 elements P2, . . . , Pn−1, Pn+1 and P2, . . . , 2

︸ ︷︷ ︸
p times

.

Since we are in characteristic p, Pn+1 = P2p = P p
2 , is a redundant generator. In other

words, In,1 is generated by the n elements P2, . . . , Pn−1, Pn and P2, . . . , 2
︸ ︷︷ ︸
p times

. By Lemma 6.2(c)

these elements form a regular sequence in Rn. This shows that Theorem 6.1(b) fails for
d = 1 and n = 2p − 1. �
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