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Abstract. The level s (resp. sublevel s) of a ring R with 1 6= 0 is the smallest
positive integer such that −1 (resp. 0) can be written as a sum of s (resp. s+1)
nonzero squares in R, provided −1 (resp. 0) is a sum of nonzero squares at
all. D.W. Lewis showed that any value of type 2n or 2n + 1 can be realized as
level of a quaternion division algebra, and in all these examples, the sublevel
was 2n, which prompted the question whether or not the level and sublevel of
a quaternion division algebra will always differ at most by one. In this note,
we give a positive answer to that question.

1. Introduction

Let D be a division ring. The level s(D) and the sublevel s(D) of D are defined
as follows:

(1) If −1 is a sum of squares in D, then

s(D) = min{n | ∃x1, . . . , xn ∈ D : −1 = x2
1 + . . . + x2

n
} .

Otherwise, s(D) = ∞.
(2) If 0 is a sum of nonzero squares in D, then

s(D) = min{n | ∃x1, . . . , xn+1 ∈ D∗ = D \ {0} : 0 = x2
1 + . . . + x2

n+1} .

Otherwise, s(D) = ∞.

It is clear from the definition that s(D) ≤ s(D), and one readily sees that if D is a
(commutative) field, the s(D) = s(D).

The study of level and sublevel of rings has a history dating back at least to the
early 20th century. A famous result by Pfister [9] states that the level of a field, if
finite, is always a 2-power, and that each 2-power can be realized as level of a field.
This answered a question posed by Van der Waerden in the 1930s.

The study of levels and sublevels in the above sense for noncommutative division
rings started in the mid-1980s. In [5], [6], David Lewis showed that for every k ∈ N,
there exist quaternion division algebras with s = s = 2k and with s = s+1 = 2k+1,
and that for any quaternion division algebra D with s(D) = 2k one also has s(D) =
2k. Leep [4] gave slight improvements on some of Lewis’s results, and he asked the
following questions (already implicit in [5], [6] and reiterated in [7]):

The idea for this paper came during a conference at University College Dublin held on the
occasion of the 65th birthday of Professor David Lewis. The author thanks UCD and in particular
Thomas Unger for their hospitality.
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Question. (1) Can the level (resp. sublevel) of a quaternion division algebra D take
values that are not of the form 2k, 2k + 1 (resp. 2k)?
(2) Does one always have s(D) ≤ s(D) + 1?

As for the first question, quaternion division algebras of sublevel 3 were con-
structed by Krüskemper and Wadsworth [2]. It was shown in [1] that for each
k ≥ 2, there exist quaternion division algebras D with 2k + 2 ≤ s(D) ≤ 2k+1 − 1
(although the method used there to construct such D by employing function fields
of quadrics does not allow to give the exact value for s(D)). O’Shea [8] observed
that this function field method also allows to construct quaternion division algebras
D of sublevel not of the form 2k and > 3. It is still not fully known what exact
values can be realized as (sub)levels of quaternion division algebras.

In this note, we give a positive answer to the second question:

Theorem. Let D be a quaternion division algebra. Then s(D) ≤ s(D) ≤ s(D)+1.

2. Proof of the Theorem

We first recall a few simple facts about quaternion algebras. We refer to [3,
chapter III] for any facts we use without further reference.

Let F be a field of characteristic different from 2 and let D = (a, b)F (a, b ∈ F ∗)
be the quaternion algebra with F -basis {1, i, j, k} subject to the relations i2 = a,
j2 = b, ij = −ji = k. We assume D to be a division algebra, which is equivalent
to saying that its norm form 〈1,−a,−b, ab〉 is anisotropic.

For ζ = x + yi + zj + wk ∈ D (x, y, z, w ∈ F ), we call x the scalar part of ζ, and
ζ′ = yi + zj + wk its pure part. We put D′ = Fi + Fj + Fk, the subspace of pure
quaternions. We have ζ2 = x2 + 2xζ′ + ζ′2 with ζ′2 = ay2 + bz2 − abw2 ∈ F . The
quadratic form 〈a, b,−ab〉 will be denoted by TP . We immediately get the following
well known lemma:

Lemma. c ∈ F is a sum of m squares of pure quaternions in D (not all squares
equal to 0 if c = 0) if and only if the quadratic form

m × TP = TP ⊥ . . . ⊥ TP
︸ ︷︷ ︸

m

represents c (nontrivially if c = 0, i.e. m × TP is isotropic in that case).

Proof of the Theorem. Let D be a quaternion division algebra as above and assume
that s(D) = m. We only have to show that s(D) ≤ m + 1. Let ζℓ ∈ D∗, 1 ≤ ℓ ≤
m + 1 be such that

0 = ζ2
1 + . . . + ζ2

m+1 .

Write ζℓ = xℓ + ζ′
ℓ

with xℓ ∈ F and ζ′
ℓ
∈ D′. We get

0 =

m+1∑

ℓ=1

x2
ℓ + 2xℓζ

′

ℓ + ζ′2ℓ

and thus
m+1∑

ℓ=1

x2
ℓ

+ ζ′2
ℓ

= 0 =
m+1∑

ℓ=1

xℓζ
′

ℓ
.

1. case: All xℓ = 0, 1 ≤ ℓ ≤ m + 1.
In this case, 0 is a nontrivial sum of squares of m+1 pure quaternions, so (m+1)×TP



LEVELS AND SUBLEVELS OF QUATERNION ALGEBRAS 3

is isotropic by the Lemma. But then (m+1)×TP contains a hyperbolic plane 〈1,−1〉
as subform, in particular, (m + 1) × TP represents −1. Again by the Lemma, we
have that −1 is a sum of squares of m + 1 pure quaternions, hence s(D) ≤ m + 1.

2. case:
∑

m+1

ℓ=1 x2
ℓ

= 0 but not all xℓ = 0.
In this case, 0 is a nontrivial sum of m + 1 squares already in F , and thus s(D) ≤
s(F ) = s(F ) ≤ m.

3. case:
∑m+1

ℓ=1 x2
ℓ
6= 0.

Let
cℓ =

xℓ

x2
1 + · · · + x2

m+1

.

We then get

m+1∑

ℓ=1

cℓζℓ =
1

x2
1 + . . . + x2

m+1

(
m+1∑

ℓ=1

x2
ℓ +

m+1∑

ℓ=1

xℓζ
′

ℓ

︸ ︷︷ ︸

=0

)

= 1 .

Put c = c2
1 + . . . + c2

m+1 = (x2
1 + . . . + x2

m+1)
−1. This yields

m+1∑

ℓ=1

[(
c + 1

2

)

ζℓ − cℓ

]2

=

(
c + 1

2

)2 m+1∑

ℓ=1

ζ2
ℓ

︸ ︷︷ ︸

=0

− (c + 1)
m+1∑

ℓ=1

cℓζℓ

︸ ︷︷ ︸

=1

+
m+1∑

ℓ=1

c2
ℓ

︸ ︷︷ ︸

=c

= −1 ,

which shows that s(D) ≤ m + 1. �

Remark. The above proof can be used more or less verbatim in the case of octonion
division algebras (with the appropriate notions of pure octonion and of the form
TP corresponding to squares of pure octonions). So if O is an octonion division
algebra, one also gets that s(O) ≤ s(O) ≤ s(O) + 1.
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