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Abstract. A simple method of constructing a big stock of algebraic varieties with

trivial Makar-Limanov invariant is described, the Derksen invariant of some vari-

eties is computed, the generalizations of the Makar-Limanov and Derksen invariants

are introduced and discussed, and some results on the Jordan property of automor-

phism groups of algebraic varieties are obtained.

Introduction

The subject matter of this note are automorphism groups of algebraic varieties.

In Section 1 I discuss the Makar-Limanov and Derksen invariants. As is known,

they have been first introduced as the means for distinguishing the Koras-Russell

threefolds from affine spaces. Since then studying varieties with certain properties

of these invariants (for instance, with trivial Makar-Limanov invariant) became an

independent line of research, see, e.g., [Dai], [Dub], [FZ], and references therein. At

the conferenceAffine Algebraic Geometry, June 1–5, 2009, Montreal, I was surprised

to find that a simple general method of constructing a big stock of such varieties

remained unnoticed by the experts. In Section 1 I expand my comment on this point

made after one of the talks and give the related proofs and some illustrating examples.

Then I consider the Derksen invariant and show that in many cases in presence of

an algebraic group action it coincides with the coordinate algebra. At the end of this

section I introduce and discuss the natural generalizations of the Makar-Limanov and

Derksen invariants. In Section 2 some results on the Jordan property of automorphism

groups of algebraic varieties are obtained.

Conventions and notation.

Below variety means algebraic variety. All varieties are taken over an algebraically

closed field k of characteristic zero. I use the standard conventions of [Bo] and [Sp]

and the following notation.

A∗ is the group of units of the commutative ring A with identity.

Mn×m is the affine space of all n × m-matrices with entries in k.

A1
∗ is the punctured affine line A1 \ {0}.
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Z>0 is the set of positive integers.

|M | is the number of elements of the set M .

Rad G is the radical of the linear algebraic group G.

RaduG is the unipotent radical of the linear algebraic group G.

(G,G) is the commutator subgroup of the group G.

k[X] is the k-algebra of regular function on the variety X.

k(X) is the field of rational function on the irreducible variety X.

Tx,X is the tangent space to the variety X at the point x ∈ X.

Aut(X) is the automorphism group of the variety X.

Bir(X) is the group of birational automorphisms of the irreducible vari-

ety X.

Given the varieties X and Y (not necessarily affine), k[X] and k[Y ] are naturally

identified with the k-subalgebras of k[X ×Y ]. Recall that then k[X ×Y ] is generated

by k[X] and k[Y ] and, moreover, k[X × Y ] = k[X]⊗k k[Y ], see [SW]. If A and B are

the k-subalgebras of resp. k[X] and k[Y ], then the subalgebra of k[X × Y ] generated

by A and B is A ⊗k B.

Below action of an algebraic group on an algebraic variety means algebraic action.

Homomorphism of algebraic groups means algebraic homomorphism.

Let X be a variety endowed with an action of an algebraic group G. Then the

natural homomorphism ϕ : G → Aut(X) defined by this action is called algebraic and

ϕ(G) is called the algebraic subgroup of Aut(X). If ϕ is injective, ϕ(G) is identified

with G by means of ϕ.

Acknowledgement. I am grateful to Yu. Prokhorov for the discussions on auto-

morphism groups of surfaces and drawing my attention to references [C], [M].

1. The Makar–Limanov and Derksen invariants

1.1. The Makar–Limanov invariant.

Recall that the Makar-Limanov invariant of a variety X is the following k-subalgeb-

ra of k[X]:

ML(X) :=
⋂

H

k[X]H (1)

where H in (1) runs over the images of all homomorphisms Ga → Aut(X).

Below is described a simple method of constructing varieties whose Makar-Limanov

invariant is trivial (i.e., equal to k). The starting point is

Lemma 1.1. For every connected linear algebraic group G, the following are equiva-

lent:

(i) G has no nontrivial characters;

(ii) G is generated by one-dimensional unipotent subgroups;

(iii) G is generated by unipotent elements;

(iv) Rad G = RaduG.
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Proof. Let G0 be the subgroup of G generated by all one-dimensional unipotent sub-

groups of G; it is normal and, by [Sp, 2.2.7], closed. Since char k = 0, for every non-

identity unipotent element u ∈ G, the closure of {un | n ∈ Z} is a one-dimensional

unipotent subgroup of G (cf., e.g., [OV, Chap. 3, §2, no. 2, Theorem 1]). Hence G0

coincides with the subgroup generated by all unipotent element of G. This yields

(ii)⇔(iii).

Since homomorphisms of algebraic groups preserve Jordan decompositions, G0 is

contained in the kernel of every character of G and every element of the G/G0 is

semisimple. The latter yields that G/G0 is a torus (cf., e.g., [Bo, I.4.6]). Hence G has

no nontrivial characters if and only if G = G0. This proves (i)⇔(ii).

Since char k = 0, there is a reductive subgroup L in G such that G is the semidirect

product of RaduG and L (cf., e.g. [OV, Chap. 6, Sect. 4]). Let Z and Z0 be resp. the

center of L and the identity component of Z. Put H := (L,L)RaduG. Then Z0 is a

torus, F := (L,L)∩Z0 is finite, L = Z0(L,L), and H is connected and normal. Being

connected semisimple, (L,L) has no nontrivial characters. Hence H is generated by

unipotent elements. This yields H ⊆ G0. As G/H is isomorphic to Z0/F and the

latter is a torus, all elements of G/H are semisimple. Hence H = G0. Thus, (i) holds

if and only if Z0 is the identity. Since Rad G = Z0RaduG, this proves (i)⇔(iv). �

Corollary 1.2. ML(X) =
⋂

H⊆Aut(X) k[X]H , where H runs over all connected linear

algebraic subgroups of Aut(X) that have no nontrivial characters.

Theorem 1.3. Let X be a variety and let G be a connected linear algebraic subgroup

of Aut(X) that has no nontrivial characters. Then

ML(X) ⊆ k[X]G. (2)

Proof. From Lemma 1.1 we infer that k[X]G =
⋂

H k[X]H where H runs over all

one-parameter unipotent subgroups of G. This and (1) imply (2). �

Corollary 1.4. Maintain the notation of Theorem 1.3. If G has no nontrivial charac-

ters and k[X]G = k, then ML(X) = k.

Since there are no nonconstant invariant functions on orbit closures, this yields the

following.

Corollary 1.5. Maintain the notation of Theorem 1.3. If G has no nontrivial charac-

ters and X is the closure of a G-orbit, then ML(X) = k.

Corollary 1.6. Let G be a connected algebraic group that has no nontrivial charac-

ters. Let H be a reductive subgroup of G. Then G/H is an irreducible affine variety

with trivial Makar-Limanov invariant.

Proof. As G acts on G/H transitively, Corollary 1.5 yields ML(G/H) = k. By [Bo,

Theorem 6.8] and [PV2, Theorem 4.9] reductivity of H implies that G/H is affine.

�

The following generalizes Corollary 1.5.
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Theorem 1.7. Let X be a variety endowed with an action of a connected linear

algebraic group G. Let d be the dimension of the center of G/RaduG. If X contains

a dense G-orbit, then

tr degkML(X) 6 d. (3)

Proof. Let X be the closure of the G-orbit of a point x ∈ X. The morphism G →

X, g 7→ g · x, is G-equivariant with respect to the action of G on itself by left

translations. Since its image is dense in X, the corresponding comorphism is a G-

equivariant embedding of the k-algebras

k[X] →֒ k[G]. (4)

Let L, Z, Z0, F , and H be as in the proof of Lemma 1.1. From (4) and Theorem

1.3 we then infer that

ML(X) ⊆ k[X]H →֒ k[G]H . (5)

Since G/H is isomorphic to Z0/F and dimZ0/F = dimZ0 = dim Z = d, we have

dim G/H = d. As k[G]H is isomorphic to k[G/H], this and (5) imply the claim. �

Corollary 1.8. Let X be the closure in Pn of an orbit of a connected algebraic sub-

group G in Aut(Pn). Let X̂ ⊆ kn+1 be the affine cone over X. Then tr degkML(X̂) 6

d + 1, where d is the dimension of the center of G/RaduG.

Proof. Let Ĝ be the pullback of G with respect to the natural projection Aut(kn+1) →

Aut(Pn). Then X̂ is the closure of a Ĝ-orbit in kn+1 and the dimension of the center

of Ĝ/RaduĜ is d + 1; whence the claim by Theorem 1.7. �

Lemma 1.9. For any varieties X1 and X2,

ML(X1 × X2) ⊆ ML(X1) ⊗k ML(X2). (6)

Proof. Take an element f ∈ ML(X1 × X2). Since k[X1 × X2] is generated by k[X1]

and k[X2], there is a decomposition

f =
n∑

i=1

siti, s1, . . . , sn ∈ k[X1], t1, . . . , tn ∈ k[X2]. (7)

We may (and shall) assume that t1, . . . , tn in (7) are linearly independent over k. As

k[X1 × X2] = k[X1] ⊗k k[X2], then they are also linearly independent over k[X1].

Consider an action α of Ga on X1. Then k[X1] is stable and k[X2] is pointwise

fixed with respect to the diagonal action of Ga on X1 × X2 determined by α and

trivial action on X2. For every element g ∈ Ga and this diagonal action, (1) and (7)

imply that
n∑

i=1

siti = f = g · f =
n∑

i=1

(g · si)ti. (8)

Since t1, . . . , tn are linearly independent over k[X1], we infer from (8) that every si is

invariant with respect to α. As α is arbitrary, (1) implies that s1, . . . , sn ∈ ML(X1).
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Hence f is decomposed as

f =

m∑

i=1

s′it
′
i, s′1, . . . , s

′
m ∈ ML(X1), t′1, . . . , t

′
m ∈ k[X2], (9)

where s′1, . . . , s
′
m are linearly independent over k. The same argument as above then

yields t′1, . . . , t
′
m ∈ ML(X2). Now (6) follows from (9). �

Corollary 1.10. For any varieties X1 and X2, the following are equivalent:

(i) ML(X1) and ML(X2) lie in ML(X1 × X2);

(ii) ML(X1 × X2) = ML(X1) ⊗k ML(X2).

Corollary 1.11. If ML(X1) = k and ML(X2) = k, then ML(X1 × X2) = k.

Corollary 1.12. Let X1 and X2 be the varieties such that ML(X1) and ML(X2) are

generated by units. Then ML(X1 × X2) = ML(X1) ⊗k ML(X2).

Proof. This follows from Corollary 1.10 since k[X1]
∗ and k[X2]

∗ lie in k[X1 × X2]
∗

and k[X1 × X2]
∗ ⊂ ML(X1 × X2), cf. [F, 1.4]. �

Definition 1.13. A variety is called toral if it is isomorphic to a closed subvariety

of a linear algebraic torus.

Note that closed subvarieties and products of toral varieties are toral.

Lemma 1.14. Let X be an affine variety.

(a) The following are equivalent:

(a1) X is toral;

(a2) k[X] is generated by k[X]∗.

(b) For every finite subgroup G of Aut(X), there is a covering of X by G-stable

open toral sets.

(c) If X is toral, then

(c1) for every unipotent linear algebraic group H, every algebraic homomor-

phism ϕ : H → Aut(X) is trivial;

(c2) ML(X) = k[X].

Proof. (a) Every character of a linear algebraic torus T is an element of k[T ]∗ and

k[T ]∗ is the k-linear span of the set of all characters [Bo, Sect. 8.2]; this and Definition

1.13 imply (a1)⇒(a2).

Conversely, if (a2) holds, let k[X] = k[f1, . . . , fn] for some fi ∈ k[X]∗. Then

ι : X → An, x 7→ (f1(x), . . . , fn(x)), is a closed embedding since X is affine. The

standard coordinate functions on An do not vanish on ι(X) since fi does not vanish

on X. Hence ι(X) ⊂ (Gm)n. This proves (a2)⇒(a1) and completes the proof of (a).

(b) Let x be a point of X. We have to show that x is contained in a G-stable open

toral subset of X. Let k[X] = k[h1, . . . , hs]. Replacing hi by hi+αi for an appropriate

αi ∈ k, we may )and shall) assume that every hi vanishes nowhere on the G-orbit G ·x

of x. Enlarging the set {h1, . . . , hs} by including in it g · hi for every i and g ∈ G, we

may (and shall) assume that {h1, . . . , hs} is G-stable. Then h := h1 · · ·hs ∈ k[X]G.
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Hence the affine open set Xh := {z ∈ X | h(z) 6= 0} is G-stable and contains G · x.

Since k[Xh] = k[h1, . . . , hs, 1/h] we have hi ∈ k[Xh]∗ for every i. Hence, Xh is toral

by (a). This proves (b).

(c) Consider the action of H on X determined by ϕ. Let H · x be the H-orbit of a

point x ∈ X. Since char k = 0, H · x is isomorphic to Ad for some d, see [P1, Cor. of

Theorem 2]. Since H is unipotent and X is affine, H · x is closed in X, cf. [Bo, 4.10].

Hence H · x is toral. Since k[Ad]∗ = k∗, from (a) we then infer that d = 0, i.e., x is a

fixed point. This proves (c1). In turn, (c1) implies (c2) by (1). �

Corollary 1.15. If ML(X1) = k and X2 is toral, then ML(X1 × X2) = k[X2].

Utilizing the above statements one gets many interesting varieties with trivial

Makar-Limanov invariant. The following construction is typical (but not the only

possible, see Example 1.21).

Let G be a connected semisimple algebraic group acting on an affine variety X. By

Hilbert’s theorem, k[X]G is a finitely generated k-algebra. Let k[X]G = k[f1, . . . , fn].

For every α1, . . . , αn ∈ k, denote by X(α1, . . . , αn) the closed subvariety of X whose

underlying topological space is {x ∈ X | f1(x) = α1, . . . , fn(x) = αn} (warning:

in general, the ideal (f1 − α1, . . . , fn − αn) of k[X] is not radical). Let Y be a G-

stable closed suvariety of X. It is well-known that k[X]G → k[Y ]G, f 7→ f |Y , is

an epimorphism [PV2, 3.4]. Hence k[Y ]G = k if and only if Y is contained in some

X(α1, . . . , αn). From Theorem 1.3 we then infer that the Makar-Limanov invariant

of every G-stable closed subvariety of X(α1, . . . , αn) is trivial.

There are many instances where f1, . . . , fn can be explicitly described. E.g., clas-

sical invariant theory yields such a description for a number of finite-dimensional

modules X of classical linear groups G; for some of them, it is proved that (f1 −

α1, . . . , fn − αn) is radical. If the latter happens, one obtains the instances of affine

algebras with trivial Makar-Limanov invariant that are explicitly described by equa-

tions.

Below are several illustrating examples.

Example 1.16 (Closures of adjoint orbits). Let fs be the sum of all principal s× s-

minors of the n × n-matrix (xij) where x11, . . . , xnn are variables considered as the

standard coordinate functions on Mn×n. For α1, . . . , αn ∈ k,

Mn×n(α1, . . . , αn) := {a ∈ Mn×n | f1(a) = α1, . . . , fn(a) = αn}

is the set of all matrices whose characteristic polynomial is tn +
∑n

i=1(−1)iαit
n−i.

Consider the action of SLn on Mn×n by conjugation. Then k[Mn×n]SLn is freely

generated by f1, . . . , fn (cf., e.g., [PV2, 0.6]). Moreover, Mn×n(α1, . . . , αn) is irre-

ducible and the ideal (f1 − α1, . . . , fn −αn) of k[Mn×n] is radical (see the next para-

graph). Hence, Mn×n(α1, . . . , αn) is a closed subvariety Mn×n of such that

ML(Mn×n(α1, . . . , αn)) = k

and k[. . . , xij , . . .]/(f1 −α1, . . . , fn −αn) is the k-domain with trivial Makar-Limanov

invariant.
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This admits the following generalization. Let G be a connected reductive algebraic

group and let Lie(G) be the Lie algebra of G endowed with the adjoint action of G.

By [K] the graded k-algebra k[Lie(G)]G is free and, for every minimal system of its

homogeneous generators f1, . . . , fr and constants α1, . . . , αr ∈ k,

(i) Lie(G)(α1, . . . , αr) := {a ∈ Lie(G) | f1(a) = α1, . . . , fr(a) = αr} is the closure

of a G-orbit;

(ii) the ideal (f1 − α1, . . . , fr − αr) of k[Lie(G)] is radical.

Since the center Z of G acts trivially on Lie(G) and G/Z is semisimple, this yields

ML(Lie(G)(α1, . . . , αr)) = k

and k[Lie(G)]/(f1−α1, . . . , fr−αr) is the k-domain with trivial Makar-Limanov in-

variant.

For G = GLn, we have Lie(G)(α1, . . . , αr) = Mn×n(α1, . . . , αn).

Example 1.17 (Determinantal varieties). Given positive integers n > m > r, let

{xij | i = 1, . . . , n, j = 1, . . . ,m} be the set of variables considered as the standard

coordinates functions on Mn×m. Let In,m,r be the ideal of k[Mn×m] = k[. . . , xij , . . .]

generated by all (r + 1) × (r + 1)-minors of the matrix (xij). Then In,m,r is radical,

cf., e.g., [Pr]. The (affine) determinantal variety Dn,m,r is the subvariety of Mn×m

defined by In,m,r. Its underlying set is that of n×m-matrices of rank 6 r. It is stable

with respect to the action of SLn×SLm on Mn×m by (g, h) ·a := gah−1 and contains

a dense orbit. Whence

ML(Dn,m,r) = k

and k[Mn×m]/In,m,r is the k-domain with trivial Makar-Limanov invariant.

Example 1.18 (S-varieties in the sense of [PV1]). Denote by S
dkn the dth symmetric

power of the coordinate vector space (of columns) kn. The natural SLn-action on kn

induces that on Sdkn. The (affine) Veronese morphism

νd
n : kn → S

dkn, v 7→ vd,

is SLn-equivariant. Its image νd
n(kn) is closed and contains a dense SLn-orbit. The

ideal of νd
n(kn) is generated by all 2 × 2-minors of a certain symmetric matrix whose

entries are the coordinates on Sdkn, cf. [Ha]. Thus,

ML
(
νd

n(kn)
)

= k

and the coordinate algebra of νd
n(kn) is the explicitly described k-domain with trivial

Makar-Limanov invariant.

More generally, the following combination of the Veronese and Segre morphisms

νd1,...,ds
n1,...,ns

: kn1 × · · · × kns → S
d1kn1 ⊗ · · · ⊗ S

dskns ,

(v1, . . . , vs) 7→ vd1 ⊗ · · · ⊗ vds ,

is equivariant with respect to the natural SLn1
×· · ·×SLns-actions, its image is closed

and contains a dense orbit. Whence,

ML
(
νd1,...,ds

n1,...,ns
(kn1 × · · · × kns)

)
= k.
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In turn, this construction admits a further generalization. Namely, any matrix

A =




a11 . . . a1s

. . . . . . . . .

ar1 . . . ars




with the entries in Z>0 defines the diagonal morphism

νA
n1,...,ns

:= νa11,...,a1s
n1,...,ns

× · · · × νar1,...,ars
n1,...,ns

.

This morphism is SLn1
× · · · × SLns-equivariant and its image

HA
n1,...,ns

:= νA
n1,...,ns

(kn1 × · · · × kns)

is closed and contains a dense orbit. Thus,

ML(HA
n1,...,ns

) = k.

In fact, HA
n1,...,ns

’s are special examples of varieties with trivial Makar-Limanov

invariant obtained by the following general construction [PV1].

Let G be a connected semisimple algebraic group and let E(λ) be a simple G-

module with the highest weight λ (with respect to a fixed Borel subgroup and its

maximal torus). Let vλi
be a highest vector of E(λi). For x = vλ1

+ · · · + vλs ∈

E(λ1) ⊕ · · · ⊕ E(λs), let X(λ1, . . . , λs) be the closure of the G-orbit of x. Up to

G-isomorphism, X(λ1, . . . , λs) depends only on λ1, . . . , λs. By Corollary 1.5

ML(X(λ1, . . . , λs)) = k.

The ideal I(λ) of X(λ) in k[E(λ)] is generated by quadratic forms that can be

explicitly described. Namely, k[E(λ)] is the symmetric algebra of the dual G-module

E(λ)∗ = E(λ∗). The submodule S2E(λ∗) of the G-module k[E(λ)] contains a unique

simple submodule with the highest weight 2λ∗, the Cartan component of S2E(λ∗).

Hence S2E(λ∗) contains a unique submodule L complement to the Cartan component.

This L generates I(λ), see [Br, Theorem 4.1].

For G = SLn1
× · · · × SLns and λi = ai1̟

(1)
1 + · · · + ais̟

(s)
1 where ̟

(j)
1 is the

highest weight of the natural SLnj -module knj , we have

X(λ1, . . . , λs) = HA
n1,...,ns

.

Example 1.19 (Irreducible affine surfaces quasihomogeneous with respect to an al-

gebraic group in the sense of [G]). By [P1], up to isomorphism, such surfaces are

exhausted by the following list (we maintain the notation of Example 1.18):

(i) smooth surfaces:

A2, A1 × A1
∗, A1

∗ × A1
∗, (P1 × P1) \ ∆, P2 \ C, (10)

where ∆ is the diagonal in P1 ×P1, and C is a nondegenerate conic in P2;

(ii) singular surfaces:

V(n1, . . . , nr) := HA
2 for A = (n1, . . . , nr)

T, n1, . . . , nr > 2.
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Each of these surfaces but A1 ×A1
∗ and A1

∗×A1
∗ admits an SL2-action with a dense

orbit. Namely, (P1×P1)\∆ = SL2/T and P2\C = SL2/N(T ), where T is a maximal

torus of SL2 and N(T ) its normalizer, see [P1, Lemma 2]. The surface V(n1, . . . , nr)

is the closure of the SL2-orbit of v1 + · · ·+ vr ∈ Rn1
⊕· · ·⊕Rnr , where vi is a highest

vector of the simple SL2-module Rni of dimension ni + 1 (such a module is unique

up to isomorphism),

see [P1, §2]. By Corollary 1.5 this yields

ML((P1 × P1) \ ∆) = ML(P2 \ C) = ML(V(n1, . . . , nr)) = k, (11)

As Am
∗ := (A1

∗)
m is toral and ML(An) = k, Corollary 1.15 implies that

ML(An × Am
∗ ) = k[Am

∗ ]. (12)

From (12) we get the Makar-Limanov invariants of the remaining three surfaces in

(10).

Example 1.20 (Irreducible affine threefolds quasihomogeneous with respect to an

algebraic group in the sense of [G]). We maintain the notation of Examples 1.18 and

1.19. Identify Pic((P1 × P1) \ ∆) with Z by a fixed isomorphism ϕ. Let Xn be the

total space of the one-dimensional vector bundle over (P1 × P1) \ ∆ corresponding

to n ∈ Z, and let X∗
n be the complement of the zero section in Xn. In fact, Xn is

isomorphic to X−n and X∗
n to X∗

−n, so Xn and X∗
n do not depend on the choice of ϕ,

see [P2].

The group Pic
(
P2 \ C

)
has order 2. Let Y0 and Y1 be the total spaces of, resp.,

trivial and nontrivial one-dimensional vector bundles over P2 \ C. Let Y∗
n be the

complement of the zero section in Yn.

Let T̃, Õ, Ĩ, and D̃n be, resp., the binary tetrahedral, octahedral, icosahedral, and

dihedral subgroup of order 4n in SL2. Put S3 = SL2/T̃, S4 = SL2/Õ, S5 = SL2/̃I,

and Wn = SL2/D̃n.

By [P1] up to isomorphism irreducible affine threefolds quasihomogeneous with

respect to an algebraic group in the sense of [G] are exhausted by the following list:

(i) smooth threefolds:

Xn, X∗
n, Wn, Y0, Y∗

0, Y∗
1, S3, S4, S5,

A3, A2 × A1
∗, A1 × A2

∗, A3
∗;

(13)

(ii) singular threefolds:

P(A) := H3(A) where all entries of A are > 1,

Q(B) := H2,2(B) where rkB = 1.

By construction, S3, S4, S5, Wn are homogeneous with respect to SL2 while P(A)

and Q(B) admit an action of resp. SL2×SL2 and SL3 with a dense orbit. In fact, X∗
n

for n 6= 0 is homogeneous with respect to SL2 as well (it is the quotient of SL2 modulo

a cyclic subgroup of order |n|). By [P2, Theorem 9] every Xn is homogeneous with

respect to the nonreductive linear algebraic group SL2,|n| := SL2⋉R|n| (see Example
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1.19); the radical of SL2,|n| is unipotent. By [P2, Prop. 18], Y0 is homogeneous with

respect to SL2,d for every even d > 0. From Theorem 1.7 we then deduce that

ML(S3) = ML(S4) = ML(S5) = ML(Y0) = k,

ML(Xn) = ML(Wn) = ML(P(A)) = ML(Q(B)) = k,

ML(X∗
n) = k for n 6= 0.

As X∗
0 = ((P1 ×P1) \∆)×A1

∗ and Y∗
0 = (P2 \C)×A1

∗, we deduce from (11) and

Corollary 1.15 that

ML(X∗
0) = ML(Y∗

0) = k[A1
∗].

By [P2, Prop. 16], Y∗
1 is homogeneous with respect to SL2 × Gm. Since the

latter is a reductive group with one-dimensional center, Theorem 1.7 implies that

tr degkML(Y∗
1) 6 1. On the other hand, by [P2, Prop. 19], k[Y∗

1 ]/k
∗ is a free abelian

group of rank 1. Since k[X]∗ ⊆ ML(X) for every X, this yields

tr degkML(Y∗
1) = 1.

Finally, (12) yields the Makar-Limanov invariants of the last four threefolds in (13).

Example 1.21 (Schubert varieties). Let G be a connected semisimple algebraic group

and let PE be the projective space of 1-dimensional linear subspaces in a nonzero

simple G-module E. There is a unique closed G-orbit O in PE. Let U be a maximal

unipotent subgroup of G. There are only finitely many U -orbits in O; their closures

are called Schubert varieties, cf., e.g., [Sp, 8.3–8.5]. Let X ⊆ O be a Schubert variety

and let X̂ be the affine cone over X in E. As U is unipotent, Corollary 1.8 yields

tr degkML(X̂) 6 1.

The ideal of X̂ in k[E] is generated by certain forms of degree 6 2 that admit an

explicit description, see, e.g., [BL, 2.10].

1.2. The Derksen invariant.

Let X be a variety. Recall that the Derksen invariant D(X) of X is the k-

subalgebra of k[X] generated by all k[X]H ’s where H runs over all subgroups of

Aut(X) isomorphic to Ga. If there are no such subgroups, we put D(X) = ∅.

Example 1.22. If X is toral, then D(X) = ∅ by Lemma 1.14(c1).

In this section we deduce some information on D(X) in case when Aut(X) contains

a connected noncommutative reductive algebraic subgroup.

Recall that if an algebraic group G acts linearly on a (not necessarily finite-dimen-

sional) k-vector space V , then the G-module V is called algebraic if every element of

V is contained in an algebraic finite-dimensional G-submodule of V , cf., e.g., [PV2,

3.4].

The starting point is



THE MAKAR-LIMANOV, DERKSEN INVARIANTS, AND FINITE AUTOMORPHISM GROUPS 11

Lemma 1.23. Let G be a connected noncommutative reductive algebraic group. Then

every algebraic G-module V is a k-linear span of the set
⋃

H⊂G

V H , (14)

where H in (14) runs over all one-parameter unipotent subgroups of G.

Proof. The assumptions that G is reductive, char k = 0, and V is algebraic imply

that V is a sum of simple G-submodules. Hence we may (and shall) assume that

V is a nonzero simple G-module. Since G is a connected noncommutative reductive

algebraic group, it contains a one-dimensional unipotent subgroup U (indeed, since

(G,G) is a nontrivial semisimple group, a root subgroup of (G,G) with respect to a

maximal torus may be taken as U). By the Lie–Kolchin theorem V U 6= {0}. Let v

be a nonzero vector of V U . As g · v ∈ V gUg−1

for every element g ∈ G, the G-orbit

G · v of v is contained in set (14). Hence the k-linear span of G · v is contained in

the k-linear span of this set. But the k-linear span of G · v is G-stable and therefore

coincides with V since V is simple. This completes the proof. �

Theorem 1.24. Let X be a variety. If Aut(X) contains a connected noncommutative

reductive algebraic subgroup, then

D(X) = k[X]. (15)

Proof. Let G be a connected noncommutative reductive algebraic subgroup of Aut(X).

Since the G-module k[X] is algebraic (see [PV2, Lemma 1.4]), the claim follows from

Lemma 1.23 and the definition on D(X). �

Remark 1.25. The following are equivalent:

(i) Aut(X) contains a connected noncommutative reductive algebraic subgroup;

(ii) Aut(X) contains SL2 or PSL2.

Indeed, SL2 and PSL2 are connected noncommutative reductive algebraic groups

and every connected noncommutative reductive algebraic group contains SL2 or PSL2,

cf. [Bo, Theorem 13.18(4)], [Sp, 7.2.4].

The following example shows that the assumption of noncommutativity in Theorem

1.24 cannot be dropped.

Example 1.26. By [Der], for the Koras–Russell cubic threefold X, the following

inequality distinguishing X from A3 holds:

D(X) 6= k[X]. (16)

On the other hand, since X is defined in A4 by x1+x2
1x2+x2

3+x3
4 = 0 where x1, . . . , x4

are the standard coordinate functions on A4, it is stable with respect to the action

of Gm on A4 defined by t · (a1, a2, a3, a4) = (t6a1, t
−6a2, t

3a3, t
2a4). Hence Aut(X)

contains a one-dimensional connected commutative reductive subgroup, cf. [DM-JP,

Sect. 3].
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One can apply Theorem 1.24 to proving that, for some varieties X, there are no

connected noncommutative reductive algebraic subgroups in Aut(X).

Example 1.27. For the Koras–Russell cubic threefold X, Theorem 1.24 and (16)

imply that Aut(X) contains no connected noncommutative reductive algebraic sub-

groups.

Since An for n > 2 contains a connected noncommutative reductive algebraic sub-

group (for instance, GLn), the next corollary generalizes the well-known fact that

D(X ×An) = k[X × An] for n > 2 (see, e.g., [CM]).

Corollary 1.28. Let Z be a variety such that Aut(Z) contains a connected noncom-

mutative reductive algebraic subgroup. Then, for every variety X,

D(X × Z) = k[X × Z]. (17)

Proof. Consider the natural action of Aut(Z) on Z and its trivial action on X. Then

the diagonal action of Aut(Z) on X×Z identifies Aut(Z) with a subgroup of Aut(X×

Z). Whence the claim by Theorem 1.24. �

The following example shows that the assumption of noncommutativity in Corollary

1.28 cannot be dropped.

Example 1.29. Let x1, x2 be the standard coordinate functions on A2. The principal

open set Y in A2 defined by x1 6= 0 is isomorphic to A1
∗ × A1 and

k[Y ] = k[t, t−1, s], where t := x1|Y , s := x2|Y . (18)

Since t is the unit of k[Y ], for every action of Ga on Y we have

t, t−1 ∈ k[Y ]Ga . (19)

As, clearly, Aut(Y ) contains a one-dimensional unipotent subgroup, (19) and the de-

finition of D[Y ] yield k[t, t−1] ⊆ D[Y ]. We also deduce from (19) that, for every point

y ∈ Y , the Ga-orbit of y lies in the line defined by the equation t = t(y). But this

orbit is closed in Y since Y is affine and Ga is unipotent, cf. [Bo, 4.10]. Hence, if y

is not a fixed point, this orbit coincides with the aforementioned line. Therefore, if

Ga acts on Y nontrivially, t separates orbits in general position. Since char k = 0,

by [PV2, Lemma 2.1] this means that k(Y )Ga = k(t). Whence by (18) we have

k[Y ]Ga = k[t, t−1]. From this, (12) and (18) we then infer that

k[t, t−1] = ML(A1
∗ × A1) = D(A1

∗ ×A1)  k[A1
∗ × A1] = k[t, t−1, s].

Thus, (17) does not hold for X = A1
∗, Z = A1 while both Aut(A1

∗) and Aut(A1)

contain a one-dimensional connected commutative reductive algebraic subgroup.

Theorem 1.30. If Xi is a variety such that ML(Xi) 6= k[Xi], i = 1, 2, then

D(X1 × X2) = k[X1 × X2].
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Proof. As ML(X1) 6= k[X1], there is a nontrivial Ga-action α on X1. The diagonal

Ga-action on X1 × X2 determined by α and trivial action on X2 is a nontrivial Ga-

action for which k[X2] lies in the algebra of invariants. Hence, k[X2] ⊆ D(X1 × X2).

Similarly, k[X2] ⊆ D(X1 × X2). As k[X1 × X2] is generated by k[X1] and k[X2], the

claim follows. �

Example 1.31. If X is the Koras–Russell cubic threefold X, then D(X) 6= k[X] by

[Der]. But for the square of X we have D(X × X) = k[X × X] — since ML(X) =

k[x1|X ] 6= k[X] (cf., e.g., [F, Chap. 9]), this follows from Theorem 1.30.

1.3. Generalizations.

The Makar-Limanov and Derksen invariants can be naturally generalized.

Namely, let X be a variety and let F be an algebraic group.

Definition 1.32. The F -kernel of X is the following k-subalgebra of k[X]:

KerF (X) :=
⋂

H

k[X]H , (20)

where H in (20) runs over the images of all algebraic homomorphisms F → Aut(X).

Definition 1.33. The F -envelope of X is the k-subalgebra

EnvF (X)

of k[X] generated by all k[X]H ’s where H runs over all subgroups of Aut(X) isomor-

phic to H. If there are no such subgroups, we put EnvF (X) = ∅.

Example 1.34. The definitions imply that

KerGa
(X) = ML(X), EnvGa

(X) = D(X).

Definition 1.35. We say that an algebraic group G is F -generated if it is generated

by the images of all homomorphisms F → G.

Examples 1.36. (1) By Lemma 1.1 a connected linear algebraic group G is Ga-

generated if and only if G has no nontrivial characters that, in turn, is equivalent to

the condition Rad G 6= RaduG.

(2) Every connected reductive algebraic group G is Gm-generated. This is clear if

G is a torus. In the general case this follows from the fact that the subgroup generated

by algebraic subgroups is closed (see, e.g., [Sp, 2.2.7]) and the union of maximal tori

of G contains a dense open subset ([Sp, 6.4.5(iii), 7.6.4(ii)].

(3) Clearly, the subgroup generated by the images of all homomorphisms F → G

is normal. Hence, if G is simple as abstract group and there exists a nontrivial

homomorphism F → G, then G is F -generated.

The following are the generalizations of the above statements on ML(X) and D(X).

Theorem 1.37. If a variety X is endowed with an action of an F -generated algebraic

group G, then KerF (X) ⊆ k[X]G.

Proof. This follows from Definitions 1.32 and 1.35. �
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Corollary 1.38. If a variety X is endowed with an action of an F -generated algebraic

group G and X contains a dense G-orbit, then KerF (X) = k.

Corollary 1.39. If H is a reductive subgroup of an F -generated linear algebraic group

G, then G/H is an affine variety with KerF (G/H) = k.

Corollary 1.40. Let X be an irreducible variety. If there is an action of Gm on X

with a fixed point and without other closed orbits, then

KerGm
(X) = k. (21)

Proof. The assumptions imply that the fixed point is unique and lies in the closure

of every Gm-orbit; whence k[X]Gm = k. In turn, this and (20) yield (21). Note that,

in fact, X is affine [P4]. �

Corollary 1.41. Let X be a closed subset of Pn and let X̂ ⊆ kn+1 be the affine cone

over X. Then Ker
Gm

(X̂) = k.

Example 1.42. Consider the case F = Gm. If G is a connected reductive subgroup

of Aut(X) and X contains a dense G-orbit, then Corollary 1.38 and Example 1.36(2)

imply that (21) holds. In particular, this is so for every toric variety X; for instance,

KerGm
(An × Am

∗ ) = k.

(compare with (12)). Applying this to the varieties considered in Examples 1.16–1.20,

we see that (21) holds for every X from the following list:

Lie(G)(α1, . . . , αn) (see Example 1.16);

Dn,m,r (see Example 1.17);

X(λ1, . . . , λs) (see Example 1.18);

(P1 × P1) \ ∆, P2 \ C, V(n1, . . . , nr) where n1, . . . , nr > 2 (see Example 1.19);

S3, S4, S5, Wn, P(A), Q(B), X∗
n where n 6= 0, Y∗

1 (see Example 1.20).

The threefold Xn from Example 1.20 is homogeneous with respect to SL2,|n|. One

can prove that SL2,|n| is Gm-generated; whence Ker(Xn) = k.

The remaining threefolds X∗
0, Y0, and Y∗

0 from Example 1.20 are considered in

Example 1.45 below.

The same proof as that of Lemma 1.9 yields

Lemma 1.43. For any varieties X1 and X2,

KerF (X1 × X2) ⊆ KerF (X1) ⊗k KerF (X2).

Corollary 1.44. For any varieties X1 and X2, the following are equivalent:

(i) KerF (X1) and KerF (X2) lie in KerF (X1 × X2);

(ii) KerF (X1 × X2) = KerF (X1) ⊗k KerF (X2).

Example 1.45. Since X∗
0 = ((P1 × P1) \ ∆) × A1

∗, Y0 = (P2 \ C) × A1, and Y∗
0 =

(P2 \ C) × A1
∗ (see Example 1.20), we deduce from Lemma 1.43 and Example 1.42

that Ker
Gm

(X∗
0) = Ker

Gm
(Y0) = Ker

Gm
(Y∗

0) = k.
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Lemma 1.46. For any connected algebraic group F that has no nontrivial characters,

k[X]∗ ⊆ KerF (X). (22)

Proof. Let H be the image of an algebraic homomorphism F → Aut(X). We claim

that k[X]∗ ⊆ k[X]H ; by virtue of Definition 1.32 this inclusion implies (22). Since H

is connected, every irreducible component of X is H-stable, so proving the claim we

may (and shall) assume that X is irreducible. In this case every element of k[X]∗ is

H-semiinvariant by [PV2, Theorem 3.1], hence lies in k[X]H since H has no nontrivial

characters. This completes the proof. �

Corollary 1.47. Let F be a connected algebraic group that has no nontrivial char-

acters. Let X1 and X2 be varieties such that KerF (X1) and KerF (X2) are generated

by units. Then KerF (X1 × X2) = KerF (X1) ⊗k KerF (X2).

Lemma 1.48. Let G be a connected reductive algebraic group of rank > 2. Then

every algebraic G-module V is a k-linear span of the set
⋃

H⊆G

V H , (23)

where H in (23) runs over all one-dimensional tori of G.

Proof. Like in the proof of Lemma 1.23 we may (and shall) assume that V is a nonzero

simple G-module. Let T be a maximal torus of G and let v ∈ V , v 6= 0, be a weight

vector of T . Since dimT > 2, the T -stabilizer Tv of v is a diagonalizable group of

dimension > 1. Hence Tv contains a one-dimensional torus S. Thus, v ∈ V S. Like

in the proof of Lemma 1.23 we then conclude that the orbit G · v is contained in set

(23). Since V is simple, the k-linear span of G · v coincides with V ; whence the claim.

�

Theorem 1.49. Let X be a variety such that Aut(X) contains a connected reductive

algebraic group G of rank > 2. Then

EnvGm
(X) = k[X].

Proof. Since the G-module k[X] is algebraic, the claim follows from Lemma 1.48 and

Definition 1.33. �

Remark 1.50. Clearly, Env
Gm

(A1) = k. This shows that in Lemma 1.48 and Theorem

1.49 the condition “> 2” can not be replaced by “> 1”.

2. Finite automorphism groups of algebraic varieties

2.1. Jordan groups.

The following definition is inspired by the classical Jordan theorem (Theorem 2.2).

Definition 2.1. A group G is called a Jordan group if there exists a positive integer

JG, depending only on G, such that every finite subgroup K of G contains a normal

abelian subgroup whose index in K is at most JG.

Jordan’s theorem (see [CR, Theorem 36.13]) can be then reformulated as follows:
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Theorem 2.2. Every GLn(k) is Jordan.

Remark 2.3. For G = GLn(k), the explicit upper bounds JG are known, see [CR,

§36].

Since subgroups of Jordan groups are Jordan and every linear algebraic group is

isomorphic to a subgroup of some GLn(k) (see [Sp, 2.3.7]), Theorem 2.2 yields the

following more general

Theorem 2.4. Every linear algebraic group is Jordan.

Lemma 2.5. Let H be a finite normal subgroup of a group G. If G is Jordan, then

G/H is Jordan.

Proof. Let π : G → G/H be the natural projection and let K be a finite subgroup of

G/H. Since H is finite, π−1(K) is a finite subgroup of G. As G is Jordan, π−1(K)

contains a normal abelian subgroup A whose index is at most JG. Hence π(A) is a

normal abelian subgroup of K whose index is at most JG. �

Lemma 2.6. If the groups G1 and G2 are Jordan, then G1 × G2 is Jordan.

Proof. Let πi : G := G1 × G2 → Gi be the natural projection and let K be a finite

subgroup of G. Since Gi is Jordan, Ki := πi(K) contains an abelian normal subgroup

Ai such that

[Ki : Ai] 6 JKi
. (24)

The subgroup Ãi := π−1
i (Ai) ∩ K is normal in K and K/Ãi is isomorphic to Ki/Ai.

From (24) we then conclude that

[K : Ãi] 6 JKi
. (25)

Since A := Ã1 ∩ Ã2 is the kernel of the diagonal homomorphism

K −→
2∏

i=1

K/Ãi

determined by the canonical projections K → K/Ãi, we infer from (25) that

[K : A] = |K/A| 6 |

2∏

i=1

K/Ãi| 6 JK1
JK2

(26)

By construction, A ⊆ A1 ×A2. Since Ai is abelian, this implies that A is abelian. As

A is normal in K, this and (26) complete the proof. �

The following definition distinguishes a special class of Jordan groups.

Definition 2.7. A group G is called bounded if there is a positive integer bG, depend-

ing only on G, such that the order of every finite subgroup of G is at most bG.
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Examples 2.8. (1) Finite groups and torsion free groups are bounded.

(2) Every finite subgroup of GLn(Q) is conjugate to a subgroup of GLn(Z) (see,

e.g., [CR, Theorem 73.5]). On the other hand, by Minkowski’s theorem (see, e.g., [Hu,

Theorem 39.4]) GLn(Z) is bounded. Hence GLn(Q) is bounded. Note that H.

Minkowski and I. Schur obtained explicit upper bounds of the orders of finite sub-

groups in GLn(Z), see [Hu, §39].

(3) It is immediate from the definition that every extension of a bounded group by

bounded is bounded as well.

Lemma 2.9. Let H be a normal subgroup of a group G such that G/H is bounded.

Then G is Jordan if and only if H is Jordan.

Proof. A proof is needed only for the sufficiency. So assume that H is Jordan; we

have to prove that G is Jordan. Let K be a finite subgroup of G. By Definition 2.1

L := K ∩ H (27)

contains an abelian normal subgroup A such that

[L : A] 6 JH . (28)

Let g be an element of K. Since L is a normal subgroup of K, we infer that gAg−1

is a normal abelian subgroup of L and

[L : A] = [L : gAg−1]. (29)

Consider now the group

M :=
⋂

g∈K

gAg−1. (30)

It is a normal abelian subgroup of K. We claim that [K : M ] is upper bounded by a

constant not depending on K. To prove this, fix the representatives g1, . . . , g|K/L| of

all cosets of L in K. Then (30) and normality of A in L imply that

M =

|K/L|⋂

i=1

giAg−1
i . (31)

From (31) we deduce that M is the kernel of the diagonal homomorphism

L −→

|K/L|∏

i=1

L/giAg−1
i

determined by the canonical projections L → L/giAg−1
i . This, (29), and (28) yield

[L : M ] 6 [L : A]|K/L|
6 J

|K/L|
H . (32)

Let π : G → G/H be the canonical projection. By (27) the finite subgroup π(K)

of G/H is isomorphic to K/L. Since G/H is bounded, this yields |K/L| 6 bG/H . We

then deduce from (32) and [K : M ] = [K : L][L : M ] that

[K : M ] 6 bG/HJ
b
G/H

H .

This completes the proof. �
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Corollary 2.10. Let H be a finite normal subgroup of a group G such that the center

of H is trivial. If G/H is Jordan, then G is Jordan.

Proof. The conjugating action of G on H determines a homomorphism ϕ : G →

Aut(H). The definition of ϕ and triviality of the center of H implies that

H ∩ ker ϕ = {1}. (33)

In turn, (33) yields that the restriction of the natural projection G → G/H to ker ϕ

is an embedding ker ϕ →֒ G/H. Hence ker ϕ is Jordan since G/H is Jordan. But

G/ker ϕ is finite since it is isomorphic to a subgroup of Aut(H) for the finite group

H. Whence G is Jordan by Lemma 2.9. This completes the proof. �

Example 2.12, Theorems 2.13, 2.16 and their corollaries below give, for some vari-

eties X, the affirmative answer to the following

Question 2.11. Let X be an irreducible affine variety. Is it true that Aut(X) is

Jordan?

Example 2.12. Aut(An) is Jordan for n 6 2. For n = 1 this clear, for n = 2 follows

from Theorem 2.2 and the well-known fact that every finite subgroup of Aut(A2) is

linearizable, i.e., conjugate to a subgroup of GL2(k) (see also Subsection 2.2 below).

Theorem 2.13. The automorphism group of every irreducible toral variety (see Def-

inition 1.13) is Jordan.

Proof. By [R], for any irreducible variety X, the abelian group

Γ := k[X]∗/k∗

is free and of finite rank. Let X be toral and let H be the kernel of the natural action

of Aut(X) on Γ. We claim that H is abelian. Indeed, for every element f ∈ k[X]∗,

the line spanned by f in k[X] is H-stable. Since GL1 is abelian, this yields that

h1h2 · f = h2h1 · f for any elements h1, h2 ∈ H. (34)

As X is toral, k[X]∗ generates the k-algebra k[X] by Lemma 1.14. Hence (34) holds

for every f ∈ k[X]. Since X is affine, the automorphisms of X coincide if and only if

they induce the same automorphisms of k[X]. Whence H is abelian, as claimed.

Let n be the rank of Γ. Then Aut(Γ) is isomorphic to GLn(Z). By the definition

of H, the natural action of Aut(X) on Γ induces an embedding of Aut(X)/H in

Aut(Γ). Hence Aut(X)/H is isomorphic to a subgroup of GLn(Z). Example 2.8(2)

then implies that Aut(X)/H is bounded. Thus, Aut(X) is an extension of a bounded

group by an abelian group, hence Jordan by Lemma 2.9. This completes the proof.

�

Remark 2.14. Maintain the notation of the proof of Theorem 2.13. Let f1, . . . fn be

a basis of Γ. There are the homomorphisms λi : H → k∗, i = 1, . . . , n, such that

g · fi = λ(g)fi for every g ∈ H and i. Since k[X]∗ generates k[X], the diagonal map

H → (k∗)n, h 7→ (λ1(g), . . . , λn(g)), is injective. This and the proof of Theorem 2.13
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show that the automorphism group of X is an extension of a subgroup of GLn(Z) by

a subgroup of the torus (k∗)n.

The following lemma is well-known (see, e.g., [FZ, Lemma 2.7(b)]).

Lemma 2.15. Let X be a variety and let G be a reductive algebraic subgroup of

Aut(X). Let x ∈ X be a fixed point of G. Then the kernel of the induced action of

G on Tx,X is trivial.

Theorem 2.16. Let ∼ be the equivalence relation on the set of points of a variety X

defined by

x ∼ y ⇐⇒ the local rings of X at x and y are k-isomorphic.

If there is a finite equivalence class of ∼, then Aut(X) is Jordan.

Proof. Every equivalence class of ∼ is Aut(X)-stable. Let C be a finite equivalence

class of ∼ and let G be the kernel of the action of Aut(X) on C. Then G is a normal

subgroup of finite index in Aut(X). By Lemma 2.9 it suffices to prove that G is

Jordan.

Let K be a finite subgroup of G and let x be a point of C. As x is fixed by

K, the action of K on X induces an action of K on Tx,X . The latter is linear

and hence determined by a homomorphism τ : K → GL(Tx,X). Being finite, K is

reductive. Hence τ is injective by Lemma 2.15. Theorem 2.2 then yields that K

contains an abelian normal subgroup A such that [K : A] 6 J
GLn(k), n := dim Tx,X .

This completes the proof. �

Given a variety X, we say that its point x is a vertex of X if

dimTx,X > dim Ty,X for every point y ∈ X.

Clearly, an irreducible X is smooth if and only if every its point is a vertex.

Corollary 2.17. The automorphism group of every variety with only finitely many

vertices is Jordan.

Corollary 2.18. Let ≈ be the equivalence relation on the set of points of a variety

X defined by

x ≈ y ⇐⇒ the tangent cones of X at x and y are isomorphic.

If there is a finite equivalence class of ≈, then Aut(X) is Jordan.

Corollary 2.19. The automorphism group of every nonsmooth variety with only

finitely many singular points is Jordan.

Corollary 2.20. Let X̂ ⊂ kn+1 be the affine cone of a smooth closed proper subvariety

X in Pn = P(kn+1) that does not lie in any hyperplane. Then Aut(X̂) is Jordan.

Proof. The assumptions imply that the singular locus of X̂ consists of a single point,

the origin; whence the claim by Corollary 2.19. �
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Remark 2.21. Smoothness in Corollary 2.20 may be replaced by the assumption that

X is not a cone. Indeed, in this case the origin constitutes a single equivalence class

of ≈ for points of X̂; whence the claim by Corollary 2.18.

Theorem 2.22. For every variety X, every finite subgroup G of Aut(X) such that

XG 6= ∅ contains an abelian normal subgroup whose index in G is at most JGLd(k)

where d = max
x

dimTx,X .

Proof. Like in the above proof of Theorem 2.16, this follows from Lemma 2.15 and

Theorem 2.2. �

Corollary 2.23. Let p be a prime number. Then every finite p-subgroup G of

Aut(An) contains an abelian normal subgroup whose index in G is at most JGLn(k).

Proof. This follows from Theorem 2.22 since in this case (An)G 6= ∅, see [Se3, Theorem

1.2]. �

Remark 2.24. To date, it is not known whether or not (An)G 6= ∅ for every finite

subgroup G of Aut(An). By Theorem 2.22 the affirmative answer would imply that

Aut(An) is Jordan.

Remark 2.25. The statement of Corollary 2.23 remains true if An is replaced by any

p-acyclic variety X and n in JGLn(k) by max
x

dim Tx,X . This is because in this case

XG 6= ∅ for every finite p-subgroup G of Aut(X), see [Se3, Sect. 7–8].

Theorem 2.26. For every variety X, there is an integer mX such that any finite

subgroup G of any connected linear algebraic subgroup L of Aut(X) contains an

abelian normal subgroup whose index in G is at most mX .

Proof. Being reductive, G is contained in a maximal reductive subgroup R of L. Then

R is a Levi subgroup, i.e., L is a semidirect product of R and RaduL, cf., e.g., [OV,

Chap. 6]. As L is connected, R is connected as well. Since the kernel of the action of

R on X is trivial, rkR 6 dimX, see [P2, §3]. The claim then follows from Theorem

2.4 as there are only finitely many connected reductive groups of rank at most dim X.

�

2.2. Generalizations. One may ask whether “affine” in Question 2.11 can be drop-

ped:

Question 2.27. Is there an irreducible variety X such that Aut(X) is not Jordan?

The negative answer to Question 2.27 would follow from that to

Question 2.28. Is there an irreducible variety X such that Bir(X) is not Jordan?

If X is a curve, then the answer to Question 2.28 is negative.

Indeed, we may assume that X is smooth and projective. Then Bir(X) = Aut(X).

If g(X), the genus of X, is 0, then X = P1, hence Bir(X) = PGL2(k), so Bir(X)

is Jordan by Theorem 2.4.
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If g(X) = 1, then X is an elliptic curve; whence Bir(X) is the extension of a finite

group by the abelian algebraic group X, hence Jordan by Lemma 2.9.

If g(X) > 2, then Bir(X) is finite, hence Jordan.

Note that all curves (not necessarily smooth and projective) with infinite automor-

phism group are classified in [P3].

Answering Question 2.28 for surfaces X, one may assume that X is a smooth

projective minimal model.

If X is of general type, then by Matsumura’s theorem Bir(X) is finite, hence Jordan.

If X is rational, then Bir(X) is the Cremona group of rank 2 over k, hence Jordan

by [Se1, Theorem 5.3], [Se2, Théorème 3.1].

If X is a nonrational ruled surface, it is birationally isomorphic to P1 × B where

B is a smooth projective curve such that g(B) > 0; we may then take X = P1 × B.

As g(B) > 0, there are no dominant rational maps P1 → B, hence the elements of

Bir(X) permute the fibers of the natural projection P1×B → B. The set of elements

inducing trivial permutation is a normal subgroup BirB(X) of Bir(X). The definition

implies that BirB(X) = PGL2(k(B)), hence Jordan by Theorem 2.4. Naturally

identifying Aut(B) with the subgroup of Bir(X), we get the decomposition Bir(X) =

BirB(X) ⋊ Aut(B). Note that Aut(X) = PGL2(k) × Aut(B) 6= Bir(X) (see [M,

pp. 98–99]), so Aut(X) is Jordan by Lemma 2.6. Let g(B) > 2. Then Aut(B)

is finite, hence [Bir(X) : BirB(X)] < ∞. Lemma 2.9 then implies that Bir(X) is

Jordan. For g(B) = 1, this argument does not work as B is an elliptic curve, so

Aut(B) is infinite.

The canonical class of all other surfaces X is numerically effective, so, for them,

Bir(X) = Aut(X) (cf. [IS, Sect. 7.3, Theorem 2].

If X is an abelian surface, then Bir(X) is an extension of a subgroup of GL4(Z)

by the abelian algebraic group X, hence Jordan by Lemma 2.9 and Example 2.8(2).

If X is a bielliptic surface, then X is the quotient of an abelian surface X̃ by a

finite automorphism group F and Aut(X) is isomorphic to Aut(X̃)/F . Since Aut(X̃)

is Jordan, Lemma 2.5 then yields that Aut(X) is Jordan.

In the other cases let K be the kernel of the natural action of Bir(X) on H2(X,Q)

(we may assume that k = C) and let D be the image of Bir(X) in GL(H2(X,Q))

defined by this action. Since Bir(X)/K is isomorphic to D and D is bounded (see

Example 2.8(2)), Lemma 2.9 implies that Bir(X) is Jordan if K is Jordan (and Bir(X)

is bounded if K is bounded, see Example 2.8(3)). In many cases this yields that Bir(X)

is Jordan. Namely:

• If X is a K3-surface, then K is trivial (cf. [IS, Sect. 12.4]); whence Bir(X) is

bounded.

• If X is an Enriques surface, then K is finite by [MM]; whence Bir(X) is bounded.

• For elliptic surfaces X of Kodaira dimension one, there is an extensive informa-

tion on the cases when K is finite (hence Bir(X) is bounded), see [C] and references

therein. For instance, by [L] if H0(X,TX) = 0 (i.e., X admits no nonzero regular

vector fields), then K is finite.
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So to answer Question 2.28 for surfaces it only remains to consider the following

two types of elliptic surfaces that are not covered by the above considerations:

(a) X = P1 × B where B is an elliptic curve;

(b) elliptic surfaces X of Kodaira dimension one for which the kernel of the natural

action of Bir(X) on H2(X,Q) is infinite (note that every such X admits a nonzero

regular vector field).

It looks plausible that Bir(X) is Jordan for both types (a) and (b). If this is indeed

so, this would complete the proof of the following

Conjecture 2.29. Bir(X) is Jordan for every surface X.
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