
ON THE ALGEBRAIC K-THEORY OF SOME

HOMOGENEOUS VARIETIES.

ALEXEY ANANYEVSKIY

Abstract. In this paper the K-theory of the inner twisted forms of the
homogeneous varieties G/H with the connected reductive algebraic groups
H ⊂ G of the same rank is computed. We provide an explicit isomor-
phism with the K-theory of certain central simple algebras associated to
the considered variety, as a consequence one has that K0(G/H) is a free
abelian group of rank [W (G) : W (H)]. The result is used for computing
the K-theory of some affine homogeneous varieties including the octonionic
projective plane and the quaternionic projective spaces.

1. Introduction.

It is known that K-theory of homogeneous projective varieties could be
expressed by means of K-theory of central simple algebras. The most funda-
mental result concerns the case of projective space and states that there is an
isomorphism

K∗(k)[t]/t
n+1 ∼ // K∗(P

n).

The case of Severi-Brauer varieties was treated by Quillen [Q, §8], and one
has

n⊕
i=0

K∗(A
⊗i) ∼ // K∗(P

n
γ),

where A is a central simple algebra defined by the cocycle γ. Swan [Sw]
computed the K-theory of a smooth projective quadric and showed that there
is an analogous isomorphism involving some Clifford algebras. It was shown
by Panin [P1] that one has an analogous isomorphism for every homogeneous
projective variety and one can express its K-theory in terms of the K-theory
of the certain separable algebras. In the present paper we provide a unified
approach to the K-theory of the homogeneous varieties and compute it for the
inner forms of G/H with the connected reductive H ⊂ G of the same rank.
The main result is the theorem 4 which claims that there is an isomorphism

K∗((G/H)γ)
∼ //

r⊕
i=1

K∗(A(λi)γ),

with r = [W (G) : W (H)] and the separable algebras A(λi)γ associated to
(G/H)γ in some canonical way. In the last section of the present paper it
is shown that the known results concerning the projective varieties could be
derived from this theorem, although it deals with the affine varieties.

An essential role in our computations plays the well-known equivalence be-
tween the category of the equivariant vector bundles over the homogeneous
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variety and the category of the finite dimensional representations of the stabi-
lizer of a rational point. Another important ingredient is the spectral sequence
contstructed by Merkurjev [M] that allows to pass from the equivariant K-
theory to the ordinary one. It turns out that when the groups have the same
rank the spectral sequence degenerates and provides the very explicit answer.
In order to show that the sequence degenerates we use the theorem proved
by Steinberg [St] which states that in our case the representation ring R(H)
is a free module over R(G). We give a new proof of the last theorem which
provides us some good basis consisting of the irreducible represantations such
that we can handle it in the twisted case.

Note that there is a decent classification of the connected reductive sub-
groups containing the maximal torus [BT, § 3]. They correspond to the quasi-
closed (for char k = 0 one can say closed) symmetric subsets in the root
system of the group G, so one can explicitly write down the varieties covered
by theorem 4. For example we can compute by hand the K-theory for the
variety G(E6)/G(A2+A2+A2), the inclusion provided by 3A2 ⊂ E6. The K0

in this case is a free abelian group of rank 240.
In the article everything is settled over the field k of an arbitrary character-

istic. Algebraic groups are supposed to be the smooth algebraic varieties over
the field k. The text is organized in the following way. In the second section
we recall some well-known facts on the representation theory of the reductive
groups, including the combinatorics concerning roots, weights and the Weyl
group.

In the next section we introduce some useful combinatorics arising from
the reductive subgroup of maximal rank. We define a linear order on the
dominant weights and prove key lemmas providing the technical tool for the
new approach to the Steinberg theorem.

In section 4 we show that with the given order one can choose some set
resembling the Gröbner basis and could carry out the division relative to
the chosen elements. Using the above idea we construct the basis for the
representation ring in theorem 2 and show that there is a natural freedom
in the choice of basis. The introduced division algorithm provides an explicit
method for calculation of the multiplicative structure on the obtained free
module.

The fifth section contains some examples, from the vivid two-dimensional
case involving G2 to the non-obvious series of Cn root systems.

In section 6 we recall the basic notions from the equivariant K-theory and
present the spectral sequence constructed by Merkurjev. The following section
deals with the split case of the homogeneous varieties, the degeneration of
the spectral sequence is demonstrated and the isomorphism for K-theory is
constructed.

Section 8 deals with the twisted forms, separable algebras are introduced
and the main result is proved by means of the splitting principle ??.

In the last section we use the developed technique towards concrete ex-
amples. First of all the relations with the known results are presented and
K-theory for the twisted flags is computed. Then we turn to the case of char-
acteristic zero and show that K-theory for any homogeneous variety with the
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stabilizer connected and having the maximal rank could be computed with-
out assumption about reductiveness. Also some affine homogeneous examples
are considered, including the octonionic projective plane and the quaternionic
projective spaces.

I want to express my sincere gratitude to I.Panin for numerous discussions
and useful suggestions concerning the subject of this paper.

2. Representations of reductive algebraic groups.

In this section we fix the notations and recall some well-known facts con-
cerning the representation theory of split reductive algebraic groups. A com-
prehensive survey of this theme could be found in [Ja], the semisimple case is
covered also in [H2].

Let G be a connected split reductive algebraic group and let T ⊂ G be a
split maximal torus of G. Let W (G, T ) = NG(T )/ZG(T ) be the Weyl group
of G. Since all split maximal tori are conjugate, W (G, T ) does not depend on
the choice of torus T so we will as usual denote it by W (G). Let

X∗(T ) = Hom(T,Gm) ∼= Zrk(T ), Ch = Hom(Z(G), Gm)

be the character groups of torus T and center Z(G) respectively. Recall that
the Weyl group W (G) obviously acts on X∗(T ) and that there is a natural
Weyl-equivariant Ch grading on X∗(T ).

Let Repk(G) be the category of finite dimensional k-rational representations
of G and let R(G) = K0(Repk(G)) be the representation ring of G. Recall
that as an additive group the ring R(G) is a free abelian group generated by
the isomorphism classes of irreducible representations. The following result is
well-known (for example, see [Ja, Cor. 2.7]).

Theorem 1. Let G be a connected split reductive algebraic group and let
T ⊂ G be a split maximal torus of G. Then there is a ring isomorphism
R(T ) ∼= Z[X∗(T )] where the last one denotes the group ring. Moreover, the
restriction of representetions induces R(G) ∼= Z[X∗(T )]W (G).

We need some more combinatorial data on the connection between repre-
sentations and characters group ring.

There is a root system Φ in X∗(T ), so there is a bilinear form on

V = X∗(T )⊗Z R ∼= Rrk(G)

such that the Weyl group is generated by the reflections {wα, α ∈ Φ}. The
hyperplanes Hα orthogonal to the roots α ∈ Φ divide V into chambers which
are the fundamental domains for the Weyl group action. The hyperplanes
adjacent to the chamber are called walls of this chamber. Fix a set of simple
roots Π ⊂ Φ and denote by

C(G) = {v ∈ V |(v, α) ≥ 0, α ∈ Π}

the fundamental Weyl chamber. The walls of the fundamental Weyl chamber
C(G) coincide with the hyperplanes orthogonal to the simple roots. Let

Λ+
G = C(G) ∩X∗(T )

be the cone of dominant weights. Note that in the semisimple case group is
simply connected iff Λ+

G
∼= N+

0 .
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Let λ ∈ Λ+
G be a dominant weight. Theorem 1 states that there is a bijection

between such weights and irreducible G-modules, so we will denote by VG(λ)
the corresponding G-module.

At last, recall that there is a partial order on X∗(T ) which is defined by
the set of simple roots Π: µ �Π λ if and only if λ − µ is the sum of positive
roots. The interaction between this ordering and Weyl action is stated in the
next lemma [H1, Lemma 13.2A].

Lemma 1. Let λ ∈ Λ+
G, w ∈ W (G) then w(λ) �Π λ.

3. Subgroup combinatorics.

In this section we introduce the necessary combinatorics that we need in
order to prove theorem 2. The main goal is to order dominant weights of
the subgroup and show that there are several weights with good properties
relative to the order.

Let G be a connected split semisimple simply connected group of rank r, let
T ⊂ G be a split maximal torus of G and let T ⊂ H ⊂ G be a connected split
reductive subgroup of maximal rank. Evidently, in this setting there is an in-
clusion of the Weyl groups W (H) ⊂W (G). Hence we have the corresponding
combinatorial data introduced in the previous section: lattice X∗(T ) ⊂ V in
the euclidean space, root system Φ ⊂ X∗(T ) and actions of the Weyl groups
W (H) ⊂ W (G) on the V . The following lemma shows that we could choose
the compatible fundamental Weyl chambers and the corresponding cones of
dominant weights

C(G) � � // C(H)

Λ+
G

?�

OO

� � // Λ+
H

?�

OO

Let k = [W (G) : W (H)] be the Weyl group index.

Lemma 2. Any Weyl chamber of group H is the union of k Weyl chambers
of group G.

Proof. It is clear that any wall for W (H) action is a wall for W (G) action, so
in order to get chambers of group G we need to subdivide H chambers. The
number of G subchambers is independent on H chamber. Since the number of
chambers coincides with the order of Weyl group, the number of subchambers
equals to the index k. �

So we choose some chambers C(G) ⊂ C(H) and elements

e = w1, w2, ..., wk ∈ W (G),

such that

C(H) =
⋃

1≤i≤k

wiC(G), Λ+
H =

⋃

1≤i≤k

wiΛ
+
G.

Let ω1, ..., ωr be the fundamental weights corresponding to C(G) and let Π,Π′

be the sets of simple roots for G, H respectively. By Φ+ denote the set of
positive roots of G relative to Π.
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Definition 1. Let µ ∈ X∗(T ) be some weight. Define

H(µ) = {Hα, α ∈ Φ+|∃i : (µ, α) · (ωi, α) < 0} = {Hα, α ∈ Φ+|(µ, α) < 0}

to be the set of walls which separate µ from C(G). Let H(wC(G)) = H(µ) for
some interior weight µ ∈ wC(G)o.

Remark 1. The set H(µ) somehow measures the spherical distance from µ
to C(G), the furthest weights are separated by the most hyperplanes. Also
note that #H(wC(G)) = l(w), the usual length of an element of Weyl group,
which is defined to be the number of simple reflections in the shortest word
representing w.

Lemma 3. Let µ ∈ Λ+
H be some dominant weight. Then there exists such i

that µ ∈ wiΛ
+
G and H(wiC(G)) = H(µ).

Proof. If µ belongs to the interior of some chamber we of course should take
that chamber. Otherwise we can choose an arbitrary ν ∈ C(G)o and draw a
segment connecting the points corresponding to µ and ν. Since ν is interior
for C(G) this segment does not belong to hyperplanes Hα and we should take
the chamber wiC(G) which interior it crosses first, starting from the µ. There
are no hyperplanes separating the choosen chamber from µ so H(wiC(G)) =
H(µ). �

Lemma 4. Let µ, λ ∈ wiΛ
+
G for some i and w ∈ W (G). Suppose that there

exists a hyperplane Hα such that (λ, α) · (wµ, α) < 0. Then (wµ, λ) < (µ, λ).

Proof. First of all we multiply weights by w−1
i and consider

µ′ = w−1
i , λ′ = w−1

i λ, w′ = w−1
i wwi, α

′ = w−1
i α.

It follows that µ′, λ′ ∈ Λ+
G and

(λ′, α′) · (w′µ′, α′) = (w−1
i λ, w−1

i α) · (w−1
i wµ,w−1

i α) = (λ, α) · (wµ, α),

and by the same vein

(w′µ′, λ′) = (wµ, λ), (µ′, λ′) = (µ, λ).

So from now on we suppose wi = e.
Note that by lemma 1 µ− wµ equals to the sum of positive roots and λ is

the sum of fundamental weights with nonnegative coefficients, so in general
(wµ − µ, λ) ≤ 0, and we need to show that the difference wµ − µ is not
orthogonal to λ. First of all wµ 6∈ Λ+

G (i.e. not equals µ) since there are no
hyperplanes crossing C(G).

We can find a sequence α1, α2, ..., αn ∈ Φ+ such that the following conditions
hold, where si = wαi

wαi−1
. . . wα1

and s0 = e.

(a) w = sn = wαn
wαn−1

. . . wα1
.

(b) For every 1 ≤ i < n the hyperplane Hαi
is a wall of si−1C(G) and

separates it and C(G) from snC(G)

So this presentations divides w into the sequence of flips, and each flip drives
the chamber further from the C(G).

We claim that the roots αi should be the roots corresponding to hyperplanes
in H(wC(G)) written in the appropriate order. Indeed, there exists some hy-
perplaneHα1

∈ H(wC(G)) which is the wall of C(G), otherwise wC(G) = C(G)
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and w = e, contradicting µ 6= wµ. Note that

H(s1C(G)) = {Hα1
} ⊂ H(wC(G)),

and whenever s1 6= w we can find Hα2
∈ H(wC(G)) \ H(s1C(G)) satisfying

the condition (b), i.e. it should be the wall of s1C(G), the separating part is
valid since we look at the separating hyperplanes. Now one has

H(s2C(G)) = {Hα1
, Hα2

} ⊂ H(wC(G)).

If s2 6= w we can find α3 ∈ H(wC(G)) \H(s2C(G)) and so on.
For the above roots αi one has

(wµ− µ, λ) = (

n∑

i=1

siµ− si−1µ, λ) =

n∑

i=1

ci(αi, λ),

where ci = −2 (si−1µ,αi)
(αi,αi)

. From the condition (b) it follows that Hαi
does not

separate si−iC(G) from C(G), so (si−1µ, αi) ≥ 0, hence ci is nonpositive.
In general (αi, λ) ≥ 0 so it is sufficient to show that there exists some αi

such that (αi, λ) 6= 0 and (si−1µ, αi) 6= 0. The first condition is equivalent
to λ 6∈ Hαi

and the second means that siµ 6= si−1µ. Now suppose that there
is no such αi, then we can get from µ to wµ by reflections wαi

such that
(si−1µ, αi) = 0, i.e. through the hyperplanes which contain λ. Then wµ and
λ lie in the same chamber and there are no hyperplanes separating them. So
by cotradiction we can find such i that the correspodning term ci(αi, λ) < 0
and this finishes the proof.

�

Now we are ready to introduce a good order on Λ+
H which uses W (G) action

and hence somehow connects W (G) orbits with H weights.

Definition 2. Let µ1, µ2 ∈ Λ+
H , we say that µ1 �

′ µ2 if and only if one of the
following conditions holds:

(1) µ1 = µ2

(2) (µ1, µ1) < (µ2, µ2)
(3) (µ1, µ1) = (µ2, µ2) and H(µ1) ) H(µ2)

Remark 2. The meaning of the above definition is that the dominant weight
is smaller if the vector is shorter or the spherical distance to C(G) is greater.

Lemma 5.

(1) �′ defines a partial order on Λ+
H .

(2) For any µ ∈ Λ+
H there are only finitely many µ′ such that µ′ 6�′ µ.

(3) Let µ1, µ2 ∈ Λ+
H and µ1 ≺Π′ µ2. Then µ1 ≺

′ µ2.

Proof.

(1) is checked by hand.
(2) Follows from the fact that there are finitely many weights µ′ such that

(µ′, µ′) ≤ (µ, µ).
(3) There exists β ∈ X∗(T ) such that β equals a sum of positive roots and

µ2 = µ1+β. Then (µ2, µ2) = (µ1, µ1)+(β, β)+2(µ1, β). The last term
is nonnegative since the scalar product of simple root and dominant
weight is nonnegative and so is the scalar product of positive root and
dominant weight. So µ1 �

′ µ2 follows from examining their lengths.
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�

Definition 3. Let � be an arbitrary linear extension of order �′, i.e. such
linear order that from µ1 �

′ µ2 it follows that µ1 � µ2.

Remark 3. Part (3) of the previous lemma is valid for � too and part (2)
transforms into the property that there are only finitely many µ′ such that
µ′ � µ.

The next lemma introduces basic and in some sense minimal and indecom-
posable elements λi ∈ Λ+

H , one for each chamber wiC(G).

Lemma 6. For every i there exists an element λi ∈ wiΛ
+
G such that

(1) H(λi) = H(wiC(G)).
(2) For every µ ∈ wiΛ

+
G, H(µ) = H(wiC(G)) one has µ− λi ∈ wiΛ

+
G.

(3) For every µ ∈ wiΛ
+
G one has λi + wjw

−1
i µ � λi + µ.

Proof. The set of weights {µ ∈ wiΛ
+
G|H(µ) 6= H(wiC(G))} is just the intersec-

tion of wiΛ
+
G with the union of chamber wiC(G) walls which separate it from

the C(G). Indeed, the only chance for the weight to have the lesser number
of walls separating it from C(G) is to belong to such wall, and every weight
lying on this wall has the lesser number of separating hyperplanes.

Now we use the fact that G is simply connected so wiΛ
+
G
∼= Nr

0. The walls
of the chamber correspond to the hyperplanes where some coordinate equals
0, so the weights, which have the same H(µ) as the chamber, correspond to
the points with certain coordinates, say 1, ..., l, strictly greater then 0. Let λi
be the element corresponding to the point with first l coordinates equal 1 and
others equal 0. From the above it follows that we get (1) and (2).

First of all note that all weights really lie in the Λ+
H , so we can try to

compare them. Examine their lengths:

(λi+wjw
−1
i µ, λi+wjw

−1
i µ) = (λi, λi)+2(λi, wjw

−1
i µ)+ (wjw

−1
i µ, wjw

−1
i µ) =

= (λi, λi) + 2(λi, wjw
−1
i µ) + (µ, µ)

(λi + µ, λi + µ) = (λi, λi) + 2(λi, µ) + (µ, µ)

From lemma 1 one has (λi, wjw
−1
i µ) ≤ (λi, µ) and, consequently,

(λi + wjw
−1
i µ, λi + wjw

−1
i µ) ≤ (λi + µ, λi + µ).

Now look at H(λi). Observe that H(λi) = H(λi+µ). Indeed, λi+µ ∈ wiΛ
+
G

and from the first part of the lemma it follows that H(λi) ⊃ H(λi + µ).
The opposite inclusion follows from the fact that since µ and λi lie in the
same chamber there are no hyperplanes Hα separating them, i.e. one has
(λi, α) · (µ, α) ≥ 0. For every Hα ∈ H(λi) one has (λi, α) < 0, so (µ, α) ≤ 0
and (λi + µ, α) < 0, then Hα ∈ H(λi + µ).

First suppose that there exists someHα ∈ H(λi) such that (wjw
−1
i µ, α) > 0.

Since Hα ∈ H(λi) one has (λi, α) < 0 and

(λi, α) · (wjw
−1
i µ, α) < 0.

Then we are in the setting of lemma 4 with a slight change of notation, so
(λi, wjw

−1
i µ) < (λi, µ) hence λi + wjw

−1
i µ � λi + µ.
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Otherwise for all Hα ∈ H(λi) one has (wjw
−1
i µ, α) ≤ 0 and since (λi, α) < 0

one has (λi + wjw
−1
i µ, α) < 0, so H(λi) ⊂ H(wjw

−1
i µ+ λi) and

H(λi + µ) ⊂ H(wjw
−1
i µ+ λi).

The last two sets coincide only if wjw
−1
i µ + λi ∈ wiΛ

+
G and the second part

of the lemma in this case yields wjw
−1
i µ ∈ wiΛ

+
G that means µ = wjw

−1
i µ. In

any case one has λi + wjw
−1
i µ � λi + µ.

�

Remark 4. Note that from the above construction one gets λ1 = 0 ∈ X∗(T ).

4. Restriction of representations.

In this section we study the representation restriction homomorphism on
the representation rings and prove theorem 2.

Let T ⊂ H ⊂ G be the same groups as in the previous section. From
theorem 1 we get the following commutative diagramm.

R(G) � � //

≃
��

R(H) � � //

≃
��

R(T )

≃

��

Z[X∗(T )]W (G) � � // Z[X∗(T )]W (H) � � // Z[X∗(T )]

Recall that Z(G) ⊂ T , hence all the rings above are Ch = X∗(Z(G))-
graded. We are interested in R(G)-module structure on R(H) and its connec-
tion with the grading.

We need the following easy lemma from commutative algebra.

Lemma 7. Let S ⊂ R be domains, let λ1, ..., λk ∈ R generate R as S-module
and let [Q(R) : Q(S)] = k. Then R is a free S-module with basis λ1, ..., λk.

Proof. R is finitely generated as S-module hence it is integral over S. Then
R ⊗S Q(S) is integral over field S ⊗S Q(S) = Q(S), hence itself is a field so
R ⊗S Q(S) ∼= Q(R).

We have the following short exact sequence induced by λ1, ..., λk.

N // // Sk // // R ,

hence

N ⊗S Q(S) // // Q(S)k // // R⊗S Q(S) .

The last term is isomorphic to Q(R) and comparing dimensions one can see
that N ⊗S Q(S) = 0 hence N = 0 and we get the claim of the lemma. �

We consider X∗(T ) as an additive group, so we will write the element of
Z[X∗(T )] corresponding to weight µ in such way: xµ.

Definition 4. For µ ∈ X∗(T ) we will denote by (xµ)W (H) the sum in the
Z[X∗(T )] of all elements corresponding to the weights in W (H)-orbit of µ
and for any monomial axµ ∈ Z[X∗(T )] by (axµ)W (H) = a(xµ)W (H) we denote
the similar orbit but with a coefficient.
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With the above notation one has the unique decomposition of

f =
∑

(aµjx
µj )W (H) ∈ Z[X∗(T )]W (H)

into the sum of monomial orbits with distinct µj ∈ Λ+
H . Recall that we have

a linear order � on µj introduced in the previous section.

Definition 5. Let f =
∑

(aµjx
µj )W (H), then define the degree deg(f) =

max
j
µj to be the maximal µj in the decomposition and the leading orbit

lo(f) = (adeg(f)x
deg(f))W (H) to be the orbit of the maximal monomial.

We will use the analogous notation for group G.

Theorem 2. Let G be a split semisimple simply connected group and let H
be a connected split reductive subgroup of the maximal rank (i.e. H contains
the split maximal torus T of G). Then R(H) is a free R(G)-module of rank
[W (G) :W (H)] and there is a Ch-homogeneous basis.

Proof. First of all we will deal with the weight realization of the rings of
representations, i.e. with the following sequence.

Z[X∗(T )]W (G) � � // Z[X∗(T )]W (H) � � // Z[X∗(T )]

In the previous section in lemma 6 we have constructed some λi and we claim
that the orbits (xλi)W (H) form a homogeneous basis of Z[X∗(T )]W (H) over
Z[X∗(T )]W (G).

(a) Homogeneity. It is the easiest part since it follows at once from the
equivarian e of W (H) action.

(b) (xλi)W (H) generate Z[X∗(T )]W (H) as Z[X∗(T )]W (G)-module. We will
show by induction on deg(f) that f ∈ Z[X∗(T )]W (H) could be ex-
pressed as linear combination of (xλi)W (H) with Z[X∗(T )]W (G) coeffi-
cients. Note that λ1 = 0 ∈ X∗(T ) and

(xλ1)W (H) = 1 ∈ Z[X∗(T )]W (H),

so we have the constants. Now suppose that we can express as linear
combinations all f ∈ Z[X∗(T )]W (H) such that deg(f) ≺ µ0 and we
need to write such an expression for (xµ0)W (H).

By lemma 3 we have some chamber wlC(G) such that µ0 ∈ wlΛ
+
G

and H(µ0) = H(wlC(G)), hence, by lemma 6 ν = µ0 − λl ∈ wlΛ
+
G.

Choose the subset {wj} of {wi} such that one has all the distinct
wjw

−1
l ν. Then by subdividing W (G)-orbit into W (H)-orbits we have

the following equality.

lo
(
(xν)W (G) (xλl

)W (H)
)
= lo

((
∑

j

(
xwjw

−1

l
ν
)W (H)

)
(
xλl
)W (H)

)
.

From lemma 1 and lemma 5 the last one equals to

lo




(
∑

j

xwjw
−1

l
νxλl

)W (H)


 = lo




(
∑

j

xwjw
−1

l
ν+λl

)W (H)


 ,
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and finally, by lemma 6, one gets

lo



(
∑

j

xwjw
−1

l
ν+λl

)W (H)

 =

(
xν+λl

)W (H)
= (xµ0)W (H) .

Hence

deg
(
(xµ0)W (H) − (xν)W (G) (xλl

)W (H)
)
≺ µ0

and we can use the induction.
(c) (xλi)W (H) are linearly independent. From the sequence

Z[X∗(T )]W (G) � � // Z[X∗(T )]W (H) � � // Z[X∗(T )],

one gets the sequence of fraction fields

Q(Z[X∗(T )]W (G))
� � // Q(Z[X∗(T )]W (H))

� � // Q(Z[X∗(T )])

Q(Z[X∗(T )])W (G) � � // Q(Z[X∗(T )])W (H) � � // Q(Z[X∗(T )])

and the degree of field extension equals to [W (G) : W (H)]. Hence, by
lemma 7 one gets the claim of the theorem.

�

Corollary 1. In the notation of theorem 2 one has a basis consisting of the
irreducible representations of H.

Proof. One can take VH(λi) and since their leading orbits coincide with the
basis constructed in the theorem one gets the claim. �

Remark 5. We can choose various chambers C(G) and the different choices
produce different basises. Also the proof of the theorem gives an explicit al-
gorithm for calculating the coefficients of decomposition with respect to the
chosen basis, so, for example, in every particular case one can write down the
multiplication table for the basis, yet it seems that there is no elegant general
formula.

5. Examples: A1 + A1 ⊂ G2, B4 ⊂ F4 and C1 + Cn−1 ⊂ Cn.

In this section we compute some examples of basises. Every reductive sub-
group containing the maximal torus is defined by some quasi-closed root sub-
set [BT, § 3], so we use the root system notation. Every maximal root sub-
system of full rank corresponds to some node in the Dynkin diagram and the
subsystem diagram is just the extended Dynkin diagram with the chosen node
removed. We label simple roots in a way of [Bo].

5.1. A1 +A1 ⊂ G2. In this example we take the the subsystem in G2 defined
by the short simple root and the maximal one. The corresponding Dynkin
diagram is the next one, with the white node removed.

u e u

α1 α2 −αmax
〈
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We label the roots in a way shown above and αmax = 3α1 + 2α2. The fun-
damental chamber C(G2) is the chamber spanned by the fundamental weights

ω1 = αmax = 3α1 + 2α2, ω2 = 2α1 + α2.

The fundamental chamber C(A1+A1) should contain C(G2) so it is the quarter
of the plane bounded by α1 and αmax. Note, by the way, that the considered
group G(A1+A1) is not simply connected since there are no weights 1

2
α1 and

1
2
αmax in our lattice and one can see that

G(A1 + A1) = SL2 ⊗ SL2 = (SL2 × SL2)/µ2

with µ2 embedded diagonally.
The chamber C(A1 +A1) subdivides into the G2 chambers in the following

way:

C(A1 + A1) = C(G2) ∪ wα2
C(G2) ∪ wα1+α2

wα2
C(G2)

So the theorem 2 tells us that we should take in each subchamber the
shortest of the furthest by spherical distance weights, i.e. the generator for
the furthest wall, hence one has

0 ∈ C(G), 3α1 + α2 ∈ wα2
C(G), α1 ∈ wα1+α2

wα2
C(G2)

and the corresponding sums over W (A1+A1) would form the basis. The basis
from the theorem is the follows:

1, x3α1+α2 + xα2 + x−α2 + x−3α1−α2 , xα1 + x−α1 .

One could compute the corresponding basis consisting of irreducible modules
from corollary 1 having the following weight subspaces:

V (0) = 1
V (3α1 + α2) = x2α1+α2 + xα1+α2 + x−α1−α2 + x−2α1−α2+

+x3α1+α2 + xα2 + x−α2 + x−3α1−α2

V (α1) = 1 + xα1 + x−α1

In fact after identifying G(A1 + A1) = SL2 ⊗ SL2 one can write the above
representations in more natural way, denoting by W1,W2 the regular repre-
sentations of the factors one has

V (0) = S0W1⊗S
0W2, V (3α1+α2) = S3W1⊗W2, V (α1) = S2W1⊗S

0W2.

5.2. B4 ⊂ F4. In this case we remove the α4 node from the extended Dynkin
diagram of type F4. One can show that it corresponds to Spin9 ⊂ G(F4).

u u u u e

−αmax α1 α2 α3 α4

〉

With the above labeling one has

αmax = 2α1 + 3α2 + 4α3 + 2α4.

We will shorten the above notation to (2, 3, 4, 2). The fundamental weights
defining C(F4) are

ω1 = (2, 3, 4, 2), ω2 = (3, 6, 8, 4), ω3 = (2, 4, 6, 3), ω4 = (1, 2, 3, 2).

Choose the simple roots for B4 in the following way:

α′
1 = wα4

(−αmax) = (0, 1, 2, 2), α′
2 = α1, α′

3 = α2, α′
4 = α3,
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hence we have the fundamental weights defining C(B4) ∼ {ω′
1, ω

′
2, ω

′
3, ω

′
4}:

ω′
1 = (1, 2, 3, 2) = ω4, ω′

2 = (2, 3, 4, 2) = ω1,

ω′
3 = (2, 4, 5, 2), ω′

4 = (1, 2, 3, 1).

Since these weights belong to the considered lattice the chosen G(B4) is simply
connected, so it really is Spin9. Now we compute the subdividing of C(B4):

C(B4) = C(F4) ∪ wα4
C(F4) ∪ wα3+α4

wα4
C(F4),

wα4
C(B4) ∼ {ω1, ω2, ω3, ω

′
4}, wα3+α4

wα4
C(B4) ∼ {ω1, ω2, ω

′
3, ω

′
4}.

Theorem 2 suggests to look at the elements appeared after flips, since they
are the spherically furthest, so the basis would consist of W (B4) orbits of
0, ω′

4, ω
′
3.

Another basis comes from the corollary 1 that claims V (0), V (ω′
3), V (ω′

4)
to be a basis. These representations are just the trivial one, the Λ3W for the
regular W and the spin one.

5.3. C1 + Cn−1 ⊂ Cn. In this case we remove the α1 node from the extended
Dynkin diagram of type Cn and it corresponds to (Sp2×Sp2n−2) ⊂ Sp2n with
the quotient variety HP n−1 = Sp2n/(Sp2 × Sp2n−2) being the quaternionic
projective space in notation of section 9.3.

u e u u u u

−αmax α1 α2 αn−2 αn−1 αn
. . .〉 〈

One has

αmax = 2α1 + 2α2 + · · ·+ 2αn−1 + αn = (2, 2, . . . , 2, 1).

The fundamental weights for C(Cn) are

ωi = (1, 2, . . . , i− 1, i, i, . . . i,
i

2
).

Choosing α2, α3, . . . , αn, αmax to be the simple roots of C1+Cn−1 one gets the
following C(C1 + Cn−1):

ω′
i = (0, 1, . . . , i− 1, i, i, . . . i,

i

2
), ω′

n = (1, 1, . . . , 1,
1

2
).

The subdividing of C(C1 + Cn−1) is straightforward:

C(C1 + Cn−1) = C(Cn) ∪ wα1
C(Cn) ∪ wα1+α2

wα1
C(Cn) ∪ . . .

· · · ∪ (wα1+···+αn−1
. . . wα1+α2

wα1
)C(Cn),

(wα1+···+αi
. . . wα1+α2

wα1
)C(Cn) ∼ {ω′

1, ω
′
2, . . . , ω

′
i, ωi+1, . . . ωn}.

The corollary 1 claims V (0), V (ω′
1), . . . V (ω

′
n−1) to be the basis and this rep-

resentations are just ΛiW for regular representation W of group Sp2n−2.
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6. Representations, vector bundles and equivariant K-theory.

In this section we recall some results on the equivariant K-theory. An ex-
tensive exposition and further references could be found in [M].

Let G be an algebraic group, let H ⊂ G be a closed subgroup and let
X = G/H be the corresponding smooth homogeneous G-variety. There is a
well-known tensor equivalence [M, Example 2]

Repk(H)
∼ // V ectG(X)

between the categories Repk(H) of finite dimensional k-rational representa-
tions of H and V ectG(X) of G-equivariant vector bundles over X. The inverse
for the above equivalence is given by the fiber over the extinguished point eH
of X. Further we will use the following notation.

Definition 6. Let VH(λ) be the irreducible representation of H with the
highest weight λ ∈ Λ+

H , then denote by VH(λ) the corresponding vector bun-
dle over G/H . For an irreducible representation VG(µ) of group G with the
highest weight µ ∈ Λ+

G one can use the restriction of representations, get the
representation of H (not necessary irreducible) and then take the correspond-
ing vector bundle VG(µ). Occasionally we will write VG(λ) and VG(λ) for a
λ ∈ Λ+

H and it means that one should find µ ∈ Λ+
G from W (G)-orbit of λ and

then take the corresponding VG(µ) and VG(µ).

Remark 6. Note that after forgetting about the G-action the last bundle
becomes trivial, i.e. the composition

Repk(G)
Res // Repk(H)

∼ // V ectG(X) // V ect(X)

takes G representations to trivial bundles.

Set

Kn(G;X) = Kn(V ect
G(X)).

The above equvalence yields

Kn(G;X) ∼= Kn(Rep(H)),

in particular

K0(G;X) ∼= R(H).

Note that R(H) is a R(G)-module, hence every Kn(G,X) also is. The fol-
lowing proposition, being a straightforward consequence of [M, Theorem 10],
compares Kn(G;X) with Kn(X).

Proposition 1. Let G be a split simply connected semisimple group. Then
there is a spectral sequence

E2
p,q = TorR(G)

p (Z, Kq(G;X)) =⇒ Kp+q(X).
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7. K-theory of a homogeneous variety.

In this section we calculate K-theory of a homogeneous variety X = G/H
for connected split reductive algebraic groups H ⊂ G of the same rank.

Lemma 8. Kn(Repk(H)) ∼= R(H)⊗Z Kn(k).

Proof. Note that char k not necessary equals 0, so the reductive group H
not necessary geometrically reductive, i.e. the category Repk(H) may be not
semisimple. But, nevertheless, all objects of Repk(H) have finite length and,
thanks to Devissage property of K-theory, one has

Kn(Repk(H)) ∼= Kn(Repk(H)ss),

where Repk(H)ss stands for the subcategory of semisimple representations. By
Shur’s Lemma we can pass to the endomorphisms of irreducible represenations

Kn(Repk(H)ss) ∼=
⊕

i

Kn(End(Vi)),

and, since End(Vi) = k, the last one equals
⊕

Kn(k) with the sum over
isomorphism classes of irreducible representations, which could be identified
with R(H)⊗Z Kn(k). �

Proposition 2. Let G be a connected split simply connected semisimple alge-
braic group and let H ⊂ G be a connected split reductive subgroup of the same
rank. Then the spectral sequence in proposition 1 degenerates, i.e.

TorR(G)
p (Z, Kn(G;X)) =

{
Kn(X), if p = 0;

0, if p > 0.

Proof. Due to lemma 8 it is sufficient to show that for p ≥ 1 one has

TorR(G)
p (Z, R(H)⊗Z Kn(k)) = 0.

Replace Kn(k) with an arbitrary abelian group M . Since Tor commutes with
the direct limits we can reduce the problem to the finitely generated abelian
groups, and, moreover, to M = Z or M = Z/mZ.

In the first case we at once get the claim from theorem 2,

TorR(G)
p (Z, R(H)) = 0,

since R(H) is a free R(G)-module.
In the second case we can write the resolution

0 // R(H)
m // R(H) // R(H)⊗Z Z/mZ // 0 ,

which is exact since R(H) is a domain of a zero characteristic. Denoting the
rank of R(H) over R(G) by r, after tensoring with Z one still gets an exact
sequence sequence

0 // Zr
m // Zr // (Z/mZ)r // 0 .

So, we conclude

TorR(G)
p (Z, R(H)⊗ Z/mZ) = 0,

finishing the proof. �
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In order to remove the annoying restriction that G should be simply con-
nected we need the following lemma.

Lemma 9. Let H ⊂ G be a pair of connected split reductive groups of the
same rank. Then there exists a connected split simply connected semisimple
group G̃ and a connected split reductive subgroup H̃ ⊂ G̃ of the same rank

such that G̃/H̃ ∼= G/H.

Proof. Let G̃ be the simply connected covering of the derived group G′. There
exists a covering

Z // // (Gm)
l × G̃ // // G

with finite kernel Z. Since H contains the maximal torus the preimage of
H under this projection contains the factor (Gm)

l, so we have the following
diagram.

(Gm)
l × G̃ // // G

(Gm)
l × H̃
?�

OO

// // H
?�

OO

The above consideration yields

G̃/H̃ ∼= (Gm)
l × G̃/(Gm)

l × H̃ ∼= G/H,

so we need to show that H̃ is connected. One has

Z // // (Gm)
l × H̃ // // H

with finite central Z and connected H . The identity component of (Gm)
l× H̃

contains the maximal torus, hence it contains Z and the connectedness of H
yields that the identity component coincides with the whole group. The group
H̃ is connected as the quotient of the connected group. �

Theorem 3. Let H ⊂ G be a pair of connected split reductive groups of
the same rank. Denote r = [W (G) : W (H)]. Then there exist V1, ...,Vr ∈
V ect(G/H) such that

K∗(G/H) =
r⊕

i=1

K∗(k)[Vi].

Proof. By lemma 9 we can pass to a simply connected semisimple group G
and from the proof one has that [W (G) : W (H)] remains the same. Due to
proposition 2, the spectral sequence in proposition 1 degenerates, so, using
lemma 8, one has

Kn(X) ∼= Tor
R(G)
0 (Z, R(H)⊗Z Kn(k)) =

= Z⊗R(G) R(H)⊗Z Kn(k) = Zr ⊗Z Kn(k).

The above isomorphism is induced by the elements of basis R(H) over R(G)
constructed in theorem 2, so we can take as Vi the corresponding elements of
V ect(G/H). �
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Remark 7. In remark 5 we noted that there is an expicit algorithm to write
down the multiplication for the basis elements and now it describes the ring
structure on the K0(G/H). Also one can drop the assumption of the connect-
edness of G (but not the H), since G/H is just the disjoint union of [G : G0]
varieties isomorphic to G0/H and so be the K-theory.

8. K-theory of twisted forms.

In this section we deal with certain twisted forms of homogeneous varieties
X = G/H with connected split reductive groups H ⊂ G of the same rank.
From now on we suppose G to be simply connected semisimple, lemma 9 shows
that in fact it is not a restriction. Denote as before r = [W (G) :W (H)].

One has an obvious left action of G on G/H and since H contains the
maximal torus hence the center, this action extends to the action of

G = G/Z(G).

Now fix a 1-cocycle γ : Gal(ksep/k) → G(ksep). Twisting the variety with this
cocycle we obtain

Xγ = (G/H)γ.

The following lemma provides a splitting variety for such cocycle.

Lemma 10. For the above cocycle γ there exists a variety Y such that the
following conditions hold:

(1) Y is a smooth projective variety.
(2) The Euler characteristic χ(Y ) equals to 1.
(3) For every point (not necessary closed) y ∈ Y the cocycle γk(y) is a

coboundary.

Proof. Note that G is split semisimple group and we can twist it with γ as
well. The last condition is equivalent to the condition that for every point
y ∈ Y the group (Gγ)k(y) is split. Consider

Y = (G/B)γ.

We claim that for the Borel subgroup B ⊂ G the variety

YF = ((G/B)γ)F

has rational point if and only if Gγ splits over F . The existence of a rational
point on this variety is equivalent to the existence of a Borel subgroup defined
over F , which is the stabilizer ot this point, in (Gγ)F . The existence of Borel
subgroup means that group is quasi-split that in our case is equivalent to be
split, since we work with inner form.
Y = (G/B)γ is clearly a smooth projective variety. In order to compute the

Euler characteristic χ(G/B) it can be shown [Ja, Proposition 4.5] that

hi(OG/B) =

{
0, if i > 0;

1, if i = 0.

so we get the claim. �
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The idea lying behind the calculation of K-theory of twisted form is quite
simple: one needs to construct some candidate for the K-theory and a mor-
phism such that they will produce the correct answer and an isomorphism in
the split case. The isomorphism in the split case is written by means of some
vector bundles Vi, so in general we want to twist them. And here is the prob-
lem – there is no action of G on them since the center could act non-trivially.
In order to get over that we should tensor Vi with some bundles to trivial-
ize the center action, and then for cancellation of this tensoring we should
look at modules over the endomorphisms of the excessive factors. Twisting
these endomorphisms algebras we get the separable algebras which produce
the answer.

Definition 7. Let VG(λ) be a representation of G then we denote

A(λ) = Endk(VG(λ)) = VG(λ)⊗ V ∗
G(λ)

the endomorphism algebra of the underlying vector space. There is an obvious
G action on A(λ) which extends to the G action, so we can twist this algebra
and get the separable algebra A(λ)γ. Also one can pass to the corresponding
trivial sheaf of algebras A(λ)γ over Xγ.

Now we fix λi from theorem 2 and the corresponding A(λi). Denote

W (λi) = VH(λi)⊗ VG(λi),

and the corresponding vector bundle W(λi). Note thatW (λi) is a right module
over A(λi) through the second factor and so W(λi) is. The center acts trivially
on W (λi) and W(λi) so one can obtain the twisted form W(λi)γ .

All the considered above structures are agreed, so now we have trivial sheafs
of separable algebras A(λi)γ and vector bundles W(λi)γ that are right A(λi)γ-
modules.

Definition 8. For a variety Z and a separable algebra A let P(Z,A) be the
category of coherent OZ⊗A-modules which are locally free OZ-modules. Then
we denote

K∗(Z,A) = K∗(P(Z,A)).

There is a corresponding notion of K ′
∗(Z,A) and it satisfies all the usual

properties of K-theory [M].

Proposition 3. Let Z be a variety such that every point z ∈ Z (not necessary
closed) splits γ, i.e. γk(z) is a coboundary. Then in the above notation one has
an isomorphism

r∑
i=1

φi :
r⊕
i=1

K ′
∗(Z,A(λi)γ) // K ′

∗(Xγ × Z),

where
φi(U) = p∗X(W(λi)γ)⊗A(λi)γ p

∗
Z(U).

Proof. This is proved by induction on the variety dimension.
Suppose first that dimZ = 0, i.e. Z is a point, then we are in fact in the

split case. Let F = k(Z), so we have

Xγ × Z = XF , (A(λi)γ)F = A(λi)F = EndF (VG(λi)⊗ F ),
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(W(λi)γ)F = W(λi)F = VH(λi)⊗ V∗
G(λi)⊗ F.

Since every module over EndF (VG(λi)⊗F ) is isomorphic to VG(λi)⊗F n and

V ∗
G(λi)⊗ F ⊗EndF (VG(λi)⊗F ) VG(λi)⊗ F ∼= F,

one has

φi(VG(λi)⊗ F n) = VH(λi)⊗ V∗
G(λi)⊗ F ⊗EndF (VG(λi)⊗F ) VG(λi)⊗ F n =

= VH(λi)⊗ F n.

The above considerations show that we are in the setting of theorem 3 claiming∑
φi to be an isomorphism.
For the dimension greater then 0 we can write the localization sequence for

all subvarieties Z ′ ⊂ Z of codimension one, so for F = k(Z) one has

lim
−→
Z′⊂Z

r⊕
i=1

K ′
∗(Z

′, A(λi)γ) //

��

r⊕
i=1

K ′
∗(Z,A(λi)γ) //

∑
φi

��

r⊕
i=1

K ′
∗(SpecF,A(λi)γ)

��
lim
−→
Z′⊂Z

K ′
∗(Xγ × Z ′) // K ′

∗(Xγ × Z) // K ′
∗(Xγ × SpecF )

This sequence extends to the right and to the left with the shifts in K-theory,
and both the side vertical morpisms in each triple are isomorphisms by in-
duction, so using the five lemma one concludes that the middle one is an
isomorphism. �

Corollary 2. In the notation of proposition 3 for the smooth Z one has

r∑
i=1

φi :
r⊕
i=1

K∗(Z,A(λi)γ) // K∗(Xγ × Z).

Proof. One has K∗(Z,A) = K ′
∗(Z,A) and K∗(Xγ × Z) = K ′

∗(Xγ × Z). �

Theorem 4. In the above notation there is an isomorphism

r∑
i=1

ψi :
r⊕
i=1

K∗(A(λi)γ) // K∗(Xγ),

where

ψi(U) = W(λi)γ ⊗A(λi)γ U.

Proof. We can insert two copies of our morphism into the following diagram
with the middle arrow from corollary 2 and Y being the splitting variety
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constructed in lemma 10.

r⊕
i=1

K∗(A(λi)γ)

p∗

''NNNNNNNNNNN

χ(Y )·

��

∑
ψi // K∗(Xγ)

p∗

zzvvvvvvvvvvvvvv

χ(Y )·

��

r⊕
i=1

K∗(Y,A(λi)γ)
∑
φi //

p∗

wwppppppppppp

K∗(Xγ × Y )

p∗

$$HHHHHHHHHHHHHH

r⊕
i=1

K∗(A(λi)γ)
∑
ψi // K∗(Xγ)

A direct verification shows that the diagram is commutative. The vertical
morphisms are just multiplications by χ(Y ) = 1 since they are equal to the
composition p∗p

∗ with p being a projection from Y to a point. The above
yields that our morphism

∑
ψi is a retraction of an isomorphism

∑
φi hence

is an isomorphism itself. �

Remark 8. It can be shown [P1] that K∗(A(λi)) depends only on the Z(G)
action on VG(λi). The explicit description of the arising algebras could be
found in [Ti].

9. Examples.

9.1. Twisted flag variety. K-theory of twisted flag varieties was computed
in [P1] and our computation gives the same description for the inner forms.
Flag variety is a homogeneus variety G/P with split semisimple G and par-
abolic P ⊂ G, and this definition includes projective spaces, flag varieties in
usual sense (for G = SLn), split projective quadrics, etc.

There is a decomposition P = LU into the semidirect product of Levi
subgroup and unipotent radical of P hence there is a morphism

G/L // G/P

with the fiber U . Over the extinguished point P acts on U by

lpup · u = lpupul
−1
p ,

so one has the representation of P on the Lie algebra of U , and G/L is the
corresponding vector bundle.

Levi subgroup is a reductive subgroup of maximal rank hence theorem 4
gives an explicit answer for the K∗(G/L) and by the homotopy invariance
of K-theory this is an answer for K∗(G/P ). Note that the center Z(G) acts
trivially on the above bundle so one can twist it and get a new vector bundle

(G/L)γ // (G/P )γ,

hence K-theory for the inner form of a flag variety could be computed by our
method as well.
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9.2. Even dimensional affine quadric. This case corresponds to the in-
clusion SO2n ⊂ SO2n+1 and for the root systems it is Dn ⊂ Bn.

First of all we pass to the simply connected group,

Spin2n+1/Spin2n = SO2n+1/SO2n.

One has [W (Bn) : W (Dn)] = 2 so there are two elements in the basis. First
element V (λ1) as usual corresponds to the trivial representation of Spin2n and
as the second we can take one of the half-spin representations V (ωn−1), V (ωn),
since the algorithm from theorem 2 suggestes one of the fundamental weights
having the orbit consisting of two points.

After twisting with γ we get a quadric X(q) defined by a quadratic form
q, then the algebra A(λ2)γ = C0(q) is the even Clifford algebra for the form q
[Ti]. Hence one has

K∗(X(q)) = K∗(k)⊕K∗(C0(q)).

This answer coincides with the one obtained in [Sw].

9.3. Quaternionic projective space. We consider

HP n = Sp2n+2/(Sp2 × Sp2n)

as an algebraic model for the quaternionic projective space. The motivation
comes from the fact that HP n(C) is homotopy equivalent to the usual quater-
nionic projective space HPn. An extensive treatment of the quaternionic flag
varieties including the simplest case of projective spaces one can find in [PW].

The root systems in this case are C1 + Cn ⊂ Cn+1, so basis consists of

[W (Cn+1) : (W (C1)×W (Cn))] = n + 1

elements. We have dealt with this case in section 5.3 and the basis consists
of ΛiW for regular representation W of Sp2n. The center acts trivially on the
even degrees and nontrivially on the odd ones, so one has

K∗(HP
n
γ ) = K∗(k)

⌈n+1

2
⌉ ⊕K∗(A(λ1)γ)

⌊n+1

2
⌋.

In the split case it reduces to K∗(HP
n) = K∗(k)

n+1, and it agrees with the
result obtained in [PW].

9.4. Zero characteristic. In this case we can treat non-reductive groups.
When char k = 0 one has the Levi decomposition G = LGUG of group G into
the semidirect product of some reductive subgroup and the unipotent radical
[Mc], which in general fails in the positive characteristic. Also in this case the
unipotent radical UG splits, i.e. it has a filtration with vector factors [KMT] so
the underlying variety is An, which also can fail over nonperfect fields. Hence
for the connected split groups of the same rank H ⊂ G one has the following
triangle.

G/LH
p1 //

p2
��

G/H

LG/LH

The fibres of p1 and p2 are isomorphic to UG and UH respectively and both
are affine spaces. One can show that both the projections define some vector
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bundles with the trivial action of the center Z(LG), so one can twist with
LG/Z(LG)-cocycle γ and from the homotopy invariance obtain that

K∗((G/H)γ) = K∗((LG/LH)γ).

The last one could be computed using the methods introduced in this paper.

9.5. Octonionic projective plain. It could be shown [Ba] that

OP2 ∼= G(F4)/Spin(9),

where G(F4) stands for the compact form of the simple algebraic group with
the root system F4. We consider as an algebraic model

OP 2 = G(F4)/Spin9

with split G(F4). It corresponds to the root systems B4 ⊂ F4 treated in section
5.2. One has

[W (F4) : W (B4)] = 3,

and the corresponding representations for Spin9 are k, V (ω3), V (ω4), i.e. the
trivial one, 84-dimensional Λ3W and 16-dimensional spinor representation.
Since the center of G(F4) is trivial the twisting does not produce interesting
algebras, though it changes the variety. Hence one has

K∗(OP
2
γ ) = K∗(k)⊕K∗(k)⊕K∗(k).
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