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Abstract. In the present paper we provide a uniform bound for the annihi-
lators of the torsion of the Chow groups of the variety of Borel subgroups of a
strongly inner linear algebraic group of orthogonal type.

1. Introduction

Let X be the variety of Borel subgroups of a semisimple linear algebraic group G
over an arbitrary field k. One way to study the geometry of X is to study its Chow
groups CHd(X) of algebraic cycles modulo the rational equivalence relation. Simple
transfer arguments together with the Bruhat-Tits decomposition imply that the
Chow groups CHd(X ;Q) with rational coeffcients of any variety of Borel subgroups

X can be identified with CHd(G/B;Q) for some split G. Since CHd(G/B) is a free
Abelian group of rank equal to the number of cells of codimension d in G/B, the

problem of determining CHd(X) is reduced to determining its torsion part.
The latter seems to be a highly nontrivial question. Only very few partial results

are known and most of them concern small codimensions (d ≤ 4) or the dimension-
zero cases: for strongly inner groups and d = 2, 3 we refer to [15], [4] and for d = 4
to [1]; for inner groups of type A and d = 2 see [8]; for quadrics and d = 2, 3, 4 see
[9], [10]. In particular, in [10] it was shown that the torsion of CH4 can be infinitely
generated.

In the present paper we provide a uniform bound for the annihilator of the
torsion of CHd(X) for any d and strongly inner orthogonal group G. Namely, we
prove the following:

1.1. Theorem. Let G be a strongly inner group of an orthogonal type of rank n
over a field of characteristic different from 2. Let X be the respective variety of
Borel subgroups. Then for all 2 ≤ d ≤ n− 1 the integer

Md = (d− 1)!

d
∏

i=2

(i− 1)! · [i/2]! · 2i+1

annihilates the torsion part of CHd(X).

We would like to stress that our bound Md doesn’t depend on the rank n of G
but only on the codimension d. Note also that for groups of types A and C there are
no non-split strongly inner forms, so the torsion part of CHd(X) is trivial. Hence,
the only interesting case to consider (of groups that form an infinite series) is the
orthogonal case.

The only estimate for the annihilator of the torsion of CHd(X) known in the
literature is given by the torsion index of G (see [5]). For strongly inner orthogonal
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groups, i.e. for Spin groups, it was computed in [16, Thm.01] and has the property
that tG → ∞ as the rank of G grows.

The paper is organized as follows. In sections 2 and 3 we prove several technical
facts (Proposition 2.9 and Corollary 3.4) concerning the ideals of generalized invari-
ants and symmetric functions. These facts are used in section 4 to relate the kernel
of the characteristic map with the ideal of invariants (Propositions 4.5 and 4.7).
In section 5 we extend the results of the paper [1] by providing a uniform upper
bound for all the exponents of the Weyl group action (Proposition 5.6). In the last
section we combine the obtained results to prove the main theorem (Theorem 6.1).

2. Divided differences and ideals of invariants

In the present section we provide several basic facts concerning the ring of sym-
metric polynomials over an arbitrary commutative ring and the associated invariant
ideals. We refer to [7] and [11] for details.

2.1. Consider a polynomial ring R = A[e1, . . . , en] over a commutative ring A.
The symmetric group Sn acts on R by permutations of variables {e1, . . . , en}. The
subring of invariants RSn is a polynomial ring in elementary symmetric functions
[17, Thm. 1, 2]

s1 = e1 + . . .+ en, s2 =
∑

i<j

eiej, s3 =
∑

i<j<k

eiejek, . . . , sn =

n
∏

i=1

ei.

Let J = (s1, s2, . . . , sn) denote the ideal of R generated by symmetric functions.
We denote by ǫ : R → A the augmentation map ei 7→ 0. Observe that ǫ restricts to
ǫ : RSn → A.

2.2. Following [7, §0] consider divided difference operators ∆σ, σ ∈ Sn. Each of
them is an A-linear operator ∆σ : R

(m) → R(m−l(σ)) decreasing the degree m of a
homogeneous polynomial in e1, . . . , en by the length l(σ) of permutation σ. It is
defined as follows:

We set ∆1 = id. If m < l(σ), then we set ∆σ = 0. For a (non-trivial) transpo-
sition τ = (ij), we set ∆τ (f) = (f − f τ )/(ei − ej) for f ∈ R(m), m ≥ 1. If σ is a
product of transpositions, we define ∆σ to be the composite of the respective ∆τ .
This doesn’t depend on the choice of a reduced decomposition of σ. Observe that
if s is a symmetric function, then

∆σ(s · f) = s ·∆σ(f).

By definition we have

RSn = {f ∈ R | ∆τ (f) = 0 for all non-trivial transpositions τ}.

2.3. Definition. Following [7, p.239] we define the ideal of generalized invariants
I as

I = {f ∈ R | ∆σ(f) = 0 ∀σ ∈ Sn with l(σ) = deg(f)}.

2.4. Lemma. We have J ⊆ I.

Proof. Follows from the fact that ∆σ(s · f) = s ·∆σ(f) = 0 for any s · f ∈ J (m) and
l(σ) = m. �
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2.5. Definition. Following [11, §1] we define the ideal of stable invariants J∞
inductively as:

Set R1 := R and Rm+1 := Rm⊗RSn
m

A for m ≥ 1, where A is the RSn
m -module via

the augmentation ǫ. Observe that Sn acts on Rm+1 via the action on Rm and there
is a canonical Sn-equivariant surjection Rm → Rm+1. Let Jm denote the kernel of
the composite R1 → . . . → Rm → Rm+1, i.e. Rm+1 = R/Jm. We then set

J∞ :=
⋃

m≥1

Jm.

2.6. Remark. The ideal Jm can be also defined inductively as follows:

Jm =

{

(0) if m = 0,
{f ∈ R | ∆σ(f) ∈ Jm−1, ∀σ ∈ Sn} if m ≥ 1.

2.7. Lemma. (cf. [11, Lemma 3.2]) We have I ⊆ J∞.

Proof. We show by induction on m that I(m) ⊆ Jm.
If m = 1 and f ∈ I(1), then ∆τ (f) = 0 for all τ 6= 1, implies that f ∈ RSn ∩ker ǫ.

Therefore, f ∈ J1.
Suppose that I(m) ⊆ Jm. Form+1 and f ∈ I(m+1), if ∆σ(f) = 0 for any reduced

decomposition σ = τ1τ2 . . . τm+1, then ∆τ1...τm∆τm+1(f) = 0. So by induction

∆τm+1(f) ∈ I(m) ⊆ Jm and, therefore, ∆τ (f) ∈ Jm for all τ 6= 1. By the remark
above, f ∈ Jm+1. �

The ideal J∞ is universal in the following sense

2.8. Lemma. (cf. [11, Lemma 2.1]) Let J ′ ⊂ R be an Sn-stable ideal with ǫ(J ′) = 0.
If (R/J ′)Sn = A, then J∞ ⊆ J ′.

Proof. We prove Jm ⊂ J ′ by induction on m. If m = 1, since (R/J ′)Sn = A, the

compositions RSn →֒ R → R/J ′ and RSn
ǫ
→ A →֒ R/J ′ coincide, hence, there is a

map R/J1 = R⊗RSn A → R/J ′, which shows that J1 ⊂ J ′.
Now assume that Jm ⊂ J ′. Repeating the above arguments after replacing R

(resp. J ′) by Rm = R/Jm (resp. by the ideal J ′
m = (J ′) in Rm), we see that

Jm+1 ⊂ J . This finishes the proof. �

2.9. Proposition. We have J = I = J∞ in the polynomial ring R = A[e1, . . . , en].

Proof. Since RSn = A⊗ Z[e1, . . . , en]
Sn , (R/J)Sn = A. Therefore, by Lemma 2.8,

J∞ ⊆ J . The proposition then follows by combining Lemmas 2.4 and 2.7. �

3. Elementary symmetric functions and power sums

In the present section we prove several technical lemmas which will be used in
the subsequent section.

Let α = (α1, ..., αm) denote a partition with 1 ≤ α1 ≤ α2 ≤ . . . ≤ αm of an
integer |α| = α1 + . . . + αm. We set |(0)| = 0. Let sα =

∏m
i=1 sαi denote the

product of respective elementary symmetric functions (here s0 = 1).

3.1. Lemma. Consider a homogeneous polynomial of degree d ≤ n with integer
coefficients

Pm =
∑

{α | d−m≤|α|≤d}

fαsα, where 0 ≤ m < d and deg(fα) = d− |α|.
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If M | Pm for some positive integer M , then for each α there exists a homogeneous
polynomial vα of degree d− |α| such that

∑

{α | d−m≤|α|≤d}

vαsα = 0 and M | (fα + vα).

Proof. We proceed by induction on m ≥ 0.
If m = 0, then P0 =

∑

|α|=d f
αsα, f

α ∈ Z. If M | P0, then M | fα for each α as

{sα}|α|=d are linearly independent in A[e1, . . . , en] for A = Z/MZ. So we can take
vα = 0 for each α.

Assume it is true for m− 1, m ≥ 1. Now we prove it for m. We use β to denote
those partitions α with |α| = d −m. Observe that deg(fβ) = m. Apply to Pm a
divided difference operator ∆ of length m, we obtain:

M | ∆(Pm) =
∑

β

∆(fβ)sβ , where ∆(fβ) ∈ Z.

Similar to m = 0 case this implies that M | ∆(fβ) for every ∆ of length m. By
Definition 2.3 this means that fβ ∈ I, where I is the ideal of generalized invariants
for A = Z/MZ. By Proposition 2.9 we have J = I and, therefore,

fβ ≡

m
∑

j=1

gβm−jsj mod M for some polynomials gβm−j of degree m− j.

Plugging it into the original expression for Pm, we obtain

Pm ≡
∑

{α|d−m+1≤|α|≤d}

(fα + g
β(α)
d−|α|)sα ≡ 0 mod M,

where β(α) is the unique β such that sα = s|α|−|β(α)|sβ(α). By induction, for each
α such that d−m+ 1 ≤ |α| there exists a polynomial vα such that

∑

{α|d−m+1≤|α|≤d}

vαsα = 0 and M | (fα + g
β(α)
d−|α| + vα).

Now we set ṽβ = −
∑m

j=1 g
β
m−jsj and ṽα = g

β(α)
d−|α| + vα for |α| ≥ d − m + 1.

Then
∑

d−m≤|α|≤d ṽ
αsα = 0. So these ṽα satisfy the condition of the lemma. This

finishes the proof. �

3.2. Let qi = ei1 + ei2 + . . .+ ein, i ≥ 1 denote the power sum symmetric function.
Given a partition α = (α1, . . . , αm), let qα =

∏m
i=1 qαi denote the product of

respective power sum functions.
According to [12, Ch I. 2.11] the elementary symmetric function si can be written

in terms of qj , j ≤ m as si = 1
i!

∑

|α|=i aαqα, aα ∈ Z. Since i! = max∑
ij=i

{ij!}, we

have

sα =
1

|α|!

∑

{β, |β|=|α|}

aα,βqβ for some aα,β ∈ Z.

Multiplying by the respective denominators we obtain the following version of
Lemma 3.1 for power sum functions:

3.3. Corollary. Assume that 1 ≤ d ≤ n and d! | M . Consider a homogeneous

polynomial P =
∑d

i=1 fd−iqi of degree d with integer coefficients (deg(fd−i) = d−i).
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If M | P , then there exist f̂d−i, i = 1 . . . d such that

d
∑

i=1

f̂d−iqi = P and M
d! | f̂d−i.

Proof. Let qi =
∑

|α|=i cαsα, cα ∈ Z, so we get M | P =
∑

|α|≥1 cαfd−|α|sα. By

Lemma 3.1 there exist vα with P =
∑

(cαfd−|α| + vα)sα and (cαfd−|α| + vα) all
divisible by M . Expressing sα in terms of qβ using the formula from 3.2 we obtain

P = 1
d!

∑

α

(cαfd−|α| + vα)
∑

β

aα,βqβ = 1
d!

d
∑

i=1

f̃d−iqi for some f̃d−i.

Now all these f̃d−i are integral polynomials in cαfd−|α|+vα and, hence, are divisible

by M . Therefore, f̂d−i
def
= 1

d! f̃d−i is divisible by M
d! . �

Restricting to power sums of even degree only we obtain

3.4. Corollary. Assume that 1 ≤ d ≤ 2n + 1 and let [d/2]! | M . Consider a

homogeneous polynomial P =
∑[d/2]

i=1 fd−2iq2i of degree d with integer coefficients.

If M | P , then there exist f̂d−2i, i = 1, . . . , [d/2] such that

[d/2]
∑

i=1

f̂d−2iq2i = P and M
[d/2]! | f̂d−2i.

Proof. For each i we express fd−2i as a linear combination

fd−2i =
∑

δ

eδf δ
d−2i,

where δ = (δ1, . . . , δn) with δi = 0, 1, eδ =
∏n

i=1 e
δi
i and f δ

d−2i is a linear combi-

nation of even monomials e2i11 e2i22 . . . e2inn only. Denote |δ| =
∑

δj . Collecting the
terms with eδ we obtain

P =
∑

δ

eδ
[d/2]
∑

i=1

f δ
d−2iq2i ≡ 0 mod M.

This implies that M |
∑[d/2]

i=1 f δ
d−2iq2i for each δ. We apply Corollary 3.3 to the

polynomial Pδ =
∑[d/2]

i=1 f δ
d−2iq2i viewed as a polynomial in variables e2j of degree

dδ =
d−|δ|

2 . We obtain polynomials f̂ δ
d−2i divisible by

M
dδ!

such that
∑[d/2]

i=1 f δ
d−2iq2i =

∑[d/2]
i=1 f̂ δ

d−2iq2i.
We then set

f̂d−2i =
∑

δ

eδf̂ δ
d−2i.

Since dδ! | [d/2]! for all δ, the proof is finished. �

4. Invariants and characteristic map

In the present section we investigate the relationships between the kernel of the
characteristic map and the ideal of invariants. We refer to [2] for basic definitions
and details.
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4.1. Consider a crystallographic root system of Dynkin type D with the weight
lattice Λ. Let G be the associated split simple simply-connected linear algebraic
group with a maximal torus T and a Borel subgroup B ⊃ T . Observe that Λ can be
identified with the group of characters of T with a basis given by the fundamental
weights ω1, . . . , ωn.

Consider the variety G/B of Borel subgroups of G (conjugate to B). To every
character λ ∈ Λ we may associate the line bundle L(λ) over G/B. It induces the
ring homomorphism from the symmetric algebra S∗(Λ) to the Chow ring of G/B
called the characteristic map [2, §8]

ca : S
∗(Λ) → CH∗(G/B), λ 7→ c1(L(λ)).

4.2. The Weyl group W of G acts on the weight lattice Λ by means of simple re-
flections and, hence, on S∗(Λ). Let IWa denote the ideal generated by non-constant
W -invariants. According to [2, §4 Cor. 2] the kernel of the characteristic map ker ca
is generated by elements of S∗(Λ) such that their multiples are in IWa . Moreover,
for each homogeneous degree d there exists an integer bd such that the prime de-
composition of bd consists only of torsion primes of G and

bd · (ker ca)
(d) ⊆ (IWa )(d).

The ideal (ker ca)⊗Z[ 1
tG
] = IWa ⊗Z[ 1

tG
], where tG is the torsion index of G, is freely

generated by the basic polynomial invariants which are homogeneous polynomials
in fundamental weights.

The purpose of the present section is to get an upper bound for the integers bd.

4.3. Example. For the type D = An there are no torsion primes (the torsion index
is 1). This implies that bd = 1 for all d and the characteristic map ca is surjective
with the kernel ker ca = IWa .

4.4. Example. According to [6] the basic polynomial invariants for the root system
of type D = Bn are given by even power sums

q2i =

n
∑

j=1

e2ij , 1 ≤ i ≤ n,

where e1 = ω1, ej = ωj − ωj−1 for 2 ≤ j < n and en = 2ωn − ωn−1. Therefore,

q2i = ω2i
1 + (ω2 − ω1)

2i + ...+ (ωn−1 − ωn−2)
2i + (2ωn − ωn−1)

2i.

The basic polynomial invariants for type Dn are given by q2i, 1 ≤ i ≤ n − 1
and pn = e1e2 . . . en, where e1 = ω1, ej = ωj − ωj−1 for 2 ≤ j ≤ n − 1 and
en−1 = ωn − ωn−1, en = ωn + ωn−1 − ωn−2.

From now on we assume that D = Bn. In this case the torsion index of G is a
power of 2.

4.5. Proposition. Let D = Bn and let 1 ≤ d ≤ 2n+1. Then 2d[d/2]! · (ker ca)
(d) ⊂

IWa , i.e. bd | 2d[d/2]!.

Proof. Since (ker ca) ⊗ Z[ 12 ] = IWa ⊗ Z[ 12 ] is generated by q2i, i = 1, ..., n, given a

polynomial f ∈ (ker ca)
(d), we can write it as

2rf =

[d/2]
∑

i=1

fd−2iq2i ∈ IWa , for some fd−2i ∈ Z[ω1, ..., ωn] and r ≥ 0.
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Suppose r is the smallest such integer. To finish the proof it suffices to show that
r ≤ v2([d/2]!) + d, where v2 denotes the 2-adic valuation.

Assume the contrary, i.e. that r ≥ v2([d/2]!) + d + 1. Expressing ωj ’s in terms

of ej’s, we obtain f = 1
2d f̃ and fd−2i =

1
2d−2i f̃d−2i for some f̃ , f̃d−2i ∈ Z[e1, ..., en].

So that

M = 2d+1[d/2]! | 2rs · f̃ =

[d/2]
∑

i=1

(22isf̃d−2i) · q2i, where s = [d/2]!

2v2([d/2]!) .

By Corollary 3.4, there exists h̃d−2i ∈ Z[e1, ..., en] divisible by M
[d/2]! = 2d+1 such

that 2rs · f̃ =
∑[d/2]

i=1 h̃d−2iq2i. Expressing ej ’s in terms of ωj’s back, we obtain

2d2rs · f =
∑[d/2]

i=1 h̃d−2iq2i, which implies

2r−1f =

[d/2]
∑

i=1

(

1
2d+1 h̃d−2i −

s−1
2 fd−2i

)

· q2i.

Since h̃d−2i are divisible by 2d+1, we have 1
2d+1 h̃d−2i ∈ Z[ω1, ..., ωn]. This contra-

dicts to the minimality assumption on r. �

Assume now that D = Dn. In this case we have an additional basic polynomial
invarant pn in degree n, however, this doesn’t change the situation much in view of
the following slight modifications of Corollaries 3.3 and 3.4:

4.6. Lemma. Assume d ≥ n and n! | M . If M |
∑n

i=1 fd−iqi + gd−npn, then there

exists vd−i and ud−n such that
∑n

i=1 vd−iqi + ud−npn = 0 and M
n! | g.c.d.(fd−i +

vd−i, gd−n + ud−n).
If M |

∑n
i=1 fd−2iq2i+gd−npn, then we can find vd−2i, ud−n such that

∑n
i=1 vd−2iq2i+

ud−npn = 0 and M
n! | g.c.d.(fd−2i + vd−2i, gd−n + ud−n).

Proof. The proof of the first statement follows by the same arguments as the proof
of Corollary 3.3. As for the second, multiplying by pn we obtain

M |

n
∑

i=1

f̃d+n−2iq2i + gd−np
2
n.

Following the proof of 3.4 we can rewrite this as

M |
∑

δ

eδ(
n
∑

i=1

f̃ δ
d+n−2iq2i + gδd−np

2
n)

and reduce it to the first statement (replacing e′j = e2j). �

4.7. Proposition. Let D = Dn. If d < n, then 2d[d/2]! ·(ker ca)
(d) ⊂ IWa . If d ≥ n,

then

2dn! · (ker ca)
(d) ⊂ IWa .

Proof. If d < n, then it is similar to the Bn-case. If d ≥ n, consider the equation

2rf =

n
∑

i=1

fd−2iq2i + gd−npn ∈ IWa .

Following the proof of Proposition 4.5 and using Lemma 4.6 we show that the
smallest 2r satisfying the equation will divide 2dn!. �
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5. Exponents of types Bn and Dn

Following the notation of [1] let Im := ker(Z[Λ] → Z) and Ia := ker(S∗(Λ) → Z)
be the augmentation ideals, where Z[Λ] → Z (respectively, S∗(Λ) → Z) is the map
sending eλ to 1 (respectively, any element of positive degree to 0). For any d ≥ 0,
we consider the ring homomorphism

φ(d) : Z[Λ] → Z[Λ]/Id+1
m → S∗(Λ)/Id+1

a → Sd(Λ),

where the first and the last maps are projections and the middle map sends e
∑n

i=1 aiωi

to
∏n

i=1(1 − ωi)
−ai . The dth-exponent of a root system (denoted by τd), as intro-

duced in [1], is the gcd of all nonnegative integers Nd satisfying

Nd · (I
W
a )(d) ⊆ φ(d)(IWm ),

where IWm := 〈Z[Λ]W ∩ Im〉 (respectively, IWa := 〈S∗(Λ)W ∩ Ia〉) denotes the W -
invariant augmentation ideal of Z[Λ] (respectively, S∗(Λ)). For any d ≤ 4, it was
shown that the dth-exponent divides the Dynkin index in [1].

In this section we show that all the remaining exponents of types Bn and Dn

divide the Dynkin index 2.

5.1. For any λ ∈ Λ, we denote by W (λ) the W -orbit of λ. For any finite set S of
weights, we denote −S the set of opposite weights. By the action of Weyl groups
of types Bn and Dn, one has the following decomposition of W -orbits: if D = Bn

(respectively, D = Dn), then for any 1 ≤ k ≤ n− 1 (respectively, 1 ≤ k ≤ n− 2)

(5.0.1) W (ωk) = W+(ωk) ∪ −W+(ωk),

where W+(ωk) = {ei1 ± · · · ± eik}i1<···<ik . If n is even, then the W -orbits of the
last two fundamental weights of Dn are given by

(5.0.2) W (ωn−1) = W+(ωn−1)∪−W+(ωn−1) and W (ωn) = W+(ωn)∪−W+(ωn),

where W+(ωn−1) (respectively, W+(ωn)) is the subset of W (ωn−1) (respectively,
W (ωn)) containing elements of the positive sign of e1.

For any λ =
∑n

i=1 aiωi ∈ Λ and any integer m ≥ 0, we set λ(m) =
∑n

i=1 aiω
m
i .

We shall need the following lemma:

5.2. Lemma. Let p be a positive integer and m1, · · · ,mp nonnegative integers.
(i) If D = Bn (respectively, Dn), then for odd p and any 1 ≤ k ≤ n − 1

(respectively, any 1 ≤ k ≤ n− 2), we have
∑

λ∈W (ωk)

λ(m1) · · ·λ(mp) = 0.

(ii) Let D = Dn. Then we have
∑

λ∈W (ωn)

λ(m1) · · ·λ(mp) =
∑

λ∈W (ωn−1)

λ(m1) · · ·λ(mp) for odd n and even p,

∑

λ∈W (ωn)

λ(m1) · · ·λ(mp) =
∑

λ∈W (ωn−1)

λ(m1) · · ·λ(mp) = 0 for odd p < n.

Proof. (i) It follows from (5.0.1) that
∑

λ∈W (ωk)

λ(m1) · · ·λ(mp) =
∑

λ∈W+(ωk)

λ(m1) · · ·λ(mp) +
∑

λ∈−W+(ωk)

λ(m1) · · ·λ(mp)
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=
∑

λ∈W+(ωk)

λ(m1) · · ·λ(mp)−
∑

λ∈W+(ωk)

λ(m1) · · ·λ(mp) = 0.

(ii) If n is odd, then we have W (ωn) = −W (ωn−1). Hence, the result immediately
follows from the assumption that p is even. If n is even, then the result follows
from (5.0.2) by the same argument as in the proof of (i). �

Let p be an even integer and q ≥ 2 an integer. For any nonnegative integers
m1, · · · ,mp, we define

Λ(p, q)(m1, · · · ,mp) :=
∑

λj1(m1) · · ·λjp(mp),

where the sum ranges over all different λi1 , · · · , λiq ∈ W+(ω1) and all λi1 , · · · , λip ∈
{λi1 , · · · , λiq} such that the numbers of λi1 , · · · , λiq appearing in λi1 , · · · , λip are
all nonnegative even solutions of x1 + · · · + xq = p. If p < 2q, then we set
Λ(p, q)(m1, · · · ,mp) = 0. We simply write Λ(p, q) for Λ(p, q)(m1, · · · ,mp). For
instance, Λ(4, 2) is the sum of λj1(m1)λj2 (m2)λj3 (m3)λj4 (m4) for all j1, j2, j3, j4 ∈
{i, j} and all 1 ≤ i 6= j ≤ n such that two i’s and two j’s appear in j1, j2, j3, j4.

5.3. Lemma. If D = Bn (respectively, Dn), then for any 2 ≤ k ≤ n−1 (respectively,
2 ≤ k ≤ n− 2), any even p, and any nonnegative integers m1, · · ·mp we have

∑

W (ωk)

λ(m1) · · ·λ(mp) = 2k−1

(

n− 1

k − 1

)

∑

W (ω1)

λ(m1) · · ·λ(mp)+

k
∑

j=2

2k
(

n− j

k − j

)

Λ(p, j).

Proof. Let L be the LHS of the above equation. For any λ ∈ W (ω1), there are
2k
(

n−1
k−1

)

choices of the element containing λ in W (ωk), thus we have the term

2k−1
(

n−1
k−1

)
∑

W (ω1)
λ(m1) · · ·λ(mp) in L.

If an element λ ∈ W (ω1) appears odd times in a term λi1(m1) · · ·λip(mp) of L,
where λi1 , · · · , λip ∈ W (ω1), then by the action of Weyl group this term vanishes
in L. Hence, the remaining terms in L are linear combinations of Λ(p, j) for all

2 ≤ j ≤ k such that p ≥ 2k. As each term Λ(p, j) appears 2k
(

n−j
k−j

)

times in
∑

W (ωk)
λ(m1) · · ·λ(mp), the result follows. �

For any λ ∈ Λ, we denote by ρ(λ) the sum of all elements eµ ∈ Z[Λ] over
all elements µ of W (λ). By the recursive formulas in [1, Section 1], we can let
d! · φ(d)(eλ) = λd + Qd for any d ≥ 1, where Qd is the sum of remaining terms in
d! · φ(d)(eλ). Hence, for any fundamental weight ωk we have

(5.0.3) d! · φ(d)(ρ(ωk)) =
∑

W (ωk)

λd +
∑

W (ωk)

Qd.

We view d! · φ(d)(eλ) as a polynomial in variables λ, λ(m1), · · · , λ(mj) for some
nonnegative integers m1, · · · ,mj . Let Td be the sum of monomials in Qd whose
degrees are even.

If D = Bn (respectively, Dn), then by Lemma 5.2(i) the equation (5.0.3) reduces
to

(5.0.4) d! · φ(d)(ρ(ωk)) =
∑

W (ωk)

λd +
∑

W (ωk)

Td

for any 1 ≤ k ≤ n− 1 (respectively 1 ≤ k ≤ n− 2).
Given p and q, we define Ω(p, q) :=

∑

Λ(p, q)(m1, · · · ,mp), where the sum ranges
over all m1, · · · ,mp which appear in all monomials of Td.
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5.4. Example. If D = Bn (n ≥ 4) or Dn (n ≥ 5) and d = 6, then by (5.0.4) and
Lemma 5.3 we have

6!φ(6)(ρ(ω1)) =
∑

W (ω1)

λ6 +
∑

W (ω1)

T6,

6!φ(6)(ρ(ω2)) =
∑

W (ω2)

λ6 + 2(n− 1)
∑

W (ω1)

T6 + 4Ω(4, 2),

6!φ(6)(ρ(ω3)) =
∑

W (ω3)

λ6 + 4

(

n− 1

2

)

∑

W (ω1)

T6 + 8(n− 2)Ω(4, 2),

which implies that

φ(6)(ρ(ω3))− 2(n− 2)φ(6)(ρ(ω2)) + 2(n− 1)(n− 2)φ(6)(ρ(ω1)) =
∑

i<j<k

e2i e
2
je

2
k.

5.5. Lemma. Let D = Dn and let 1 ≤ p ≤ n − 1 and m1, · · · ,mp be nonnegative
integers. Then we have

∑

W (ωn)

λn −
∑

W (ωn−1)

λn = n!e1 · · · en and

∑

W (ωn)

λ(m1) · · ·λ(mp) =
∑

W (ωn−1)

λ(m1) · · ·λ(mp).

Proof. Let L be the LHS of the upper equation. First, assume that n ≥ 4 is even.
We show that

∑

W+(ωn)

λn −
∑

W+(ωn−1)

λn = (n!/2)e1 · · · en.

As |W+(ωn)| = |W+(ωn−1)| = 2n−2, we have

(n!/2n)2n−2e1 · · · en − (−(n!/2n)2n−2e1 · · · en) = (n!/2)e1 · · · en

in L. If one of the exponents i1, · · · , in in ei11 · · · einn (except the case i1 = · · · = in =
1) is odd, then from the orbits W+(ωn) and W+(ωn−1) this monomial vanishes in
each sum of

∑

W+(ωn)
λn −

∑

W+(ωn−1)
λn. Otherwise, the terms 2n−2

∑n
j=1 e

n
j ,

Λ(n, 2) · · · ,Λ(n, n/2) with m1 = · · · = mn = 1 are in both
∑

W+(ωn)
λn and

∑

W+(ωn−1)
λn.

Now, we assume that n ≥ 4 is odd. As |W (ωn)| = |W (ωn−1)| = 2n−1, we have

(n!/2n)2n−1e1 · · · en − (−(n!/2n)2n−1e1 · · · en) = n!e1 · · · en

in
∑

W (ωn)
λn −

∑

W (ωn−1)
λn. By the same argument, if one of the exponents

i1, · · · , in in ei11 · · · einn (except the case i1 = · · · = in = 1) is odd, then this monomial
vanishes in each sum of L. This completes the proof of the first equation.

By Lemma 5.2(ii), it is enough to consider the case where both n and p are
even. Let A =

∑

W+(ωn)
λ(m1) · · ·λ(mp) and B =

∑

W+(ωn−1)
λ(m1) · · ·λ(mp).

For any p and any n ≥ p + 2, we have C := 2n−2(
∑

W+(ω1)
λ(m1) · · ·λ(mp)) in

both A and B. By the action of Weyl group, any term λi1(m1) · · ·λip(mp) with
λij ∈ W (ω1) appearing odd times in either A−C or B−C vanishes. As each term
of Λ(p, 2), · · · ,Λ(p, p/2) appears in both A and B, this completes the proof. �
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5.6. Proposition. If D = Bn (respectively, Dn), then for any d ≥ 3 and any
n ≥ [d/2]+ 1 (respectively, n ≥ [d/2]+ 2) the exponent τd divides the Dynkin index
τ2 = 2.

Proof. As B2 = C2 and D3 = A3, we have 1 = τ3 | 2 by [1, Theorem 5.4]. If
D = Dn for any n ≥ 4, then by Lemma 5.5 we have

pn = φ(n)(ρ(ωn)) − φ(n)(ρ(ωn−1)),

which implies that the invariant pn is in the ideal generated by the image of φ(n).
As there are no invariants of odd degree except pn, we have

τ2d+1 | τ2d

for all d ≥ 1. Therefore, it suffices to show that τ2d | τ2 for any d ≥ 2.
By Lemma 5.3 together with the same argument as in Example 5.4 we have

(5.0.5) φ(2d)(ρ(ωd)) +

d−1
∑

j=1

ajφ
(2d)(ρ(ωd−j)) =

∑

j1<···<jd

e2j1 · · · e
2
jd ,

where the integers a1, · · · , ad−1 satisfy

(

d−2
∑

j=k

2j+1

(

n− 1− k

j − k

)

aj+1

)

+ 2d
(

n− 1− k

d− 1− k

)

= 0,

for 0 ≤ k ≤ d − 2. Let rd be the RHS of (5.0.5). Then this equation implies that
rd is in the image of φ(2d).

We show that the invariant q2d is in the ideal φ(2d)(IWm ) for any d ≥ 2. We
proceed by induction on d. By [1, Lemma 5.3], the case d = 2 is obvious. By
Newton’s identities we have

(5.0.6) (−1)d−1q2d = drd −

d−1
∑

j=1

(−1)j−1rd−jq2j .

By the induction hypothesis, the sum of (5.0.6) is in φ(2d)(IWm ). Hence, q2d is in
φ(2d)(IWm ). �

6. Annihilators of torsion of twisted spin-flags

In the present section we apply Propositions 4.5, 4.7, and 5.6 to prove the main
result of the paper:

6.1. Theorem. Let G be a split simple simply-connected linear algebraic group of
Dynkin type Bn (n ≥ 3) or Dn (n ≥ 4) over a field k of characteristic different
from 2, i.e. a Spin group. Let X = ξG/B be a twisted form of the variety of Borel
subgroups of G by means of a cocycle ξ ∈ Z1(k,G).

If G is of type Bn (resp. of type Dn), then for all 2 ≤ d ≤ 2n − 1 (resp.

2 ≤ d ≤ n− 1), the integer Md = (d − 1)!
∏d

i=2(i− 1)! · [i/2]! · 2i+1 annihilates the

torsion part of CHd(X), i.e.

Md · TorsCH
d(X) = 0.

6.2. Remark. Observe that since 2 is the only torsion prime of G we can replace
the integer Md by its 2-primary part. Note also that the integer Md depends only
on the codimension d but not on the rank n of G.
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Proof. We follow the arguments of section 6 of [1]. Following the proof of [1,
Thm. 6.5] and using Propositions 4.5, 4.7, and 5.6, we obtain that the integer
md = (d− 1)! · [d/2]! · 2d+1 annihilates the torsion of γd(G/B)/γd+1(G/B).

By [13, Thm.2.2.(2)] the restriction map K0(X) → K0(G/B) on Grothendieck’s
K0 is an isomorphism (here we identify K0(G/B) with the K0(X ×k k̄) over the
algebraic closure k̄). Since the characteristic classes commute with restrictions, this
induces an isomorphism between the respective γ-filtrations on X and on G/B and,
hence, between the respective quotients (see [1, p.12])

γd(X)/γd+1(X) ≃ γd(G/B)/γd+1(G/B) for every d ≥ 0.

This implies that md annihilates the torsion of γd(X)/γd+1(X). Finally, by the

proof of [1, Cor.6.8] we obtain that the torsion of CHd(X) is annihilated by the

product Md = (d− 1)!
∏d

i=2 mi. �

6.3. Remark. Using the motivic decomposition of [14] one immediately extends
this result to any generically split twisted form X = ξG/P , where P is a parabolic
subgroup of G. In particular, it holds for any maximal orthogonal Grassmannian
of a quadratic form with trivial discriminant and trivial Clifford invariant.
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