LARGE DEVIATIONS FOR PRODUCTS
OF EMPIRICAL MEASURES OF DEPENDENT SEQUENCES

PETER EICHELSBACHER AND UWE SCHMOCK

ABsTRACT. We prove large deviation principles (LDP) for m-fold products
of empirical measures and for U-empirical measures, where the underlying
sequence of random variables is a special Markov chain, an exchangeable se-
quence, a mixing sequence or an independent but not identically distributed
sequence. The LDP can be formulated on a subset of all probability measures,
endowed with a topology which is even finer than the usual 7-topology. The
advantage of this topology is that the map v +— fsm pdv is continuous even
for certain unbounded ¢. As a particular application we get large deviation
results for U-statistics and V-statistics based on dependent sequences. Fur-
thermore we prove a LDP for products of empirical processes in a topology,
which is finer than the projective limit T-topology.

1. INTRODUCTION

Let { X };en be a sequence of random variables on a probability space (9, A, P) with
1

Polish state space S. The empirical measure is defined by L, = >, dx,, where
. denotes the probability measure concentrated at z € S. Let M;(S) denote the
space of Borel probability measures on S.

Let us recall the definition of a large deviations principle (LDP). A sequence of
probability measures {u, }nen on a topological space X' equipped with o-field B is
said to satisfy the LDP with scale {e, }nen and good rate function I: X — [0, 0]
if ,, | 0, the level sets {z € X' | I(z) < a} are compact for all a € [0, 00), and the
lower bound

lim inf % log i (T) > —I(int(T"),

and the upper bound

lim sup % log i, (T') < —I(cl(T"))
hold for all T' € B, where int(I") and cl(I") denote the interior and closure of T,
respectively, and I(A) = inf,c 4 I(z) for A C X. Normaly we choose ¢, = 1/n. We
say that a sequence of random variables satisfies the LDP provided the sequence of
measures induced by these variables satisfies the LDP.

The LDP for the sequence of empirical measures {L, },cn has been studied in
several papers. In [9] and [10] exchangeable sequences {X;};en are considered and
M (S) is endowed with the weak topology and the Borel o-field associated with
weak convergence in M (S). There are a lot of results in case M;(5) is endowed
with the 7-topology, i.e. the coarsest topology that makes the maps M;(S) >
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v — [ ¢ f dv continuous for all f in the space B(S) of bounded, real-valued, S-
measurable functions on S. Here S denotes the Borel o-algebra on S. The LDP
has been shown to hold for a large class of Markov chains (see [2], [7], [8], [13] and
references therein) and for stationary processes satisfying strong mizing conditions
(see [4] and references therein).

The aim of this paper is to discuss the LDP for m-fold products of the empirical
measure and for U-empirical measures. In [15] we have discussed an LDP for a
sequence {X; };cn of independent, identically distributed random variables. For an
integer m > 2 we consider the set M1(S™) of probability measures on the product
space S™, equipped with the product o-algebra S®™. If M1(S) and M;(S™) are
endowed with their weak topologies, the LDP holds for {L2™}, cn, defined by

1
®m __
L’I’L - n—m . Z 6(X¢1,...,X¢m)i

whenever it holds for {L,},en. We only have to use the continuity of the map
v — v®™ with respect to the weak topologies and the contraction principle [7,
Theorem 4.2.1]. The 7-topology on M1(S™) is defined to be the one induced by
B(S™), the space of all bounded S®™-measurable functions on S™. Taking product
measures can be a discontinuous operation with respect to the T-topologies (see [7,
Exercise 7.3.18]). Moreover the following example (see also [15, Example 1.26])
illustrates, that we cannot expect a LDP to hold for {L®™},,cn for a sequence of
dependent {X;};en in general.

Example 1.1. Let the circle S = R/Z be equipped with the Borel o-algebra S
and let u denote the Lebesgue—Borel measure on (S, S). For every x € R define the
shift modulo 1 (or rotation) 6, on S by 0,(y) = z + ymod1 for all y € S. Using
these, define

2" 1
1
SBwHLn(w)ZQ—n Z 591,27”(0,) €M1(S), n € Ny.
i=0
Note that there is a heavy dependence between the 8,5-r» (w) for i € {0,...,2" —1}.
Since S is compact, it is easy to verify that {L,,(w)}nen, and {L,(w) ® L, (w) }nen,
converge weakly to p and p ® u, respectively, for every w € S. Moreover for every
¢ € L1(p, F) it holds that

u(nli_)n;o/scden:/Swdu> =1 (1.2)

(for a proof see [15, Example 1.26]). To show that the product measures {L, ®
L} nen, can go astray, we considered the S ® S-measurable set A = { (z,y) € S? |
x —y € Q}. By Fubini’s theorem, (1 ® p)(A) = 0. On the other hand, the support
of Lp(w) ® Lp(w), which is { (0;2-n(w),0j0-n(w)) | i, € {0,1,...,2" — 1} }, is
contained in A for every n € Ny and w € S. Therefore, the analogue of (1.2) for
product measures does not even hold for the § ® S-measurable indicator function
¢ = 14. Note that there does not exist a scale {e, }nen, With &, | 0 such that the
random measures {L,, } ,en, satisfy a large deviation upper bound of the form
limsupe, log u(L, € C) < — uuelg I(v)

for all 7-closed measurable C' C M;(S5), where I: My(S) — [0, 00| with I(x) =0
and I(v) = oo for v # pu is the rate function which governs the large deviations of
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{Ly}nen, with respect to the weak topology on every scale {e;, }nen, with &, | 0.
To substantiate this claim, in [15] we considered the set C' = {v € M;(S) | v(A) >
pn(A) +1/2}, where we construct the set A € S as follows: Choose a subsequence
{€n fren such that )7, -y en, < 1/2 and define A = J, .y Ak, where

2"k —1
Ap= | 127, (I + e, )27™).
1=0
Then p(Ag) = €n,, and p(A) <Y oy Enyp < 1/2 as well as Ly, (A) > Ly, (Ax) =1
on Ay for every k € N. Hence, as k — o0,

Eny, log w({ Ly, (A) > u(A) +1/2}) > &, log u(Ag) = ey, loge,, — 0.

Note that there are ergodic, stationary processes {X;}i;eny and bounded real-
valued functions ¢: S™ — R such that |, gm @ dL&™ does not satisfy the strong law
of large numbers, see [1]. This is a second reason that we cannot expect a LDP to
hold for {L%™},,cn for a sequence of dependent {X;};cn in general.

So the question is: which sequences {X; };en of dependent X; allow us to transfer
the LDP for {L, }nen to the LDP for { L™}, cn with respect to the 7-topology.

In this paper S is assumed to be Polish. Let ® be a set of S®"-measurable
functions ¢: S™ — R containing B(S™). Define

Mg (S™) = {V € My(S™) ‘ / lp| dv < oo for every ¢ € (ID}.

Let 7¢ denote the coarsest topology on Mg (S™) such that the map Mg (S™) 5 v +—
Jgm @ dv is continuous for every ¢ € ®. If ® = B(S™), then Mg(S™) = M (S™)
and 7¢ coincides with the usual 7-topology introduced above. The o-algebra on
M;(S™) is defined to be the smallest one such that the set Mg(S™) and all
the maps My(S™) > v — [, fdv with f € B(S™) are measurable. In this
topological setting, we will prove a LDP for {L&™},cn for processes obeying a
LDP for {L,}nen in the weak topological setting, if in addition special moment
conditions are fulfilled.

We consider the following condition for a sequence {R,}nen © Mj(M1(S™))
and for the class ®. For each n € N the inner measure of Mg (S™) with respect to
R,, should be 1.

Condition 1.3. There exist constants 3, M € [1,00) and a reference measure pu €
M1 (S™) such that the inequality

1/n
sup </ exp (n/ © dy) Rn(dy)) <M exp(By) du (1.4)
neN \J M, (5m) m gm
holds for all bounded measurable p: S™ — [0, 00).

Remark 1.5. If Condition 1.3 holds, then, by the monotone convergence theorem,
(1.4) also holds for every unbounded measurable ¢: S™ — [0, 00) with the same
constants and reference measure, but the right-hand side can be equal to infinity.

Condition 1.6. For every ¢ € ® and every a > 0,

/ exp(alel) dy < oo,

where p is the reference measure of Condition 1.3.
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Condition 1.7. For every ¢ € ® and every a > 0,

/ exp(alp o my|) dp < oo

for every map o: {1,...,m} — {1,...,m}, where ny: S™ — S™ is defined by
To(8) = (Sa(1)s+ - -+ S0(m)) for every s = (s1,...,5m,) € 8™, and p is the reference
measure of Condition 1.3.

Conditions 1.6 and 1.7 are satisfied in the case ® = B(S™), thus in the 7-
topological setting. We will see that Conditions 1.3 and 1.7 are handy to prove a
LDP in the 7¢-topology for the m-fold products LE™. In order to apply our results
to U-statistics we will prove a LDP for L*: QO — M;(S™) with n > m, which are

defined by
1

Ly = — Z 6(X¢1,...7Xim)7

n
(m) (Zlyalm)elmn

where 1, = ;n:_ol(n — k) and Ip,, C {1,...,n}™ contains all m-tuples with
pairwise different components. These L7 are called U-empirical measures of order
m. The LDP for these measures requires Conditions 1.3 and 1.6. Since L™ and
L™ take values in Mg (S™), these mappings are measurable with respect to the
introduced o-algebras.

Condition 1.3 presents the main tool to get the LDP for products we are inter-
ested in. If the condition is fulfilled and if { R, },cn satisfies a LDP with respect
to the weak topology on M;(S™), we can infer from [8, Lemma 3.2.19 and Theo-
rem 3.2.21], that {R,, }»en actually satisfies a LDP in the 7-topology on M;(S™).
We will prove, that under Conditions 1.3 and 1.6 (or 1.3 and 1.7), this approach
can be generalized to the 7g-topological setting.

Condition 1.3 describes the “amount of dependency” of the underlying process
under which a LDP for the laws of the empirical measures is preserved under
products in the strong topology introduced above. We observe that in general,
the conditions which guarantee the LDP for {L,},en are not sufficient for the
LDP for the products. We will analyze Markovian, exchangeable, strong mixing
and independent but not identically distributed sequences. In all these cases we
want to establish the crucial estimate (1.4). In some cases we are not able to
check this estimate for the law of L]'. Constructing a suitable modification of L]
and proving (1.4) therefore, the remaining part of the proof is to verify that these
modifications have a large deviation behavior like L.

In Section 2, we introduce our main tool: If { R, }nen C M1(M(S)) satisfies a
LDP in the weak topology with a rate function I, and if Condition 1.3 (m = 1) and
Condition 1.6 (m = 1) hold for the class ® introduced above, then the LDP holds in
the T¢-topology with the same rate function. Since with .S the product S™ is Polish,
we can apply this tool for ™ with m > 2, too. Moreover, Section 2 contains the
concept of exponential equivalence in the 7g-topology needed to transfer the LDP
for the above mentioned modifications to the LDP for L and L¥™ respectively. In
Section 3, (1.4) is verified for different dependent or independent but not identically
distributed processes {X;};en. Finally in Section 4, we derive from the results of
Section2 2 and 3 LDP results for U-statistics and V-statistics as well as LDP results
for products of empirical processes.
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2. TRANSFERRING LDP’S TO THE T¢-TOPOLOGY
AND EXPONENTIAL EQUIVALENCE

There are some non-trivial problems in transferring Lemma 3.2.19 and Theorem
3.2.21 in [8] to the Tg-topology. They are treated by using some technical results
of [15] combined with an application of Lusin’s theorem and the outline of the proof
of Lemma 3.2.19 in [8]. Let ® be a fixed set of S-measurable functions ¢: S — R
containing B(S) and define M4 (S) and the 7o-topology as in the introduction.
Then we get the following lemma:

Lemma 2.1. Assume that {R,}nen C M1(M1(S)) and for each n € N the inner
measure of Mg (S) with respect to R,, is 1. Assume that ® satisfies Conditions 1.3
and 1.6 with m = 1 and {R,}nen satisfies the LDP with rate function I, where
M (S) is endowed with the weak topology. Then:

(a) For every measurable B C M;j(S)

1
lim inf - log R, (B) > —I(int,,(B)),
where int,,(B) denotes the interior of the set BN Mg (S) with respect to the
T -topology.
(b) For every measurable B C M;(S5)

limsup ~ log Ry (B) < —I(clry(B)),
where cl,,(B) denotes the closure of the set B N Mg (S) with respect to the
T -topology.
(c) K, ={veMgs(S)|I(v) <r} C Ms(S) and K, is Te-compact for every
r € [0, 00).

Proof of Lemma 2.1(c). Using Condition 1.3, we get applying [8, Lemma 3.2.7 and
Lemma 3.2.19] that

H(v|p) < B(I(v) +1og(2M)), v e Mi(S), (2.2)

with 8, M and p as in (1.4). Here H denotes the relative entropy

flog fdu if v < pand f= 9,
H(umz{fj Z

otherwise.
Define K, = {v € My(S) | Hv|p) <1} for r € [0,00). Since Condition 1.6 holds,
K, C Mg(S) and K, is tg-compact by [15, Lemma 2.1(c)] for every r € [0, c0).

Sjnce I is lower semi-continuous in the weak topology, K, is 7¢-closed. Since K, C
Ka(rt10g201) Dy (2.2), the Tg-compactness of K, follows for every r € [0,00). O

Before we will prove (a) and (b) of Lemma 2.1, we prove an additional lemma.
We need some more notation. Let F denote the family of all finite, nonempty
subsets of ®. For every F € F define

M Ma(8) B by T1e() = ( [ pa)

peF
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Lemma 2.3. Assume the general hypotheses of Lemma 2.1. Then for every F € F
and every Borel set A of RY, we get

lim inf % log Ru({ v € Ma(S) | Ip(v) € A})
> —inf{I(v) | v e Mg(S), Ip(v) € A°}

and

lim sup % log Rn({v € Mo(S) | Tp(v) € A})

n—oo

< —inf{I(v) | v € Ma(S), IIp(v) € A},
where A° denotes the interior and A the closure of A.

Proof of Lemma 2.5. Forevery L € Nand ¢ € F define or = 1,/<1}®. According
to Lusin’s theorem and Tietze’s extension theorem there exists a bounded and
continuous function ¢$ such that |¢$| < L and u({|er —¢$| > 1/L}) < exp(—L?).
Denote by Ff = {¢}yer, then Ilpe € C(Mg(S),RF) for each L € N, where
C((Ms(S),RF) denotes the space of all continuous, Rf-valued measurable maps
on Mg (S). Let VL =3 cr [p—¢rl, then VL, | 0 pointwise for L — oco. By Hoélder’s
inequality and Condition 1.6 we get [ exp(a|Vy|) dp < oo for any a > 0 and L € N.
Since |¢ — pr| < || for each ¢ € F and since [gexp(a) cpl¢|)dp < oo by
applying again Hoélder’s inequality and Condition 1.6, the proof of [8, Lemma 3.2.7]
can be adapted via the dominated convergence theorem and we get

1
lim sup lim sup - log Ry ({v € My(S) | IIp, (v)|| >6}) = —oc0 (2.4)
L—oo n—o0

for every § > 0, where F, = {|¢ —¢r|}per and ||z||1 = Y, p |24] for 2 = (2;)icr €
RF. For each L € N and ¢ € F write |¢r, — ¢$| = ¢} + ¢% with 0 < ¢} < 1/L and
p({d3 # 0}) < exp(—L?) and ¢ > 0. With Fy = {¢] }pcr we get

Ry({v € Mi(9) | ITr(¥)|1 20}) =0 (2.5)
for every L > |F|/§ and by Condition 1.3 we get for each ¢ € F' and each 6 > 0

Ra(veMi($)| [ v >0) < (Mexn(-05) [ expl(@02) d)”
S S
and thus
1
- log R,, (1/ € Ml(S)‘/ ¢3 dv > 5) < log M — 05 +log(1 + exp(L(260 — L))).
S
Letting L — oo first and then § — oo and using (2.4) and (2.5) we get

liinsup lim sup % log Ry ({v e M) | [Hp—pe ()|l >0}) = —o0 (2.6)
for any § > 0, where F — Fy = {|¢ — ¢%|}per. The space M;(S) equipped
with the weak topology is Polish, thus we will apply the contraction principle in
the form of [8, Lemma 2.1.4]: By assumption the inner measure of Mg (S) with
respect to R, is 1 for each n € N. So the LDP holds for {R,, },en on Mg (S) with
respect to the weak topology with the same rate function 7. That is a consequence
of [7, Lemma 4.1.5(b)], where we are using K,, C Mg (S) for each r € [0, 00), proved
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in Lemma 2.1(c). Thus it is sufficient to define IIz on Mg (S). Now it is enough
to check in addition to (2.6):

liznsup sup{ [[Hp—pe (V)|[1, v: [(v) <C} =0 (2.7)
for each C' € (0,00). The well known estimate xy < e* ! + ylogy for all z € R
and y € [0,00) leads to [¢|@|dv < oo for each ¢ € F and v € Mg(S) with
H(v|p) < co. Thus [¢ Vi dv — 0 for L — oo uniformly over all measures v with
I(v) < C, since {v: H(v|pu) < C'} is uniformly absolutely continuous with respect
to p for every C > 0, see [8, Exercise 3.2.23]. Therefore (2.7) follows if we prove

tim supsup{ | e, + (), v: I(0) < C'} =0, 23)

L—oo

where Fi+F, = {¢} +¢7 }per. Clearly limsup; (3", cp [ @1 dv) = 0 uniformly
on each level set of I. With zy < e?® + £log £ for all ,y > 0 and o > 0 we obtain
for 0 > 1 and any ¢ € F

/ 2 dv < / exp(0¢?) du + — /‘log ‘ dv.
{630} dp

By [11, Lemma 5.1 and its proof] the second term on the right-hand side in the last
inequality converges to zero as 0 — oo uniformly on each level set of H(-|u), and
therefore on each level set of I by (2.2). By construction of ¢?

/ exp(0¢3) du < exp(L(o — L)),
{93 #0}

which converges to zero in L for fixed o and thus we arrive at (2.8) and the lemma
is proved. O

Proof of Lemma 2.1(a) and (b). (a) It suffices to consider the case I(int,,(B)) <
oo. By definition of the 7¢-topology, there exists for v € int,,(B) an € > 0 and an
F € F such that the 7g-open set C' = {7 € Mo(S): [Ip(0) — Mp)|1 < e} is
contained in int,, (B) and v € C'. With the open set

A={z eR": |z —OpW)|: <}
we get v € C={v e Mqg(S) | Up(v )EA}CBandbyLemmaQ?)

lim inf l log R,,(B) > lim inf —log R,,(C)
n—oo N n—oo N
>—inf{I(D) |0 € Ms(S), Ip(v) € A} > —1I(v).

Taking the supremum over v € int, (B), the lower bound of part (a) follows.

(b) It suffices to consider the case ¢ = I(cl,,(B)) > 0. Choose r € (0,q). By
Lemma 2.1(c), the set K, is contained in Mg(.S). Since cl,(B) N K, = &, there
exist, for every v € K, an F,, € F and an open neighborhood U, C R* of Il (v)
such that cl,,(B) N H_I(U ) = &. Since K, is Tg-compact, there exists a finite
subset N of K, such that (J, .11 1(Ul,) covers K,. Define F' = |J,.y F,. Note
that F' € F. For every v € N define U}, = II;', (U,), where for F' C F with F’ # &
Op e RE — RE " denotes the canonical projection Note that U’ c RY is open
and II.' (U}) = 07" (U,). Define U = J, ey Ul,. Then 7' (U) = U, ey 5 (U),
hence I (U) covers K, and is disjoint from Cqu> (B). Define ¢ = dist(Ilp(K,), U°).
Since ITp(K,) is a compact subset of the open set U, it follows that £ > 0 and that

A, = {2z e R | dist(x,TIp(K,)) < e}
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is an open set contained in U. Therefore
clry(B) C {v € Mg(S) | TIp(v) e R\ A} C KE. (2.9)
By the upper bound in Lemma 2.3 it follows that

lim sup ! log Rn(B) < —inf{I(v) | v € Mg(S), TIr(v) e RF\ A}

n—oo

< —I(K;) < —r.
Since r € (0, q) was arbitrary, the upper bound follows. O

Remark 2.10. Lemma 2.1 holds, if we replace S by S™, m € N, and assume Condi-
tions 1.3 and 1.6. Even in the case m = 1 applying Lemma 2.1 we already improved
some LDP results for the laws of the empirical measures L,, for some dependent
sequences, which already exist in the 7-topology. The reason is that one can verify
Condition 1.3 in several cases for all non-negative, bounded S-measurable functions
f: S — R. For example we get the LDP for the laws of L,,, when the {X,};cn are
Markovian and satisfy [8, Condition (U) in Section 4.1], compare also with [8, Ex-
ercise 4.1.53]. If the sequence { X; };cn is stationary and satisfies Assumptions (H-1)
and (H-2) in [7, Section 6.4.2], we can transfer the LDP to the 7¢-topology, too
(see [7, Lemma 6.4.18]).

Remark 2.11. If Condition 1.6 holds, we get from [15, Lemma 2.1(b)] and from (2.2)
that Koo = J,oq Kr C Ms(S), where K, is defined as in Lemma 2.1(c). Since
I(v) = oo for all v € Mg (5) \ Kw, it follows that the rate function defined in the
statement of Lemma 2.3 coincides with

inf{I(v)|v € Ky, Ip(v) =2}, =cRF,

To transfer the LDP to the mg-topology, it will sometimes be necessary to cancel
some summands of L®™ or L™ in order to be able to verify Condition 1.3. Thus
we will establish the LDP for such reduced products in the mg-topology. Next we
consider the question, if and how the LDP for the laws of L™ and L, respec-
tively, can be deduced from the LDP for the laws of the reduced products. Let
(Q, A, P) be a probability space. Consider two sequences {S, }nen and {Sy }nen of
M (S)-valued random variables with distributions {R,}neny € M1(M;(S)) and

{fin}neN C M1(M1(S)), respectively.

Lemma 2.12. Assume that {R,}nen obeys a LDP in the 1g-topology on Mg (S)
and for each n € N the inner measure of Mg (S) with respect to Ry, is 1. Assume

that
/S dSu(w) — /S A5, (w)

for every e > 0 and every ¢ € ®. Then the same LDP (with the same rate function)
holds for {Ry}nen.

Proof. For each F € F define the pseudo-metric

¢@—/¢W
F/s S

dp(p,v) = max

1
lim sup — log P <

n—oo N

> 5) = —00 (2.13)

, v € Mg(S).

For pu # v there is an F' € F such that dp(u,v) # 0. Therefore, the family D =
{dr}rer is called separating. The topology having as a sub-basis the family of balls
{B(v,dp,e) | v € Ms(S), dp € D, € > 0}, where B(v,dp,e) = {pn € Ma(S) |
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dp(p,v) < €}, is the 7e-topology. Therefore (Mg (S), 7o) is a so called gauge
space and thus is a completely regular space (see for example [12, Theorem 10.6,
Chapter IX]). For completely regular topological spaces, the concept of exponential
equivalence was introduced in [14] and thus the lemma was proved. U

We get LDP results in the 7-topology by verifying Condition 1.3. Now in this
topology the deduction of the laws of LE™ and L™ from the LDP results for reduced
products is easier using the fact that convergence in the total variation metric
implies convergence in 7. Clearly convergence in the total variation metric is not
sufficient for convergence in the 7¢-topology.

Remark 2.14. If for every ¢ € @ there exists at least one a, > 0 such that
fs exp(aylp|) dp < oo, then the topology of convergence in information, that is
tn — p when H(u,|p) — 0 as n — oo, is finer than 7¢ on Mg (S). Since the
level sets of H(-|p) are subsets of Mg (S) by [15, Lemma 2.1(b)], we get this result
using [5, Lemma 3.1]. Note that convergence in information implies convergence in
total variation.

3. LARGE DEVIATIONS FOR PRODUCTS

Let us first give some remarks on the case, where { X, };cn is a sequence of indepen-
dent, identically distributed random variables with common law u € M;7(S). We
get the LDP of L under Condition 1.6 with measure ;1 via the useful Hoeffding
decomposition, introduced in [16]. To be more precise, we can use the continuity
of the map v — v®™ with respect to the weak topologies on M;(S) and M (S™)
to get the LDP for {L®™},,en and thus for {L7"},,>,, because

m

n™ —n
HL%m - L?Hvar < 7’!27“ (m) — 0 asn— o,
where || - ||var denotes the total variation distance on My (S). For {L"},,>,, we can

verify Condition 1.3 via the Hoeffding argument, if Condition 1.6 holds. Under
Condition 1.7, we can prove that (2.13) holds for the laws of L&™ and L™ and thus
we get the LDP for {L®™},, cn under Condition 1.7 in the Te-topology. The results
in [15] are stronger. There S is assumed to be an arbitrary measurable space and
the topology is chosen such that integration with respect to certain unbounded,
Banach-space valued functions is a continuous operation. Several technical reasons
lead us to the Polish setting in this paper.

3.1. Independent but not identically distributed sequences. Let {X;};cn be
a sequence of independent random variables with values in S and laws £(X;) = v;.
Assume that v; < f for all i € N with a fixed reference measure g € M;y(S).
Moreover we assume that there exists a ¢ > 1 such that for f; = dv;/df we have

M = sup [ filly < oo, (3.1)
1€N

where | -||, denotes the g-norm in L,(S,S, /). For every bounded measurable
p: 8™ — [0, 00), we get by Hoeffding’s decomposition [16, Section 5]

k—1
1 n
E |:eXp (n/ ngL;n):| =E |:6Xp(ﬁ Z E Z (p(Xa(im+1)7 ) Xa(zm+m))>:| )
m . i—1

o
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where k = |n/m] and o runs through all permutations of {1,...,n}. Using Jensen’s
inequality to handle the first convex combination, independence of the terms in the
second sum, n/k < 2m, and

E[eXP(QmQO(XU(im-H)v SERE) Xa(im+m)))}

1/p , m 1/q
< ( / exp(2pmep) dﬁ®m> (H /S fa imrs) dﬂ) ;
m j:1

which follows from Hélder’s inequality with 1/p + 1/q = 1, we obtain with (3.1)

k/p
E{exp(n/ @dL?)] < MFEm (/ exp(2pmeyp) d,&‘g’m) .

Since M > 1 by Jensen’s inequality, km < n, and k/p < n, Condition 1.3 holds
with g = a®™ and 8 = 2mp. Thus the LDP for {L™},,>,, is proved as in the i.i. d.
case, whenever we assume that the sequence of laws of L,,, built with the {X};en,
already satisfies a LDP in the weak topology. If we assume Condition 1.7, then we
get the result for {L®™}, cn via the Chebyshev—Markov inequality.

3.2. Markov chains. Let m: § x § — [0, 1] be a probability transition kernel and
let {Ps}ses be the family of Markovian measures on the sequence space (2, F) =
(SMNo, SNo) such that for every s € S, the projections {X;}ien, from Q to S form a
Markov chain with transition kernel = and Ps(Xo = s) = 1. We assume that there
exist N € N, [ € {1,2,...,N} and M € [1,00) satisfying

M
l m(gz
T (87 ) < W m§:1ﬂ- (37 ) (32)
for all s,5€ S. Asin [8, (4.1.39)] define the rate function Ji: M;(S) — [0, c0] by
™
J = — inf log — dpu. .
(k) uEB(lsrfu,oo»/s T (3.3)
For every integer m > 2 define J,,,: M1(S™) — [0, o] by
Ji(v) if v®m =,
Ty =4 1 (3.9
00 otherwise.
Let u € M1(S) be given by
LN
_ k
p= glﬂ (s0,) (3.5)

with an arbitrarily chosen sg € S. We will prove:

Theorem 3.6. Assume that Condition 1.6 holds for ® and with the integration
with respect to the measure Ps uniformly in s € S, then for every m € N the mea-
sures {Ps(L™) " }henses satisfy a uniform LDP in the To-topology on Ma(S™)
with a good rate function Jy,, i.e., for every measurable B C M7(S™),
1
liminf — log ingPs(an € B) > —inf{ J,(v) | v € Mg(S™), v € int,,(B) }
n—oo M SE
and
1
limsup — logsup Ps(L € B) < —inf{ J,,(v) | v € Ma(S™), v € cl,,(B) },

n—oo N sES
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and the level set { v € Mg (S™) | Jm(v) < 1} is To-compact for every r € [0,00). If
we assume Condition 1.7 for ® and with the integration with respect to the measure
Ps uniformly in s € S, we get the same result for the measures {Ps(LE™) 1}, cnses
(with the same rate function).

Proof. By [8, Theorem 4.1.43|, the theorem is true in the weak topology for m = 1.
Furthermore, by [8, Exercise 4.1.53] the theorem is true in the strong topology for
m = 1 and by Remark 2.10(a), the theorem is true in the 7¢-topology, because
Condition 1.3 can be verified uniformly in s € S with respect to the reference
measure p defined in (3.5). Here we use the simple fact, that the assumption for Ps
implies the same for u. We may assume in the following that m > 2. For n > ml
define the empirical measure

1
Q>wr— Ly pmw) =—F—— Z 6(Xil(w),...,Xim(w)) € My(S™),

where

A = { (i1, yim) €{L,I+1,...,n}™ |
lij; —ix| > 1forall j,ke{l,...,d} with j #k}. (3.7)

Since |A,, »n| > (max{1l,n — (2m — 1){})™ for n > ml it follows that

n" — |Am-,n| .

sup || L™ (w) = L (w)lvar < 0

we nm

as n — oo. Hence, the measures {Ps(LE™) !} ;c g n>mi are uniformly exponentially
equivalent to {Ps(Ly. m) ' }ses.n>mi in the sense that

lim sup 1 logsup Py (0(LE™, Ly, 1) > €) = —00
n—oo N seS
for every € > 0, if p denotes the Prohorov metric on M;j(S™). That is because the
Prohorov metric is bounded by the total variation metric. Now the proof of [7, The-
orem 4.2.16] shows that the measures {Ps(Ly, ) ! }ses.n>mi satisfy a uniform LDP
in the weak topology with rate J,,, because the measures {Ps(LE™)" 1} c 5 > mi do
so via the contraction principle. Next we want to establish the estimate

1/n
sup (sup Eq [exp (n/ godLn_,m)]) < Mm/ exp(4™Im!) du®™ (3.8)
n>4ml \s€S m m
for every bounded measurable ¢: S™ — [0,00), where u € M;(S) is defined
by (3.5). We will get this estimate if Condition 1.6 holds for u®™ and ®, which
is an immediate consequence of our assumptions. The theorem with L,, ,, in place
of L™ (or L&™) then follows using Lemma 2.1. To obtain the theorem from the
corresponding result for {L,, ;;, }n>m: use finally Lemma 2.12. Therefore we have to
check for every € > 0 and every ¢ € ® that
> 5) = —00

/godLnﬁm—/ wdL

(the same for L™ replaced by L®™). But using the assumptions and the exponential
Markov—Chebychev inequality, this is easily seen.

1
lim sup — log sup P <
n—oo T sES
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In the remaining part of this proof we want to establish the crucial estimate (3.8).
Let us first introduce some additional notation. With n > Im and A,,, given

by (3.7), let
A = { (i1, im) € Ay |45 > 451 + 1 for all j € {2,...,m} }
denote the subset of all ordered m-tuples of A,, ,,. Define
B ={l,1+1,...,3l =1} x {2[,20+ 1,...,2n}™ ",

Given 7 = (r1,...,7m) € Bmn, let Cn(r) denote the set of all (iy,...,4,) € 47, ,
for which there exists k € Ny satisfying iy =70 —r1 — kl and i; = r; + (—l)jkl for
all 7 €{2,3,...,m}. Every set C),(r) has the following two properties:

(a) Everyi € {l,l+1,...,n} occurs at most once in at most one m-tuple contained
in Cp(r).
(b) Ifi,¢' € {i,1+1,...,n} are components of an m-tuple contained in Cy,(r) and

i # i then |i — | > L.

In order to show that

A, . C |J Culr) (3.9)
r€Bm,n
take any (i1,...,im) € A, ,. Then there exist ry € {[,I+1,...,3] — 1} and k €
{0,1,...,|n/2l] —1} such that iy —i; = r1 +2kl. For every j € {2,3,...,m} define
ry = ij — (—l)jkl Since ij Z 7:2 it follows that T Z ig —kl = il +7r -I—kl Z 2[. Since
i; <nand k <n/l, it follows that r; <n + kl <2n. Hence (r1,...,7m) € Byn-
Define By, ,, = {r € Bnn | Cn(r) # @} and let S(m) denote the set of all
permutations of {1,...,m}. For every 7 € S(m) and r € B,, ,, define C,(m,7) =
{Grqys s 8nm)) | (i1, yim) € Cu(r) }. Every Cyp(m,r) has the corresponding
properties (a) and (b) and it follows from (3.9) that

Amnc | U Culmr). (3.10)

weS(m) reB, ,

Starting with the expectation on the left-hand side of (3.8), Holder’s inequality
yields, for every n > Im and s € S,

b fon(n [_piten)

—E, {exp(,AZm‘ > cp(Xil,...,Xim)ﬂ

(il,...,im)GAm,n

nm!|B! | (3.11)
< I (mleo(55000

r€S(m) re B, ,

1/(m!|By, )
X Z (p(X“,,sz)):|)

(81,0 esim )ECR (7,7)

where we used (3.10) for the last step. Since |Bj, | < |[Bpn| < 21(2n)™"! and
|Apn| > (n— (2m —1))™ > (n/2)™ for n > 4lm, it follows that

nm!|B., .|
|147|’ <4™Im! for n > 4lm. (3.12)
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Given 7 € S(m) and r € By, ,,, it follows from (a) and (b) for C,, (7, r), that the m-
tuples in C), (7, ) consist of p = m|C,,(m,r)| different ¢1,...,¢, € {{,l +1,...,n},
which we may label such that ¢; > ¢;—1 + [ for all j € {2,3,...,p}. It follows
from (3.2) and (3.5) that 7% ~%-1(s,-) < My for every j € {1,...,p}, where
qo = 0. Hence for every s € S, Py(X, L Xg,) P < MPu®P on S®P. Using (3.12)

it follows that

nm!|B. .|
Es {@(p(ﬁ Z @(X1177X1m)):|

(ily-“aim)ecn(ﬂ'a"ﬁ)

|Cn (7))
< <Mm/ exp(4mlm!g0)du®m) . (3.13)

Since |Cy(m, )| < |n/lm| < n, the estimates (3.11) and (3.13) imply (3.8). O

qiy - -

Remark 3.14. Notice, that we get the results in the 7-topology without any further
assumptions on the moments. Thus in the 7-topology, Assumption 3.2 suffices to
transfer the LDP to products. The reason is, that we have checked Condition 1.3
(with the reference measure p defined in (3.5)) for the reduced term L,, ,,, and the
result follows for L™ and L®™, respectively, using the fact that convergence in the
total variation distance implies convergence in the 7-topology.

Remark 3.15. The Markov chains analyzed in [13] show that the LDP with respect
to the weak topology does not transfer to the strong topology setting in general.

3.3. Exchangeable sequences. Let {X;};cn be an exchangeable sequence on the
probability space (€2, A, P). It follows from de Finitti’s representation theorem, that
P can be represented as a p-mixture of probability measures {Pg}oco defined on
(Q,A), where O is a subset in M1(S) and for any § € O the sequence {X,};en is
i.1.d. with respect to Pg. If P* = PL;' and P} = PyL; ", then P" is the y-mixture
of {P} }gco, that is

IP’"(A):/@IPQ(A) du(8), Ac A

If g = Py X ];1’ 6 € ©, varies continuously in the weak topology on M(S) and if
O is compact, then {P"},cn satisfies the LDP with a rate function given by

M(v) = eiélg)H(Vth),

cf. [9, Remark (ii) after Theorem 2.3]. Notice that [9, Theorem 4.1] is an extension
of this result. The condition of weak convergence of 7y is replaced by the following
two conditions:
(a) A\ © x M4(S) — [0,00] is jointly lower semi-continuous, where A(,v) =
H(v|mg).
(b) {Py }.en is exponentially tight, that is: for every L > 0 there exists a compact
set Ky C M(S) such that

sup Py (K7) < exp(—nL) foralln €N
6o

is sufficiently large.

Notice that for exchangeable sequences, we can not expect that the LDP for
the laws of L,, with respect to the weak topology carries over to the product in the
T-topology, because we can find an example even in the case m = 1, where the LDP
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can not be transferred from the weak to the strong topology. Thus the following
example is of independent interest.

Example 3.16. Denote by A\ the Lebesgue—Borel measure on S = [0, 1], equipped
with the Borel o-algebra. Let Py = (69)®", 6 € [0, 1], and define P = f 1 Pg A(d6).
Note that
P(L, eU) = / 1y (d9) A(dB)
[0,1]
for any Borel set U in M;([0,1]). The expected rate function is

0 if pu=24y foradelo,l1],

oo otherwise.

Define Uy = {v € M1([0,1]) | v({0}) > 1 — ¢} for ¢ > 0. We get

P(L, € Ug) = / Ps(L,({0}) > 1 — &) \(dd);
[0,1]

the integrand is equal to 1 for 6 = # and 0 otherwise. Therefore P(L,, € Uy) = 0 but

inf,cy, (1) = 0, since dp € Uy, and thus the lower bound fails. Notice moreover

that I has non-compact level sets, because

({0} c U Us.

0€[0,1]

In spite of this example Theorem 1.19 in [14] is a LDP result for exchangeable
sequences in the 7-topology. Let (S, S) be a general measurable state space. If we
start with the mixture P instead of assuming that the projection maps {X;}ien
are an exchangeable process (because de Finetti’s representation theorem does not
hold in the general setting of an arbitrary measurable space S), condition (a) and
(b) can be replaced by the following condition:

(¢) The map 6 — 7y vary continuously in the 7-topology and u(U) > 0 for every
open U € © N B(M;(S)).
If © is 7-quasi-compact and Condition (c) holds, then {P"},cn satisfies the LDP

in the 7-topology on M;j(S) with the rate function A\;. A similar result is proved
n [6, Section 2] by different methods.

Now we will assume in addition that {my}sco satisfies the following condition:

(d) there exists a finite measure v on S such that mg < v for any # € © and for
fo = ddiy" we assume that there exists a ¢ > 0 such that supycg || follq < o0,
where || - ||, denotes the norm in L,(S,S,v).

Remark 3.17. If © is T-quasi-compact, Condition (c) implies supgeg m9(A) < v(A)
for all A € S for some finite measure v and thus (d) is fulfilled for {mg}oco.

The following result is stated for a Polish space S:

Theorem 3.18. Assume that the exchangeable sequence {X;};en satisfies Condi-
tion (a), (b) and © is assumed to be weakly compact (alternatively we assume that
the laws of the empirical measures of {X;}ien satisfy a LDP in the weak topology,
not necessarily satisfying condition (a) and (b)). Moreover assume that (d) holds
and that Condition 1.6 holds for v®™ and ®. Then for every m € N the measures
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{P(L™)~ '}, en satisfy the LDP in the Tg-topology on Mg (S™) with the good rate

function
M (D) if vO™ =
A(p) = | A7 = (3.19)
400 otherwise.

If we assume Condition 1.7 for ® and v®™, we get the same result for the mea-
sures {P(LE™) "1}, en (with the same rate function). Alternatively assume that
Condition 1.6 holds for v®™ and ® and the exchangeable sequence {X;}icn satis-
fies Condition (c) and © is assumed to be T-quasi-compact. Then for every m € N
the measures {P(L™)~ '}, en satisfy the LDP in the To-topology on Mg (S™) with
the rate function A\,

Proof. By [9, Theorem 4.1] and [14, Theorem 1.19], respectively, the theorem is
true in the weak topology for m = 1. For each 6§ € © we get by Hoeffding’s result
(see case 3.1), that

Ep, [exp(mcp(Xl, ey Xm))}

< ([ oot xpae) ([ ([T wee)"

Thus it follows from Hoélder’s and Jensen’s inequality

so([oo(n [ sazzio)])

1/pm
< (/ exp(pme(X1, ..., Xm)) dV®m)
Sm

« /@ ( /S ) (17‘:1[1 fg(g;i))qu@m)l/qmdu(e).

Using Condition (d) and arguing as in the proof of Theorem 3.6 we get the result.
O

Example 3.20. A simple case is a 0-1 valued exchangeable sequence {X; };cn. One
can find a probability measure v on [0, 1] such that if 79 = (1 —0)d;oy + 60071}, 6 €
[0, 1], the distribution P can be represented as P = f 0 1]7r9 v(df) (see [3, Section 4]).

Since f(6,p) = H(pp|me) = plog 25 + (1 —p) log ~5, where pi, = (1—p)djoy +
pdg1y, is jointly lower semi-continuous and supyeig 1) 7o < dgo} + 01}, we can apply
the theorem.

Example 3.21. Let © C R x R, be a compact set and let mg, 8 = (u,0?), be
normally distributed, with density g, ,2(z). We define a mixture of i.i.d. N(u,0o?)

sequences with respect to A\?, the Lebesgue-measure on R?, mixing over u and o2
by:

Q"(Ap X -+ x Ap)

/@1 /@ </R <Hgm (@)1, (wz)) dv(xl,...,xn))%

for A; € B(R) for any ¢ € {1,...,n}. This mixture is exchangeable and is directed
by a random measure «, a measure on the space M (S). For our parametric family
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of distributions we get
a€{mp, €O} =0 as.

Thus the compact set © C R x Ry can be identified with the weak-compact set
of measures ©" (see [3, Section 4]). H(m|v, ,2) is jointly lower semi-continuous
because the probability measures 7y vary continuously in the weak topology. More-
over, a normal distributed random variable is g-integrable with respect to the
Lebesgue measure for every ¢ > 1, we get

sup ||gollq < 0o with 0 = (u,aQ),
0cO

since O is compact and o2 > 0. Of course the example can be reduced to mixtures of
i.i.d. N(u,0?) sequences only mixing over u or over o2 on compact subsets. Let us
remark, that this example is of interest for other aspects: Schonberg’s theorem says
that any infinite spherically symmetric sequence of random variables is a mixture
of i.i.d. N(0,0?) sequences. This result fits naturally into the sufficient statistics
setting, pointed out in [3, Section 3 and 18]. There the laws of special sufficient
statistics can be described by mixtures (over u and 0?) of i.i.d. N(u, 0?) sequences,
or Poisson, binomial and negative binomial sequences.

3.4. Stationary sequences, mixing conditions. Let {X;};cn be a stationary
sequence of random variables which take values in S. The hypermixing condi-
tions (H-1) and (H-2) of [7, Section 6.4.2] are as follows: For any r» > k > 2 and
[ > 1 a family of functions {f;, 1 <1i < k} € B(S") is called l-separated, if there
exist k disjoint intervals {a;,a; + 1,...,b;} with a; < b; € {1,...,7} such that
fi(x1,...,x,) is actually a bounded measurable function of {z,,,..., 2, } and for
all ¢ # j either a; —b; >l or a; — b; > [.

Assumption (H1). There exist [,a < oo such that for all k,r < oo and any
[-separated functions f; € B(S")

E[p“fl(Xl,...,Xr) X+ X fk(XlaaXT‘)H

k m 3.22
< [T Ee[lfi(Xs -, X)) (3.22)

=1

Assumption (H2). There exist a constant [y and functions 5(1) > 1 and (1) > 0
such that for all [ > [y and all 7 < oo and any two [-separated function f,g € B(S")

Be[f(Xi,. .., X)) Eplg(Xa, ..o, X)) — Ep[f(Xay. .., Xo)g(Xa, ..o, X))
<A Ep[|f(X1, ..., X)) PO/ PO Ep[|g(Xy, . .., X,)[FO)/BO),

and
lim y(1)=0 and limsup(B8(l) — 1)l(log!)**° < oo

l—oo l—o00

for some § > 0.

It is well known that the laws of L,, satisfy the LDP in M;(.S) equipped with the
T-topology, if both (H-1) and (H-2) hold [7, Theorem 6.4.14 and Lemma 6.4.18].
Furthermore by [4, Proposition 1] the Condition (H1) is unnecessary. Here we will
treat only the case m = 2 and will assume in addition:
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Assumption 3.23. There exist I € N and v, 3 € [1,00) such that for all i € N
and f € B(S? [0, 00)),

{Ll/2 l2] Li/2—12] ]1/,8
i— ]7 3

I 7x ]<7EP[H F(x

where the process {X ;}jen is an independent copy of {X};en.

Remark 3.24. (a) If Assumption (H1) holds for I, then it holds for all I € N
satisfying [ > [.
(b) Assumption 3.23 is fulfilled, if there exist fi, fo € B(S,[0,00)) such that
flx,y) = fi(z)fa(y) for all z,y € S, because it follows from the Cauchy—
Schwarz inequality for v =1 and 3 = 2.

We get the following result:

Theorem 3.25. If (H1), (H2) and Assumption 3.23 hold for the stationary se-
quence {X;}ien, and if Condition 1.6 holds for £L(X1) ® L(X1) and ® (m = 2),
then {P(L2)~'},.en satisfies a LDP in the 1g-topology on Mg (S?) with a good rate
function Is(v), defined by

1 ' =
Ir(v) = ) Fue® e (3.26)
00 otherwise,
where
Li(p) = sup /fdu A(f w e Mq(9),
feB(S)
and

A(F) = lim > logEp {exp (f: f(XQ)] . (3.27)

n—oo N -
=1

In particular the limit (3.27) exists for every f € B(S). If we assume Condi-
tion 1.7 for L(X1)@L(X1) and ® (m = 2), we get the same result for the measures
{P(LE2)~1 Y, en (with the same rate function,).

Proof. By [4, Theorem 1], the theorem is true in the strong topology for m = 1 if [4,
Condition (S)] holds, because (H2) implies (S). By [7, Lemma 6.4.18], Condition 1.3
can be verified if (H1) holds, and thus by 2.10(a) we get the result in the To-topology.
Assume m = 2 and define for a fixed [ € N the empirical measure

1
3w Inyw) = 7 D O X))
('LaJ)GAnl
where
Api={(0,5)e{l,...,n}° | li—j| =l forall i #j}. (3.28)

Without loss of generality we may assume that ¢: S? — [0, 00) is a bounded and

symmetric function in ®. Remark that |A4,, ;| > n? /4 for n > 8l and thus T‘Lf:_lll) <4
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for n > 8. Now, for n > 8] we get

ooy $ i)

mtl e,

o2n—! min{n,i—1}
= Ep eXp(Mnl' >, Yoo (X X )1{(¢,j):|i2j|2z}>}

1= l—|—2g max{1l,i—n}

r TL—l 1/n—1
SEP eXp( |A l| Z()O n+1l—7» )):|

min{i—1,n}

(oot 787 nn

i=l+2 j=max{1l,i—n}
i#n+1

1/2(n—1)
X 1 (ig): |z‘—2j|2l})D

n—I 1/n—l
< Ep [eXp (42 e(Xn+1-5, Xj)ﬂ
1/n—1
(H Ep [exp(SZw i—i Xi)1{G.9): |i—2jl>l})D

i=l+2

n+1 1/n—1
< ( H Ep {GXP< ZSD imjs X 1{(i,j):|i—2j|2l})}) ;

i=1+2

where we have applied Holder’s inequality and used the stationarity of the sequence
{X;}ien as well as ¢ > 0. Since ¢ is symmetric we obtain

1—1

Ep {exp(SZsO X, X; )1{(¢,j);|i—2j|>l}):|
j=1

15

< Ep {exp(l(i Z o(Xi—j, X ))}
j=1
L5 1/
SVEP{GXP(HW Z (Xioj, X; ))} ;
j=1

where the last inequality follows by Assumption 3.23 for s = [. For each k with
k —1 > [ we obtain

Ep [exp(p(X1, Xi) + (Xk, X1))]

< /52 (/S eXP(aw(ﬂfl,fk)m(dﬂﬁl))l/a

x ( / exp<aw<mk,%1>uk<dxk>)l/a u(dF, 7
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by Assumption (H1), where pq and pug, respectively denote the marginal distribu-
tion on the first and k-th component respectively and p(dz,dzy) the two dimen-
sional marginal distribution on the first and k-th component. Applying Assump-
tion (H1) again, we get

Ex [exp(p(X1, X1) + Xk, X1)]

< Ep [exp(ap(X, X'k))} e Ep [exp(ap (X, X’l))] e

Thus with & € N and m > 0 such that km = [5!| we get

L] _\11/8 -
Ep {exp(lGﬂ Z QD(Xi_j,Xj)>] < Ep [exp(l6ﬁka90(X1,Xl))}m/aﬁ-
j=1

We arrive at

1
— log Ep {exp( "
n ’An,l‘ (
n—1l—1

1 1 2 )
<. logy" 7 + — log (e [exp(168kap (X1, X1))]) 77

> o))

iaj)eAn,l

< log 7y + log Ep [exp(168kap (X1, )~(1))]

and thus we have verified 1.3 for the empirical measure L, ; for a fixed [ € N which
is determined by the assumptions. Arguing as in the proof of Theorem 3.6 we get
the result. O

Example 3.29. Let |a| < 1 and £(Xy) = N(0,1/(1 — a?)) and let {Y,}nen be
a sequence of i.i.d. standard normal random variables. It is well known, that the
process

Xpt1=aX,+Y,

satisfies (H1) and (H2) but not Assumption 3.2 (see [7, Exercise 6.4.19] and the
example of the continuous time Ornstein—-Uhlenbeck process discussed in [8]). De-
note by g(a,0?) the density with respect to Lebesgue measure of the normal
distribution with parameters o and o2. Since the transition kernel is given by
7l(z,dy) = g(ax,1)dy for | € N ©l(z,dy) = g(a'z, o) dy with a; = 11*_‘;‘;. Thus
for p € B(S2,]0,0)) we get

BelelCXo X0 = [ [ wlopiatatoang (0.1 5 ) dyds

1— 2\ 1/2 1— 2\ 1/2
S//w(w,y)< - ) (1—(121)_1/2(7&)
R JR 27 2m

11—a? 9 11—a? 9
—— —— dxd
xexp( 51 lx)exp( 51 7Y x dy,
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using 2zy < 22 + 92, 2,y € R. With (1 +a!)7t = (1+2a)71 + m and
Jensen’s inequality we get

E [ (X07

1 1
// z,y)(1+ 2a4) (1 — )1/2 exp(—§ﬁ1x2) exp<—§ﬁly2)
1+ 2at

3 N\B(1 _ o21\—B/2 PP
s(/R/Rso (2, 9)(1 + 208)3(1 — 2 exp( 2[31506)
1\ 2 1/B
xeXp(—%ﬂzﬁf)g(O,%) dxdy) :

where 3 = (1 —a?)al(1+a!) 1(1 +2a') ! and 8 = 2(1 + a!). The term on the
right in the last inequality is easily seen to be

2
[ soﬁ(x,y><1+2al>ﬂ—1<1—a”)—ﬁ/?g(o, 1 ) dx dy
R JR 1l—a

= (14 20H) 181 — o) V2 Ep[p(Xo, X;)PH/P (3.30)
3 ~
< ﬁ EP[@(XOaXl)4]1/4>

where we have used 8 = 2(1 + o) < 4. Consider
Kl(QZ,A) = P((Xo,Xl, .. .,kal) € A|Xk = ZE)

for A € S®F and Ks(y, B) = P((Xiq141,---, Xows1) € B| Xy = y) for B € S®F
and p = L(Xy) =PX 1. In order to verify the additional Assumption 3.23 for the
model, note that

Ep Dﬁo (X, sz+l—j)} = Eplg(X, Xrv1)],

where

k
g(z T ¢ _j
\Y) [gk[gk yHSO 2%h+1—j)

Jj=0

(%d(%a y Lk— 1))K2(y,d($k+z+1, .- -7$2k+l))-
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Now by (3.30)

Ep[g(Xk, Xk11)]
3

<
< \/%W(/stu(dw)u(dy) /Sk /Sk s04(x,y)j1;[_:¢4(ﬂfja$2k+l—j)

1/4
x Ky(z,d(zo, ..., 2x-1)) X Koy, d(@pqiq1,- . -,$2k+z)))

Er [g(Xk, Xrt1)"] Vi

3 k 1/4
— 4oy x .
S ioar " LEIOSD (X”X%”_])} ’
where we have used Jensen’s inequality.

4. STATISTICS AND PROCESSES

The aim of this section is to establish the LDP for U-statistics and V-statistics of
dependent or independent but not identically distributed processes. Moreover we
get a LDP result in the Markovian situation for products of empirical processes
from the results of Section 3 via the concept of the projective limit approach of
Dawson and Gértner (see [7, Theorem 4.6.1]).

For a measurable map h: S™ — R? the U- and V-statistics of degree m with
kernel function h are defined by

U;?(h):/ hdL™ and V,;”(h):/ hdL®™

for all n > m and all n € N, respectively. If the sequence {X,}ien is i.i.d.,
we have proved a LDP result for these statistics under weak moment conditions
in [14, Theorem 1.13]. We can adopt the arguments. Let hi,...,hs denote the
component functions of h and define &, = B(S™)U{h1,..., hq}. Now the statistics
are compositions of L™ and L™ respectively, with the 7¢,-continuous functional
Mg, (S™) 3 v — [ hdv. The contraction principle [7, Theorem 4.2.1] immediately
leads to the following results for U-statistics and V-statistics with dependent inputs:

Theorem 4.1. (a) The U-statistics {U])*(h)}n>m satisfy a LDP with a good rate
function provided one of the following conditions is satisfied:
(i) {Xi}ien is independent satisfying (3.1) and [, exp(alhi|) du®™ < oo
forall i € {1,...,d}, >0 and p as in (3.1).

(il) {Xi}ien is a Markov chain satisfying (3.2) and sup,cg E[exp(a|h;])] <
oo for all i € {1,...,d} and o > 0.

(iii) {X;}ien is an exchangeable sequence satisfying (a), (b) and (c) in Sub-
section 3.3 and the mizring parameter set © is a weak-compact subset
of Mi(S). Moreover we assume [g,, exp(al|hs|) dv®™ < oo for all i €
{1,...,d}, >0 and v as in (c).

(iv) {Xi}ien is a stationary sequence satisfying (H1), (H2) and (3.23) and
Jgm exp(alh;]) du®™ < oo for all i € {1,...,d}, a >0 and p= L(X1).

(b) If Condition 1.7 is satisfied for hy, ..., hq and every measure given in the cases

(ai)—(aiv), then in each case the V-statistics {V."(h)}nen satisfy a LDP with

the same good rate function.
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The rate function, defined on R® with values in [0, o] is given by

I(z) = inf{F(y) ‘ v € Ma, (S™), /

where F(v) is the rate function for the LDP of the laws of LT, see (3.4), (3.19)
and (3.26).

hdv = Jr},

m

Remark 4.2. Actually the theorem is a direct consequence of Lemma 2.3 if we take
F = {h}. Thus we do not have to apply the contraction principle two times.

Next we want to derive large deviation results on the process level for Markov
chains. Given k € N with k& > 2, the transition probability kernel m: S* x S€F —
[0, 1] of the Markov chain {(X,, X;41,. -+ Xntk—1)}nen, iS given by

’R'k((O'l,...,O'k),A):/1A(02,...,0k,T)W(Jk,dT)
S

for all (o1,...,04) € S* and A € S¥*. Let {Pk,}oecs denote the family of Mar-
kovian measures. The condition (3.2) for 7 implies that the kernel 7 satisfies

M k+N-—1
k+1— m
ﬂ-k+ 1(0-7') < W Z Tk (T: )
m=1

for all 0,7 € S*. Let
1 n
Qo3wr— Lk,n(w) = - Zld(xi(w)""’xi+kl(w)) € Ml(Sk)

be the empirical measure of the above Markov chain. We define the rate function
Jl’]ft M1(Sk) — [0, OO] by

. TEU
J = — f log — dp.
1,6(1) weneit o) /Sk og ——du
Note that [8, Lemma 4.4.9] gives an alternative expression for Jj j in terms of the
relative entropy. Analogously to (3.4) we define for every integer m > 2 the rate
function Jy, x: M1((S*¥)™) — [0, 00| by

Jik(v), if v®m =
Jm,k(ﬂ):{ L) N (4.3)
00, otherwise.
Let pi, € M1(S*) be given by
| FEN-
Hk = 7nZ:1 (00, ) (4.4)

with an arbitrary oy € S¥. As an immediate consequence of Theorem 3.6 we get
the following extension:

Corollary 4.5. Let ® be a set of S®™*-measurable functions ¢: S™ — R con-
taining B((S*)™). Assume that Condition 1.7 holds for ® and with the integration
with respect to the measure Py, uniformly in o € S¥. Then for every m,k € N the
measures {P, (L%’i?})‘l tneN,ocesk satisfy a uniform large deviation principle in the

To-topology on Mg ((S¥)™) with the good rate function J,, .
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Remark 4.6. (a) Again (3.2) suffices to transfer the LDP to the products LS’TTLL,
if My ((S*)™) is endowed with the 7-topology.

(b) From [8, Exercise 4.1.48], we know that condition (3.2) guaranteed that there
exists precisely one v € M;(S) which is 7-invariant: v = vr. Furthermore,
Exercise 4.1.51(ii) says, that if x4 in (3.5) is replaced by v, then Condition
1.3 holds for the laws of L, and this v. From this observation H(w|v) <
B(Ji(m) + logr) follows immediately for 7 € M;(S). Given v, the measure

vi(dx) = v(dxy)m(zy, dxs) - - - m(T—1, dz))

is the m-invariant measure. Thus we get Theorem 3.6 and Corollary 4.5,
respectively, if we replace p®™ and u,?m, respectively, by v®™ and y,‘?m,
respectively.

To extend Theorem 3.6 to the process level, we need to introduce some additional
notation and a special topology. For n € N let

1 n
23w Rp(w) = — ;csgi(w) € My(Q)
denote the empirical-process measure, where 0;: Q — ) is the shift defined by
0;(w) = (X;(w), Xir1(w),...) for every i € Ng. For k € N let mp: Q@ — S*
with m1 k(W) = (w1,...,wk), w = (w;)ien € 2, denote the projection onto the first
k components. Given m > 2, define 7, x: Q™ — (S¥)™ by 7 k(wi,. .., wn) =
(m1,6(w1), ..., T k(wm)) for all (wi,...,wn) € Q™. Note that

RE™r L= L™ for all m,k,n € N.

Similar as in [8, p. 174] we will introduce a projective-limit T¢-topology on a subset
of the space M1(Q™). Given a set & of S®™-measurable functions from (S!)™

to R, the set Mg ((S')™) and the Tg-topology are defined as in the introduction.
Let ® = ® and for k > [ define ®;, to be the set consisting of B((S*)™) and all
functions of the form ¢ o m", where ¢ € ® and the projection 7" Gkm _, gim
is defined by m}"/(s1,...,8m) = (wi’l(sl), .. .,wé’l(sm)) for S; € Sk, j e {1,...,m}
and 7, ;: S* — S is the usual projection map. Using ® the set Mg, ((S*)™) and
the 74, -topology can be defined as usual. The set Mg (£2™) should now be defined
to be the set of all v € M;(Q2™) such that for every & > [ and every projection 7, &,
the measure wr;l’lk belongs to Mg, ((S*)™). The projective-limit T¢-topology on
Mg (2™) is now defined to be the coarsest topology which makes all projections
Mi(Q™) 5 p— uw;}k € M((S¥)™), k € N, k > [, continuous with respect to the
73, -topology on Mg, ((S*)™). Note that the given construction can be generalized
to projections %,il: Sk — St defined by %,ﬁ’l(sl,...,sk) = (87(1)y -+ 87)) With
strictly increasing 7: {1,...,1} — {1,...,k} and to projections 7y ;: Q — S*
defined by 71 x((s5)jen) = (5-(1), - - -+ S-(k)) With strictly increasing 7: {1,...,k} —
N. We observe that the sets Mg ((S!)™) and Mg, ((S')™) as well as their topologies
coincide. If the maps in ® have all exponential moments with respect to a measure
pu®'™ then the same is true for the maps in ®;, with respect to u®*™ for every k > 1.
If we take ® = B(S)™ then M;((S!)™) = Mo ((S")™) and 74 coincides with the
T-topology on this set. The given construction yields to the projective-limit strong
topology on M (2™), which is the coarsest topology such that the projections

M(Q™) 5 pe pr, Y € Mi((SM)™), keN,
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are continuous with respect to the strong topology on M;((S¥)™). As in [8,
(4.4.11)] we define the process-level rate function Ji oo: M1(£2) — [0, 00| by

Jro0 (1) = sup Ji g (py ).
keN '

An alternative representation for Ji o, is given in [8, (4.4.16)]. It shows that
J1,00(pt) = 00 if p is not shift-invariant: as above we define for every integer m > 2
the rate function J,, oo: M1(£2™) — [0, 00] by

Joo(v), @™ =y
T (12) = { Lool?) | (4.7)
00, otherwise.
Lemma 4.8. If pe M(Q™), then
Imoo (1) = sup Jm i (/“r;mlk) (4.9)
keN

Proof. If there exists a v € M1(Q) with u = v®¢ then wr;%lk = (mrf’,lc)‘@m, hence
Jm,k(uw;b’lk) = lek(mrl_’i) for all £ € N and (4.9) holds.

Consider p € M1(Q™) satisfying p # v®™ for all v € M;(Q) and assume
that, for every k € N, there exists v, € M;(S¥) satisfying ,u7r;l.1k = vP™. By
Kolmogorov’s consistency theorem, the consistent family {v}ren gives rise to a
measure v € M;(Q2) with ﬁﬂillc = vy for all £k € N. Hence ;m';%lk = §®m7r;171k
for all k& € N and therefore p = ®™ because the algebra (J, oy, ((S®F)®™)
generates F®™. This contradicts the assumption on u, hence there exists k €
N with pm, L # v®™ for all v € My(S*). Since Jpmoo(p) = oo by (4.7) and

Jm k() = 0o by (4.3) the identity (4.9) holds. O
Using Lemma 4.8 and Corollary 4.5 we obtain the following result:

Theorem 4.10. Assume that Condition 1.7 holds for ® and with respect to in-
tegration with respect to P, uniformly in o € S, then for every m € N the
measures {P,(R®™) '},en.0es satisfy a uniform LDP in the projective-limit Te-
topology on Mg (™) with the good rate function Jp, . In particular the level sets
{n € Ma(Q™), Jm.oo(pr) < 1} are 7o compact with respect to the projective-limit
T -topology.

Proof. Since 1.7 holds for every ®;, k > [ and u®*™, we can apply Corollary 4.5
in combination with [8, Theorem 4.4.27] and Lemma 4.8 to get the result for mod-
ifications as constructed in the proof of Theorem 3.6: Indeed the arguments of the
proof of Theorem 4.4.27 work, because the level-sets of J,, 1 are 7¢,-sequentially
compact. To see this, note that the level sets of H(-|u®™k) are 74, -sequentially
compact, if Condition 1.6 holds (see [14, Lemma 2.1(c)]). Since in addition 1.3
implies
H(v|p®™) < B(Jmk(v) + log(2M))

for v € M;((S*)™), the assertion holds. O
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