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Abstract

Let X1,...,X, beii.d. random variables. An optimal Berry-Esseen bound is derived
for U-statistics of order 2, that is, statistics of the form Zj<k H(X;, X)), where H
is a measurable, symmetric function such that E|H(X;, X2)| < oo, assuming that
the statistic is non-degenerate. The same is done for von Mises statistics, that is,
statistics of the form ., H(X;, Xi). As a corollary the central limit theorem is
derived under optimal moment conditions.
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1 Introduction and results

Let X1,..., X, be independent, identically distributed random variables, taking their val-
ues in an arbitrary measurable space (X, B). By X, X we shall denote independent copies
of X;. For n > 2, we consider real-valued U-statistics of degree 2, that is to say, statistics
of the form

U — (Z)_l S H(X;, X, (1)

1<j<k<n

where H : B2 — R is a symmetric kernel such that E |H (X, X)| < co. We allow dependence
of the sample and the statistic, and as well of the functions g, go and i defined below, on n.t
Writing E H := E H(X, X) and introducing the functions

g(x) = EH(X,z) -EH,  h(v,y) = H(z,y)—g(r)—g(y) —EH, (2)

!University of Nijmegen.

2University of Bielefeld. Research supported by the SFB 343 in Bielefeld.

30n leave from the Vilnius Institute of Mathematics and Informatics.

“In other words, we write (X, B), X1,..., X, H instead of (X, B("™), Xl("), XM, HO respec-
tively.



for x,y € B, we may represent the statistic

T = g (U-EU) as T=T, +T,, (3)
with
T Ly (X;) T o > h(X; Xe) (4)
1= = giA;), 2 = jy Xk )
vn “ ! (n=Dvn =

J=1

The representation (4) is the so-called Hoeffding decomposition of T. Here T; is the linear
part of T, whereas Ty is its quadratic part. We will assume everywhere that

0 < s®:=ET? = E¢g* < o0, (5)

which means that T is a non-degenerate U-statistic. All parts of the Hoeffding decompo-
sition (4) are uncorrelated, so that we may write

o? = ET? = ET{ +ET; = s*+ET;,
with

E h? E h? E h?
— < ET? = < .
- 2 2n—1) = n (6)

2n

The (normed) linear part Ty /s is in fact a sum of i.i.d. random variables with mean 0
and variance 1. Under appropriate conditions its distribution may be approximated by
the standard normal distribution ® (see Feller (1971), Petrov (1995), Bhattacharya and
Rao (1986) for classical results). Our result is that the distribution of Ty/s+Ty/s which
is the distribution of the sum T, /s perturbed by a degenerate U-statistic of the second
degree—may be approximated by an expansion related to ®, provided that we correct the
classical error bounds, adding to them the variance E T% < E h%/n. This final result refines
and includes as partial cases related previous work, see the references and discussion below.
Under additional moment assumptions the correction of the error bounds may be improved
to n?E h* /n3/2 4+ (Eh2?/n)*/2, for even k > 4. Hence, if Eh* < 0o, the correction would
be O(n2). The results extend as well to higher degree U-statistics and even for arbitrary
(non-linear) functions of non-identically distributed samples (to be published elsewhere).
Furthermore, similar corrections can be obtained to Edgeworth expansions.

Now we turn to explicit formulations of the results. Write

A = A(T) = sup|P(T/s < z) — O(z)|. (7)

z€eR

By a Berry-Esseen bound for T we will mean a bound for A, which, under appropriate con-
ditions on the sequence of statistics and the samples, is expected to satisfy A = O(n=1/2),
as n — o0o. Let s = Eg¢? as in (5),

B = ElgP’ v = ERP, 5=,
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for p > 1, and

€ = g 5 = L (8)

s3y/n’ s$2n

Next define the asymptotic expansion

G(z) = () + Oy (), 9)
where
By(z) = k@), k= n2sBEg(X)g(X) WX, X), (10)
and write
[ = (1) = sup[P(T/s < ) - Gla)] (11)

We shall write A < B if there exists an absolute positive constant ¢ such that A < ¢B.
Our main result reads as follows:

Theorem 1. Assume that 0 < s < co. Then
' K e+ and A <K e+ 0+ K| (12)
Moreover, in the case where 0? < 0o, we may replace s by o.
Holder’s inequality implies that
k| < nV2s3(Eg?) (ERD)Y? = n~ V25 L (ER2)V2, (13)

so that

2
|0y (z)] < @ = V.
s?n

Therefore an impression may evolve that the Edgeworth correction G has a size O(n~1/?),
which is comparable to the bound (12) for the error. This is true asymptotically in the
case when the functions g and A are fixed and independent of n. However, in a number of
applications, these functions may heavily depend on n so that ®; indeed corrects ®, see
Example 7 below. Example 7 shows as well that bounds of type (12) with /(s?n) replaced
by, say (v/(s2n))?, would do much better. Under the assumption that the sequence of
moments v is bounded as n — oo, the contribution to the error of the non-linear part Ty
is of size O(n~1), which is negligible compared to the contribution of the linear part. This
contribution becomes more important under weaker moment assumptions: e.g., of the size
O(n~Y2) in the case where the sequence of moments 753 is bounded, and of the size O(1)
in the case where the sequence of moments 7,/3 is bounded.
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Another advantage of the bounds of Theorem 1 is that they usually provide an optimal
dependence on moments. Example 8 demonstrates this. It is interesting to notice that the
U-statistic of Example 8 in the case p = 2 approximates so-called self-normalized sums,
as well as the Student statistic: these statistics usually serve as a touchstone to verify the
quality of bounds.

Using truncation methods, Theorem 1 yields a number of bounds under moment as-
sumptions which do not require that § < oo and v < oo, see Theorem 2, Corollaries 3-5,
(29) and related comments below. At the same time the result becomes more general since
it is applicable now to the so-called von Mises statistics.

A von Mises functional (statistic) of degree 2 is a statistic of the form

M = %iiM(Xj,Xk), (14)

j=1 k=1

where M : B? — R is (usually) supposed to be a symmetric kernel. Writing H(z,y) :=
n~t(n —1)M(z,y) and rearranging the summands in (14), we have

M = %iM(Xj,XjH (Z)l S H(X; X)) (15)

1<j<k<n
Now let T be as in (3), with g and A as in (2). Writing
m = EM(X, X), go(z) == 3 (M(z,z) —m),

Sj = ’I’L_3/2 gO(Xj)7 S = Z?:l Sj,
we can represent M by (cf. the Hoeffding decomposition (4) for T)
L/n(M—-EM) = T+S5, (16)

with EM = E H + m/n. Hence, any von Mises statistic (here 2y/n (M — EM)) may be
interpreted as a perturbation of a U-statistic (here T) by a linear statistic (here S).

Generally speaking, the perturbation S is stochastically smaller than the linear part T;.
It is immaterial for us that gy is related to the von Mises statistic (14). Therefore we will
assume throughout only that the S,...,S, are iid., and that S; = S(Xj) is a function
of X; such that ES; = 0.

Now introduce the indicator functions
I=T{¢*(X) <s*n}, K:=I{g(X)<sn*}, J:=I{r(X,X)<s*n}, (17)

and their ‘complements’ I¢:=1—1, K¢:=1— K, J°:=1—J. Next, define the truncated
moments

e, = s2EI°%(X), 0. :=n'? s TEJR(X, X)),

_ (18)
e i=n"V2sEIg(X)]?, 0" :=n"'sPEJR*(X, X),



and

Ao=nEK¢  XN:=n"Y2s EK|go(X)] A i=n"Y2 5T E |go(X)]. (19)

The truncated moments are related to the moments ¢, d, cf. (8), and A as follows:
€.+ <e, A AT <A, O, + 0% <. (20)
Let I :=1{g*(X) < s?n}, and denote
K= nTY2sTPEIQX)T9(X) Jh(X, X). (21)

Define &7 and G* as ®; and G in (10) and (9), replacing & by x*. Finally, introduce
[*(T+S) as I' in (11), replacing G by G* and T by T + S. The next theorem provides a
bound for von Mises’ statistic T +S. If S = 0 the bound reduces to a bound for T.

Theorem 2. Let 0 < s> =ET? < co. Then
"(T+S) <€ exte"+ A+ A+ 6, + 07, (22)
and

A(T+S) < ex+e "+ A+ +0,+0"+ |k (23)

A combination of (20), (22), (23), and the fact that |&* — k| < €+ 9 (see (45) for a
proof), yields the following corollary:

Corollary 3. Let 0 < s* < co. Then we have:
T“(T+S) < e+A+0, AT+S) < e+A+0+ x| (24)

Moreover, in the case where 0? < 0o, we may replace s by o.
(The replacement of s by o is taken care of as in the proof of Theorem 1.)

We say that a sequence of statistics T = T(X7, ..., X,,) and samples X1, ..., X, satisfies
the Central Limit Theorem (CLT) if there exist numbers a, and b, such that (T — a,)/b,
converges weakly to the standard normal distribution ®.

Corollary 4. Let 0 < s? < oo. The sequence of statistics T + S satisfies the CLT with
a, = 0 and b, = s if the following conditions are fulfilled. For all 6 > 0, and n — oo,

e.(0) = sTPEI{g*(X) > 0s’n} ¢*(X) — 0,
A(0) = nEI{g3(X) > 0s*n®*} — 0, (25)
5.(0) == st yn EI{R* (X, X) > 0s’n3} |W(X, X)| — 0,



and moreover
A" — 0, " — 0. (26)
The condition (26) may be replaced by the stronger condition that

limsup s 3 E K |go(X)[*? < oo, limsups™?EJ|h(X,X)|*? < . (27)

n—oo n—o0o

If the distribution of Xy and the functions g, h and go are independent of n, then T+ S
already satisfies the CLT if the moments E g2, E|go|*® and E |h|*/? exist.

The following is as well an easy consequence of Theorem 2:

Corollary 5. Assume that 0 < s?> < co. Then

Elg*  Elgl , E[n[?

N R T (28)

A(T+S) «

Analogue to Corollary 5, a spectrum of bounds like (28) may be derived from Theorem 2,
assuming that the moments E |g]?, E |go|? and E |h|" exist for some 2 < p < 3, % <q¢g<l1
and % <r <2 If X and g, gg, h are independent of n, these bounds have the order

O(n—(p—2)/2) + o(n_(3‘1‘2)/2) + O(n—(3r—4)/2), (29)

provided that p < 3, g < land r < 2. Ilf p=3 or ¢ = 1 or r = 2, the statement in (29)
remains true, but then the corresponding o’s have to be replaced by O’s. For example: in
the case where p = g we have that

et = n VE(lgl/s)*2 T (n 1 gl /5)',

where In~1/2|g|/s is bounded and pointwise converging to zero. By Lebesgue’s theorem

on dominated convergence then n'/4&* — 0. We omit the further details.

The history related to the CLT and the accuracy of normal approximations to U-
statistics is sufficiently rich, see the books Lee (1990), Borovskikh and Korolyuk (1994),
Borovskikh (1996). Shapiro and Hubert (1979) considered weighted U-statistics, assuming
that X, Xo,... are independent of n. In the case where the weights are identical their
result reads as follows: the statistic T /o satisfies the CLT if

E h?
- —)
n s+ E h?
and g satisfies the condition from (25). This result is clearly implied by Corollary 4. The

most advanced result with kernels independent of n — Theorem 4.1.1 in Borovskikh (1996)
— says the same as Corollary 4 in the case that S = 0 and g, h are independent of n. Notice
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that the conditions (25) are Lindeberg type conditions, specialized to the case where all
random variables in each series are identically distributed.

The accuracy of normal approximations improving the bounds for remainders and
posing ever lighter conditions on the statistic and the observations was estimated in a
number of papers. We mention Hoeffding (1948), Bickel (1974), Serfling (1980), Chan
and Wierman (1977), Callaert and Janssen (1978) only. Helmers and van Zwet (1982)
proved (28) with S = 0 and g replaced by g + ¢, ¢ > 0. Bounds without ¢ may be
found in Borovskikh and Korolyuk (1984, 1985), Friedrich (1989), Bolthausen and Gotze
(1993). Van Zwet (1984) established (28) with S = 0 and s~2E h? instead of s™/3E |h|*/3.
We use some methods from Alberink and Bentkus (1999), who obtained bounds for the
so-called concentration (of probability mass) of T, comparable in quality with Theorem 1.
Using the approach developed in the latter paper, Alberink (2000b) showed that the bound
A(T) < € + 6% + |k|, 6 < 1, holds in the non-i.i.d. setting. Alberink (2000a) extended the
result of van Zwet (1984) to the non-i.i.d. case and improved the dependence on s™2[E h?
to vV s—2E h2. Borovskikh (2000) showed that

A(T) < ex+e"+ 0.+ 0" logn + |k*|. (30)

In all cited papers the approximation by the normal law ® is considered; it seems that this
paper is a first one where the corrected normal law G = ® + P, is used.

Compared to n~', the logn factor in (30) is of negligible size. However, this factor is
a principle obstacle if we wish to establish a sufficiently general, precise and exhausting
theory of Edgeworth expansions for non-linear statistics, cf. a related discussion on p. 825 in
Bentkus, Gotze and van Zwet (1997). Compare as well Lyapunov’s bound O(8n~?1ogn)
with the Berry-Esseen bound O(f n~Y %), s = 1. We could not prove Theorem 1 extending
and improving the existing technique—it seems that the best achievable by this technique is
(30). Roughly speaking, this technique usually involves a Fourier transform, which reduces
the problem to an estimation of certain integrals of characteristic functions. After this one
first removes a relatively small part of Ty from the characteristic function E exp{itT} =
E exp{itT; + itTy}. The effect of this is that now the characteristic function contains
a (relatively small) product of certain conditional characteristic functions. As a next
step, the conditional product is transformed to an unconditional one. The presence of
the unconditional product ensures the convergence of the integrals and allows to conclude
the proof using rather straightforward Taylor expansions. The proof in this paper starts
with a Taylor expansion in powers of Ty such that the remainder term has the same
order as the desired error (which becomes clear at the end of the proof). After this
we use the additive structure of the statistic, which allows us to get rid of most of the
dependencies. As a consequence we can create a conditional product of approximately n — 1
characteristic functions. We can estimate this product (in order to ensure the convergence
of the integrals) in the case where certain conditional variances related to kernels are
bounded. The general unbounded case is reduced to the bounded one by an application of
a non-standard truncation. We would like to notice that such a scheme of the proof has a
side effect—a number of technicalities (typical for traditional proofs) disappears.



Another feature of our approach is that we prove the main Theorem 1 for non-truncated
kernels. The result with truncated kernels and weaker moment assumptions (Theorem 2
and its corollaries) is derived from Theorem 1 by an application of a rather simple trunca-
tion technique. Once again, such a way reduces the number of technicalities considerably.

In conclusion we discuss how one can improve the bounds of Theorem 1. First of
all, the term ¢ = 3/(s*>y/n) is unavoidable, unless we require higher order moments and
impose a Cramer type condition on the characteristic function E exp{itg(X)} — see Petrov
(1995) for a counter-example: T = Ty, g(X) being a Rademacher random variable with

P(g(X) = £1) = 3. The term § = Eh?/(s?n) is optimal in the sense that lower order

moments E|h|?, 0 < 2, do not control O(n~!) behaviour, see Bentkus, Gotze and Zitikis
(1994), Bentkus and Gotze (1993). Another way to see this would be to use Edgeworth
type expansions of P(T < z). In particular, the terms with x are unavoidable as well.

Notation. To conclude the introduction we gather some general notation, to be used
throughout the paper. For any real number x, by [z| we mean its integer part. For any
bounded function f, by

1fllee = supser [ f(2)]

we denote its supremum norm. By
I{A}
we mean the indicator of an event A. The notation
by < by, (31)
for by, by > 0, will mean by definition that b; < cb, for some absolute constant c¢. We write
efy} = exp{iy},

for y € R, with ¢ = v/—1 denoting the complex root.
We will use as well the following, more compact notation for the parts of T: taking

Ty = g(X)/vn,  Tjw = WX Xe)/((n—1)v/n),

we have

T =Ti+Ty with Ty=>» T;, To= » T
j=1

1<j<k<n

2 Proof of the corollaries of Theorem 1

Using truncation, in this section we will derive all corollaries of Theorem 1 stated in the
introduction.



We shall often use the following simple truncation lemma. Let Y, ... Y}, be a sequence
of random variables defined on a probability space (£2, A, P), taking values in any measur-
able space (X, B). We do not assume that the Y; are independent. Now let T': X% — Y
be a measurable function of variables x; € X, taking values in a measurable space (V,C).
For a certain event A C B, introduce the truncated random variable

Y o= v, I{Y; € A}

Lemma 6. We have:

sup [B(T(Yi,.... i) € B) = P(T(Y',Ya,... ,Yi) € B)| < B(AY), (32)

BeC
where A= Q\ A denotes the complement of A.

Lemma 6 means that if we have a function, say T'(Xj, ..., X,,), of independent random
variables X, ..., X,,, we can replace any of the sample elements X; by its truncated version
X5 = X;I{X; € Aj}, the error by such a replacement being bounded from above by the
sum of P(A$) for all j such that Xj is replaced somewhere. For example, in the case where
A; = A, independently of j, and the function T is a function of 2n variables,

sup [P (T(Xy, Xi...., X, X,) € B) = B(T(X}, X1...., X2 X,) € B)| < nP(A). (33)
BeC

One can use Lemma 6 as well in the opposite direction, for ‘de-truncation’, that is, for
a replacement of any given X by X;. Furthermore, we can implement into our statistic
indicators [; := I{X; € A;} in arbitrary places. The error is again bounded from above
by the sum of P(A$) for all j such that I; is at least once somewhere implemented.

Proof of Lemma 6. Using the abbreviation T':= T'(Y1,...,Y%), we have that

P(TeB) = P(Y1e€A T(Y]",Ys,....,Y,) € B)+P(Y; € A°, T € B)

< P(T(Y],Ya,....Y) € B) +P(A°). (34)
Similarly

P(T(Y],Ys,....Y,) € B) < P(T € B) +P(A°). (35)
The estimates (34) and (35) together yield (32), thus proving the lemma. O

We turn to the proof of Theorem 2.

Proof of Theorem 2. Without loss of generality we shall assume that s> = 1. We
write

a = e+ AN+ 0,407,



1
and may assume that a < 5.

Let I;, K; and J;;, denote indicator functions defined as I, K and J in (17), replacing
X by X; and X by X;. We use as well the analogue expressions [ 5y K5 and J5 ;. The idea
of the proof is the following. Using Lemma 6, we first replace all T}, S; and Tjj by their
truncated versions I; T;, K; S; and J; T; ;. After this we re-center our truncated statistic
a bit and apply Theorem 1.

We start with the truncation. Lemma 6 is telling us that the error introduced by
truncating the Tj, S; and T}, as described is bounded by

nEIf+nEK 4+ (5)EJ° < e+ A+ 30, (36)
which is as small as we need. Hence we may look at the statistic
T := Z;L:I 115+ Z;L:I K;Sj + Zl§j<k§n Jik Tiks
and confine ourselves to the proof of the fact that

sup |P(T < z) — G*(z)| < «. (37)

z€eR
To this, we need to determine the Hoeffding decomposition of T. Let

7? = ]jﬂ_EIITla S]* = Kij—EKlsl,

iy = JipTjg = E(Jjp Tin | X5) = E(Jjp Tin [ Xi) + E J12 Tr o,

Next to this, let & := (n — 1) (E(JLQ Tio| X1) —EJio Tl’g), and, for 2 < j <n,

& = (n—1) (IE (J1;T1;1X;) —EJpo TLQ).
The Hoeffding decomposition of T is given by

I = Ti+Si+& T = T

whereas moreover

ET = nELT +nEK S+ (3)E Jip T
Since for example E [T} = —E I{T7, it is easily checked that

ET| < e+ A"+ 36..

As ||G']|os < 1, the latter leads to the fact that we may prove (37) for T — ET instead
of T.

Another truncation is in place here. In fact, we more or less need that |£;| < 1 for all
7. To this we introduce the indicators

L; = I{& < 1}.
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The substitution of all {; by L;&; has a cost that, using Markov’s inequality, is bounded
by

nEL{ = nP(l&]>1) < nE|&G] < nPEJio|Tia] < 67, (38)
and hence is acceptable to us, so that we may change all §; into
§ = Lj&§—ELi&.

Again this involves a shift in the mean, of n[E L; &, but because of (38) it is negligible.
In short, we are now looking at the statistic

T o= 25T + 55+ &) + 2acjchen T

and if we can prove (37) with T instead of T the proof will be finished. Note that, for all
jand k </,

T71 <2, [Sj<2 [§1<2, [T <4 (39)
Now we look what Theorem 1 can do for us. In fact it is telling us that

sup [P(T/s < z) — G(z)] < &+,

z€R

with §2 = s2(T), é = e(T), § = 6(T) and G = G(T), cf. (5), (8) and (9). We prove that

187 —1] < A" +¢&", 8 —1| < 1, (40)
that
£ T HNF, b < 6, (41)
and that
|G — Glloo < a4+ N+ 6% (42)

As a result then

BT <a) - G*(2)] < [P(T/5 <w/8) - Glz/3)] + |G(x/3) — G(/3)]
+ |G (x/8) — G* ()|
< a+|G*(z/5) — G*(x)],

whereas, using a simple Taylor expansion,
|G*(x/8) —G*(z)| < |57 —-1] <« 1-8°] < qa,

so that indeed (37) for T instead of T, and the proof of Theorem 2 is finished.
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We turn to the proofs of (40), (41) and (42). First we look at
§& = nE(Ty + 57+ €)%
Here, using (39) and the fact that,
E|Si] < 2n7'X,  El¢| < 2EL |G| < 4n7' 67, (43)
cf. (38), we see that

182 —nE(T7)? < 2nE|T7||S; + €|+ nE|S: + &2

<
< 8nE|ST+E| < 48 (A" +67).
Using that E|I; 71| < 1, in the same way we see that

InE(T)? —nELT?| < 3nEIf|Th| < 3e,,

whereas [nEI, TE — 1| = nEI[{ T} = e.. As a result of all of this, (40) easily follows. As
to € we have:

¢ = $TUnE|T+ S+ &P < n(E|P+EISIP+EEP)
< nEL TP +nE|Si|+nE|&] < e 4+ M+ 6%,

cf. (43). As to 6 on the other hand
0 = $TRPE|TY,? < nPEJi,T2, < &,
and together indeed (41). Finally we look at
IG" = Gllw < 519"l |5 — &l (44)
with
|I€* — l%l = n2 |]ET1* TQ* T1*,2 — §_3ET1 TQ T1’2|.
Since IETl Tg TLQ = ETl Tg 175, we see that

K" =& < R ET T T, —EN Ty T +n? |[ET T3 Ty, — ETy TR T
+7’L2|1—§73||ET1T2TF’2| = p1+p2+,03. (45)

Here
pr = n*|[E(S]+ &) T3 Tryl,
whereas, cf. (39) and (43),
E(S;+&)* < EIS]+&i| < n ' (A +67).
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Using Hoeffding’s inequality together with the fact that E (77,)* < 16E Jy 2 77, < n™2 6%,
we have
pr < 0t (E(ST+E)N)2 (E (1)) (E(T7,)%) "

< RPN 4§ 2 2 ()2 < N 4ot

In the same way py < A" + 6", and since
1—-87° = 5°1-38(1+5+8) < |[1-8] < X\ +¢,
we see that py < (X\* + &%) n2E [Ty T Tf,| < (A* + £*) (6*)V2, and indeed
|K* — k| < 0.+ A" +e" 40"

Looking at (44), this finishes the proof of (42). O

Proof of Corollary 4. The statement that (25) and (26) yield the CLT will be proved
as an application of Theorem 2, using as well that, see (13), |s*| < (6*)"/2. In fact, taking
0 = 1in (25) we see that e,, A\, 0. — 0, whereas by assumption A\*,6* — 0, so we only need
to prove that €*(n) — 0. To this, let 0 < § < 1 be any small positive number. Because of
(25) there exists an integer my such that e,(0) = e,(n, 0) < 0%/ for all n > my. Writing

I = T{g*(X) < 0s°n}, I, :=1{0s’n < ¢*(X) < s’n},
then, for n > my,

e'(n) = nPsIE(L A+ I) [g(X)
(05°n)Y2n V25 E g? + (s°n) Y2 n Y2 s E T, g(X)?

<
< Y2 4 e.(n,0) < 2042

As a consequence €*(n) — 0, which finishes the proof of the first statement.
We show that (27) is stronger than (26). Indeed, from (27) it follows that

N(n) = sTPE|gof? K (s7H =2 |go|) V7,

where K s~'n73/2|go| is bounded and pointwise converging to zero. Since the sequence
s72BE K |go(X)|?? is uniformly bounded, as a consequence A*(n) — 0. In the same way
d*(n) — 0, which proves that (27) indeed implies (26).

We turn to the final statement: suppose that the functions g, gy and h are inde-
pendent on n and that Eg? E|g|??, E|h|*? < oo, and let § > 0 be fixed. Since
I{g*(X) > 0 s*>n} g*(X) — 0 pointwise, by Lebesgue’s theorem on dominated convergence
we immediately see that €,(0) — 0. By the same argument

M(O) = nEI{|go(X)|7? > 612 s*3n}
< 971/3 872/3 EH{|QO(X)|2/3 > 91/3 82/3 n} |gO(X)|2/3 - 0’
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5,(0) = s PEI{|AX, X)[Y3 > 03 52 0%} |h(X, X))
< s 2 (0P PR TVARI{ WX, X)[MP > 30} WX, X) [P — 0.

It is furthermore clear that the upper limits from (26) are bounded, and as an application
of the first part we have the CLT for T + S. O

Proof of Corollary 5. We apply Theorem 2. Using (20) and the definitions we see
that e, +¢* and A, + A" are small enough for our purposes, so we may concentrate on J,,
6* and |k*|. Here, taking J =T{h% < s?n®} and J¢ =1 — J as before,

Jelh| < JEIRPR (s2nd) V3 = sm2Bp L e |nfs/
and
TR < J|h[P3 (236 = sM3pl2 7 |h|p,
and it easily follows that
5,48 < sTBRTVZE B3,
Using Holder’s inequality we see that
K| < nT 2 (Bl TR )P (B]s (X)) = n 26l 02,

/5 &5/5

introducing the appropriate aj, as > 0. As in general Ozi’ < aj + ay for ag, as > 0,

as a consequence
K| < nV2sTSBE|RPS + nY2 ay,
whereas, using again Hélder’s inequality,

as < (sPE|g)?)? = s (E|g]g*?)?
< sP(EPE|g)P = sTPE|g),

and the proof of the corollary is easily finished. a

3 Examples

Next we provide some examples which demonstrate the optimality of the bounds.

Example 7. Let X, Xy,..., X, be real-valued, i.i.d. random variables, with y := E X.
We look at the statistic

-1
U = <Z> Y XXk,

1<j<k<n

14



cf. (1). Tt is clear that U is an unbiased estimator of the unknown parameter p?, that is,
EU = p2. The functions g and h from the Hoeffding decomposition (4) are now given by

g(x) = p(x—p) and h(z,y) = (v — p) (y — p).
Hence, writing
a2 =E(X —-p? and b:=E|X—pu]

the moments corresponding to our model are

2 4

s?=p?a®, B=|ufb, y=d', k=np!

uta.
By Theorem 1, under the assumption that 0 < p?a? < oo we have that

b a?

st <« =+ 5
L ady/n uln

z€R

(46)

P (ﬁw;i“z) < 1’) — B(z) — Lk d"(x)

S

a bound depending on p?. This bound is precisely of order O(n~'/?) in the case where
the sequence b/a® is bounded and the sequence p=2a? is of order O(n~/2). The latter
will mean moreover that || < n=1%, so that the Edgeworth correction ®; then is of order
O(n=Y%). In case p=2a®> = cn~/? for some fixed constant ¢ > 0, we have indeed that
|®1]|oc > En~Y* for some constant & > 0, in which case the correction really makes sense.

Example 8. Let X, Xy,..., X, be real-valued, i.i.d. random variables such that E X = 0
and E X2 = 1. Now consider the kernel H(z,y) = zy* + 2% y. The corresponding statistic
U is closely connected to Student’s statistic. The expectation E H and functions ¢ and h
from (4) are of the form

EH=0, g(@)=2z  hz,y)=2>—1)+ (@ -1y
Hence, T = £1/n U, so that in fact

1 « 1 2 2 _
T = %;Xj+m > AXXE 1) + (X - 1) X0} (47)

1<j<k<n

Now let
I=T{X2<n}, I°=1-1, e :=EIX? & :=n2EIX].
From Theorem 1 we derive that
A(T) < e, 4+ < n7V2RIXP. (48)

Indeed, to this, we first truncate all X; by I; X;, I; being the analogue of I if we replace
X by Xj. Looking at Lemma 6 this has a cost of

nP(X?>n) = nP(I°X*>n) < EI°X? = &,

15



and thus is okay. Next we are looking at a statistic T = T Xy,..., 1, X,), which we
need to rewrite. Here we go about as in the proof of Theorem 2. First we decompose T as

T = ET+ Y0 (T] + &)+ Xicjchen Tin

with 7} = n~Y2(I; X; —ETX) and so on. Then we proceed by making the &; bounded by
means of indicators K := I{|{;| < 1}, changing the &; into {§ = K& — EK; & To the
then obtained statistic T we apply Theorem 1. Since

A~ A~

-1 <3, [#-1l<e+e, eT)<er, 6T e,

combining the arguments it follows that

sup |P(T < z) — B(z)| < e, +* + |k(T)|,

rxeR
which, since
K(T)| = n?$ P [ETiTaTiol < SRPE|Ty + &2 (E(T7,))? < &,

concludes the proof of (48).
An application of Corollary 5, with E |h|*/? in the bound instead of E h?, leads to the
fact that

A(T) < e +n PEIXM3 < n7V2E|X)H5, (49)

Hence, for T defined by (47), the corollary (48) yields A(T) = O(n~/?) under the optimal
condition that E | X|* < oo, whereas (49) requires that E | X |'%? < co. Another advantage
of Theorem 1 and its corollary (48) is that it implies the CLT under the optimal condition
that 0 < E X2 < 0co. More generally, we have that A(T) = o(n~?) if 0 < E|X|>0+9) < oo,
for0 <6 < %

One can introduce statistics similar to (47) corresponding to the kernels

g(x) ==z, h(z,y)=z(y" —EX")+ (2 —EX?)y,

with p = 2,3,4,..., just replacing in (47) the 2 by p" powers. Using a truncation
determined by the indicator I := I{|X| < n'/?}, from Theorem 1 it is now derived that

A(T) < n V2R |X[?P/2, (50)
whereas Corollary 5 leads us to the bound
A(T) < n V2R |X[P/3, (51)

corresponding to (48) and (49) respectively. For the CLT the condition 0 < E | X|? < oo is
sufficient. We omit the calculations leading to (50) and (51) since they are similar to the
ones for p = 2. It is clear that the result (50) is again better than (51).
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4 Proof of Theorem 1

We turn to the proof of Theorem 1, using the general notation described at the end of
Section 1. Without loss of generality we may assume that ET = 0 and s?> = 1. From here
on, let

a = min{f7'n? ~y7ln}. (52)
Under these assumptions, using Lyapunov’s inequality,
B >s =1 and a < 10?2 < 02 (53)
whereas furthermore

E|T\P=n"%23 < n7ta™ and ET,=n"y < n?a™h. (54)

We will use the inequalities (53) and (54) extensively.

In order to prove the theorem we are going to apply Esseen’s smoothing lemma. Before
doing this it appears to be wise to look at the conditional variance connected to the kernel
h. Let

o = E(If] X)) and o} = E(T3] X)),

for 2 < j < n,and let 0 < § < 107 be some fixed positive number. Without loss of
generality we assume as well that

a > 10°071,
and we will prove Theorem 1 under the condition that, for any 7,
7 < On 't (55)

Using a truncation argument on T, in the following subsection we will show that for all
our purposes we may indeed make this final assumption.

4.1 Truncation of T

We show that it suffices to prove Theorem 1 in the case where ¢; < #n~! for all j, for
some fixed 0 < 6 < 107, Indeed, assume that we have the mentioned result. We want to
prove that, for some constant ¢(f) > 0, we have the bound

I(T) < c(§)a™. (56)
To this let, for 1 < j < n,

[j = I](X]) = ]I{(IO2<10’I’L_1}, I = 1—]]',



and define

T =T +Zl§j<k§n LI Ty,

with Hoeffding decomposition

T = ET+Z?:17A}+21§j<kSn Aj,k = ET+ T+ Ta

Let §2 := var Ty. Without loss of generality we may assume again that
ET=0, s*=1, and a > 10°07L

We have the following:

Lemma 9. Assume that (57) applies. Then

I(T) < 0 ta '+ T(T).

Moreover we have |E T| <207 a3, and, for all1<j<nandl <j<k<n,

N

ETJQk < 4ET32k and E(YA}2,€|XJ), E(Tg2k|Xk) < gn .

< §# =nET? <3, E|TP < 4E|GP+12n a2,

(57)

(58)

(59)

(60)

As a consequence of the right part of (60), the restricted theorem is applicable to ']T,

thus yielding a bound of the form

N(T) < c@) (nE|T 7 +n?ETE,57%).

In turn, using (59) and (60), this bound is seen to be bounded from above by (a constant

times) the desired bound a~! for I'(T), plus an extra term of order a=3/2 < a7

From

(58) the desired bound (56) then immediately follows, and this shows that we may indeed

restrict our attention to the theorem under the condition.

We turn to the proof of the lemma.

Proof of Lemma 9. We denote the moment x and expansion G, cf. (10) and (9),
corresponding to T by & and G. First we notice that, for all 7, by Markov’s inequality

P(I; =0) < (i@n_l)_lETf’Q < 460 'n~lg L

This implies that

P(T#T) < P(I; =0, some j) < 4nf'n"ta™t = 467 a™",
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so that, using Lemma 6, for any x € R,
P(T<z)-G@)| < 0 tat+ \P('ﬁ' <z)—G(2)] (61)
Now we turn to T’s Hoeffding decomposition. First note that
ET| = () [ELLTio| = (3)|EIISTo,
since for example EL, Ty o = ELE (T1 2| X5) = 0, and with Holder’s inequality
IET) In? (EI{EI5)Y? (ETE,)Y?
n?P(L; =0) (n 2a 1)Y/?

2020 'nta ' n a2 = 2071 a2 (62)

VAR VAN VAN

Now let
gj = (’I’L — 1) (E (Illj Tl,j | XJ) — EIllg TLQ)

for 2 S j S n, and 51 = (n — 1) (E (]1 12 TLQ | Xl) — Elllg TLQ). FOHOWng the deﬁnitions,
it is easily seen that

Ty = T1;+&.
Looking for example at the moments of &;, we see that

EE = (n— 1) (EEX(I,Tis| X1) — E2L 1 Thy)
< nPELER2(ISTo | X,)

(again using the fact that E (77| X;) = 0). Here with Holder’s inequality
E*(I5Tio| X1) < E(T7,|)EI; < 460 'n ta 'E (17, ] X1), (63)
so that
E¢ < 407 'ntatn? ]E,le’2 < 407'nta™R
As a consequence we have that

IET? —n7! 2ET & + E&2|

9 (n_1)1/2 (467 n a—2)1/2 LAt g2
407 n"tg! (91/2 + a_l) < 0 tnta™t < 107307

IAINA

which proves the first part of (59). As a result we also have that

$2—1] < 30 |ET?—n7 < 307ta™! (64)
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and using (62), (64) and (61), a standard Slutzky type argument is leading us to (58), with

)
A

G instead of G. In order to get to (58) it will now suffice to show that
|G =Gl < 6 a™ (65)

We postpone the proof of (65) until the end of the proof.
As to the third moments: using the general inequality

(lal +[6])" < 27 (Jal" + [b]"), (66)
for r > 1, we see that

E[&)? 4 (E|E (L T2 | X0)|* + [ELL T %)

<
< 8PELE?*(LTio| X1) |E (I Tig| X))l
With Holder’s inequality and I;’s definition,

LIE(LTio| X)) = LIE(5Ti2| X)) < LE(T7,| X:) 2B I
< (49—1n—1 a—1)1/2 (‘9”—1)1/2 _ 2n_1 a_l/Q,

so that, using as well (63),

El&P < 2%nPnta 20 in et ET?,
2071 n=1q72 < 20, Ln7lgT? < Lp=1g732,

Using again (66) it is then easily seen that the second part of (59) is correct as well.
We turn to the non-linear part of T. For all 1 < 7 < k < n it is easily seen that

A

T = LT —E(LL Tk | X;) —E (L Tk | Xx) + E LI T .
As to TALQ we have the following. Taking

pi2=NLLTis, pr:=E(pw2|X1), p=E(@s2|X:) and p:=Epp,

we see that

ETEQ = E(p2—p1 —p2+p)°

E (p12 — p1)* = 2E (p12 — p1) (p2 — p) + E (p2 — p)?
= E(p12—p1)2—E(p2—p)2

< 2(Epf, +Epi) < 4Epi, < 4ET,.

A

Concentrating on E (77, | X1) we see in a similar way that

E (T2 |X1) = E((pi2—p2)® =2 (p12 — p2) (p1 — p) + (p1 — p)*| X1)
= E((pr2—p2)*1 X1) — (1 —p)* < 2(E(ply| X1) +Epi)
< 2(E(pl, | X1) +EE (0%, | X)) < 4-30n7' = On7,
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using the fact that by definition ]EA(p%2 | X1) < LE(T%| X)) < 19n~'. The same applies

for any ET2,, E (T} | X;) and E (T} | X3), which proves (60).

Finally we give a proof of (65). To this we take a look at
k=il = nETTyTio —ETVTy Tyl
< 2 |E(Thg — Tio) TiTo| +n? [EThs (Ty — Ty) T
+ 02 [ETo Ty (Ty — Ty)| + n? |1 — 573 |ETy Ty Th o
=1 A2+ N3+ M.
Here

m = n2 |E (1 — [1]2) T1T2 T1’2|
< 0230 |ELET Ty Tio| + n? BRI IS TV Ty Th o,
where with Holder’s inequality
ELTTT| < (BIFTYY(ETD)Y (ETE,)Y?
< (E [lc)l/ﬁ (E |T1’3)1/3 (n—1)1/2 (n—2 a—l)l/Q
< (497'1n? a71)1/6 V2 GY3 302 12
< V626 g3 2 ge1/6 2
and, in the same way,
ELT T T, < (BT (ETE)Y
< (07'n? a_1)1/3 n=t 32/3 (n~? a—1)1/2 < 9V p2gt,
so that n; < #~'/3 a=t. Moreover, using the above we have that
n < 0 (ETE,)V2 (BT (EE)
< n?(n a_1)1/2 (n—1)1/2 (0T n! a—2)1/2 — g2,
and in the same way 7, < 072471, As to 1y, using (64) we see that
-5 = 8732 +5+1)5-1 < |81 < 07'a™?,
and with Holder’s inequality
m < 0 ta eV« 07 a2

As a result
k—fi| < 07 a,
and
IG = Clloo < 0 a |0l < 0 ta .
This finishes the proof of (65), and hence of the lemma. O
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4.2 Expansion of the characteristic function on [0, 1]

From here on, let g be the Fourier transform of GG, and let
f(t) = Ee{tT}.
In order to prove (12) we note that Esseen’s smoothing lemma is telling us that

sup [B(T < ) — G(2)] < a=* + [ |7(t) - g(t)] t~ dt. (67)
z€R
See, for example, Feller (1971), Chapter XVI, Lemma 3.2. This leaves us the estimation
of the integral on the right side of the inequality. To this, taking 7 uniformly distributed
on (0,1) and independent of the sample, we will expand our characteristic function f as

&) = filt) + f2(8) + f5(1), (68)
where
fi(t) = Ee{tT},  folt) = (it)ETye{tT;} (69)
and
f5(t) = (it)*E(1 —7) T2 e{t (T, + 7 To)}. (70)

We concentrate first on the case where ¢ is a real number on the interval [0, 1], which may
be dealt with in a rather simple way.

Lemma 10. Assume that ET =0, s> =1, and a > 10207, In case 0 < t < 1 we have
that

f(t) —g®)] < a't. (71)

Proof of Lemma 10. First we remark that, for 0 <¢ <1,
f3(t)] < SPETS < ja=' % (72)

which is small enough for our purposes. Now let Z1,... , Z, be an i.i.d. sample of random
variables that are N(0, %)—distributed, independent of the sample. Writing Z := Z;’:l Z;,
we have that Z is standard normally distributed. Now

g(t) = Ee{tZ} + L(it)* k Ee{tZ} = ai(t) + g2(¢),

and we will prove that fi(t) ~ g1(t) and fo(t) = go(1).
The first approximation is a standard result, which may for example be derived by
gradually changing the 7, T} in the exponent into > J7_, Z;, one term at a time. In this
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way one has to perform n estimations, which via Taylor expansions may be proven to be
bounded by
% (Bn~Y2)n 1t exp{—itZ} < % atn 13 exp{—itQ},

so that in turn

[f1(t) = g1(1)] < a™#* exp{—3t*}, (73)

a bound which is very useful as well for large ¢t. See, for example, Alberink (1999),
Lemma 3.4, or Bentkus et al. (2000). Moreover we have that

L) = (3) (it)ETioe{tT:}
5 (1) kEe{t(T, — (T1 +T2))} =: x(1).

~
~

In order to get from f, to x, here one needs to exchange the term E T}, e{t(T; + 15)} by
(it)2 ET1T5 T1 2. To this one may use that

[Ty} = 14 GOT; + Ry, with |Ry] < %2 T3
and it is easily seen that
[f2(t) = x()] < a7 (1+112) exp{—3t7},
see again Alberink (1999) (Lemma 3.5). As for f; it is seen that
IX(t) = g2(t)] < a7t ¢! exp{—31%},
and as a result we then have that
[f2(t) = g2(t)] < a7 (1 + 1) exp{—71?}, (74)

after which (71) is an easy consequence of (72), (73) and (74). O

4.3 Expansion of the characteristic function on [1,a!/]

We turn to the expansion of the characteristic function on the interval [1,a'/%]. We have
the following result.

Lemma 11. Assume that ET = 0, s> =1, a > 10307 and t > 1. Then there exists a
constant ¢ > 0 such that

f(t) = g(t)] < a2 a7ttt exp{—ct®}.

Proof of Lemma 11. We start again from the expansion (68). Since from (73) and (74)
we already have that

[1(8) + fo(t) —g()] < a™' (1+1") exp{—3t7},
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n

Figure 1: Decomposition of Ty into lines L;, triangles S; and complements W;.

it. will suffice to prove that
Ifs(t)] < a3+ a1 % exp{—co t?} (75)

for some constant ¢y > 0. To this, for 1 < j < n, we introduce the lines, triangles and
complements

L= T §=S00 L and W= Y0 Li=To— Sp. (76)

see Figure 1.

Now let
Ty = Uy + Uy + Us, (77)
with
Ur = Yaa=2Th U2 = 24 p a=ip=2jansi=1 Ta Ts
and

Us = ZA,B: |A|=|B|=2, ANB=0 TaTp.
For k =1, 2,3, we look in turn at
hi(t) = |(it)*E (1 — 7) Uy e{t (Ty + 7 T2)}|.
We start by looking at

hi(t) = t* (;L) |E(1—7)T7,eft (T +7Ts)}|
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Using a short Taylor expansion in terms of S3, we see that

= ha(t) + Rs(t), (78)

hi(t) < %nQ 2IE(1-7) TEQ e{t (Ty + 7 (L1 + L))} + hs(t)

with
|hs(1)] %nQ BET(1-7) T1272 |55 (79)

L2 3 (BT2,) (ESD)Y? < ata 28 = a 328,

IAIA

which is small enough for our purposes, so that we may concentrate on hy. As to hy we
have that

IE(1—7) T12,2 e{t (Ty + 7 (L1 + Lo)) }|
< E(1l-71) Tﬁ2 le{t (Th + Ty) + t 7112}
E(e{t D2 _5(Tj + 7T +7Toy)} | X1, Xo, 7))
< ET2, |Vig. |2, (80)

with
Yior == E(e{t (T3 +7T15+71To3)} | X1, Xo, 7). (81)
Now let ¢ := 103071, for which we typically have that a > ¢. We take
¢ = 1-307tet — 2P0 (1480712 (82)
and
e = (e —8(0+&?)?-160), (83)
and note that under the assumptions
W<a<l  and <<
We will prove that, as a result of the truncation,
Vil < 1—con 't < exp{—con 't*}. (84)
As a result of (84) then
BT, |Yig-"? < exp{—cst’}4n?a ", (85)
taking c3 := (1 — 2n7') ¢y, and, combining (78), (79), (80) and (85),

hi(t) < a=?2t + a1 2 exp{—c3t?}.

25



We turn to the proof of (84). In fact, using a Taylor expansion in terms of 7(77 5+ 715 3)
we see that

Yig- < [Ee{tTs} +t7[E((Tis+ Ta3) e{tT3}]1,2)]
+ %tQ 7'2 E ((T173 + TQ73)2 | Xl, Xg) = ’l,bl(t) + ’(/Jg(t) + 1/)3(t)

Here clearly (see Lemma 9)
Ps(t) < FPAE(TPs| X1) < 8t260n~". (86)
As to ¢4 (t) a three-term Taylor expansion is telling us that
Pi(t) < |1 - SPETE| + 3 E (T2
By Lemma 9 we have that

TPETS (1+30tat)yn ¢

<
< f(1+430t'a)ntadr < 1A+30a )n 0 < 1,

N D=

and using again the lemma it is then easily seen that

hi(?) —3(1=30"a ) n 1P+ 5a PP AEITP + EIGP)

<

— 2

< 1—fin ' (1=30""a — 30 +8071 )

< 1—gan t2 (87)

As to 1y(t), using Holder’s inequality we easily see that

Po(t) PE(|Tus + Tos| |Ts] | X1, X2)
2K (|T3 + Tos)?| 1,2)/2 (ET2)Y/? (88)

£2 (42 Qn_l)l/Q (n_l Loyt a_2)1/2 < 42n! 0+ a_2)1/2,

IA A IA

and using (86), (87) and (88), the proof of (84) is easily concluded.
We turn to ho. To this, let

U1 = ZA,B:|A|:|B|:2,AHB:{1}TATB'

Now
hg(t) = ’I’Lt2 |E (]_ —T) Ug’l e{t (Tl‘l‘TTg)}l (89)
We notice that

E(U3, %) = (") E(I7 1151 X)) < 30’ E(I%,] X1)% (90)
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since for example ETLQ T173 TLQ T174 == ETLQ T173 TLQ E (T1’4 | Xl; XQ, Xg) = 0, so that re-
moval of Sy from the expression Ty in (89) will cost no more than

nt3ET(1 —7) Uy |Se] InBEE (U3, | X1)Y?E (53] X1)Y?
273202 3 (B S3)V2EE (T2, ] X1)

273/2 n2 a71/2 47’1,72 afl t3 S 21/2 a73/2 t3, (91)

VANRVANPVAN

which is acceptable. Hence we look at (89) with Ty replaced by L;, and taking
U2*,1 = Zl<j,k§[%n],j7ék T T,
we see that

-1
ho(t) < 2207323 42 (") L (Y 2| (1 = 1) Us, e{t (Ty + 7 Ly)}]
= 22073243 1 pg(0). (92)

Vi, = E(e{t(T, + 7T} | X1, 7), (93)
here

he(t) < nt’E(1—17)|E (U2*71 e{t Zgg;](T] +7T)} | Xy, 7)) |Y’1’T‘n—[%n]
< neEE(|Us,|| X1) [V, [" 5",

where, see (90),
E (U5 X1) < E((Us1)°| X0)Y? < nE(TF,] Xy),
and, as in (84), |Yi,.| < exp{—can™'*},

he(t) < n?t?EE (I1%,]X1) exp{—c2 (n — [3n])n~'?}
< a't? exp{—ict?}. (94)

From (92) and (94) we conclude that
ha(t) < a2t +a ' exp{—Lct?}.
As to hs(t) we have that
Us = Zl§j<k<p<q§n V},k,p,q (95)
with
Vikwa = 2(Tix Tpg + Tip Thg + Tjg Thp)-
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The V. p, are mutually uncorrelated, so that, using the inequality (66) and Lemma 9,

EU; = 21§j<k<p<anEVﬁk,p,q = (Z) EV12,2,3,4
< n*4-3PETE, T, < a2 (96)

Because of this we may remove 7Ty from the exponent directly, the cost of this removal
being bounded by

PET(1-7)|Us] |To| < £ (EU)V? (BT < a8,

so that
hs(t) < a2 + 2 [E(1 —71)Use{tTi}| = a2t 4 hy(t).
Taking
Us = Zl§j<k<p<q§[%n] Vikwar
we have that
het) = 2 () (5 E Q1 = 1) Ug e{t Ty,

which as for hg(t) leads to the fact that

hi(t) < 2 (B|U5]) [Ee{t T} 2" < a™'t* exp{—Lic,y?}.
In turn

ha(t) < a 3285 + a1 exp{—Leat?},

and the proof of (75) is easily concluded. This finishes the proof of the lemma. O

4.4 Expansion of the characteristic function on [a'/%, q]
Finally we turn to the interval [al/ 6 a]. Here we have the following:

Lemma 12. Assume that ET =0, s> =1, a > 1030~ and t > 1. There exists a constant
c > 0 such that

lg(t)] < (1+a 1) exp{—1%}
and

1f(t)] < 75 +a V2 (logt) t™> +a™ (log®?t) t™' + a3/ log®/* t.

Proof of Lemma 12. We first notice that

K| < (yn Y2 < a2
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from which it easily follows that
9(t)] < (140728 exp{-L 12},

as desired.
Now let L;, S; and W; be as in (76), ¢; and ¢, as in (82) and (83), and

m = m(t) = [6¢c," (logt)t *n.

We notice that under the assumptions 100 < m < %n. Since ¢y < %cl and ¢; < 1, using

(87) we have that
[Ee{tTh}|"? < exp{—3c(m—2)n"'#}
< exp{—6logt+2c;n't?} <« t7°. (97)

Instead of (68), we use an expansion for f(t) in powers of W,,, thus looking at
&) = [i(t) + f2(8) + f5(2)
with
fit) = Ee{t (Ty + Sna)}, fo(t) = (@) EWne{t (T1 + Smea)},
and
fa(t) == ()*E(1 —7)W2e{t (T, + Spir +7Win)}.
As to fi it is easy to see that, as a result of (97),

@] = [Ee{t T} [Ee{t (341 Ti + Smrn)}
< [Ee{tTi}"™* < 7,

which is small enough for our purposes. As to fo, for [ =2, m + 1, let
Vi = e{t(Ty — (Ty +T)) + Smir)}-
Using the Taylor expansion e{t T} = 14+ R, with |R;| < t|T}|, together with independence,
we see that
Rt) = (i) (7) (ETize{t (11 + T2)}) EVy
+ (Zt) m (n — m) E Tl,m+1 e{t (T1 + Tm+1)} Vm+1
= (it) (72") (ETi 2 Ry Ry) EVy + (it) m(n —m)
X ]ETLm—i—l Rl (1 + Rm-l—l) Vm+1 = f4(t) + f5(t) (98)

Using Holder’s inequality, Lemma 9, (97) and independence, we see that

|f4(t)| < m2tE|T1’2 R1 Rgl |E‘/2|
< m*t*(E T12’2)1/2 (ET?) |[Ee{t T3}|™ 2
< (mn M2 V2t < a VP (log?t)t T, (99)
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As to

fs(t) = (it)ym(n—m) (ET mp1 Ry Vints + ETy i Ry R Vinga)
=t fo(t) + f7(1) (100)

we have that

|f7(t)| S mnt |]E e{t T2}|m_1 t2 E |T1,m+1 T1 Tm+1|
< mn ta 23 < a2 (logt)t O, (101)

cf. (99). On the other hand
folt) = (i) m(n —m) (Eeft To})™ ETymir Ry €4t (Lnss + Sz + Sl T}

an expression which would vanish if the term L,,,; were not there in the exponent. Removal
by means of an expansion thus shows us that, see (97),

|f6 (t)l < mnt t_ﬁ tQ E ‘Tl,m+1 T1 Lm+1|
mnt (BT, )" (ETE)? (E L7, )"
mn~ 't et < a7 (logt)t7?, (102)

VARVAN

and following (98), (99), (100), (101) and (102) it is easily seen that |fo(t)| is small enough
for our purposes.
We turn to f3, for which we will do the following. We use the decompositions

Wm:P1+P2+P3 and Sm+1:P4+P5+P6,
laid down by

m n—m
P o= Z1§j<k§mTj,k’= By = ijl Zk:mﬂTj,ka

o n—m n ) . . .
Py = Zj:m—H Zk:n—m—H Tyk Ps = anm+1§j<k§n Tyk :

see Figure 2. Moreover, in order to denote the tails of a line L;, for all 1 < j <k <n we
write

Pp— n .
Lj,k T ZzszJ,l-

Now we go about as follows. First we will remove P; from the expression W,,, altogether.
After this we write out (W,, — P;)? like T3, see (77), and perform three separate estimations.
As to the removal of P; we note that, writing

Q = (1-71)e{t(Ty+ Smr +7Wn)},
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Figure 2: Decomposition of Ty into P; + ...+ Fs.

we have a decomposition of form

f3(t) = fs(t) + fo(t) + fio(t)

with
fs(t) == (@)’ E(P+ P3)*Q, fo(t) == (it)’EP (P + P3)Q
and
1f@®)] < $PEPE < 22 (mn )2t < at(log’t)t 2
Furthermore

fo(t)] < 312 (EPP)Y2(E(P; + P3)?)'/?

Limn=1)2 207" < a ' (log®? 1) t7,

IN A

so that we may indeed concentrate on fg.
As to fg we have that

(Py+ P5)* = Uy + U, + Us,

taking
L m n 2
Uy = Zj:l Zk:m+1 Tj,k?
m n
U2 T ijl Zk‘:m—i—l Zl§p§m<q§n:either p=j or q=k fr]"k Tp,qa
m n
U3 T Zj:l Zk:m+1 Zl§p§m<q§n:p7ﬁj and q#k 71]'716 TP#I’

cf. (77). Now let, for k = 1,2, 3,
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We have that
Js@) = ha(t) + ha(t) + ha(t),
and start by looking at
ha(t) = (it)>m(n —m)E (1 —7)T7,, 1 e{t (T1 4 Spmi1 +7 W)}

Parallel to (78), here we remove Py + Ps — Lyi1n-m+1 and Py — Ly 41 from the S, 14
and W, in the exponent by means of a Taylor expansion, thus obtaining a decomposition
of the form

hl(t) = h4(t) + h5(t),
where, using independence,

|hs(t)] < t>mn (ETIQ,m+1) (E |Ps — Lipmt1| + E|Py+ Ps — Lm+1,n7m+1|)

< tmnta ! (mnt a_1)1/2 < a~¥? log¥?t,

which is small enough. As to h4, conditioning on the variables 7, X1, ..., X, _,, leads us
to the fact that

haO] < EmnET e [ (eft S0 (T 7Ty + Ta )} 7L, on = m)|

j=n—m+1
2 2 m
mnt"ETY o [V

with
Vi1 = E({t (T, +7Tin+ Tovin)} | 70 X1, Xins1),
cf. (81). As in (84) we have |V 11| < exp{—con™#*}, and hence
|ha(t)] < mn~'t2a™! exp{—comn™'t*} < a~! (logt)tF,

and it follows that |hy(t)| is small enough for our purposes.
We turn to h,. Here let

U2,1 = 2 Zm+1§k<l§n Tlvk Tl,l? U2,m+1 = 2 Zl§k<l§m Tk,erl TlmH-lﬂ

so that
hg(t) = m (’Lt)Q E U271 Q + (n — m) (’Lt)z E U2,m—|—1 Q

Taking

* p—
U2,1 = 2 Zm+1§k<l§n—m Tl,k Tl,la
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we have that

ho(t) = (") (" 2™) T (it)2 B U5, Q + (n — m) (it)? E Uspin Q
= h6(t) + h7(t>

First we look at hg(t). Noting that, cf. (90),
E((U3,)* | X1) < gn?E(T8,] X1)%

as for h; we may remove Py + P; from S,,41 and Py — Ly ;41 from W, respectively.
Indeed, the removal is corresponding to a decomposition

he(t) = hg(t) + ho(t),
with, cf. (91),

lhe(t)] < MBEE((Us1)?| X)"PE(Py+ Ps+7(Ps — Lijp—ms1))? | X1)"?
< mt*(E(Py+ Ps+7(Ps— Ly my1))?)? nETE,

< mn ta B (mn e HY? < a7 log? e

As to hg on the other hand we may condition on the random variables 7, Xy,... , X, .,
thus removing P» + Py as well from the exponent: taking Y] . as in (93) we see that

hs(t)] < m*E(1—7)|Us,] Y™
< mt® exp{—c;mn” ' *} E|U; |
< mnla7' P % = a7 (logt) t7",

cf. (84). As to h; we may use the same arguments, first removing Py + Ps — Ly 41, 0—m+1
from S,,41 and P3 from W,, respectively, and then using independence of T;,_,,,11,... ,1,
of the remaining variables. Using the fact that

E (U22,m+1 | Xm-H) < m2 E (T12,m+1 ‘ Xm+1)27
we see that
\ho(t)] < a=*? log*?t +a" (logt)t=°,

which finishes the estimation of |hy(t)].
We finally turn to the estimation of hs. Taking

‘/jvkypyq = 2 (E:p Tkvq _+_ 7—.77’(1 Tk’p)7
here we have
U3 = Zl§3<k§m Zm+1§p<q§n ‘G’kapv(p
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cf. (95). The Vj,,4 are (again) mutually uncorrelated, and, as in (96),

EU; < 4(5) (") 2B T 00 T

< 4m*n®(n?a™')? = 4(mn1)?a2

Taking

* L .
U3 T Zl§j<k§m Zm+l§p<q§n7m ‘/},k,p,qJ

instead of at hs, we may look at hjy with Us replaced by U;. As to hig, as before we may
remove P, + Ps + 7 P53 from the exponent by means of a simple Taylor expansion, in fact
using a decomposition

hlo(t) = hll(t) + hlg(t),

with
‘hlz(t)’ < tS]E |U§| |P4 + P5 + TP3‘
< tmnta (mn Y2 a2 <« a2 log 2t
The independence of the linear parts T;,_,,41,...,7, and the remaining expressions Uj,

P, and Py leads us to the fact that
|hii(t)] < tT°E|U;| < a ' (logt)t™®,

and it is easily seen that |hig(t)|, and hence |hs(t)|, is small enough. Collecting the esti-
mates, the proof of the lemma is now easily completed. O

Collecting the results of the Lemmas 10, 11 and 12, and using Esseen’s smoothing
lemma (67), the proof of (12) is now easily concluded. The replacement of s by o, in
the case where 02 < oo, is easily obtained from the original bound. In fact, writing
T:=T—ET, since I' < € + ¢ we have that

IP(T/o <z)—G(z)] < |P(T/s<s lox)—G(s ‘oz)|+|G(s loz) — G(x)|
< e+0+sto—1].
Here
|sto—1| = st (o+s8) 7 o? =8 < sEnTTER? = 6,
cf. (6). Moreover, denoting G and k with s replaced by ¢ by G, and k,, using Holder’s
inequality and (6), it is easily seen that
|G — G, < 62

As a consequence, if § < 1 then s7!'o < 14§ < 2, and denoting I, € and 6 with s replaced
by o by I'y, &, and 9, it easily follows that

[, < e+ < 8(e5+95).

In case § > 1 on the other hand, we have that (ET3)/0? > 1 s?/0?. Since 0% = s> + ETj3
this means that (ET3)/0® > £, so that in turn, cf. (6). 0, > £, and hence Ty <1 < 546,,
which concludes the argument.
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