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Introduction. QF (Quasi-Frobenius) algebras were originally studied by R. Brauer
[4], T. Nakayama [7] and C. Nesbitt [8],[4]. They are the same with selfinjective algebras
and known to be a class of the most interesting non-semisimple algebras containning group
algebras and exterior algebras. Commutative local QF algebras are also the same with zero
dimensional Gorenstein rings. Cf.[6].

In a connection with vanishing problem of Hochschild’s cohomology Q. Zeng [13] has
proved that the local algebra K[z, 1, 2]/ (2o, 21, 2)*, Xox1 — T3, 1179 — X3, Ty — 23)
over a field K is QF but has not any positive Z-grading. Cf. also [8].

On a way of generalization of his result we found that K[zg, 2y, 2]/ (w021 — 235, 2120 —
T3, Towg — %) is again artinian and not local, but a direct sum of a group algebra and a
local QF-algebra. That is, the new residue class algebra is QF.

In this paper the author would like to mension that the result can be more generalized
as follows: For any pair of positive integers n and ¢, let I be an ideal of a polynomial ring
Klzg, 21, -, 2,] generated by n 41 pure binomials [Tyen—_ gy 2% — 2 for i = 0,1,---,n and
N ={0,1,---,n}. Then A = K[xg,x1,--,x,]/] is artinian if and only if n # ¢ and if
n £ t, A is a direct sum of a group algebra and a local QF algebra.

We shall define simple transportations A;, u;, 0; and 75,7 = 0,1, - - -, n, operating on
lattices in (n + 1)-dimensional Euclidean space. They play important role in our proofs
of the existence of monomial idempoftents and the determination of Grébner bases of
definning ideals of local QF algebras. It is interesting that o; and 7; are derived from
Buchberger’s Algorithm [5]. Cf.[1].

Our local QF algebras are generally not positive Z-graded, while in many papers [3],[10]
and [11], etc, local QF algebras were assumed to be positively Z-graded at the beginning.
Among our local QF algebras, however, it seems to exist many interesting QF algebras. For
example, the associated graded algebras for the case t = 2 seem to be a new commutative



version of exterior algebras from their Hilbert series.

Further, in the case n = t it does not happen the direct sum decomposition but the local
(not finite dimensional K-) algebras are known to be 1-dimensional Gorenstein rings. So
our proposed family of rings for any pair of n and t composes a small genealogy of direct

sums of Gorenstein rings at most Krull dimension one.

1 Existence of monomial idempotents

Throughout this paper we consider a polynomial ring K|z, z1,- - -, x,] of variables
To, T1, - - ., Ty Over a field K and an ideal I generated by n+1 pure binomials [[yen_ gy 7 —
xt for i = 0,1,---,n and N = {0,1,---,n}, and a positive integer ¢. Let us denote
Klxg,z1,--+,x,]/1 by A.

For f € Klxg, 21, -, x,] we denote f+1 € K[zg, x1,- -, 2,|/1 by ]_” Then our binomial
relations [Tyen_gy 2x — @ for i = 0,1,---,n and N = {0,1,---,n} induce the equalities
t

[ren—giy Te = 2; for i =0,1,---,n.

We shall introduce the following denomination (ag, a1, - -, a,) in order to express
0 0

—_ag_ax —_Gn _0_ _
x, x; ---x, € A. Here we note (0,0,---,0) =z,2,- -7, = 1.
Then it follows (ag, a1, - - -, a,)™ = (Mmag, may, - - -, may,) and (ag, ay, - -+, a,)+(bo, by, - -+, by)
_ag_a1 _an _bo_b1 _bn
:xol‘l...l‘n +x0x1.'.xn' w0 ar .
We shall call (ag, a1, --,a,) the exponential expression of z, z; ---x, € A and say
ap + ay + - - - + a, the level of (ag,aq,---,a,).

Now our first result is

Proposition 1.1 If n < ¢, there is a monomial e = zg ™5™ .. 23" such that
e? = e mod I, where s is a positive integer satisfying the inequality n < s(t —n) < t. That

_s(t—n)_s(t—n) _s(t—n)
is, Ty Xy ST, is an idempotent of A.

Proof: From the equation [Jyen_g) Tx = 56: it follows (ag, a1, -+, a; -+, a,) = (ag +
1,---,a;1+1,a;—t,a;41+1,- -, a,+1) provided a; > t, where the levels go down from the
left to the right in the equality. Thus to any exponential expression (ag, ay, -, a;, -+, ay)
we may assume that t > a; > 0 for ¢ = 0,1,---,n. It follows dimg A < t" because the

corresponding monomials generate K-vector space A.



For the sake of convenience let us consider a transformation A; on {Z, U {0}}"" defined
by Ai((ag, a1, -+, a5+, a,)) = (ap+1, -+, a;1+1,a;,—t,a;51+1, -+ a,+1) for any a; > t.
Then it is easy to check that A, --- Mg ((ag, a1, a4, a,)) = (ag— (t —n),ay — (t —
n),---,a, — (t —n)) , provided a; > t for i =0,1,---,n.

Let s be a positive integer satisfying the inequality n < s(t — n) < t. Then since
t < (s+ 1)(t —n) it holds that
A Mol ((s(t =), s(t = n), -+, s(t = n))?))
= [ MNP ((2s(t — n),28(t —n),---,2s(t —n)))
=(s(t—n),s(t—mn),---,s(t —n)).
This completes the proof.

We note that the inequality n < s(t —n) < t assures the uniqueness of s(t —n).

Throughout this paper we shall call an idempotent e + I of A as in Proposition 1.1 a
monomial idempotent. Thus Proposition 1.1 shows the existence of a monomial idempotent
e of A.

In case of t < n we have the following similar

Proposition 1.2. If t < n, there is a monomial e = zo™ 25" 23— such that

e? = e mod I, where s is a positive integer satisfying the inequality t < s(n —t) < n.
_ _t
Proof: Similarly as in the proof of Proposition 1.1, from [[yen_gy 2x = z; it follows
(a07a17"'7a’i7"'7an) - (GO— 17"'aai—1 _laai+t7ai+1 _17"'7an_ 1) for a; > 07] 7& { )
where the levels go down from the left to the right in the equality.

Again for the sake of convenience let us consider a transformation j; on {Z, U {0}}"
defined by
pi((ag,ary -+ ai -+ an)) = (ap—1,---,a,.1 — 1,a0; + t,a;01 — 1,- -+, a, — 1) for all a; >
0,7 # i.
Then it is easy to check that p, - - - pipo ((ag, a1, -+, a5+, an)) = (ag— (n—1),a1 — (n —
t),--+,a, — (n—1)), provided a; > i fori =0,1,---,n.

Let s be a positive integer satisfying the inequality ¢ < s(n —t) < m. then since
n<(s+1)(n—1t) <2s(n—t)it holds that
a - pa ol ((s(n — 1), s(n = 1), -, s(n — £))2))
= [pta -+ ol ((25(n — 1), 25(n — 1), - -, 25(n — 1))
=(s(n—1t),s(n—1t),---,s(n—1)).
This completes the proof.



2 Decomposition theorem

Under the same situation with §1 let us denote K|xg, 21, -+, zn, 25", 27", -, 2,1

(C K(xg,21,--+,x,)) by I and I'T by J respectively. Then we can define an algebra ho-
momorphism 6 : A = T'/J by 0(f +1) = f+ J for f € K|xg,z1, -, 2]

Lemma 2.1. If there is a monomial e = x°x* - - - 2% such that a; > 1,i = 0,1,---,n

and €2 = e mod I, then 0 : A — T/ J is a split epimorphism.

1 1
Proof: Since — € I', —(e—€?) = 1—e = 0 mod J. Hence z;'(1—e) = 0 mod J. Therefore
e e

mj_le = xj_l mod J, where xj_le € Klxg,z1,- -+, x,], $j_1 € Klzg, x1, -+, Tn,xg 27,27 Y
. This implies that Q(lee—l— I) = xj_l +J and hence 6 is an epimorphism. Further if we put
A ={ef +1|f € K[zo, 1, -, 2]}, the restriction (|A;) : Ay — T'/J is an epimorphism.

Because (1 —e)f =0 mod J, and hence f = ef mod J.

Assume O(ef +1) = 0+ J. Then ef = 0 mod J. This implies ef € J. But since
e=a’z{t - a% a; > 1,i=0,1,---,n, there exists a positive integer r such that e"f € I.
Hence ef = €"f = 0 mod I. This implies (f|A;) is a monomorphism.

By Proposition 1.1, 1.2 and Lemma 2.1 we have a direct sum decomposition of A : AgBA;
if n £ t, where Ay = {ef + I|f € Klxg,z1, -, 25} 2 T/J. Ao = {(1 —e)f +I|f €

_ sln=t|_sln—t| sln—t
K[x(]vxl;"',xn]} ande—xo xl xn| |

Proposition 2.2. If n #t, then Ay is isomorphic to a group algebra KG of a group G ~
Zig1 X Zyp1 X -+ X Zypy X Zigp1)n—t|» where Zyyy and Zyqqyn—y are cyclic groups of order
t+1 and (t+1)|n —t| respectively and Zyj1 X Zyyq1 X - -+ X Zyyq is a direct product of (n—1)
copies of Zyyq.

Proof: We shall try at first to extend the denomination of exponential expression for

monomials of A to ones of I'/J allowing negative coordinates as follows: For r; €
Z, (rosm1, -y 1) = i’z - -2t mod J.
Since {([Tyen—giy @x)2;" —1 | & = 0,1,---,n} is a system of generators of J, we shall

consider the following matrix



11 —t
—t 1 1
1 —t

A = . )
11 —t 1
11 1 —t

where the i-th row follows from the extended exponential expression of 1 = ([Tpen_gy 2r)2; "

mod J which corresponds to an element of the above system of generators of J. We know
that each elementary transformation of rows and columns of A corresponds a transforma-
tion of system of generators of J. By a calculation we obtain the matrix

1 0 0 - 0 0
0 (1+¢) 0 - 0 0
0 0 (14t -~ 0 0
B - . . . . . . )
0 0 0 - (t4+1) 0
0 0 0 - 0 (1+t)n—1t

after successive elementary transformations of rows and columns in A. Thus we can take

{yd — Lyi™t — 1,y — 1,90t _ 1} as a system of generators of J for a new

indeterminates Yo, Y1, -+ Yn: Yo Y1 sy, s of Klxg, a1, -+, 2o, 2g 2yt - 2]

Now it is clear that Ay ~ Klzg, 21, -+, 2, 255, 275, -+, 2.4/ J =~

Ko, v1,Yn, ¥o st -+ -y, Y] /J which is isomorphic to a group algebra over an abelian
group G =~ Zy 1 X Zypy X -+ X Zyy1 X Zgi1yjn—y, Where Z; 1 and Z ;4 1)jn—y are cyclic groups
of order t+ 1 and (t+ 1)|n —t| respectively, and Z;11 X Zi41 X « -+ X Zy4q is a direct product
of (n — 1) copies of Z;,1. This completes the proof.

Corollary 2.3. If n =t, then Ay is not artinian.

Further we have
Lemma 2.4. If n#t, Ag = (1 — €)A is a local artinian algebra.

Proof: For any j,z/™" = zoz;---x, mod I. Since (1 — e) € A is an idempotent,
{(1 —e)z;}*Y = (1 — e)xpry - -2, mod I. Hence {(1 — e)z;}+Dsltnl = (1 —e)e =0

mod I. Thus (1 — €) z;, j = 0,1,---,n are nilpotent. This completes the proof.

Now we have one of the main results.



Theorem 2.5. Ift # n, A is isomorphic to a direct sum of finite dimensional local alge-
_ s|t—n| _ s|t—n| _ s|t—n|

bra Ag = A(i —Xp Ty St Ty ) and a group algebra KG, where G is a direct
product of (n — 1) copies of a cyclic group Zy 1 and a cyclic group Zyi1)—n|-

3 Injectivity of A\j and Grobner bases

In this section we shall prove that the local algebra Ay in Theorem 2.5 is injective.
Since e and (1 — e) are orthogonal to each other, Ag = A(1 — €) ~ A/A e.
Hence Ay is isomorphic to a residue class algebra of K|xg,x1,---,x,] by the ideal [y =
(a3t gttt gsltnl, [ren—iy =2t | i =0,1,---,n), because e = it gl gslten]
mod [ and I = ([Tgen—gy Tx — @) |1 =0,1,---,n).

In order to determine a Grobner bases of [y we shall introduce the following degree
lexicographical order for the set of all power products (= monomials of K[zg, 21, -, 2,)
with the coefficent 1) with 2o < x; < --- < 2,0 2§0a§* - - 20 < afeaf - ab if and only if
ay+a+---+a, <bgy+by+---+0b,0ra+a+---+a, =by+b+---+0b, and
ix1 = b1, @jy0 = biyo, -+, a, =b,, but a; < b; for some 1.

For the sake of reader’s convenience we shall introduce here several notations and results
on Grobner bases which will be used in after proofs.

Let us denote the leading term of a polynomial f by Lt(f), i.e., when Lt(f) is expressed
as a product of coefficent Le¢(f) and power product Lp(f), the order of Lp(f) is the largest
among power products of terms of f with respect the degree lexicographical order.

Then a Grobner bases G = {g1, g2, - - -, gm } of an ideal @ of K[xg,z1,---,x,] is a set of
polynomials in @ such that { Lt(g1),Lt(g2), - -, Lt(gm) } generates the ideal generated by
all the leading power products of polynomials in ). Hence if f € @) then there is some i
such that Lt(g;) divides Lt(f).

Let S be a set of polynomials and g an element of S. If Lp(g) divides a term X

X

of f, then 7 f-5, h” means h = f — TtgY and we say that f reduces h modulo g.

Further if there exists a series of polynomials g1,¢92, -+, € S for some [ such that
P R P s by T 25 B, then we say that f reduces A modulo S and
use the notation ” f =, L h”.

C C

For polynomials f and g, put S(f,g) = Lt(f)f ~ i)

multiple of Lt(f) and Lt(g). Then Buchberger’s theorem is stated as follows:

g, where C' is the least common

A set G of polynomials in Q is a Grobner bases of Q if and only if for any pair of g; € G
G
and g; € G,S(9;,9;)—+ 0.



There is the following algorithm to obtain a Grobner bases:

If a set Sy of polynomials in an ideal Q) is not a Grobner bases of Q, then take a pair
of i € Q and g; € Q such that S(gi.g;) is not reduced to zero modulo Sy (the above
Buchberger’s theorem assures us the existence of such pair (g;,g;)) and construct a set
S1 = SoU{S(gi,9;)} If S1 is again not a Grébner bases of Q, construct a set Sy by the
similar way in which we take Sy in place of Sy. Repeating such constructions we obtain

finally a Grébner bases of Q).

This is the Buchberger’s algorithm [5]. For the further detailes of the Buchberger’s al-
gorithm we shall refer to [1].

Here we would like to mension that in order that the reader can check our calculations,
we do not abbreviate each step of Buchberger’s algorithm, even if it is very simple and
reader may feel to check it tediously.

From now on, following the Buchberger’s algorithm we shall determine a Grébner bases
of Iy for cases n <t and ¢t < n separately.

In any case, however, we shall try at first to obtain Grobuner basis of 1.

We shall start to consider the case n < t.

Let us denote ;41219 - - - pToxy - - - ;1 —k by f;, provided when ¢ = n, we put i+1 = 0,
and { fo, f1, -, fu} by F respectively. Then with respect to the degree lexicographical or-
der, the leading term Lt(f;) of f; is . Then from (Lt (f;),Lt(f;)) = 1 for i # j it follows
that the S(fi, f;) iq 0, and Buchberger’s theorem induces

Proposition 3.1. F' is itself a Grébner bases of 1 (= the ideal generated by F ).

Put g = 2’z - - - xp 3 xtn. I a; < t, then S(f;, g) =

ag .a1 aj—1 _Qjt1 t t—a; a0 ,.01 _
20’2t i i (T T TpoT1 X1 — @) da ag’ay e ap =
ao+1 _a1+1 a;i—1+1_0_.a;i+1+1 an+1 . .
ey et e T 2% On the other hand, if t < a;, then S(f;, g) =
a; —t a

ap ,,a1 t 0 .01 —
o'zt ..x‘éﬂ(l’i+1xi+2...ajnx0...(L’iil_l*i)_|_x0]x1 x%n_

ao+1 _ar1+1 ai—1+1 a;—t a;+1+1 an+1
o i T Xy Ty Ty

x
Now we shall introduce a transportation o; operating on {Z, U {0}}""! such that
o; (exponential expression of g) = exponential expression of S(f;, g).

Thus if we put oy (280 -+ - afi -« x) = (zb - 2b ... 2b) | it holds that

b, — a; —1 if(li>t
e CLZ‘ZO 1fa2§t



b= a;j+1 if j#i.

Then we have

Lemma 3.2. Let s be an integer satisfying the inequality n < s(t —n) < t. Then
[0 100 ((s(t =), 5(t =), -+, s(t = n)) =
(nyn—1,--- (s=k)t—n)+1,(s—k)(t—n),(s=k)(t—n),---,(s—k)(t —n))
for1 <k <s.

Proof: We shall prove this Lemma by induction on k. Put r = t—s(t—n). Then by the as-

sumption 0 < r. Put [o;---0100]((s(t—n),s(t—n),---,s(t—n))) = (ag, @1, -, aj,- -, Q)
for 0 <7 < r, then a;4; <t. Hence by the definitions of o, for all 7 such that 0 <i < r,
we have [0, -+ -0100]((s(t —n),s(t —n), -+, s(t —n))) =

((r,r—1,---,1,0,8(t =n)+r+1,---,s(t—n)+r+1).

Consequently [0,110, - 0100]((s(t —n),s(t —n),---,s(t —n))) =
((r+1,r--,2,1,1,s(t—n)+r+2,---,s(t—n)+r+2), because t < s(t —n) +r+ 1.
Further, since n—r = (s—1)(t—n), we have finally [0, - - - 0100|((s(t—n), s(t—n),- - -, s(t—
n)))=mnn—1(s—-1)t—n)+1,(s=1({t—n),(s—1)({t—n),---,(s—1)(t —k)) and

this proves that Lemma 3.2 is true for k = 1.

Now assume Lemma 3.2 is true for k = [. Put j = n — (s —[)(t —n). Similarly as in the
proof of the case k = 1, applying first the definition of o; for the case a; < t repeatedly we

have [0 (1—n)=1 -+ - 0100} [0 - - - 0100 ((s(t — n), s(t = n), -+, s(t —n))) =
G+(t—-m)—1,---,2,1,0,n+ (t—n),n+(t—n),---,n+ (t—n)).
Hence it follows [0 (t—n) * + - 0100 [0 - - - 5100 ((s(t — n), s(t = n), -+, s(t —n))) =

G+ ({t—m),---,3,2,1,0,t+1,t+1,---,t+1).

However j+ (t —n) =n—{s— (I+1)}(t —n). Hence by applying the definition of o; for
the case t < a; repeatedly, we have finally [0, - - - 0100 [0y, - - - 0100] ((s(t — n), s(t —n),- -,
s(t—n)))=mn—1,--- {s—(+D)}t—-1)+1L{s—(I+1)}t—1),{s—(I+1)}t—-1), -,
{s—=(I+1)}t—1)). This shows that Lemma 3.2 is true for k¥ = [+ 1. This completes the

proof.

By Lemma 3.2 we have

Corollary 3.3. A monomial x5z}~ --- 2L 20 appears after s times of S-polynomial mak-

ing processes S(fn, S(fun_1,-+,S(fo,—) ")) to (zoxy -~ ~xn)3(t’").

—L...z! 20 can be considered as an element of Grobner bases of I.

n,.n
Hence zgzy 1Ty

Further we have
Corollary 3.4. H = {alal" " .2 |i; = 0,1,---,nandi; # ixifj # k} is a subset of

117712
Grébner bases of 1.



Proof. Let (co.c1,---,c,) be an exponential expression of a monomial x7 x%’l Cee X
Assume ¢, # 0 and denote ¢, by r. Then, since {cy,c1, -+, cp-1,¢n} =1{0,1,---.n—1,n},
there is ki (k1 # n) such that ¢, = 0. Put ‘¢; = ¢; — 1 for all i # k; and ‘¢, = n.
Then !¢, = r — 1 and it holds that oy, (*co, *c1, -+, ten 1, ten) = (co, €1, + 5 Ca1, Cn) , Since
n < t. Assume further ¢, = r — 1 # 0, then similarly there is ky (ky # n) such that

Le; — 1 for all @ # ky we have oy, (3co, %c1, -+, %1, 2cn) =

Ley, = 0 and by putting ?c; =

Yeno1,te,) and %¢, =1 — 2.

(1007 1017 Ty
Therefore by repeating the similar processes we arrive at an exponential expression of a
monomial (ag,ay, -+, a,—1,0) such that (co,c, -+, cu_1,¢,) can be obtained by applying a
suitable sequence of o;’s (= S-polynomial making processes S( fx,-)) to (ao,ay, -, a,—-1,0)

and {CLOaal'/ T ':anfl} - {1727' ’ *n}

So by Corollary 3.3 it is enough to prove that there is a sequence of o}’s such that
(ap, a1, -+, an_1,0) is obtained by applying them to (n,n —1,---,1,0).
Now Put 0; = 0j,0; = o, for 0 < i < j <nand 8, = o for k # 4,5 and 0 < k < n.
Then since n < t it holds that [0,0,,—1---0;---0;---6yo;]((n.n —1,---.n —i,---,n —
g, 1,0) = (n,n—1,---;n—j,---,n—1,---,1,0) , where it happens transposition of
i-th coordinate and j-th coordinate in the above exponential expressions.

As any permutation is expressed as a product of transpositions the last equality is enough

to complement the remainning proof.

n xn—l .

Now by caluculations we can prove that for any ¢, S(2} 27, " - - - 24, fi) 2.0
Hence by Buchberger’s theorem we conclude

Proposition 3.5. If n < t, then FF'U H is a Grébner bases of 1.
For f € K|xg,xq,- -+, x,] let us denote f + Iy € by ]N” Now we can prove

Proposition 3.6. If n < t, then the socle of Ao is a simple Ag- module generated by

(Zozy -+ 2,)"" ' and Ay is injective.

Proof: A bases of the K-vector space A¢(= K|[xg,x1,- -, 2,]/]y) can be chosen as the
cosets containning the power products which are not divided by all the leading terms of
polynomials in F'U H. Cf.[1, Proposition 2.1.6]

Now let (co,c1,--+,¢,) be an exponential expression of a monomial X and assume ¢y >
1> >c, Ifn—2> ¢, then 7 )?7&6 because xX is not divided all the leading terms
of polynomials in F'U H. Hence if X € Soc(Ag),co > n—1. As I is defined by the relation

which is symmetry for variables xq, 1, - - -, x,, we can assume ¢; >n—1fori=0,1,---,n.



However X=0 if ¢; = n for any j. Consequently we have ¢y =c¢; =---=c¢, =n—1if and
only if Xe Soc(Ay).
It follows also that T, z; -7, #0if¢; <n—1forj=0,1,---,n,

By considering generators of Iy, i.e., especially elements of F'and H, fort—1 =1ty > t; >
~ ~to~t1 ~tn ~ ~CQ~C1l

s 2> tpg >ty >ty > 0 and o # to, Tig (T, T Ty ) = T (T, Ty %ZC:) if and only if
there are integers k and [ such that 2 <k << (n—1),ty <t—k,t; <n—landn—j <t
forall0 < j < k. Soitholdstoy=t—1,t; =t—1,ta >t—2,-+- tp_1 >t—(k—1),t—k >
lh=c,—kt—k>tlg1=c,p1—k,---n—I>t,=¢c—k,---n—101>1,=c,— k.

In this case forco = k—2,¢c1 > k—2,c0 > k—3,---,c4_1 > k—k=0,t >cp, > k,--- ,n+k—
Il>c>k,--- ,n+k—1> c, > k there corresponds conversely tc =t—1 = cg—k+1t+1,1; =
cao—k+t+1lto=co—k+t+1,--- tp_1=co1—k+t+1,ty=c,—k,---,t, =c, — k.

.. . ~to~t1 ~tn
We remark here that by Proposition 3.5 the above residue classes z; z; ---z;, and
~CQ~Cl ~Cn ~ NtONtl Ntn ~
T, x, ---T, can be chosen/ as elemelnts of K-bases of Ag and z;, (z; @;, - - xiln) # 0/. How-
. ~CoraCy ~Cp ~ ~to~t1 ~tn ~ ~CoraCy ~Cp
ever there is no element z; 'z, ---z;" such that z; (z; @; ---2; ) = T (2, T, - -2;").

Now let us denote {((ip, 41, in),(to, b1, tn)) | to =t — 1t =t — 1ty > t —
2 tpy >t —(k—=1)t —k > tp,t —k > tp_q,---,n—10>t,---,n—1> tybfor
n—12> k> 2} by Ty, the corresponding ¢; by ¢ (t;) for j =0,1,---,n and
{(liorin, - i), (Blt), B(t1), -+ B{£)))} by Ci respectively.

~do~d1 ~dn

Further denote {((Zo, %1, -, in),(do, d1, - -+, dp)) | T, 2;, ---2; is an element of a K-bases
of Ap } by B. Then an element Y of Ay is written by
~domdy  ~dn
) O(ig it vin).(dosdy odn)) Tig Tiy ™ ** Ty s WHETC Q(ig iy o in) (dodr ) € K-

((’io,il,---,’in),(do,dl,---,dn))GB
Assume Y€ Soc(Ag). Then 7;, Y = 0 =

~do+1~dy ~dn
Z A((i0,i1yyin)y(doyd1ydn)) Tig  Lig * "Ly, =
(20,21, ++5in),(do,d1,++,dn))EB

Nt0+1Nt1
Z (a((io77:17"'7in)7(¢(t0)a¢(t1)7"'7¢(tn))) + a((ioiil7"'7in)7(t07t17""tn)))a:i(] ajll e
((i0,i1,75in ), (tost1,+tn ) ) EBNT 1
! / !
~tn Nt0+1Nt1 ~t,
xin + Z a((io’il7"'7in)a(t,07t,17"'7tln))wio Iil o xin-

o,

((i07i1""vin)7(tovt17"'7t;1))eB_(Tk,lUCk,l)

Therefore a((io,il,---,in),(¢(to),¢(t1),---,¢(tn))) = _a((i07i17“',in)y(t0,tl,"'7tn)) for
((Z'Oaila"'7in)7(t0at1a"'atn)) Eijjk,l N N
However by the preceded remark a(igi, .. in),(to,t1,tn)) = 0 follows from :?ikY =0.

And a((io,h,---,in),(tg,tll,---,t;)) =0 for ((iOv (APEREE in)’ (7567 tlla o 7t’n)) €B-— (Tk',l U Ck,l)

/ /
N P A

. n ~
if T Ty Xy #0.
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Consequently ay i, - )l ) = = 0 for ((49, 11, -,in)(do,dy,---,dy)) € B
~do+1~d;

. . ~ o~ ~
ifz, -z 7é0. As (T4, T4y, -+, xzn) is any permutation of (z¢, 1, -+, x,), from the

beglnning part of this proof we can conclude that @(ﬁl . -in)"_l is only a generator of
Soc(Ag) as a K-vector space. As K ~ Ay/ Rad(Ay), Soc(Ay) is simple Ag-module. Hence
Ag is injective, as Ag is local. Cf.[2]

Now we shall begin to consider the case t < n.

In this case, with respect to the degree lexicographical order, the leading term Lt(f;)
of fi (= Tip1Tipa - TpZox1 -+ Tim1 — T}) IS Tip1Tigo - TpZox1 - - Ti—1 and S(fi, fi) =

t+1 t+1

Denote $t+1 2ttt by d;j and {d;;|i < jandi=0,1,---,n—1,j=1,2---,n} by D
respectively. Then Lt(d; ;) = %™ . Hence for i < j, k <1, S(d;;, dk,l)iur 0.
Further for j = k,i < j, S(fx. d ZJ)FLUFO since (Lt(fk),Lt(diyj)) = 1. Also for

i =k,i <, S(frrdij) = 0.

On the other hand, for 0 <i < j<nandi#k,j #k, S(fx,di;) = fo(Hng_{j,k} x) —
zhay, where N = {0,1,---,n} is not reduced to 0 by F'U D.

Now denote S(fx, di ;) = fo(HleN_{j,k} 1) — 252}, by gryij and {gr.i |k, 3,5 =0,1,---,n,
such that i < j and i # k,j # k } by G; respectively.
Then Lt(gri,;) = i (Ilien—(jx) @) and it holds that S(Gpigs Griij ) —= 0 for any pair of
{p;q,r} and {k;i, j}. Further for any pair of [ and {k;1,j} we have S(fl,gk;i,j)iur 0.

However in the case where i < j, p < g and {i,p} N{j} N{qg} N{k} = ¢, S(Griij» dp,y) =
ity t+1(HleN Uikad 1) — xtxixt is not reduced to 0 by F'U D U Gj.
Because =iz S (Ihen (kg ©1) is not divided by Lt(fu)(= [Liey (uy 1) and Lt(grpg) (=
b S (Meen— (o} Ts)). I ity t+1(HleN (ikgy T1) s divided by Lt(d,,,)(= ot v =i or
p. Then by putting u = 0 we have 2™ 25 ([len .01 x) -2, 2 L (Thien— (jkq) 1) OF
t+1 t+ t+1 .t+1

T (TLien—{j kg 1) L, abtlal (HleN {],k 4 @) But i t+1(Hl€N Uikgt T1) 18 1Ot
div1ded by Lt(d,,,). on the other hand zx}z! is clearly not divided by Lt(f,), Lt(d,,) and

Lt(gr;p,q)'

Now we shall define inductively gi.p, po.pr.gr.g, g OY PUtEING g pl,m, D G2 =

S(gk;m,pz,---,prq,ql,q2,~~~,qr717 dpm‘]'r‘)' Then grp, po,prgerar = HpEP x HreN {QU{k}} Tr —
[lyeougry ,, where P = {p1,ps,---,p.} CN ={0,1,---,n}, Q = {ql, ¢, +,q-} C N such
that p1 < ¢q1,p2 < g2, -, pr < @ and {p1,p2,- -, o} {1} N {@} N---N{g.} N {k} = o.
Then it holds similarly that

11



D }
S(Grip1,p2,--pra12,r gk’;p’l,p’z,---,p’r,,qi,qg,---,q;,) 4 0,if v <7 and {p1,po, -, pr} N
{Phopo. -y {a N {get 0N {g N {a N {gt N {gn N {kRFN{ER} = 6,
D
and also S(fi; Grupr po,-pr—1.01,42,000) —+ 0-

Let us denote {Grpi popragroial P1 < @102 < @2, pr < g and {p1,pa,---,pr} N
{1} N {g}N---Nn{g.} N{k} = ¢} by G,. Then by the similar arguments as in the case of
Tksip.j.q: W can prove that g.p, po . pr_1.01.q0,+qr 18 DOt Teduced to 0 by FUDUG; UGy - --U
Gr_1.

Again let us denote G1 UGy --- U G,_1 by G. Here we want to remark that G,_1 =

— o (n=1)(t+1) —
{9r:0,,0:1,2, k=1 k41, = T xo — 1% T} and Lt(gro0,-0,1,2, k- 1,k+1,n) =

$(()TL_1)(t+1)+1 .

Now by the above preceded reductions and Buchberger’s theorem we have

Proposition 3.7. If t < n, the set F U D UG is a Gribner basis of I, where F' =
{BinTiss - Tugo - my — 2)|i € N = {0,1,--,n}}, D = {af*t — at"l]ij € N =
{07 IPERES ’I’L} andi < .7}7 G = {(HpEP 'r?_l)(HTGN—{QU{k}} 1‘7’) - (HQGQU{k} I2)| P =
{p17p2a o '7ps} CN= {0/ 17 v '7”}7@ - {Q1:CI2: v 'aqs} C N such that PN {CI1} N {CI2} N
N {gstn{kt =90, m<q forl<sands<n-—1.

.. o t __ .00 .01
Similarly as before put f; = ;41242 - Tpxo - - - x;-1 — 27 and g = x’2]" - - @

Asn >t Lt(fi) = ip1%ize - Tpxo - - - ;1. Hence S(f;, g) =

an
n—1-

—1 -1 a;—1—1 —
—x® T T el et (g - Ty — X)) +
ao a1 an ao—1 _a1—1 a;—1—1 _a;+t_ai+1—1 an—1

ifa;>1,5=0,1,---,i—1,2+1,---,n. On the other hand, in the above equality we should
replace a; — 1 by 0 if a; = 0 for j # 1.

Thus for the case where n > t we shall introduce a transportation 7; operating on
{Z, U{0}}""! such that 7; (exponential expression of g) = exponential expresion of S(f;, g).
a; b;

Hence if we put 7;(200 - - - 2% . g0n) = (220 ... 2% ... 2b), it holds

bi = a; —|—t s

b-:

J

a; —1 if a; >0 and j # 1,
0 if a; =0and j #i.
Then we have

Lemma 3.8. Let s be an integer satisfying the ineqality t < s(n —t) < n. It holds that
[Tn T TlTO]k(S(n - t)'/ S(n - t): Tty 8(7’L - t)) =
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((s=k)(n—t),(s=k)(n—t),---, (s=k)(n—t),(s—=k)(n—=1)+1,(s—k)(n—t)+2,- -+, t—1,1)
for 0 <k <s.

Proof: As the proof is done by induction and similar to the proof of Lemma 3.2, we shall
omit the proof.

Corollary 3.9. A monomial mi_(tfl) bl at apears after s times of S-polynomial mak-

ing process S( fn, S(fuz1,--+,S(fo,—) ) to (xoxy - - -:L’n)s(”*t).

S0 I}L—(t—l) -zl ot can be considered as an element of Grébner basis of I,

Proposition 3.10. {a} 22 ---2! |0 < i; <n, j = 1,2,---,t} is a subset of Grobner basis
of I.

Proof. Let (co.c1,- -, ¢,) be an exponential expression of a monomial ] 22, - - - x;,. As-
sume t > ¢y # 0 and denote ¢y by r. Then, since {co,c1, -+, ¢} = {0,---,0,1,2,--- ¢},
there are Iy, lo, -+ -, L—¢ (11, l2, oyl #0)and my (0 < m1 < n)such that ¢, ¢, -+, ¢, , =
0 and ¢,,, = t. Then put '¢; = ¢; + 1 for i & {lo, -+, lu_s,m1}, 1y, -+, ey, = 0 and
Yewm, = 0. It holds that 7, (*co, ey, -+, e,) = (co,cl,---,cn) and {lco,tcy, -, } =

{0,--+,0,1,2,---,t}. If 'y = 7+ 1 # ¢, continue similar prcesses until the first coefficient
of exponential expression of the last obtained monomial is ¢.
Now by the above argument we may assume from the first step that ¢ = t. Then we

can put 'co = 0 and '¢; = ¢; + 1 for i & {lo,--+,ln ¢}, 'ty -+, e, ., = 0 s0 as hold
10(tco, ter, -+, ten) = (cos €1, -+ -, ¢n). Therefore by repeating the similar processes we arrive
at an exponential expression of a monomial (0, --,0, ay,as, - - -, a;) such that (co, ¢1, -+, ¢p)

can be obtained by applying a suitable sequence of 7;,’s (= S-polynomial making processes
S(fx-)) to (0,---,0,a1,a9,---,a;), where {0,---,0,a1,a9,---,a;} = {0,---,0,1,2,--,t}.
So by Corollary 3.9 it is enough to prove that there is a sequence of 7;’s such that
(0,---,0,a1,as,---,a;) is obtained by applying them to (0,---,0,1,2,---,1).

It holds ;however, for 0 <i < j <t that (0,---,0,1,--- 7, -« 4, -, t) = [TuTno1 "
Tn—t+j+1Tn—t+i—1Tn—t+j—1 """ Tn—t+i+1Tn—t+j—1Tn— t+i 1" Tn—t+1Tn—tTnTn—1"""
Tt +1T0Tn—t4j—1° * * Tnt41Tn—t) (0, - -+, 0, 1, -+ 4, -+, j,- -+, t) , where it happens transpo-

sition of ¢-th coordinate and j-th coordinate in the above exponential expressions.

As any permutation is expressed as a product of transpositions the last equality is enough
to complement the remainning proof.

Denote {x“ 2o-al]0 <i; <m,j=12---,t} by H. Then by calculations we have
that S(f;, z] «2) -~:L’Zt)M+ 0, S(d; ;, x} x3, - $§t)M+ 0 and

13



1,2 t \buH
S(gk;pl,pZ:"'yprfl’QI#Dv"'aQ'r'7 Ti Ly * e '%’t) >+ 0.

Consequently by Buchberger’s theorem we can conclude
Proposition 3.11. Ift < n, then FUD UG U H is a Grobner basis of I.

Denoting f + Iy € K[xg, 21, -+, x,]/lo by }, we have
Proposition 3.12. If t < n, then the socle of Ay is a simple Ag- module generated by

(Zozy -+ 2,)7 and Ay is injective.
et e ~

Proof: Since zoxy---x, =z, , (Texy---2,) = (%) EFDED)

Now all the leading terms of Grobner bases of I, i.e., all the leading terms of poly-

nomials in F U D UG U H did not divide xétﬂ)(t*l) . Because by Propositions 3.7 and

3.9 the leading terms of polynomials in F'U D UG U H are [[jey_gnz; for i € N =
{07 L. ~,n},x§+1 for .7(7é O) €N, (HpEP x?—l)(HrEN—{QU{k}} 337") for P = {p17p2: T 7ps} -
NaQ:{Q17q27"'7QS} C N such thatpl <g € Pvpm{ql}m{qZ}mm{qs}m{k}:¢7
and aj af - -al for 0 <i; <n, j=1,2,--- ¢ such that i; # i, for j # k respectively, and

1112
then it is clear all the leading terms of polynomials in F U DU H U (G — G,,_;) did not

divide xéHl)(t_l)a where G, = {gk;o,---,O;1,2,---,(k—l),(k+1),~~~,n = xgn_l)(tﬂ)l’o — (2120 -+ 2n)'} .
EHDED pocause
0

And further x8t+1)("_1>x0 (=Lt(Grs0,,051,2,,(k=1),(k+1),---n) ) dose not divide x

TN

t < n . Consequently by the equality quoted at the beginning of this proof we conclude

~ ~

(.Tol'l cee %n)t_l 7!6

~ o~ o~ ~ mtlatel el oA~ , ,

On the other hand (zozy---z,)" ' 29 =2, =, ---z, x;=0 for all (0 < i < n) for

.. T DT RN |

af '@ al ey can be divided by some z) a2 ---al (€ Iy). Hence z, x, ---x, €
Soc(Ay) -

Since a bases of the K-vector space Ay (= Klxg, z1,- -, 2,]/Io) can be chosen as a set of

o ~t—1 ot — ~t—1 ~ atont ~tn

cosets containning the power products and =, z; ---x, #0, {:cooxll e, |0 <ty <

t—1,k=0,1,---,n} is a bases of K-vector space A,.
~ ~to~t ~tn
However for t —1 =1y >t > -+ > t, o > t,_1 > t, > 0and ¢ # to, Tio (T, T; - - T;)

0 1
~ ,~CO~CL

T (T3 Ty, %Zc:) if and only if there are a integers k such that 2 < k < (t —1),t, <t —
andn—j <tjforall 0 <j<k Soitholdsty=¢t—-1,t; =t —1,to >t —2,--- tp_y
t—(k—=1)t—k>ty=cr—k,t—k>ti1=crp1—k,---,t—k>t,=c,— k.

In this case to co =k —2,¢c1 > k—2,co > k—3,---,c,e 1 > k—k=0,t>c > k,t >
Cry1 > k,---,t > ¢, > k there corresponds conversely tgo =t —1=cy—k+t+ 1,1, =

Cl—k)+t+1,t2:Cg—k—i-t—l—l,"',tk,l:Ckfl—k-l—t%—l,tk:Ck—k?,"',tnicn—k.

IV = |l

. ~ton~t1 ~tn ~CO~Cl ~Cn
We remark here that the above residue classes z; x; ---x; and x; =, ---x; can be cho-
~ ~to~t1 ~tn ~ .
sen as elements of K-bases of Ay and z;, (7, @; ---x; ) # 0. However there is no element
/! ’ ! / /7 /!
~Co~Cq ~Cp ~ ~to~t1 ~tn o~ ~Cy~Cq ~Cp
iy -y such that x;, (z; @, -2 ) = x4 (v, 2, - 2;0).
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Now let us denote {((ig, 41, ,in),(to, b1, -, tn)) | to =t — 1ty =t — 1ty > t —
2 tea 2= (k= 1), b=k >t t =k > tay o b=k > by fort—1> k> 2} by Ty, the
corresponding ¢; by ¢ (t;) for j = 0,1,- -, n and {((io, i1, -+ 7a), (B(t0), A(t1), - -, B(tn)))}

by C} respectively.
Nd() Ndl Ndn

Further denote {((io, i1, -, n),(do,d1,- -+, dn)) | T;, T, ---2; is an element of a K-bases
of Ap } by B. Then an element Y of A is written by
~domdy i
Z a((io’il:""in)v(do7d1:""dn))xi0 'Til T xin ? Where a((i()vil""’i")v(do’dl7""d”l)) S K

((i()’il7"'7in)7(d07d17"'7dn>)€B
Assume Y€ Soc(Ag). Then z;, Y =0 =
~dy+1~dy ~dn
Z Q((ig,i1,+in),(do,d1,+,dn)) Tig  Lqy * 7Ly, =

((i0,1,++in),(do,d1,~dn))EB
~to+1~t

(a((io,i1,---,in),(¢)(t0),¢)(t1),---,¢(tn))) + a((ioail7"'7in)7(t07t17""tn)))xio xll e

((i07i17"'7in)7(t07t17"'utn))€BﬂTk’l
’ ’ ’

~tn /\/t0+1/\/t1 ~ty,
Iln + Z ((7‘07“’ e ) (t()’tl’ ° 7tn))‘r1’0 ‘Tll e xln'
((io,i],~~~,in),(t:),t/1,---,t,/n))EB*(TkUCk)

Therefore a(ig,iy,in)(6(t0),d(t1)nsd(tn)) = —Q(i0si1,-vin)s(tost1sstn)) 1OT
((iO’i:l).'.7Z'n)7(t07t1’.'.7tn)) EBmTk.
However by the preceded remark @iy i,,....in),(tot1,-ta)) = 0 follows from %Zk); =0.
And q ) =0 for (0,1, n), (tg, ty, -+, 1)) € B — (T) U Cy)

(10,11, “yin), (to,tl, ) ' n
/

Nt +1~t ~t

if o) -y £0.

11

Consequently a((,i, - ,zn)(do,dl, .y = 0 for ((ig, i1, ,in)(do,dy1, -, dy)) € B
sdotledi ~ . ~ o~ ~
if z; ° xil . 7é0 As (74,74, , - - -,xin) is any permutation of (z¢, 1, -, x,), from the

beglnning part of this proof we can conclude that (%0-%1 o '§n)"_1 is only a generator of
Soc(Ag) as a K-vector space.

Therefore as K ~ Ay/ Rad(Ay), Soc(Ay) is simple Ag-module. Hence A, is injective,
because Ay is local. Cf.[2]

Now we have the following final result.
Theorem 3.12. If n # t, then the local algebra Ay is injective.

4 Appendix

The preceding sections we did not mension about the ground field K. It is well known,
however, that the group algebra A; is not semisimple provided the characteristic p of K
divides (¢ + 1)s|t — n| and the other case A; is a direct sum of extended fields of K. On
the other hand, local QF-ness of Ag does not depend on the characteristic of K.
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Next we shall consider Ay for the case t = 2 < n. Since [ = (24140 - TpToTy -+ Tijmg —
z?| i =0,1,---,n), homogeneous elements %iQ of degree 2 overlap homogeneous elements
Tl -+ TnZoZy - - - Ti_q of degree n if we take ; as homogeneous elements of degree 1. So in
this grading A is not positively Z-graded. It follows from Proposition 3.11 that a Grébner
bases consist of F' = {21240 - TnToxy -2 1 — 27 |1 =0,1,---,n} , H={z}a? | i #j
and i,j = 0,1,---,n} and D = {2} — 2} | i # j and 4,5 = 0,1,---,n}, and G =
{Tlpep 2 Iren—touiryy Tr — Hgequiny 5 | P = {p1,p2,---,ps} € N = {0,1,---,n},Q =
{a1, 42+, qs} C N such that p; < ¢ for I < s and PN{q} N{q} N---N{g} N{k} = 0.
However among them we can exclude G by H. Therefore since rad (A;) is generated by

{z;]i=0,1,---,n} we have {T;, 75, ---T;, | 0 < iy < iy < --- < i, <n} as representatives

of K-bases of rad (Ag)"/rad (Ag)"*'. This implies that Hilbert series of the associated

graded algebra of Ay is ( g ) , < Tll ) S ( " ) R ( " > Hence Grad(Ag) seems
r n

to be a new commutative version of an exterior algebra.

Now we shall consider A for the case n = t. From the arguments of §1 and §2 it does not
happen the direct sum decomposition of A into a group algebra A; and a local algebra Ay.
However A is a positively Z-graded with respect to homogeneous elements zg, 1, - - - , x,, of

n - - - =

degree 1, because both z; and ;41240 -+ - T,ToT1272 - - - 2;—1 have the same homogeneous
degree n. Further we can prove

Proposition 4.1. If n =t, then A is 1-dimensional Gorenstein.

Proof: Let us denote zox; - -- T, by u. As was just remarked above A is positively Z-
graded and K[u] is a graded subalgebra of A having a homogenious element u of degree
n.

Hence u is a regular element in K [u] and u is a transcendental element over K. Further
7,1 = 0,1,---,n, satisfy the equation X" —u = 0 € K[u][X]. Hence by Noether’s
normalization theorem. the Krull dimension of A = 1.

Consider a residue class algebra of A by an ideal (u), where u is a regular element. Then

AN/ (u) ~ Klvg, vy, - -+, v, /(0" 0" - 0, ") where Klvg, vy, - -+, v,,] i a polynomial
ring over K with indeterminants v;,2 = 0,1,---, n.
Now vt v" - .. 0," are a regular sequence and hence A/(u) is a complete inter-

section. Therefore A/(u) is 0-dimensional Gorenstein. It concludes A is a 1-dimensional
Gorenstein. Cf.[2], [6].

Residue class ring A of polynomial ring by ideal generated by pure binomials associated
with toric variety, the general theory of Grobner bases and polytopes[12], however, seems
to be not effective in our case, because A is O-dimensional.
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Notes: The investigation of this subject begun from the time when I was invited to Biele-
feld University by Professor C.M.Ringel (and Prof. M. Auslander too stayed in Bielefeld
at the same time). Here the author would like to express his thanks to Professor Ringel
for this publication.

References

1. Willam W.Adams and Philippe Loustaunau, An introduction to Grébner bases,
in ”Graduate Studies in Mathematics”, Vol.3, American Mathematical Society,1994.

2. H.Bass, On the ubiquity of Gorenstein rings, Math. Z. 82(1963), 8-28.

3. M.Boij, Graded Gorenstein Artin algebras whose Hilbert functions have a large
number of valleys, Comm. Algebra 23(1995), 97-103.

4 R.Brauer and C.Nesbitt, On the regular representations of algebras, Proc.Nat.Acad.
Sci. 23(1937), 236-240.

5. Buchberger, Grobner bases—an algorithmic method in polynomial ideal theory,
Chapter 6 in Multidimensional Systems Theory (N.K.Bose,ed.), Reidel, Dordrecht/
Boston,1985.

6. D.Eisenbud, Commutative algebra with a view toward algebraic geometry,
in” Graduate text in mathematics ”, Vol.150, Springer-Verlag, New York,1995.

7. T.Nakayama, On Frobeniusean algebras. I, Ann. Math.40(1939), 611-633.
8. C.Nesbitt, On the regular representations of algebras, Ann. Math. 40(1939), 634-658.

9. M.Sato, The structure of positively graded local artinian rings and extended graded
complete local noetherian rings, Comm. in Algebra 20(1992), 3769-3780.

10. R.Stanley, Hibert functions of graded algebras, Advances in Math. 28(1978), 57-83.

11. R.Stanley, Combinatorics and commutative algebra, in Progress in mathematics
Vol.41, 2nd ed, Birkhauser 1996.

12. B.Sturmfels, Grobner bases and convex polytopes, University Lecture Series Vol.8,
American Mathematical Society 1996.

17



13. Q.Zeng, Vanishing of Hochschild’s cohomologies H(A ® A) and gradability of
a local commutative algebra A, Tsukuba J. Math.14(1990),263-273.

18



