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Abstract

In this paper we study the problem of decomposing finitely generated groups
into non-trivial free products with amalgamation. We prove that if dim X*(T") >
2, where X*(I") is the character variety of irreducible representations of I' into
SLo(C), then I is a non-trivial free product with amalgamation. We also consider
a generalized triangle group I' = (a,b | " = b* = R™(a,b)). It is proved that
if one of the generators of I' has an infinite order, then I' is a non-trivial free
product with amalgamation. In general case we find some sufficient conditions
under which I' is a non-trivial free product with amalgamation.



Introduction

We say that a group G is a non-trivial free product with amalgamation if G = G %4 G,
where Gy # A # G4 (see [1]). Wall [2] posed the following question:

Which one-relator groups are non-trivial free products with amalgamation?

Let G = {(g1,-..,9m | R1 = -+ = R, = 1) be a group with m generators and
n relations. If def G = m —n > 2, then it is proved in [4] that G is a non-trivial
free product with amalgamation; in particular, any group G with m > 3 generators
and one relation is a non-trivial free product with amalgamation. The case of groups
with two generators and one relation is more complicated. For example, obviously, a
free abelian group G = (a,b | [a,b] = 1) of rank 2, where [a,b] = aba='b", is not
a non-trivial free product with amalgamation. Other examples are given by groups
G, = {(a,b| aba™! = b"). Clearly, G, is solvable for any n and bearing in mind results
in [3], it is easy to show that G, is not a non-trivial free product with amalgamation
for n # —1. The following conjecture was stated in [4].

CONJECTURE 1 Let G = (a,b | R™(a,b) = 1), m > 2, be a group with two generators
and one relation with torsion. Then G is a non-trivial free product with amalgamation.

Zieschang [5] studied the problem of decomposing discontinuous groups of transfor-
mations of the plane into non-trivial free products with amalgamation. He has given
a complete answer to the question when such a group is a non-trivial free product
with amalgamation in all cases except for the groups H; = (a,b | [a,b]" = 1) and
Hy; = {(a,b | a® = [a,b]" = 1), n > 2. Rosenberger [6] has proved that the groups H,
and Hy are non-trivial free products with amalgamation if n is not a power of 2. In the
recent papers [7, 8] it is proved that H; is a non-trivial free product with amalgamation
for arbitrary n > 2. An independent proof of this fact was given in [9, 10].

In the present paper we study a more general case. Namely, we consider the so-called
generalized triangle groups G having a presentation of the form

G={a,b|a™=1b"= R'(a,b) = 1),

where | > 2, R(a,b) is a cyclically reduced word in the free group on a, b. Not all of
these groups are non-trivial free products with amalgamation. For example, Zieschang
[5] has proved that the ordinary triangle group

T(m,n,l) = {a,b|a™ =b" = (ab)! = 1)

with m,n,l > 2 is not a non-trivial free product with amalgamation. On the other
hand, it is shown in [10] that a group G' = (a,b | a®" = R!(a,b) = 1), where m = 0 or



m > 1 and [ > 2, is a free product with amalgamation. In Theorems 2 and 3 we prove
more general results about decomposing generalized triangle groups into non-trivial free
products with amalgamation.

Theorem 1 states that a finitely generated group I' is a non-trivial free product with
amalgamation if the dimension of some algebraic variety (the so-called character variety
of irreducible representations of I" into SLy(C)) is more than 1. To formulate this result,
we recall some notations and facts from the geometric representation theory (see also
(11, 12, 13, 14]).

Let I' = (g1,...,9m) be a finitely generated group and let G C GL,(K) be a con-
nected linear algebraic group defined over an algebraically closed field K of characteristic
zero. Obviously, for each homomorphism p : I' — G(K) the set of elements

(P(g1);- -5 p(gm)) € G(K) X -+ x G(K)

satisfies all defining relations of I'. So the correspondence p — (p(g1). ..., p(gm)) is
a bijection between the set Hom (I', G(K)) and the set of K-points of some affine K-
variety R(I', G) C G™. The variety R(I', G) is usually called the representation variety
of the group I' into the algebraic group G.

The group G acts on R(I',G) in a natural way (by simultaneous conjugation of
components) and its orbits are in one to one correspondence with the equivalence classes
of representations of I'. In the general case the orbits of the group G under this action
are not necessarily closed and hence the variety of orbits (the geometric quotient) is
not an algebraic variety. However, if GG is a reductive group, then one can consider
the categorical quotient X (I',G) = R(I',G)/G (see [15]). Its points parametrize closed
G-orbits. In the case G = GL,(K) or G = SL,(K) an orbit of G is closed if and only if
the corresponding representation is completely reducible. Therefore, in this case points
of the variety X (I', G) are in one to one correspondence with the equivalence classes of
completely reducible representations of I' into G or, in other words, with characters of
representations of I' into G.

Throughout this paper we consider only the case G = Sly(K) and for brevity we
put R(I',SLy(K)) = R(T') and X(I',SLy(K)) = X(I'). All information about varieties
R(T"), X(I") used in the paper can be found in [12, 16, 17, 18]. We set

R*(T') ={p € R(I') | p is irreducible}, X*(T) =n(R*(I"))

where 7 : R(I') — X(I') is the canonical projection. It is shown in [12] that R*(I') and
X?*(T') are open in Zariski topology subsets of R(I') and X (I") respectively. The aim of
the present paper is to prove the following theorems.

THEOREM 1 Let I' be a finitely generated group such that dim X*(I') > 2. Then I is a
non-trivial free product with amalgamation.
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THEOREM 2 Let T, = {(a,b| a™ = b* = R™(a,b) = 1), where n,k,m € Z, n,k,m > 2,
and R(a,b) = a™b" ...a%b" is a cyclically reduced word on the free product on a,b
such that 0 < u; < n, 0 < v; < k, and s > 1. Suppose that there exists i € {1,...,s}
such that u; > 2 and n = u;pf, where f € Z, p is a prime and w;p does not divide u;
for 3 # i. Then in the following cases the group '), is a non-trivial free product with
amalgamation.:

1) m =2, p does not belong to a certain finite set S of primes, which is completely
determined by the exponent k and the word R;

2)m=3o0rm=2">3,p#2;

3) m >3 and m # 2.

Note that the condition w;p { u; for j # ¢ in Theorem 2 holds automatically if
U; = Maxi<j<s Uj > 2 or U; Jf Uj for each j 7é 1.

THEOREM 3 Let I' = (a.b | a” = R™(a,b) = 1), where n =0 ormn > 2, m > 2, and
R(a,b) = a™b" ...a"b" is a cyclically reduced word on the free product on a,b, s > 1,
0 <u; <n. Then T is a non-trivial free product with amalgamation.

As a direct consequence of Theorem 3, we obtain the proof of Conjecture 1.

COROLLARY 1 Let I' = (a,b | R™(a,b) = 1), m > 2, be a group with two generators
and one relation with torsion. Then I' is a non-trivial free product with amalgamation.

At the end of Section 2 we verify that the group I' introduced in Corollary 1 satisfies
the assumptions of Theorem 1, i.e. dim X35(I') = 2 and therefore we obtain an another
proof of Conjecture 1.

COROLLARY 2 Fuchsian groups Hy = {a,b | [a,b]" = 1) and Hy = {a,b | a* = [a,b]" =
1), n > 2, are non-trivial free products with amalgamation.
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1. Proof of Theorem 1

In what follows we denote the field of p-adic numbers by Q,, the ring of p-adic integers
by Z,, the group of p-adic units in Z, by Z; , the p-adic valuation by | |,, the trace of
a matrix A by tr A, and the identity 2 x 2 matrix by F.

We recall some facts about the character variety X (I') of representations of a finitely
generated group I' into SLy(C) (see [12]). For an arbitrary element g € T' the regular
function

7y R(T) = C,  7y(p) = trp(g),
is called, usually, the Fricke character of the element g. It is known that the Z-algebra
T(') generated by all functions 7,, g € T, is finitely generated. If 7,,,..., 7, are gen-
erators of T(I'), then the C-algebra of SLy(C)-invariant regular functions C[R(I")]3t2(©)
coincides with C[r,,,...,7,]. Consider the morphism

m: R(T) — A®, 7(p) = (15, (p)s -, T4 (P))-

It is shown in [12] that the image m(R(T")) is closed in A®. Since X (I') and 7(R(I)) are
biregularly isomorphic, we will identify X (I") and 7(R(T")).

The idea of the proof of Theorem 1 is to construct a representation p : I' — SLy(Q,)
for some prime p such that the group p(I') is dense in SLy(Q,) in p-adic topology. If we
do so, Theorem 1 will follows from the following well-known facts:

1) If H is a subgroup of SLy(Q,) dense in the p-adic topology, then H is a non-trivial
free product with amalgamation (see [19]).

2) If f: G; — G5 is an epimorphism of groups and G5 is a non-trivial free product
with amalgamation, then G is such product as well.

LEMMA 1 Let H be a subgroup of SLa(Q,). Then H is dense in SLa(Q),) in the p-adic
topology if and only if H is absolutely irreducible (that is, irreducible over the algebraic
closure of Q, ), unbounded, and non-discrete.

Proof. If H is dense in SLy(Q,), then, obviously, H is absolutely irreducible, un-
bounded, and non-discrete. Conversely, we first claim that there exists an element h € H
such that |trh|, > 1. Indeed, otherwise the traces of all elements of H belong to Z,,
whence the group H is conjugate to a subgroup of SLy(Z,) (see [20] or [12, Lemma
[.4.3]). This implies that H is bounded which contradicts to our assumptions.

Let trh = p~°a, where a € Z;, s > 0. The characteristic polynomial of A is of
the form f(y) = y*> — p~®*ay + 1 and its discriminant is equal to D = p~%a? — 4 =
p~2(a? — 4p**). Thus, D is a square in Q,, whence the roots of f(y) belong to Q,. Tt
follows that h is conjugate in SLy(Q,) to a diagonal matrix of the form

diag A\ A, A=p~y. s20, YEZ, (1)
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Conjugating H, if necessary, we can suppose that h = diag(A\,A™!) € H. Clearly,
the unipotent subgroups of SLy(Q,)

Ul:{(i ?) aE@p}’ UQZ{((I) Cf)

generate SLy(Q,). Therefore, it suffices to show that Uy, Uy C H, where H is the closure

ae@p}.

of H in the p-adic topology.
Take, for example, U; and let us prove that U; C H. To this end, first we show that

_ 1 0
H contains a non-trivial unipotent element u = ( 1), a€ Q. Let
a
1+pla  p'b
Fj_{( D Lt pid ESLQ(QP)‘a,b,c,dEZp

be the principal congruence subgroup of the level j in SLy(Q,). The groups I';, j > 1,
form a base for the neighborhoods of the identity in SLy(Q,). The non-discreteness of
H implies that for each j > 0 there exists an element &/ # x; € H N 1. Let

_(1+p]aJ p]bJ )
-\ Py 1+pldy)

where a;,b;,¢j,d; € Z,. Then lim; .. x; = E. Since H is an absolutely irreducible

Lj

subgroup of SL2(Q,), without loss of generality we can assume that almost all elements
b;, ¢; (with the exception of a finite number) are not equal to 0 (otherwise one can
conjugate all z; by a suitable element y from H and again lim;_ ., yz;y~' = E).

Let ¢; = pYie;, where k; > 0, ¢; € Z, and let t; = [(k; + j)/(2s)] be the integer part
of the number (k; + j)/(2s), where s is defined in (1). Then we have r; = k; +j —2st; €
{0,1,...,2s — 1}. Now consider the following sequence {z}} of elements of H:

1 + p]a] pj+28tj ,Y—Qtj b.7 )

/‘ _ hftj _htj — ) 2
I] Z; prj 72tj £ 1+ p]d] ( )
The infinite sequence {p"iy?%ie;} is contained in Z,; in particular, it is bounded. There-

fore, it contains a convergent subsequence
T 2t;
: — T —2s+1
Since |a;,,|, = p~"m > p
that

. we have lim;, . a;,, = a # 0. Thus it follows from (2)

lim 2. = <1 O)ZUGF.

j Jm a 1

Im—00

Conjugating u by a suitable power of h, we can suppose that a ¢ Z,. Since u" =

1 0 —
( 1) for arbitrary n € Z and the closure of aZ in Q, contains Z,, the group H
an
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1 1
0 ‘{L' € Z, ;. Furthermore, let u; = < 0 € Uy be an

r 1 p"B 1
element such that r > 0 and 3 € Z;. Choose an integer m such that 2sm —r > 0. Then

contains U] =

hmu,h™™ € U!, whence u; € H. Thus, we obtain U; C H. Similarly, one can prove
that Uy C H. it follows that H = SLy(Q,). Lemma 1 is proved.

LEMMA 2 Let X and Y be irreducible Q-defined affine varieties, dimY > 1, and let
f: X =Y be adominant Q-defined regular morphism. Then there exists a prime p # 2
and x € X(Q,) such that not all coordinates of the image f(x) € Y(Q,) belong to Z,.

Proof. Let K be an algebraic closure of QQ, D be an arbitrary irreducible curve in
Y(K), and let L be an arbitrary irreducible curve such that L C f~1(D) and f(L) is
dense in D. Let D and L be the projective closures of D and L, respectively, and let L
be the smooth projective model of L. The regular morphism f : L — D determines a
rational morphism f L — D. Since any rational morphism from a smooth curve to a
projective variety is regular and the image of a projective variety under regular map is
closed (see [21]), f is a regular surjective morphism.

Let v € D\D be a point at infinity on D and w € f~(v). The coordinates of both
points v and w generate the finite extension K;/Q. By Chebotarev’s density theorem,
there exist 1nﬁn1tely many prime numbers p such that K; C @Q,. Choose one of them.
Then w € L(@p) v € D(Q,). Since w is a non-singular point on L, w has a p-adic
neighborhood W C E(Qp) such that W is homeomorphic to an area in Q, (see [21,
chapter II]). This means that there exists an infinite sequence of elements w; € W such
that w; € L(Q,) and lim; . w; = w in the p-adic topology. Then by continuity of f, we
have lim;_.o. f(w;) = v. Since v € D(Q,) is a point at infinity, the sequence of elements
fw;) = f(w;) € D(Q,) is not bounded. Therefore, there exists i such that not all of
the coordinates of the point f(w;) belong to Z,. Lemma 2 is proved.

Proof of Theorem 1. Let g;...,9s € I' be elements such that the functions
Tgrs-- -, Ty, generate the ring T'(I'). Then the projection 7 : R(I') — X(I') is defined
by the formula 7(p) = (74, (p), ..., 74, (p)). Since, by the assumptions of Theorem 1, we
have dim X*(I") > 2, there exists an irreducible component Z of the variety X(I") such
that dimZ > 2 and U =Z N X*(1') # 0.

Let p; : Z — Al be the projection defined by the formula p;(z1,...,2s) = 2. Since
dim Z > 2, at least for one i the projection p; is dominant. Therefore, there exists an
integer n > 2 such that n € p;(U). Let Y = p;}(n) C Z. Then, by the Dimension
Theorem, dimY >dimZ —1 > 1 and Y NU # ©. Furthermore, let X be an irreducible
component of 771(Y") such that 7(X)) is dense in Y. Applying Lemma 2 to the varieties
X, Y, and the morphism 7, we obtain that for some prime p the set X(Q,) contains
a representation p with the following property: p is irreducible and not all coordinates
of the point 7(p) belong to Z,. The latter means that there exists j such that 7,,(p) =
tr p(g;) & Z,, implying p(I') is an unbounded subgroup of SLy(Q,).
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It also follows from the construction of the representation p that 7,,(p) = trp(g;) =
n > 2. Therefore, the cyclic subgroup of p(I") generated by p(h;) is infinite and bounded,
whence p(I') is a non-discrete subgroup of SL2(Q,). By Lemma 1, p(I') is dense in
SLy(Q,) in the p-adic topology. As we have noted above, this fact implies that p(I")
(and therefore I') is a non-trivial free product with amalgamation. Theorem 1 is proved.

2. Some auxiliary results

In this section we prove some auxiliary results used in the proofs of Theorems 2 and 3.
In what follows we denote the ring of algebraic integers in C by O, the group of units
in O by O*, the free group of rank 2 with generators g and h by F;, =< g, h >, and the
greatest common divisor of integers a and b by (a,b). If K D L is a finite extension of
fields and = € K, then we denote the norm of the element 2 by Ng/r(z). The following
lemma characterizes elements of a finite order in SLy(C).

LEMMA 3 Let 2 < m € Z and £E # X € SLy(C). Then X™ = FE if and only if
tr X =¢e+¢e7t, where e™ =1, € # £1 (in other words, tr X = 2 cos(2rm/m) for some
re{l,...,m—1}). In particular, if tr X = 0, then X?> = —L.

Proof. If X™ = E, then the assertion is obvious. Conversely, let tr X = ¢ + &%
Then e, are the eigenvalues of the matrix X. It follows that X is conjugate to the
matrix diag(e,e!), whence X™ = E, as required.

Obviously, the representation variety R(F») of the free group Fy = (g, h) coincides
with SLy(C) x SLo(C). It is known that the ring 7'(F3) is generated by the functions
Tys Thy Tgn (S€€ [12, 16, 17]). Recall that for an element u € F; the function 7, called the
Fricke character of the element w.

LEMMA 4 For all o, 3,y € C there exist matrices A, B € SLy(C) such that 7,(A, B) =
trA=a, mm(AB)=trB=0, 71,(A B)=trAB=1.

This lemma can be easily proved by straightforward computations.

Lemma 4 implies that X (Fy) = 7(R(Fy)) = A% and that the functions 7,, 74, 7,5 are
algebraically independent over C. So for all u € Fy we have

Tu = Qu(Tga Th Tgh)v

where Q,, € Z[z,y, 2] is a uniquely determined polynomial with integer coefficients. The
polynomial @, is usually called the Fricke polynomial of the element . The following



relations for Fricke characters follows immediately from the relations between traces of
arbitrary matrices in SLy(C):

1)7—u—1 = Tu; 2)Tuv = Tou; 3)7—1)1“1—1 = Tu; 4)7—uv = TuTy — Typ-1- (3)

Furthermore, we need a more detailed information on the Fricke polynomials (see
[22]). Consider polynomials P,()) satisfying the initial conditions P_;(A) = 0 and
Py(X\) = 1 and the recurrence relation

Pn()‘) = APnfl()‘) - Pnf2()‘)'

If n <0, we set P,(A) = —Pj,—2(A). The degree of the polynomial P,()) is equal to n
if n >0 and to |n| — 2 if In < 0. It is easy to verify, by induction on n, that

~ sin((n+ 1))

P,(2 =" 4
It follows from (4) that
)\n,k:2cos(nk—j:1), k=1,2,...,n. (5)

are n zeros of the polynomial P,(\), n > 1. It is easy also to verify, by induction, that
for n > 0 we have

Po(A) = A 4o (=1)"
Paoi(N) = AO"2 44 (=1)" 1), (6)

Let now w = g™ A% ... ¢g*h% be a cyclically reduced word in F, and let z = Tq,
Y = Th, 2 = Ty, Let us treat the Fricke polynomial @Q,(z,y, 2) as a polynomial in z.
We may write

Qu(z,y,2) = My(z,y)2" + My_1(z,y)2" " + ...+ My(z,y).

LEMMA 5 ([22]) The degree of the Fricke polynomial Q. (x,y,z) with respect to z is
equal to s, that is, the number of blocks of the form g“h” in w. The leading coefficient
M(x,y) of the polynomial Q,(x,y,z) has the following form

M(z,y) = H Foi1(2)) Pg,—1(y)- (7)

The following lemma plays an important role in the proofs of Theorems 2 and 3. Let
I'={(a,b|a" = R"(a,b) = 1), where n =0 orn > 2, m > 2, R(a,b) is a cyclically
reduced word containing b in the free group on a and b. Assume that there exists
matrices A, B € SLy(C) such that tr A = a = 2cos(tr/n) for some t € {1,...,n — 1}
and tr R(A, B) = Qgr(a,y,z) = ¢, where Qg is the Fricke polynomial of the element
R(g,h) € Fy, ¢ =2cos(rm/m) for some r € {1,...,m— 1}, y =tr B, z = tr AB.
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LEMMA 6 (a) Let H =< A, B > be the group generated by matrices A and B. Assume
that the following two conditions hold:

1) there exists a unipotent element (or an element of a finite order) W € H of the
form W = A« BPr ... A% BPs where a;, 3; # 0 fori=1,...,s, such thatl=>:_ 3 #
0.

2) There exists an element h € H such that trh ¢ O.

Then the group ' is a non-trivial free product with amalgamation.
(b) Suppose that instead of the condition 1) the following condition holds:
") B has a finite order, that is, tr B = 2 cos(kim/k) for some k > 2, (ki,k) = 1.

Then for any integer v the group Ty = {(a,b | a® = b* = R™(a,b) = 1) is a non-trivial
free product with amalgamation.

The proof of this lemma is based on the Bass classification of finitely generated
subgroups in SLy(C) [23].

ProprosITION 1 ([23]) Let H C GLy(C) be a finitely generated subgroup. Then one of
the following cases occur:

1) there exists an epimorphism f : H — Z such that f(u) = 0 for all unipotent
elements u € H;

2) trh € O for every element h € H;

3) H is a non-trivial free product with amalgamation.

Proof of Lemma 6. First we show that the group H does not satisfy the condition 1)
of Proposition 1. Indeed, assume that f : H — Z is an epimorphism such that f(z) =0
for all unipotent elements z € H. Then f(A) = 0 because A*" = E, by Lemma 3.
Furthermore, f(u) = [f(B) = 0, whence f(B) = 0 because, by the assumptions, u is
either unipotent or has a finite order and [ # 0. Therefore, f(H) = {0} — a contradiction.

Thus, by Proposition 1, H is a non-trivial free product with amalgamation, that is,
H = H, xp Hy, where H; # F # H,. Let A, B, H, H,, H,, F be the images of A,
B, H, Hy, Hy, F in PSLy(C), respectively. If —E ¢ H, then the groups H and H are
isomorphic. If —F € H, then —F belongs to the centre of H, hence —F € F. In all
these cases H, #* F #+ H, and therefore H = H, * Ho is a non-trivial free product
with amalgamation.

By Lemma 3, the conditions trA = a and Qg(a,y,z) = c imply that A%" =
R*(A,B) = E. Hence A" = R™(A,B) = 1 in PSLy(C). It follows that H is an
epimorphic image of I and therefore I' is a non-trivial free product with amalgamation
as well.

Furthermore, if we replace the condition 1) by 1’), then again the group H is a non-
trivial free product with amalgamation. Moreover, we have A" = B = R™(A,B) =1
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in PSLy(C). It follows that H is an epimorphic image of I';, whence 'y is a non-trivial
free product with amalgamation. Lemma 6 is proved.

LEMMA 7 1) Let r,s € Z, where s > 3 and (r,s) = 1. Then cos(rn/s) ¢ O.
2) Let s€Z,s>1, and r Z 0(mod 2s +1). Then 2cos(rr/(2s+ 1)) € O*.
3) Let 0 £ u € Z, p be a prime, and let € be a primitive root of unity of degree 4pu.
Set
Ty = 2cos(gn), Yo =2sin(gn), K =Q(e).

Then there exist r,ry #Z 0(mod p) such that p divides both of the integers Nk q(x,) and
Nk o (Yr, ). In particular, x,,y, ¢ O.

4) Let u,c € Z, |u| > 2, ¢ # 0, and let p be a prime not dividing c¢. Set xy =
—2cos(m/u), . = 2cos(rm/(pu)). Then there exists r #Z 0(mod p) such that ¢/(x, —
xo) ¢ O.

5) Let p > 2 be a prime. Then for eachr # 0(mod p) and s > 1 we have sin(rw/p®) ¢
O*.

6) Let t > 1. Then for each odd r we have 2sin(rw/2') ¢ O*.

Proof. 1) Assume that cos(rn/s) € O. Then for every d € Z we have cos(drm/s) € O.
Since, by the assumptions, (r,s) = 1, for every integer [ there exists d such that dr = [
(mod s). Therefore, for all integers [ we have cos(lr/s) € O. By (5), the polynomial
P, 1()\) has the roots 2 cos(lr/s), L = 1,...,s — 1. Therefore, the polynomial P ;(2))
has the roots cos(in/s), l=1,...,s — 1.

If s = 2s; + 1 is odd, then, by (6), we have Pa, (2)\) = 2%12\*1 4 ... 4 (—1)". Since
1/2251 ¢ 7, the polynomial Py, (2)) has a root not belonging to O, that is, there exists
[ such that cos(ir/s) ¢ O a contradiction. If s = 2s; is even, then it follows from (6)
that Pag,—1(2X) = 2X(2%172\2172 ... 4 (—1)*171s;). By the assumptions, s > 3, hence
s1 > 2. Then s;/2%172 ¢ 7 and Pa,,_1(2)) has a root not belonging to O. We obtain
again a contradiction proving item 1).

2) By (5) and (6), the number 2 cos(rn/(2s+1)) is a root of the polynomial Pyg(A) =
A%+ ...+ (—1)% and therefore it belongs to O*.

3) Since y, = 2cos((pu — r)7/(2pu)) = Tp,—r, it suffices to prove the assertion
for z,. Let u = p/u/, where f > 0 and p f v/. Set r = riu/, where p { r;. Then
z, = 2cos(rim/(2p"*1)). By (5) and (6), the polynomial

Pori1_1(A) = /\()\2pf+1_2 + -4 (—1)pf+1_1pf+1)
has the roots 2 cos(r'm/(2p'*1)), v’ = 1,...,2p'*1 — 1, and the polynomial

Popr 1(A) = )\()\2pf72 T (_l)pf,lpf)
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has the roots 2 cos(r'nw/(2pf)), r’ = 1,...,2p’ — 1. Therefore, the polynomial Py,s_;())
divides the polynomial Py,r+1_1(A). Let

P2pf+1—1(/\) = P2pf—1(>\)F(>\)a (8)

where F()), as it is easy to see, is a polynomial of degree 2(p/*! — p/) with the
leading coefficient 1 and the constant term p. The roots of F(\) are the numbers
2cos(r'm/(2p'*1)), ' 2 0(mod p). It is easy to see that there exists r; # 0(mod p)
such that Ng/g(2 cos(rim/(2p/ ™)) = £p* for some s > 1, as required.

4) We note that

Ty — T = 2cos(fh) + 2cos(f) = (2 Cos((rzi’) )) (2 cos({=2r p’;) )) .

So it suffices to show that for some r # 0(mod p) we have c/a, ¢ O, where a, =
2cos((r+ p)w/(2pu)). Let K, = Q(a,.) and [K, : Q] = d. By item 3), there exists r Z 0
(mod p) such that p divides N, o(a,). Then

d
C
N 7,
KT/Q( r) N, jo(ar) 7

because, by the assumptions, p 1 c. Hence ¢/a, ¢ O, as required.
5) Note that 1/sin(rm/p®) = 2/(2cos((p® — 2r)w/(2p°))). It follows from the proof
of item 4) that there exists ro Z 0(mod p) such that
2
2cos((7" — 207/ 27)

Now we show that for every r # 0(mod p) we have sin(rn/p®) ¢ O. Assume the
contrary. Let 1/sin(rmw/p®) € O for some r with (r,p) = 1. Since p { (p° — 2ry). there
exists d such that r = d(p® — 2ry) (mod p*). Then, by (4), we have

Z O

P, <2 COS((pS—QSTO)W)> _ si‘n(d(ps — 2ro)m/p*) — 4 sin(rm/p*) '
P sin((p® — 2ry)m/p?) sin((p® — 2ry)mw/p?)
This means that
1 !
sin((p® — 2rg)mw/p?) sin(rm/p’
which is impossible.

)Pd (2 cos((ps;im)”)> €0

6) For t = 1 the assertion is obvious. Suppose that ¢ > 1. By item 3), there
exists odd ry such that 2sin(rom/2') ¢ O*. We claim that for every odd r we have
2sin(rn/2Y) ¢ O*. Assume the contrary, i.e. for some odd r we have 2sin(rr/2t) € O*.
Obviously, there exists an integer d such that r = drg(mod 2'). Then, by (4), we have
2sin(rm/2")

Py (2cos(2ez)) = 120
4 (2cos(5)) 2sin(rom/2t)’
whence 2sin(rym/2) € O* — a contradiction. Lemma 7 is proved.
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LEMMA 8 1) Let s,t > 0. Then

Py(A) (X)) = Z Py t19i(A). (9)

2) The polynomial Ps(N\) — Ps_1(X\) has the roots A\, = 2cos((2r + 1)7/(2s + 1)),
re{0,1,...,s—1}.

3) If v =2cos(2rm/(2s + 1)), where s > 1, r € {1...,s}, and (r,2s + 1) = 1, then
Py(y) = Psa(y) € O~

4) If v = 2cos((2r + 1) /(2s)), where s > 2 and (s,2r+1) =1, then 0 # P _1(7) ¢
O~

5) Let v € O. Assume that 7y is not equal to 2 cos(rn/s), where r,s € Z. Then there
exists an integer | > 0 such that P(vy) ¢ O*.

Proof. 1) We fix s and proceed by induction on t. If £ = 0, then Ps(\) Py(A) = Ps(N).
If t = 1, then, by definition, P;(A)P1(\) = Ps(AMA = Pyyq1(N\) + Ps_1(A). Furthermore,
we have by induction

EOVAO) = PP = Pa) =AY PN = Y Pz

~
—_

t—2
= (Ps—tro42i(A) + Ps_ty2i(N)) — Z Py ti040i(N)
i=0

2

Il
=)

t—1 t
= PN+ D Pacraai(N) = > Pacrami(N)
=0 1=0

as required.
2) Bearing in mind (4), we obtain

sin((2r 4+ 1)(s+ 1)7/(2s + 1)) —sin((2r + 1)s7/(2s + 1))

Py(Ar) = Poa (M) = sin((2r + 1)7/(2s + 1))

= 0.

3) Taking into account (4), we have

1 _ sin(2rm/(2s+ 1))
Poi1(y) — Ps(y)  2sin(rm/(2s + 1)) cos(rm)

= +cos(£%) ¢ O,

2s+1

by item 1) of Lemma 7.
4) Using (4), we obtain

1 _osin((2r + )7 /(2s) 1 en ((s=2rmin
P sm(@r i Dajz) Y ( o )%0,

by item 1) of Lemma 7.
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5) Since, by (5), the polynomial P;(\) has the roots 2cos(rm/(l+ 1)), r=1,...,1,
we can write Py(y) = [['_,(v — 2cos(rr/(l + 1))). Hence it suffices to prove that
v—(e+et) ¢ OF where € # £1 is a root of 1.

Let f(A) € Q[A] be an irreducible polynomial such that f(y) = 0. We denote by
Ky the splitting field of f(\) and put K; = Ky(zp), where x, is a root of the equation
x+ 27t = . Let Z; be the integer closure of Z in K; and let p # 2 be a prime. Take a
prime ideal p; in Z; lying above (p). Then ky = Z;/py D Z/pZ = k is a finite extension
of fields. Clearly, we have zg,yo € Z;. Denote by Ty and 7 the images of xy and -,
respectively, in the field k;. Then the following equality holds

To+T, =7.

If | = |k7| is the order of the multiplicative group of k;, then T, = 1 in k;. Consider
the field Ky = K;(¢), where £ is a primitive root of 1 of degree [ in C. Let Z; be
the integer closure of Z; in Ky and p, be a prime ideal of Z, lying above p;. We set
ke = Zy/ps D k1. Let A be the group of roots of 1 of degree [ in Ky and A be its image
in ks.

We show that A = k}. Assume the contrary, i.e. A # ki. Then for some integer
r, 0 <r <l wehave & =1, where £ is the image of € in ky. Then (1 + y)! = 1, that
is, 1 + Cly + -+ Clyt = 1, where C} is the corresponding binomial coefficient. Hence
y(l+yy1) = 0, where y; = C?y + - -+ Cly'~L. Since y # 0, we obtain [ € po NZ = (p).
But [ = |kj| = p* — 1 for some t — a contradiction. Thus, there exists a root ¢ of 1 of
degree [ such that € = Ty. This means that v — (¢ + &™) € py and hence v — (¢ + ¢71)
is not a unit in the ring @. Lemma 8 is proved.

LEMMA 9 Let Fy = (g, h) be the free group with generators g and h. Set x = 1,, y = T3,
2= Tgn, and t = Typg—1-1. Then the following assertions hold.

) t=a?+y*+ 2% —ayz — 2.

2) Let R = gh(ghg ‘h™1)*. Then

TR = (Ps(t) — Ps_1(t))2.
3) Let T = (gh) *(ghg *h ')*(gh)*(ghg *h 1)*. Then
Tp = (t — 2)P,_1()%2° + (2 — Pas_1(t) + Pas_s())z.

Proof. 1) This can be proved by straightforward computations using relations (3)
(see [16]).

2) Let u and v be arbitrary elements in F5. Then using induction and the relations
(3), one easily shows that for arbitrary integers p and ¢

Turva = Pp—l(Tu)Pq—l(Tv)Tuv - Pp—Q(Tu)Pq(Tv) - PP(TU)Pq—Q(Tv)' (10)
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Now set u = gh and v = ghg™'h™'. Then 7, = z, 7, = t, and Ty, = Typ(ghg-1h-1) =
2t — T-1-1 = 2(t — 1). Hence

Tus = Ps 1(70)Tuw — Ps_2(7)Tu = Ps 1(t)(t — 1)z — Ps_o(t)2
SUP1(8) = Py a(t) = Py (1) = 2(Py(t) + Poos(t) — Py 1(t) — Py (1))
= z(Ps(t) — Ps_1(1)).
3) Let u and v be such as above. Then using the relations (3) and (10), we have
Tu=lys = Ty=1Tps — Tuws = 2(Ps(t) — Ps—a(t)) — 2(Ps(t) — Ps_1(t))
2(Ps-1(t) — Ps—2(1));
Tutes = TuTuws — Tos = 22(Ps(t) — Py 1(t)) — Py(t) + Ps_o(t);

T, = 25— 3z
Hence

Tutvsuzes = TutysTuzys — Tus = 20 ((Py(t) — Po1(t))(Pee1(t) — Ps_a(t)) — 1)
+2(3 = (Poca(t) = Poa(1)) (Ps(t) — Psa(t))).

Using (9), we simplify the last expression. First consider the coefficient at z3.
(Ps(t) = Poa (1)) (Poa(t) — Pooa(t)) — 1 = () P (t) + P 1(t)Ps 2(2)
— Py(t)Py_o(t) — Po_y(t)* — 1 = Po_1(t)(Py(t) + Ps_of Z Pyi(t

— Py (t)? = tP,_1(t)> = 2P,_1(t)* = (t — 2)P._1 ()™
Now consider the coefficient at z.

38— (Poa(t) = Pua(B)(Pa(t) — Pes(t)) = 3 — Pu(t)Pacs(t) + Po_a()Py_al?)

+ Py(t)Ps_o(t) — Pso(t)> =3 — Z Py (1) + Z Py 1 (t) + Z Py (t) — Z P (1)
=2— Py (t) + Pos_o(t). - - - -

Lemma 9 is proved.

We close this section by deducing Corollary 1 from Theorem 1 and thus obtaining
another proof of Conjecture 1. Let I' = (a.b | R™(a,b) = 1), where m > 2, R(a,b) =
a"tb’ .. .a" b’ ug,v; £ 0, s > 1, and R(a,b) is not a proper power.

First consider the case m > 3. We need to prove that dim X*(I') > 2. In the
character variety X (Fy) = A? of the free group F, = (g, h) consider the hypersurface V
given by the equation

Tr(gw) (T, Y, 2) = 2cos(2E), (11)
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where © = 7,, y = 7,, 2 = Ty,. By Lemma 5, we can rewrite (11) in the form
f(xvyv Z) = Ms(l'a y)zs +oeet MO(ma y) - 2COS(%) = 0. (12)

We claim that V' C X(T'). Indeed, let v = (xq,y0,20) € V and let A, B € SLy(C)
be matrices such that tr A = xq, tr B = yo, tr AB = z3. Then, by Lemma 3, we have
R™(A, B) = E. Hence the pair of matrices (A, B) determines a representation p of the
group I into SLy(C). The image of p in X (I') coincides with v. Hence, v € X(I').

Furthermore, let Vi, ..., V, be the irreducible components of V. Obviously (see [21]),
dimV; = 2 for each i. It remains to show that V N X*(I') # @. Let us assume the
contrary. Then all representations corresponding to points of V' are reducible. This
means that the regular function 7g,,-15-1 — 2 is identically equal to 0 on V. Hence, by
item 1 of Lemma 9, we have

gz, y,2) = +y* + 22 —ayz —4=0

on V and so
[,y 2) = gla.y, 2)° (13)

for some d > 1.

If |u;| > 2 or |v;] > 2 for some i, then by Lemma 5, the leading coefficient M(x,y)
in (12) is not a constant and the equality (13) is impossible. So |u;| = |v;] = 1 for
i=1,...,s. If for some i we have u; = u;1 or v; = vip1 (U3 = ug or v, = v for i = s),
then we can consider new generators of the group I'. Namely, assume, for example,
that u; = ug. We set a; = a™b", by = b. Then I' = (ay, by | R*(a1,b1) = 1), where
R™(ag,by) = a0 .. .a" b, wlvl £ 0, r > 1, and u) > 2. This case was considered
above.

Thus we can assume without loss of generality that u;; = —u;, v;11 = —v;. Since, by
the assumptions, R(a,b) is not a proper power, we have for R(a,b) only two possibilities
up to cyclic rearrangement: R(a,b) = aba™'b~! or R(a,b) = ab~'a~'b. In both cases we
have

f@y,2) =2 +y* +2* —ayz — 2 — 2cos(%) = g(z,y, 2) + 2 — 2 cos(2).
Since 2 — 2 cos(%”) # 0, obviously, g(z,y, z) has no zeros on V' — a contradiction.

Let now m = 2. In this case one can consider a group I'; = (a,b | R*(a,b) = 1). We
have proved above that dim X5(I'y) > 2. Then it follows from the proof of Theorem 1
that there exists a representation p : I'y — SLy(Q,) for some prime p such that p(I') is
a non-trivial free product with amalgamation. Let G be the image of p(I'y) in PSLy(Q,).
Then G is an epimorphic image of I'. Obviously, GG, and therefore T', is a non-trivial free
product with amalgamation as well.
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3. Proof of Theorem 2

1) Let T, = {(a,b | a” = V¥ = R%*(a,b) = 1) and let Fy = (g, h) be the free group with
generators g and h. Set x = 7,, § = 7, = 2cos(n/k), and z = 7,,. Consider the equation

Qr(gn) (@, B,2) =0, (14)

where Qpg,n) is the Fricke polynomial of the element R(g,h) € F>. By Lemma 5, we
can rewrite (14) in the form

A(@)2* + -+ A(z) = 0, (15)

where Ay(z) = [[;_; Pu—1(x)P,,—1(8). Since, by the assumptions, there exists ¢ such
that |u;| > 2, we have deg P,,—1(x) > 1. Let 2y = —2cos(m/u;) be one of the roots of
P,,—1(x). Then x — x divides Ag(z). Let Ao(x) = (2 — x¢)By(z), where By(z) € Ol[z].
Write (15) in the form

(x —z9)Bo(x)2* + - - - + Ay(z) = 0. (16)

First we assume that all polynomials A (z), ..., As(x) are divisible by x — zy. Then
(16) can be written in the form

(x —z0)f(z,2) =0, (17)

where f(z, z) is some polynomial in z and z. Let z, be an arbitrary non-integer element
of C, that is, zo ¢ O, and let A, B € SLy(C) be matrices with tr A = xy, tr B = 3, and
tr AB = 2. By construction, the pair of matrices (A, B) determines a representation of
the group I',, into PSLy(C). Applying Lemma 6, we obtain that I',, is a non-trivial free
product with amalgamation.

Assume now that not all polynomials A;(z), ..., As(z) are divisible by = — . Let,
for example, A;(x) is not divisible by z — x5 and let 0 # 6 = A;(zq) € O be the
residue of A;(z) modulo z — zy. Set ¢ = Ng)/(6) € Z. Take a finite set of primes
S ={p € Z|p divides ¢} from the assertion of the theorem. Assume that n = w;pf for
some integer f and prime p ¢ S, where u;p { u; for j # i. Let x, = 2 cos(rm/(pu;)) for
some 7 Z 0(mod p) and let K, = Q(d, z, — x¢). By item 3) of Lemma 7, one can choose
r such that p divides Nk, (2, — %) € Z. Since, by construction, p does not divide c,
we have Nk jo(8/(z, — x0)) ¢ Z, hence 0/(x, — x0) ¢ O. Thus we have

Aq(zy)
pa— ¢ O.

Furthermore, since p { r and pu; t u; for each j # i, we have By(z,) # 0. Now set

x = x, and write the equation (16) in the form
SN S R P ) (18)

—20)Bo(@r) zr—w0)Bo(er)
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Clearly, we have A;(z,)/((x, —zo)Bo(z,)) ¢ O because By(z,) € O. Hence the equation
(18) has a root zy ¢ O. Consider matrices A, B € SLy(C) such that

tr A=z, tr B =3, tr AB = z.

By construction, the pair of matrices (A, B) determines a representation of the group
[, into PSLy(C). Applying Lemma 6, we obtain that I';, is a non-trivial free product
with amalgamation.

2) We keep the notation of item 1). Consider the equation

QR(g,h)(%ﬁ’Z) =Vt (19)

where ; = 2 cos(tm/m) and m {t. By Lemma 5, we can rewrite (19) in the form
(x —z0)Bo(z)z° + -+ -+ As(z) — 7 = 0. (20)

Let z, = 2cos(rn/(pu;)), where r # 0 (mod p). We claim that there exist ¢ and r such
that (As(x,) —v)/(z, — xo) ¢ O. Indeed, let us assume the contrary.

First, consider the case m = 3. Then ~; = 1, 75 = —1. Since both of the numbers
(As(x,)—1)/(xr—20) and (Ag(x,)+1)/(x,—20) belong to O, their difference 2/(z,—xy) €
O for each r # 0(mod p). By the assumptions, p # 2, which contradicts item 4) of
Lemma 7.

Now let m = 2. Then y5-1 = 0, yo—2 = v/2. Since both of the numbers A, (z,)/(z, —
7o) and (A,(z,) —V/2)/(x, — 20) belong to O, we have v/2/(z, — x0) € O and therefore
2/(z, — zo) € O. Again this contradicts item 4) of Lemma 7.

Thus, there exist ¢ and r such that (As(x,) — ) /(z, — x0) ¢ O. Since p 1 r and
pu; 1 u; for each j # i, we have By(z,) # 0. Set © = x, and write (20) in the form:

2 i — ), (21)

xr—x0)Bo(zr)

By construction, (As(z,) —v))/((x, — z0)Bo(z,)) ¢ O whence (21) has a root zg ¢ O.
Consider matrices A, B € SLy(C) such that

trA=x,, tr B = 0, tr AB = z.

By construction, these matrices determine a representation of I',, into PSTy(C). Apply-
ing Lemma 6, we obtain that the group I',, is a non-trivial free product with amalga-
mation.

3) Let m > 3 and m # 2!. We keep the notation of item 2). Show that there exist
t # 0(mod m) and r #Z 0(mod p) such that (As(x,) — ) /(. — x¢) ¢ O. Indeed, let us
assume the contrary. Suppose that for each ¢ # 0(mod m) and each r # 0 (mod p) we
have (As(z,) — v)/(z, — x) € O.
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First consider the case, where m is odd and m is divisible by an integer of the
form 49 + 1, g > 1, that is, m = (49 + 1)m;. Consider the numbers & = Yoim, =
2cos(2tm/(4g + 1)), t = 1,...,2g. Then 1+ 3%, §; = 0, as the sum of all roots of 1 of
degree 4g + 1. Note that —8; = yugr1-2tym,. Let C; = (Ay(x,) — (—1)'6;)/(z — o).

Then we have
29 29 5 1
> (-1) > - pap—

—x
i=1 i=1 T 0

for each r # 0(mod p) which contradicts item 4) of Lemma 7.

Now suppose that m is odd and m does not have divisors of the form 4g + 1, g > 1.
Then m = 4g + 3 with ¢ > 1. We have 1+ Zfﬁ?l vo; = 0, as the sum of all roots of 1 of
degree 4g+ 3. Set Cy = (Ag(z,) +71) /(2 — 20) and C; = (As(z,) — (—1)"y2) /(2 — 20)
fort=1,...,29g 4+ 1. Then

Co+ ) (—1)'C; = n-l o (22)

We show that 74 — 1 € O*. Since 7, is a root of the polynomial Py, o()), we have
that y; — 1 is a root of the polynomial Py, o(A+ 1). Its constant term is equal to

Pyyio(1) = Pyyya(2 COS(%)) _ Sln((;igl(j;/gg);r/g)

€ {-1,1,0}.

Note that Py,42(1) = 0 if and only if 49+ 3 is divisible by 3, i.e. g is divisible by 3. Let
g = 3¢g1. Then 4g + 3 = 12¢; + 3 = 3(4¢1 + 1), whence m is divisible by 4¢g; + 1. This
contradicts our assumptions. Hence Py,i5(1) = £1 and 73 — 1 € O*. Then it follows
from (21) that for each r # 0 (mod p) we have 1/(z, —xy) € O. We obtain again a
contradiction to item 4) of Lemma 7.

Finally, consider the case, where m is even. Let m = m,29, where g > 1 and m; > 1
is odd. Consider the numbers 7,00 = 2 cos(im/m;y). Arguing just as in the case of odd
m above, we obtain a contradiction to item 4) of Lemma 7.

Thus, there exist ¢ and r such that (As(x,) —v)/(z, — x¢) ¢ O. Then the constant
term in the equation (21) does not belong to O and (21) has a root zy ¢ O. Let
A, B € SLy(C) be matrices such that

trA=x,, tr B = (., tr AB = z.

By construction, they determine a representation of the group I, into PSLy(C). Ap-
plying Lemma 6, we complete the proof of Theorem 2.

Remark. In several cases one can obtain a more precise information on decomposing
a generalized triangle group I' into a non-trivial free product with amalgamation. For
example, consider the following group I'y = {(a,b | a®> = b* = (ab?)*® = 1). Then it follows
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from Theorem 2 that I'y is a non-trivial free product with amalgamation if & = 2k;,
where 1 < k; # 2!. However, it is easy to see that for k; = 2!, [ > 1, the group I'}, is
a non-trivial free product with amalgamation as well. Indeed, let F» = (g, h) be a free
group and let x = 7, = 0, y = 73, and z = 7,,. Consider the equation

Qgn2(0,y, 2) = yz = 2cos(n/3) = 1.

Let y = y, = 2cos(rm/2%1). By item 6) of Lemma 7, we have z, = 1/y, ¢ O for each
odd r. Then Lemma 6 implies that I'; is a non-trivial free product with amalgamation.

4. Proof of Theorem 3

First, assume that the word R(a,b) = a“b" ... A%b" satisfies the condition v =
maxj<;<s |v;| > 2. Then, by Theorem 2, there exists a prime p such that the group
I'y = (a,b] a” =b" = R™(a,b) = 1) is a non-trivial free product with amalgamation.
Since I'; is an epimorphic image of ', the group T' is a non-trivial free product with
amalgamation as well.

Thus we can assume that

R(a,b) = a™b" ... a"b™,

where v; € {—1,1}, 4 =1,...,s. Suppose for a moment that either v; = v;; for some
1 < s or vy = v,. Let, for example, v; = vo. Then we consider the new generators of the
group I': a; = a, by = a*2b"*. Tt is easy to see that I' = (a1, b; | a = R (a1,b1) = 1),
where Ry(ay,b1) = aifllbi/l . .Aqubqu, 0 <u, <n,and v; # 0 for i =1,...,l. In addition,
we have v = max;<;< [v}] > 2, thus reducing this case to the previous one.

Thus without loss of generality we can assume that

R(a,b) = a“ba"™b™" ... a"*=1ba"*b"",
where k > 1and 0 <wu; <nfori=1,...,2k. Set ¢ =ba 'b'. Then
R(a,b) = a™c ™ ...a" ¢ "* = Ry(a,c).

Let F5 = (g, h) be a free group of rank 2 and f = hg™*h™'. Set x = 7,, y = 7,
2 =Tg, and t = 74¢. Then 74 = 7y = v and t = 7,5 = Tgpg-1p-1 = 22+ + 22 —zyz —2,
by item 1 of Lemma 9. Consider the element R;(g, f) € F5 as a word in g and f. Let
q(z,t) be the Fricke polynomial of R;(g, f), i.e.

q(x,t) = Qry(g,1)(Tgs Tr, Tgs) = Qry(g.5) (T, T, 1).
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Since Ri(g, f) contains k blocks of the form g% f~“+! by Lemma 5, the degree of the
polynomial g(z,t) with respect to ¢ is equal to k and the leading coefficient of ¢(z,t) is
equal to (—1)* Hfil P,,—1(x). Since by construction R(g,h) = Ri(g, f), we have

Qren (T, y,2) = q(z,t) = q(z,2° + y* + 2° — zyz — 2). (23)

For numbers r #Z 0(mod n), | # 0(mod m) we set x = 7, = a, = 2cos(rn/n),
v = 2cos(lr/m) and consider the equation

QR(g,h) (arv Y, Z) = M- (24)

By (23), we can rewrite (24) in the form

q(a, t) = 7. (25)

LEMMA 10 There exist v, € Z, where r #Z 0(mod n) and | # 0(mod m) such that
P,—1(ay) #0 fori=1,...,2k and the equation (25) has a root t =ty # 2.

Proof. First let m > 3. In this case 71 # 5. Set r = 1. Then the degree of the
polynomial g(ay,t) is equal to k. Obviously, at least one of the equations g(as,t) = v,
and g(aq,t) = 72 has a root ¢y # 2.

Next assume m = 2. Suppose that the equation ¢(a,,t) = 0 has the unique root
t = 2. This means that for arbitrary matrices A, B € SLy(C) such that tr A = tr B = a,,
the condition tr Ry (A, B) = tr A B4 .. A%k-1 B~%2 = () implies that tr AB = 2. So
to obtain a contradiction, it suffices to find matrices A, B € SLy(C) satisfying the

conditions:
)trA=1trB=q,;
2) tr AB # 2;

3) tr Ry(A, B) = tr A“ B~z At2s-1 B~k — (),
We find A and B in the form

g W e 0
— B:
8 <0 5;1)’ (w s:1>’

where ¢, + ¢! = a,, = 2cos(rm/n) and w is a variable. It is easy to see that tr AB =
w? + &2 + ;2. The condition tr AB # 2 is equivalent to w? + €2 + 72 #£ 2, i.e.

w? £ 2 — (2 +e.%) =2 —2cos(2T) = 4sin’(Z).

n

It is easy to verify by induction that

. el Pi(ay)w ~ gt 0
Az — r ) B" — r .
( 0 & ) ’ (H—l(ar)w ’3_1) ’
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and

el + Ci(a)w? + - -+ + Cra, )w? wfr(w)

Ri(4, B) = ( w fo(w) e 4+ Di(ap)w? + -+ - + Dk_l(ar)ka_2>

where d = 32wy, Cr(a,) = (=1)* [, Pu_1(w), fr(w) and fo(w) are some polyno-
mials in w. Hence

tr R (A, B) = Ci(a,)w? + -+ (C1 () + Dy(a,))w? + (% + %) = g(w?).

We claim that there exists r, where 1 < r < n such that Cy(a,) # 0 and the
polynomial g(w?) has a root wy with w2 # 4sin?(rr/n). Assume the contrary. Suppose
that for each r such that Cy(a,.) # 0 we have

g9(w) = Cr(ay)(w — 4sin*(57))*. (26)

Comparing the constant terms in the left and right parts of (26) and taking into account
the expression for Cy(a,.), we obtain

2%k
(H Pui_l(Zcos(%))> 4F (sin(2Z))* = 2 cos(Lx). (27)
i=1
By (4), we have P,,_1(2cos(rm/n)) = sin(w;rm/n)/sin(rr/n). Let u;/n = u}/n;, where
(uf,n;) = 1. Then (27) has the form

2k
I1 (2 sin (“n—”)) = 2 cos(4m), (28)
i=1
On the other hand, we show that the assumption that (28) holds for each r such that
the left part of (28) is non-zero leads to a contradiction.

First consider the case, where n is odd. Let ng = min; n; and let, say, ng = n;. Then
ny is odd. Let p > 2 be a prime divisor of ny. Set r = ny/p. Then 2sin(ujrm/ni) =
2sin(u'lr/p). If j > 1, then 2sin(ujrn/n;) = 2sin(ujnim/(pn;)) # 0 because, by
construction, pn; does not divide un;. It follows from (28) that

I (20 (7)) - 25z c o @

Pl P sin(ujm/p)

If dn; is divisible by pn, then 2 cos(dn,m/(pn)) = £1. Otherwise, 2 cos(dn,mw/(pn)) € O*,
by item 2 of Lemma 7. It follows from (29) that in both cases 1/(2sin(uj7/p)) € O,
which contradicts item 5 of Lemma 7.

Now let n = 2'n/, where [ > 1 and n’ is odd. Set n; = 2'in}, where [; > 0 and n} is
odd. Let ng = min; n’.
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If nj > 1, then we set r = 27’ where 7’ # 0 (mod n’). Then (28) has the form
2%

H (2 sin (“;2:,1_”/7r>> = 2 cos(LT), (30)

K3

1=

where n’ is odd. But we have proved above that there exists 7’ such that the left part
of (30) is non-zero and the equality (30) is not valid.
Now let ny = 1. Set

I:{z|n;:1}, l():mljnlz, [OZ{ZGIIZZZZ(]}
1€
Furthermore, we set r = 20~1¢/_ where 7’ is odd. Then for i € I,, we have

2 sin (%) — 2sin (“42!0*”'”) — 25in (“") — 42,

2lo 2

3

It follows that the equality (28) can be rewritten in the form:

: ujr'n _ 1 dr'z
H <2 sin (m)) =t cos(grtgrr)- (31)

i¢Io

Choose " such that the left part of (31) is non-zero. Then the right part of (31) should
be non-zero as well. If [Io] > 1 or |Io] = 1 and cos(dr'm/(2!=0F1n’)) £ £1, then the left
part of (31) belongs to O. But by item 1) of Lemma 7, the right part of (31) does not
belong to O — a contradiction.

So it remains to consider the case |Io| = 1 and cos(dr'r /(270 1n’)) = +1. In this

case (31) has the form
I1 <2 sin (%)) _— (32)
iio
If |[I| > 1 and ig # ¢ € I, then [; > [y and n; = 1. Hence for each odd r/, the left part
of (32) is non-zero and it follows from (32) that 1/(2sin(u}r'7/(24~*1))) € O. This
contradicts to item 5 of Lemma 7.
Now let I = Iy = {io}. Set
Tjo :Ij&iz{)lnj > 3, ‘]:{.7 |nj:nj0}7 Lo :Ijnei}llj'

If {;, —lo+ 1 > 0, then we put " = n;,. It is easy to see that in this case the left
part of (32) is not equal to 0 and it follows from (32) that 1/(2sin(u) 7/2% ot1)) € O,
which is impossible, by item 6 of Lemma 7.

Finally, if {;, — lp +1 < 0, then we take an arbitrary prime divisor p > 3 of nj, and
set " = n;,/p. Then, as above, the left part of (32) is not equal to 0 and we obtain, by

(32), that
’o 1 o~ ljgt+lo—1
p U T . p uj02 Jo T %
2 sin (7213_01(]“”;0) = 2sin (71) e O,
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This contradicts to item 5 of Lemma 7. Lemma 10 is proved.

Now we can complete the proof of Theorem 3. By Lemma 10, one can choose 7, [ such
that the equation (25) has a root ty # 2. Since, by construction, t = 22 +y?+ 22 —xyz —2
and x = a,, it follows that y, z satisfy the equation

v+ 22 —ayz+al—2—ty=0. (33)

Let (yo,20) be some solution of (33) and let A, B € SLy(C) be matrices such that
trA = a,, tr B = 1y, and tr AB = z,. Then, by construction, tr ABA™*B~! = ¢,
tr R(A, B) = =, and the pair of matrices (A, B) determines a representation of the
group I' into PSLy(C). Note that this representation is irreducible because ¢, # 2.

Lemma 6 shows that to complete the proof it suffices to find a a solution (yo, z9) of
the equation (33) with the following properties.

1) There exists an element of finite order Wy (A, B) = A*1BP' ... A% BP such that

a;,B; #0fori=1,...,gand Y7, 5, # 0.
2) 2o =trAB ¢ O.
The rest of the proof depends on the form of t,. We consider the following cases:
1) to ¢ O;
2) tg = 2cos((2k + 1)7/(2s + 1)), where s > 1 and (2k+ 1,25+ 1) = 1;
3) to = 2cos(2km/(2s 4+ 1)), where s > 1 and (k,2s+ 1) = 1;
4) ty = 2cos((2k + 1) /(2s)), where s > 1 and (2k + 1, s) = 1;
5) to € O and ty # 2cos(kn/s) for arbitrary integers k and s.
Case 1. Set yop = 0 and W;(A, B) = B. Then W;(A, B) = B has order 4. Since
ty ¢ O, the equation (33) has a solution (0, zy) such that z, ¢ O.
Case 2. Set Wi (A, B) = AB(ABA™'B71)*. Combining Lemmas 8 and 9, we obtain

tr Wi (A, B) = (Pyir(to) — Py(to))z0 = 0 - 2 = 0.

Hence Wi(A, B) has order 4. Now we can take an arbitrary solution (yo,zp) of the
equation (33) with zy ¢ O.
Case 3. Set Wi (A, B) = AB(ABA™'B~!)* and assume that

tr Wi(A, B) = 2cos(n/3) = 1.
Then Wi (A, B) has order 6 and it follows from item 2 of Lemma 9 that
tr W1<A, B) = (PS+1(t0) — Ps(tO))ZO =1.

Hence, by item 3 of Lemma 8, we have zg = 1/(Psy1(to) — Ps(ty)) ¢ O. and so we can
take any solution (yo, z) of (33).
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Case 4. Set W1(A, B) = (AB)"Y(ABA™'B™1)*(AB)*(ABA~'B™!)® and assume that
tr Wi(A, B) = 2cos(r/3) = 1. (34)
Then Wi (A, B) has order 6 and, by item 3 of Lemma 9, we can write (34) in the form
(to — 2) Pu_1(t0)?25 + (2 — Pas_1(to) + Pas_o(tg))20 — 1 = 0. (35)
By item 4 of Lemma 8, we have 0 # P;_;(ty) ¢ O*, whence
1/((to — 2) Pe_a(t0)?) ¢ O.

It follows that (35) has a root zyp ¢ O and again we can take any solution (yo, z9) of
(33).

Case 5. Since tg € O and ty # 2cos(km/s) for arbitrary integers k and s, by
item 5 of Lemma 8, there exists an integer [ > 0 such that 0 # Pi(ty) ¢ O*. Set
Wi(A, B) = (AB)"'(ABA7' B~ 1)1 (AB)*(ABA~B=1)!*1 and assume that (34) holds.
Then Wi(A, B) has order 6 and, by item 3 of Lemma 9 we can write (34) in the form

(to — 2) Pi(to)?25 + (2 — Pasa(to) + Paulto))zo — 1 = 0. (36)

Since by construction, 1/((ty — 2)Pi(ts)?) ¢ O, we obtain that (36) has a root zy ¢ O.
So any solution (Yo, 29) of (33) is as required. Theorem 3 is proved.
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