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Abstract. The convergence of multiplicative Schwarz-type methods for solving linear systems when the coefficient
matrix is either a nonsingular M-matrix or a symmetric positive definite matrix is studied using classical and new results
from the theory of splittings. The effect on convergence of algorithmic parameters such as the number of subdomains, the
amount of overlap, the result of inexact local solves and of “coarse grid” corrections (global coarse solves) is analyzed in an
algebraic setting. Some results on algebraic additive Schwarz are also included.
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1. Introduction. We consider the solution of large sparse linear systems of the form
(1) Arx=b

by multiplicative Schwarz methods. Our aim is to apply the theory of matrix splittings to study the
convergence of this class of methods, using properties of the coefficient matrix only. Specifically, we
analyze two cases: the case where the coefficient matrix A is a nonsingular M-matrix, and when A is
symmetric positive definite (s.p.d.). As we shall see, in several situations there is a nice common theory
in the treatment of these two cases, using the appropriate splittings for each case. The exceptions are
sections 5 and 6 where only the M-matrix case is studied.

While several convergence results on Schwarz methods exist when the matrix A in (1) corresponds to
the discretization of a differential equation (see, e.g., [8], [34], [38], and the extensive bibliography therein),
there is a need to analyze these methods in a purely algebraic setting. As we show, there are instances
where the tools developed here provide convergence analysis not available with the usual Sobolev space
theory. We believe that the algebraic and analytical points of view complement each other. Furthermore,
there are applications, such as electrical power networks and Leontief models in economics, where the
matrix A does not come from a differential equation (and it is an M-matrix); see, respectively, [9] and [2].
Another case of interest is when the problem arises from the discretization of a differential equation but
no geometric information about the underlying mesh is available to the solver. Additionally, an algebraic
approach is useful for the case of unstructured meshes [6].

There are several papers with detailed abstract analysis (i.e., independent of the particular differential
equations in question) of Schwarz methods, including those of Xu [44] and Griebel and Oswald [21], where
A-norm bounds are obtained for the symmetric positive definite case. In other cases, e.g., in [28], the
maximum principle is used to show convergence.

In this paper we concentrate on the case of algebraic multiplicative Schwarz, although we include
some new results on additive Schwarz, and hybrid methods as well. We emphasize methods where overlap
is used, i.e., when the same variable is present in more than one local solver. The present work can be
seen as a continuation of [19] where algebraic additive Schwarz was considered, and it complements the
heuristic study [6].

While we do not provide condition number estimates for a preconditioned system, our convergence
results point out to the usefulness of the multilevel methods as solution methods as well as preconditioners
for a wider class of problems. In the s.p.d. case we are able to prove convergence without the usual
assumptions; see remarks 3.9 and 4.10 below. In the nonsymmetric case, we can prove convergence
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without any condition on the coarse grid correction, and in fact convergence is shown without the need
for a coarse grid correction; see remark 3.5.

Given an initial approximation 20 to the solution of (1), the (one-level) multiplicative Schwarz method
can be written as the stationary iteration

(2) =Tk 4o, k=0,1,...,

where
1

3) T=(I-P)I-Py1)---(I-P)=][-P)
1=p

and c is a certain vector. Here
P, = RT(R;,ART)'R; A

where R; is a matrix of dimension n; x n with full row rank, 1 < i < p. In the case of overlap we have
P

Zni > n. Note that each P;, and hence each I — P;, is a projection operator; i.e., (I — ;)2 =1 — P;.
Jz—ilalch I — P; is singular and has spectral radius equal to 1. Yet, as we will see, the product T' given
by (3) has spectral radius strictly less than 1 under suitable assumptions. The matrix R; corresponds
to the restriction operator from the whole space to a subdomain Q; (of dimension n;) in the domain
decomposition setting, and the matrix 4; = R; ART is the restriction of A to that subdomain. A solution
using A; is called a local solve, and this name carries to the purely algebraic case. Our approach consists
in determining the unique splitting A = B — C with B invertible and such that 7= B~'C, and to study
the properties of that splitting; see Lemma 2.1 below. In this way we can exploit the rich theory of matrix
splittings and prove convergence under appropriate conditions.

In this paper we emphasize the use of multiplicative Schwarz methods as solvers rather than precondi-
tioners. We note that when used as a preconditioner, particularly in the case of symmetric positive definite
problems and the conjugate gradient method, the multiplicative Schwarz method is usually symmetrized;
that is, the application of the p projections in (3) is followed by another sweep of projections applied in
the reverse order. Many of the results and techniques of this paper can be applied to the symmetrized
iterations.

There are a number of papers dealing with algebraic Schwarz methods, including [6], [15], [17], [18],
[36], [37], [40], [45]; see also [26]. In many of these, only special cases, such as tridiagonal, or block-
tridiagonal matrices, or matrices derived from a particular model problem, are studied. Our contribution
is to provide convergence results for multiplicative Schwarz methods (with overlapping blocks) for general
M-matrices and for s.p.d. matrices. We present our convergence bounds in terms of matrix norms as well
as spectral radii, and use both of these to compare the convergence of different versions. In particular, we
analyze the effect on convergence of algorithmic parameters such as the number of blocks (or subdomains)
p, the amount of overlap, inexact local solves, and the effect of adding coarse grid corrections (both
multiplicatively and additively).

2. Auxiliary results. The purpose of this section is to introduce some notation and a few results
that will be used extensively in the remainder of the paper. A matrix B is nonnegative (positive), denoted
B > O (B > O) if its entries are nonnegative (positive). We say that B > C if B— C > O, and similarly
with the strict inequality. These definitions carry over to vectors. A matrix A is a nonsingular M-matrix
if its off-diagonal elements are nonpositive, and it is monotone, i.e., A~ > O. It follows that if A and B
are nonsingular M-matrices and A > B, then A~ < B~ [2], [42]. By p(B) we denote the spectral radius
of the matrix B. If A > B > O, then p(A) > p(B); see, e.g., [2], [42].

A matrix B is symmetric positive definite (s.p.d.), denoted B > O, if it is symmetric and if for all
vectors u # 0, uT Bu > 0, and positive semidefinite, denoted B > O, if for all vectors u # 0, uT Bu > 0.
We say that B = C' if B — C > O, and similarly with the strict inequality. It follows that if A and B are
s.p.d. and A = B, then A~ < B71. If A= B = O, then p(A) > p(B); see, e.g., [23].
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We say that A = M — N is a splitting if M is nonsingular. The splitting is regular if M1 > O and
N > O; it is weak regular if M~! > O and M~'N > O; and it is nonnegative if M1 > O, M~'N > O,
and NM~1 > O [2], [42], [43]. The splitting is P-regular if M* + N is positive definite [33]. Note that if
A is symmetric M7 + N = MT + M — A is also symmetric. We say that a splitting is a strong P-reqular
splitting of A s.p.d., when N > O. This implies that M > O and that in particular it is a P-regular
splitting. The following result, which can be found, e.g., in [1], shows that given an iteration matrix, there
is a unique splitting for it.

LEMMA 2.1. Let A and T be square matrices such that A and I — T are nonsingular. Then, there
exists a unique pair of matrices B, C, such that B is nonsingular, T = B~'C and A = B — C. The
matrices are B= A(I —T)™! and C = B — A.

The following characterization of P-regular splittings from [19] will be useful in our analysis.

LEMMA 2.2. Let A be symmetric positive definite. Then A = M — N is a P-reqular splitting if and
only if |[M~IN|4 < 1.

In this paper we assume that the rows of R; are rows of the n x n identity matrix I, e.g.,

0 00O0O0OO0OT1F@®0
R, = 01 00 0 O0O00O0
0001 0 O0O00O0

This restriction operator is often call a Boolean gather operator, while its transpose R? is called a Boolean
scatter operator. Formally, such a matrix R; can be expressed as

(4) R; = [;|0] m;

with I; the identity on R™ and m; a permutation matrix on R". In this case, it follows that A; is an
n; X n; principal submatrix of A. In fact, we can write

(5) ﬂ'Z‘A’/T;T _ |: Ai K’L' :| ,

L A
where A_,; is the principal submatrix of A “complementary” to A;, i.e.
(6) A =[O|I] - mi- Al - [O]1]"

with I_; the identity on R" ™. Recall that if A is an M-matrix, so are its principal submatrices, and
thus both A; and A; are M-matrices [2]. Similarly if A is s.p.d., then, both 4; and A ; are s.p.d.
For each i = 1,...,p, we construct diagonal matrices E; € R"*™ associated with R; from (4) as follows

(7) E; = RTR;.

These diagonal matrices have ones on the diagonal in every row where R} has nonzeros. We further
assume that if S; is the set of indexes of the rows of the identity that are rows of R;, then

(8) OSizS:{l,Q,...,n}.

P
In other words each variable is in at least one set S;. This is equivalent to saying that ZEi > I, with
i=1
equality if and only if there is no overlap. Note that in the case of overlapping blocks, we have here that
P

each diagonal entry of ZE,- is greater than or equal to one, which implies nonsingularity. Only in the
i=1

rows corresponding to overlap this matrix has an entry different from one. In the case of overlap, the

maximum that these entries can attain is ¢, the measure of overlap defined below. We thus have that

iEi <ql.
i=1



4 Michele Benzi, Reinhard Nabben, and Daniel B. Szyld

Let us define a measure of overlap q of the decomposition (8) as the minimal number of sets Vj
(k=1,...,q) such that

p

(9) Uw=UsSi=5={12.....n},
k=1

i=1
where each S; is a subset of some Vj, and if
(10) S; C Vi and S; C Vi for the same k, i # j, then S;NS;=0.

Following Hackbush [22, Ch. 11], we define the number of colors G of the decomposition (8) as the number
of sets Vj, satisfying (9), (10), and in addition, if r € S;, s € S}, then the matrix entries ars = asr =0 .
It follows that ¢ < ¢, and often this inequality is strict. Furthermore, ¢ depends only on the partition of
the variables, while ¢ also on the graph of the matrix A. As we shall see, these two quantities are used
in the study of convergence of the additive Schwarz method. The measure of overlap is relevant in the
M-matrix case, while the number of colors in the s.p.d. case.

If A is a nonsingular M-matrix, for each i = 1,..., p, we construct a second set of matrices M; € R™*"
associated with R; from (4) as follows

(11) M; =m, [ o D, |™
where
(12) D-; = diag(4~;) > O

has positive entries along the diagonal and thus is invertible.

PROPOSITION 2.3. Let A be a nonsingular M -matriz. Let M; be defined as in (11). Then the splittings
A = M; — N; are regular (and thus weak regular and nonnegative).

Proof. Observe that

is nonnegative. Thus, M; is an M-matrix. Moreover N; = M; — A is nonnegative, since it is a symmetric
permutation of a matrix with a 2 by 2 block structure, the off-diagonal blocks being nonnegative and the
diagonal blocks being either zero, or nonnegative with a zero diagonal. O

With the definitions (7) and (11) we obtain the following equality which we will use throughout the

paper
(13) E:M ' =RTAT R, i=1,...,p.

We note that the matrix M; defined in (11) is different than the one used in [19], although we obtain
the same characterization (13). All results in [19] hold wverbatim for this different choice of M;. In fact,
we have a great deal of flexibility in choosing the matrices M;, as long as the equality (13) holds. We will
take advantage of this flexibility in sections 4 6 when analyzing the change in the convergence rate by
varying the degree of overlap, the number of blocks (subdomains) and the level of inexactness of the local
solves. For the analysis of the s.p.d. case, we choose a different set of matrices M; satisfying (13), namely
the choice made in [19]. We abuse the notation, but in each case it is clear from the context which matrix
it is we are using.

Let A be s.p.d. For each i = 1,...,p, we construct matrices M; € R"*" associated with R; as follows

_r|lA O _
(14) M; =, [ 0 A, |

It follows that M; is s.p.d., and that it satisfies the identity (13).
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PROPOSITION 2.4. Let A be a symmetric positive definite matriz. Let M; be defined as in (14). Then,
the splittings A = M; — N; are P-regular.

Proof. Since AT = A; and AL, = A_;, we write
_Lz Aﬁi

MZT‘l-NZZ’]T;T|: A’L _K’L :|’/Ti.

The following identity shows that this matrix is s.p.d., and thus we have a P-regular splitting:

[T 4, -K; I _ 7| A K; o
ﬂ'i[ I}{—Li A e LA m=A. 0

Given a positive vector w € R", denoted w > 0, the weighted max-norm is defined for any y € R™ as

1
lyllw = ma |—uy;l; see, e.g., [24], [35]. Weighted max norms play a fundamental role in the study of
J=1m wj

asynchronous methods (see [20], [39]), and are natural generalizations of the usual max norm. Most of our
estimates hold for all positive vectors w of the form w = A~ 'e, where e is any positive vector, i.e., for any
positive vector w such that Aw is positive. In particular this would hold for w = A~e and e = (1,...,1)7,
i.e., with w being the row sums of A~'. Recall that for A a nonsingular M-matrix, A~! > O, and that
since A~! is nonsingular, no row of it can be a zero row. This guarantees that w = A~'e > 0. The same
logic is used to conclude that M e > 0 for any monotone matrix M, and this is also used in our proofs.
As usual the matrix norm is defined as ||T||, = sup [|[Tz|w. We point out that for T > O, Tw < yw

llz]lw=1
implies |||, <~ (v > 0) [35]. ~ ~
LEMMA 2.5. Let T, T be nonnegative matrices. Assume that T < T. Then ||T||w < ||T||w for any
vector w > 0.

Proof. The result follows from the observation that

Tw); T
max (Tw); < max (Tw);
% Wy % Wy
and the fact that
(Tw); (Tw)i _ .z -
max ~—= = |[Twlfw = ||Tfw,  max-—> “=[Twllw = [|T]|w- O

As we shall see, in many cases we provide A-norm counterparts to results obtained with weighted max
norms. One result for which this is not possible is Lemma 2.5 as the following example shows.
EXAMPLE 2.6. Let

a> 0 - 10 l-e —¢
S R IR R B
with 0 < & < 2/3. It follows that T < T. We can compute ||T||4 = [|AY2TA-1/?||; = 2, and

> |ea/b|.

1—e —ea/b }
2

171l = H[ —ebla 2—¢

Since a and b are arbitrary, we can have ||T|4 > ||T| 4.

In this paper we will use several comparison theorems. The first relates the weighted max norms of
the iteration matrices and is from [19].

THEOREM 2.7. Let A= > O, and let A = My — Ny = My — Ny be two weak regular splittings of A
with

(15) Mt > Mgt
Let w > 0 be such that w = A~ e for some e > 0. Then,

(16) [|M7 Nl < || M5 Nal|w.
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If the inequality (15) is strict, then, the inequality in (16) is also strict.

The following comparison theorem relates spectral radii of two iteration matrices, and is due to
Woznicki [43].

THEOREM 2.8. Let A=1 > O. Assume that A = My, — Ny = Ms — N» are two nonnegative splittings
with Myt > My *. Then,

(17) p(M;*Ny) < p(My *Np) < 1.

The inequality (17) is strict if A=* > O and My > My ".

We point out that the inequality (17) does not necessarily hold with the weaker hypothesis on the
splittings of Theorem 2.7, as shown by Elsner [14].

The following counterpart of Theorem 2.8 in the s.p.d. case is from [31].

THEOREM 2.9. Let A = O. Assume that A = My — Ny = Ms — Ny are two (strong P-regular)
splittings with O < N1 < Nay. Then, (17) holds. The first inequality (17) is strict if O = N1 < Na.

We conclude this section with a new comparison theorem, which is the counterpart to Theorem 2.7
using A-norms, where A is s.p.d. We first prove a new result.

LEMMA 2.10. Let A > O, and let A = M — N be a splitting of A such that M is symmetric. Then
p(M~IN) = [[M~1N][ 4.

Proof. It follows form the following identities:

IMTIN|la = [l - M7 Alla = |IT - AY2M 1AM
=p(I — AVPMTYAY?) = p(I —M'A) = p(M~'N). O
The following theorem follows now directly from Lemma 2.10 and Theorem 2.9.

THEOREM 2.11. Let A > O, and let A = My — N1 = My — N» be two (strong P-reqular) splittings of
A with

(18) O < Ni < Na.
Then,
(19) |M7 Nila < ||M5 Nofla < 1.

If the second inequality in (18) is strict, then, the first inequality in (19) is also strict.

The hypothesis (18) cannot be weakened, i.e., we need to assume that the matrices N3 and Ny are
positive semidefinite matrices. Examples in [31] show that Theorems 2.9 and 2.11 are not true if one only
assumes P-regular splittings.

3. Convergence of the one-level method. In this section we prove convergence of the one-level
scheme (2) under the assumption that the rows of R; are rows of the n X n identity matrix I, i.e., that R;
has the form (4). Recall the definition of the sets S; in (8) In general, the S; are not disjoint. When they
are, we have the multiplicative Schwarz method without overlap. The following important lemma covers
both cases (overlapping and non-overlapping).

LEMMA 3.1. Let A be monotone, and let a collection of p triples (E;, M;, N;) be given such that

p
O<E;<I, ZEl > 1, and A = M; — N; is a weak regqular splitting for 1 <i < p. Let
i=1

(20) T=(1—E,M; "A)(I — Ep_y M, A) -+ (I — EyM; ' A).

Then for any vector w = A~te > 0 with e > 0, p(T) < ||T||» < 1.

Proof. In order to show that | T, < 1, where |T'||,, denotes the maximum weighted norm of 7" with
respect to a certain vector w > 0, we show that 7' > O and Tw < w.

Clearly T' > O because

(21) I-EM 7 "A=1-FE+E(I-M71A)>0, 1<i<p
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and [ — MiflA > O since the splittings are weak regular.
Next, we show that Tw < w with w = A~'e where e > 0. To begin with, note that

wy := (I — EyM;*A)w = w— E;M; e > 0.

Hence, 0 < w; < w, with strict inequality in the components corresponding to S;. In other words,
denoting with (w1 ); the ith component of wy, we have

(wl)i{:“’i if i ¢ Sy;

<w; ifieS.

Now let wy := (I — E2M{1A)101, we claim that wy < w, and that in the components corresponding to
Sa, the inequality is strict. Indeed,

0< (I —EyM; Aywy = (I — ByMy A)(wy —w +w) < (I — E;My t A)w.

Now observe that

S =(w1)s Sw; i i & So
(w2)1{< w; if i € S,

since i € So implies that
(w2)i = [(I — EaMy ' A)(wy — w)]i + (w — B2 My Ye); < w;.
Similarly, one can show that for all k <p—1,

= (wk)i ifi¢ Sk
(1) { <w;  ifi€ Spy1.

P
Because USi ={1,2,...,n}, we conclude that Tw < w. It follows that ||T||,, < 1 and therefore p(T") < 1.
0 i=1

REMARK 3.2. The collection of triples {(F;, M;, N;)}?_, can be thought of as a multiplicative multi-
splitting of A, in analogy with the standard (additive) multisplitting of a matrix in the sense of O’Leary
and White [32]; see also [5] and the extensive bibliography therein.

REMARK 3.3. In the special case where F; = [ for all ¢ = 1,2,...,p, we obtain an extension to the
case of p splittings of Theorem 3.2 in [1]; see also the remarks at the end of section 3 in [1].

Lemma 3.1, together with the characterization (13) and Lemma 2.1, is the fundamental tool for
proving the convergence of the multiplicative Schwarz method for nonsingular M-matrices.

THEOREM 3.4. Let A be a nonsingular M-matriz. Then the multiplicative Schwarz iteration (2)
converges to the solution of Ax =b for any choice of the initial quess 2°. In fact, for any w = A"te >0
with e > 0, we have p(T) < ||T||w < 1. There exists a unique splitting A = B — C such that T = B'C,
and this splitting is nonnegative.

Proof. Let E; as in (7) and M; as in (11). Observe that O < E; < I, 1 <1i < p. The key to the proof
is the characterization (13), from which we have

(22) I-P=I-EM'A, 1<i<p.

Moreover, by Proposition 2.3, the splittings A = M;—N; (with N; = M;— A) are regular. Hence, by Lemma
3.1, p(T) < || T||w < 1 for any w = A~ te > 0 with e > 0, and the iteration (2) converges for any initial
vector zV. Furthermore, by Lemma 2.1, there exists a unique splitting A = B — C such that T = B~ 'C.
To prove that the splitting is nonnegative we begin by showing that B~! = (I — T')A~! is nonnegative or,
equivalently, that B~1z > 0 for all z > 0. Letting v = A~z > 0, all we need to show is that (I —T)v > 0,
or Tv < v. This is proved in the same way as Lemma 3.1. Hence, the unique splitting A = B — C is weak
regular. To show that it is nonnegative we need to show that T'= I — AB~! is also nonnegative. To see
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this, note that T = (I — P,)(I — Py_1)---(I — P;), where P, = ART A;'R;. To complete the proof we
show that each factor I — P; is nonnegative. In fact, I — PT =1 — RiTA;TRiAT =1- EiM{TAT >0,
just asin (21). O

REMARK 3.5. In the analysis of multiplicative Schwarz for nonsymmetric problems using analytical
tools, convergence is only obtained assuming the addition of a (multiplicative) coarse grid correction, and
furthermore that the coarse grid be fine enough; see, e.g., [7], [38, section 5.4]. As can be observed, in
the M-matrix case, our Theorem 3.4 (as well as Theorem 4.4 with inexact solves) provides convergence
without a coarse grid correction. In section 7 we show convergence of the multiplicative Schwarz method
with a coarse grid correction (both additive and multiplicative) without any restriction on how fine it is.

We turn now to the counterpart to the convergence theorem 3.4 in the s.p.d. case. To that end, we
first prove the following lemma.

LEMMA 3.6. Let A be a symmetric positive definite matriz. Let x, y € R", such that

(23) y= (I EM A,
where E; is defined in (7) and M; in (14). Then the following identity holds:
(24) IllA = llellh = = (y — o) BiAEi(y — 2) <0.

Furthermore, ||I — EiMflAHA =1.
Proof. Consider = = ;(z¥,21)T and y = m;(y¥,y2)T, with 21, y1 € R™. Further, from (7) and (4)
we have that

(25) E; =, {O 0 }m.

Consider now (23), whence we immediately have that
(26) Y2 = T2,
and using (14) and (5), we also get
(27) Ajyr = —Appxa,
where here we use the notation A2 = K;, and similarly As; = L; = Afz. Using these identities we write
y Ay — o Az = (yi ,u3 )m) Ami(yi w3 )" — (o 23w Ami(a] , 23)"
=yl Aiy1 +y3 As1y1 + yi Arays — a1 Ajzn — 23 Asyar — o1 A1ams
= ZEgTAzl(yl —z1)+ (le — ﬂvlT)A123?2 + leAiyl — %TAiLEl

= —yirAi(yl —71) — (?J;‘F - xip)Aiyl + y;FAiyl - T/F{Aixl
=—(yf —a1)Ai(y1 —21) = —(y — )" B AE;(y — ),

where the last equality follows from the identity

O O

Since A is s.p.d., E;AFE; is semidefinite, and the right hand side of (24) is nonpositive. This implies that
|1 — E;M; ' All4 = |[I — GiA|a <1, with G; = RT (R;ARF)™'R;. To see that this upper bound on the
norm is attained we write

(I — G A)z||} = 2T Az — 2T AG; Ax.

Since G; is semidefinite, let y be such that y7G;y = 0, e.g., y having zeros in the entries corresponding to

the nonzero columns of R; as in (4). Then, for z = A~'y we have that ||(I — G;A)z||% = ||=||4. O
THEOREM 3.7. Let A be a symmetric positive definite matriz. Then the multiplicative Schwarz

iteration (2) converges to the solution of Az = b for any choice of the initial guess x°. In fact, we have
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p(T) < ||T||la < 1. There exists a unique splitting A = B — C such that T = B~'C, and this splitting is
P-regular.

Proof. As in the proof of Theorem 3.4 we have the relations (22) following as a consequence of the
equalities (13). Starting with () # 0 let 20D = (I — P)2®. Thus 2@+ = T2, Using (24)
repeatedly, and cancelling terms, we obtain

p
(28) 7213 = o] = = @ = o) BAE (@D - o),
i=1

Since E;AE; is positive semidefinite it follows that the right hand side of (28) is nonpositive. However,
the right hand side is zero if and only if

Bzt —20y=0 foralli, i=1,...,p.

The other n — n; components of 21 — z() are also zero using the same argument as in Lemma 3.6 to

obtain (26). But this implies et = 20+ = () = (1) =1,... p. Thus () must be a common

fixed point of (I — P;) for all ¢ = 1,...,p. However, the fixed points of the projections (I — P;) are just
P

the vectors z € R™ with E;z = 0. Since ZEZ- > I there is no such common nonzero fixed point. Hence
i=1

the right hand side of (28) must be negative, and we obtain p(T) < ||T||4 < 1. Furthermore, by Lemma

2.1, there exists a unique splitting A = B — C such that "= B~!C. With Lemma 2.2 we obtain that this

induced splitting is P-regular. 0

REMARK 3.8. In Lemma 3.6 and in Theorem 3.7 it was not required that the matrix (14) define a
P-regular splitting. Nevertheless, the product of the operators (22) produces a matrix with an induced
splitting which is P-regular. In fact, we have that in the (unsymmetrized) multiplicative Schwarz method,
BT + C is symmetric and positive definite.

REMARK 3.9. In the usual theory of convergence of multiplicative Schwarz methods for symmetric
positive definite matrices, assumptions are made on the decomposition of S into subsets and on the
matrices; see, e.g., (4.2) and (4.3) in [44], or similar conditions in [8], [22, Ch. 11], [34], [38]. These
assumptions include certain bounds, governed by parameters. It is desirable that these parameters be
independent of the mesh. The conditions of theorems 3.4 and 3.7 are very general and there is no
dependency on any parameter.

4. Inexact solves. In this section we study the effect of varying how exactly (or inexactly) the local
problems are solved. We begin with some results for algebraic additive Schwarz. The additive Schwarz
method for the solution of (1) is of the form (2), where

P
(29) T=Ty=1-0) RIAT'RA,
i=1
where 0 < § <1 is a damping parameter; see (8], [10], [11], [12], [21], [22, Ch. 11], [38]. We emphasize
that convergence of the damped additive Schwarz method is only guaranteed for § < 1/q in the M-matrix
case and for § < 1/q in the s.p.d. case [19], [22, Ch. 11]. In fact, simple examples show that this method
may not, be convergent for § = 1.

Very often in practice, instead of solving the local problems A;y; = z; exactly, such linear systems
are approximated by A; 12 where A; is an approximation of A;; see, e.g., [4], and the above mentioned
references. By replacing A; with A; in (29) one obtains the damped additive Schwarz iterations with
inexact local solves, and its iteration matrix is then

»
(30) Ty=1-0) RIA;'RiA.
i=1
In the M-matrix case we assume, as in [19], that the inexact solves correspond to monotone matrices
and satisfy

(31) Ai > A;.
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Notice that this is equivalent to the condition that the splittings
(32) A= A; — (/L — A;) be regular splittings.

In the s.p.d. case we assume, as is generally done (see, e.g., [22, Ch. 11]), that the inexact solves
correspond to s.p.d. matrices and satisfy

(33) A; = A
This assumption implies that
(34) A; = A; — (A; — A;)  are P-regular splittings.

Conditions (31) and (33) are easily satisfied. This is the case, e.g., if A; has a subset of the nonzeros
of A; (including the diagonal). This last case includes many standard splittings such as the diagonal,
tridiagonal, or triangular part, as well as block versions of them. The other notable example is incomplete
factorizations A; = L;U; where the nonzeros of the factors are in the locations of the nonzeros of A;,
and in particular ILU(0) [29]. In these cases, the inequality (31) holds, or equivalently, we have (weak)
regular splittings [29], [41]. For examples of splittings for which the inequality (33) holds see [31]. Another
situation worth mentioning where (33) holds is when A; is semidefinite and the inexact solver is definite.
This process is usually called regularization; see, e.g., [13], [27].

In [19] it is shown that the damped additive Schwarz iterations with inexact local solves converge
in the M-matrix case under the condition (31) and 6 < 1/q. Furthermore, it is shown that the induced
splittings corresponding to (29) and (30) A = My — Ny = My — Ny are weak regular. Here we show, under
the same conditions, that the convergence rate is slower than in the exact case, and that the more inexact
the local solves are, the slower the convergence. Furthermore, we show that the splittings induced by (29)
and (30) are actually nonnegative, which allows us to compare spectral radii.

THEOREM 4.1. Let A be a nonsingular M-matriz. Let A; and A; be inezact solves of A; satisfying
A; > A; > A;. Let the damping factor 0 < 1 /q, which implies that the damped additive Schwarz method
is convergent. Then, | Tollw < [|Tollw < |Tollw, where w > 0 is such that Aw > 0, and Ty is obtained by
replacing A; by A; in (30), i =1,...,p. Moreover, p(Ty) < p(Ty) < p(Tp). The splittings induced by these
iteration matrices are nonnegative.

Proof. Observe that

P P
(35) Myt =0 RTA'R; =0 EM; ' >0,
i—1 i—1
(36) My'=0> RTA'R; =0 EM; ' >0,
i=1 i=1
where
. T /L 0] ] —1_ T ~i_1 O _
(37) M; =m, { 0 D, }m, and thus M, " =, [ O D:il ]7&-

Since (31) implies A; ' > A; !, we have

(38) Mt > MY for i=1,...,p,

and consequently M, 1> Ma_ !, It was shown in [19] that the unique splitting A = My — Ny induced by
Ty is weak regular. The same is true of the splitting A = My — Ny. It is not difficult to show that these

are actually nonnegative splittings. Consider the splitting induced by Ty. All we need to show is that the
matrix

p
Ty=I1-0) ARTA 'R

=1
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is nonnegative. Taking the transpose of this matrix and reasoning as in the proof of Theorem 3.4 in [19] it
follows that T > O, hence I — AM, !> 0 and the induced splitting is nonnegative. Thus, using Theorem
2.7, we have that if w > 0 is such that Aw > 0, || Tp|lw < || Tp|lw. Also, using Theorem 2.8, we have that
p(Ty) < p(Tp). The other inequalities follow in the same manner. O

When A is s.p.d. and the inexact solves satisfy (33), convergence holds if § < 1/q, as shown, e.g.,
in [22, Ch. 11]. Furthermore, the induced splitting defined by Mjy is P-regular; see [19]. Here we show
that under the same hypotheses the convergence using the inexact solves is slower as measured using
either the spectral radii or the A-norm. Furthermore, the more inexact the local solves are, the slower the
convergence.

THEOREM 4.2. Let A be a symmetric positive definite matrixz. Let A; and A; be inezact solves of A;
satisfying A; = A; = A;. Let the damping factor 6 < 1/q, which implies that the damped additive Schwarz
method is convergent. Then, ||Tylla < |[Tolla < ||Tolla. where Ty is obtained by replacing A; by A; in
(30), i = 1,...,p. Moreover, p(Ty) < p(Ty) < p(Ty). The splittings induced by these iteration matrices
are strong P-reqular.

Proof. Consider the matrices (35) and (36) which are symmetric positive definite using M; as in (14)
and

T A O
(39) M; = =; [O Aﬂ_}w

Since (33) implies A;l b A;l, we have that Mgl b M;l > O. This implies My < My and Ny < Np.
The theorem will follow from theorems 2.9 and 2.11 once we establish Ng > O, i.e., that the splittings are
strong P-regular. To that end, we use the result from [22] that A < §M, where M is My for the value
0 = 1. Thus, since § < 1/G, we have Ny =My — A= 4M — A= 0.0

REMARK 4.3. For simplicity, in theorems 4.1 and 4.2, we assumed that the inexact versions use the
same damping parameter 6. It is evident from the proofs that if the damping parameter for the inexact
version is smaller, say 0 < @, the same conclusions hold.

We proceed now with similar results for multiplicative Schwarz with inexact solves. In this case, the
iteration matrix is

(40) T = (I - E,M;"A) I — E, 1 M, A)--- (I — E\M; ' A),

cf. (20). We first prove convergence in the M-matrix case, and proceed with comparisons varying the
amount of inexactness of the local solves.

THEOREM 4.4. Let A be a nonsingular M-matrix. Then the multiplicative Schwarz iteration with
iteration matriz (40) and with inezact solves satisfying (31) converges to the solution of Az = b for any
choice of the initial guess x°. In fact, for any w = A~'e > 0 with e > 0, we have p(T') < Tl < 1.
There exists a unique splitting A = B — C such that T = B~1C, and this splitting is nonnegative.

Proof. The proof proceeds in the same manner as that of Theorem 3.4. All we need to show is that
each splitting A = M; — NZ, with M; as in (37) is regular. Since A; is monotone, it follows from (37) that

1> 0. Now, N; = M; — A and

- ,
milim = —L;  D.i— Ay
which, in view of (31), (12), and the fact that A is an M-matrix, is nonnegative. [

REMARK 4.5. Theorem 4.4 holds with weaker hypotheses, namely, that the splittings A; = A;— (/L— -
A;) are weak regular splittings, i.e., that A; (A — A;) > O, cf. (31). This is the same assumption used
n [19], and it implies that the sphttmgs A = M, — N; are weak regular.

THEOREM 4.6. Let A be a nonsingular M-matriz. Let A; and A; be inezact solves of A; satisfying
A; > A; > A;. Then, p(T) < p(T) < p(T), and for any w > 0, ||T]], < w < ||T)|w < 1, where T is
obtained by replacing A; by A; in (40), i =1,.

Proof. We show that p(T) < p(T); the mequahtles for p(T) are proved in the same way. All we need
to do is to compare each factor I — F; M, *A of T with the corresponding factor I — F;M; *A of T. From

(41) I~ EM7T'A<I - EM'A
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and the fact that each of these factors is nonnegative it follows that O < T < T (see [23, p. 491)).
Therefore p(T) < p(T), and by Lemma 2.5, ||T||w < ||T||w. To see that (41) holds, note that

Uy

el x—iya 1| I=A7TA; O
E’l(Ml Mi )A_’/Tz O O

is a nonnegative matrix since the splittings A; = A; — (flz — A;) are regular. O

REMARK 4.7. The purpose of using inexact local solves A; in lieu of A; is to obtain convergence
in less computational time. Theorems 4.1 and 4.4 indicate that, as to be expected, asymptotically the
inexact methods have slower convergence rate. Nevertheless, they converge in less computational time if
the saving from the inexact local solve is sufficiently large to offset the loss in convergence rate. This is
often the case in practice.

We present now the counterpart to the convergence theorem 4.4 for the s.p.d. case. Consider inexact
solves A; so that (34) holds. Note that we do not require (33) to hold here. First we present a result
similar to Lemma 3.6, cf. [30].

LEMMA 4.8. Let A be a symmetric positive definite matriz. Let x, y € R"™ such that y = (I —
E;M; ' A)x where M; is defined in (39) with A; satisfying (34). Then the following identity holds:

(42) Il — llzll% = —(y — o) TE((M] + M; — A)Ei(y — x) < 0.

Furthermore, |[I — E;M; *Alla = 1.
Proof. The proof proceeds as that of Lemma 3.6. We have that (26) holds, but instead of (27) w
have A;y; = (A — A;)xy — Ajax9. We then obtain

y' Ay — 2" Az = ﬂ?zTAQl(yl —x1)+ (y? — x{)Algwg + leAiyl — foml
= (2] (A — A)T =yl AT ) (1 — 1) +
(vi — T/1 )((A — Az — Agp) + oy Aiyr — 2 Ay
=(-z (yl — I )AZT)(ZUI —x1)+
(Z/1T — I )( Ajzr — A (y1 — 1)) + yfAiyl - 55{141'1’1
(i — o)) (A + AT — A)(y1 — a1)
—(y—2)"Ei(M]" + M; — A)E,(y — x)

The rest of the proof is almost identical to that of Lemma 3.6. O

The following theorem establishes the convergence of multiplicative Schwarz with inexact solves in
the s.p.d. case, and its proof is almost identical to that of Theorem 3.7.

THEOREM 4.9. Let A be a symmetric positive definite matriz . Then the multiplicative Schwarz
iteration with iteration matriz (40) with M; is defined in (39) and with inezact solves satisfying (34)
converges to the solution of Ax = b for any choice of the initial guess 2°. In fact, we have p(T') < T4 <
1. There exists a unique splitting A = B — C' such that T = B~1C, and this splitting is P- regular.

REMARK 4.10. Our convergence theorem 4.9 is quite general since the inexact solves A; need not
be symmetric as is required in the standard treatment of Schwarz methods, e.g., in [38]. We only require
that AT + A, — A; > O.

5. Varying the amount of overlap. We study here how varying the amount of overlap between
subblocks (subdomains) influences the convergence rate of both additive and multiplicative Schwarz. We
restrict our analysis in this section to the M-matrix case.

Let us consider two sets of subblocks (subdomains) of the matrix A, as defined by the sets (8), such
that one has more overlap than the other, i.e., let

(43) S, DS, i=1,...,n,

P P

with U 5'2 = U S; = S. We make the natural assumption that the larger sets do not intersect with other
i=1 i=1

sets from the same group of variables Vi, i.e., that the measure of overlap ¢ does not change. Of course,
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each set S; defines an 7; x n matrix Ri, where 7n; is the cardinality of S’,-, and the corresponding n X n
matrix E; = RT R;, as in (7). The relation (43) implies that

(44) I1>FE;>E; > 0.

Similarly, if #; is such that R; = [I;|O] #;, with I; the identity in R™, we denote by A; the corresponding
principal submatrix of A, i.e.,

Ai = RiART = [1,]0) - 7, - A-#T - [L|O)T,
and, as in (11) define
. A O
4 M; ==} S Tis
(45) T o 5]

where D_; = diag(A—;) > O, and A_; is the (n — ;) x (n — 7;) complementary principal submatrix of A
as in (6). As in (13), we have here also the fundamental identity

EA’Z‘MJI = RZTA;]'RZ, = 1, ..

We want to compare Mi with M;, although /Ali and A; are of different size. Without loss of generality, we
can assume that the permutations 7; and 7; coincide on the set S;, and that the indexes in S; are the first
n; elements in S;. In fact, we can assume that 7; = m;. The f; X fi; matrix A; is of the form

2 AZ Kl
Ai—[ﬁi B}

where B; is an (f; — n;) X (f; — n;) principal submatrix of A (and of A_;), and therefore a nonsingular
M-matrix. Here

are submatrices of K; and L;, respectively; see (5). Let D,; be the diagonal of Bl and define the matrix

A O
BZ_|:O f)*i:|;

then we have

L ATl 7 A A
(47) M,; = 7; [ b }m.

Comparing (45), (47), and using (46) and the fact that B; is an M-matrix, it follows that
(48) Mi < M,;.

We consider first the case of damped additive Schwarz with iteration matrix (29), and the iteration
matrix corresponding to the larger overlap is

p
(49) Ty=1-0) RIAT'RA.

i=1

Before we state our first comparison result, let us mention that in general one expects the increase of
overlap defined by (43) to be such that the groupings of the sets is maintained, and thus the measure of
overlap, ¢, to be the same. This is is not a constraint; if we have a different measure of overlap, and say,
4 # q, we only need to change our hypothesis 6 < 1/¢q to 8 < 1/ max{q, §}.
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THEOREM 5.1. Let A be a nonsingular M -matriz. Consider two sets of subblocks of A defined by (43),
and the two corresponding additive Schwarz iterations (29) and (49). Let the damping factor 6 < 1/q,
which implies that the additive Schwarz methods are convergent. Then, ||Tpllw < ||Tolw, where w > 0 is
such that Aw > 0. Also, p(1p) < p(Tp).

Proof. Because M; and M; are both M-matrices, it follows from (48) that

(50) Mt > M

and together with (44) we have E;M; ' > E;M;'. This implies that

where A = Mg — ]\79 is the unique splitting such that To = M;l]%; see Lemma 2.1. Since the splittings
are nonnegative (see Theorem 4.1), the conclusions follow from Theorem 2.7 and Theorem 2.8. O

This theorem indicates that the more overlap there is, the faster the convergence of the algebraic
additive Schwarz method. As a special case, we have that overlap is better than no overlap. This is
consistent with the analysis for grid-based methods; see, e.g., [3], [38]. In a way similar to that described
in Remark 4.7, the faster convergence rate brings associated an increased cost of the local solves, since
now they have matrices of larger dimension and more nonzeros. In the cited references a small amount of
overlap is recommended, and the increase in cost is usually offset by faster convergence.

REMARK 5.2. Results similar to Theorem 5.1 were shown for (additive) multisplitting methods in [16]
and [25]. In these references, though, the weighting matrices had to be the same for both sets of splittings.

Here we are able to prove this more general result since we do not require that ZE ZE =1, asin

i=1
the multisplitting setting. Instead all we need is that these sums be invertible.

We consider now the algebraic multiplicative Schwarz iteration with (20) and the corresponding one
with the larger overlap, i.e.,

(51) T = (I - B, M, A)(I — B, M;YA)-- (I — B, M A).

Convergence follows in the M-matrix case from Theorem 3.4.

THEOREM 5.3. Let A be a nonsingular M -matriz. Consider two sets of subblocks of A defined by
(43), and the two corresponding multiplicative Schwarz iterations (20) and (51). Then, p(T) < p(T), and
for any vector w > 0, [|T]|w < [|T|w.

Proof. The proof proceeds as in the proof of Theorem 4.6 by showing that 1< T, by comparing each
factor of (20) and (51). A direct computation shows that

(52) B - A= 7r | 1o BTAC O

a nonnegative matrix. Hence EZ-MJIA < Ei]\}lflA and from (44) we get EiMflA < EAi]\;[iflA. Therefore
I—EM7A<I-EMA

and the result follows. O

6. Varying the number of blocks. We address here the following question. If we partition a block
into smaller blocks, how is the convergence of the Schwarz method affected? In the M-matrix case, we
show that for both additive and multiplicative Schwarz the more subblocks (subdomains) the slower the
convergence. In a limiting case, if each block is a single variable, this is slower. This result is consistent
with the classical comparison theorem of Varga [42], which for example shows that the point Jacobi (point
Gauss-Seidel) method is asymptotically slower than block Jacobi (block Gauss-Seidel). As in the situations
described in sections 4 and 5, the slower convergence may be partially compensated by less expensive local
solves, since they are of smaller dimension.
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Formally, consider each block of variables S; partitioned into k; sublocks, i.e., we have
(53) Si; CSiy J=1,... ki,
kq

U Si; = Si, and S;; NSy, = () if j # k. Each set S, has associated matrices R;; and E;; = RiTj R;;. Since
j=1
we have a partition,

kq
(54) By <B j=1,...k, and Y Ej =FE; i=1,....p.

j=1
We define the matrices 4;; = R; ARl , and M;, corresponding to the set S;; in the manner already
familiar to the reader (see, e.g., (45)) so that

EijMi;1 :RiTjA;RZ—J,, j=1,... ki, i=1,....p.

Given a fixed damping parameter 6, the iteration matrix of the refined partition is then

P ki
(55) Toy=T—-0) > Ei,M"A,

i=1 j=1

cf. (29), and the unique induced splitting A = My — Ny (which is a weak regular splitting) is given by

ki
= aiz EijMz;l.

i=1 j=1

We note that due to the inclusion (53), the measure of overlap ¢ cannot increase.

THEOREM 6.1. Let A be a nonsingular M-matriz. Consider two sets of subblocks of A defined
by (8) and (53), respectively, and the two corresponding additive Schwarz iterations (29) and (55). Let
the damping factor 0 < 1/q, which implies that the additive Schwarz methods are convergent. Then,
| Tyl < ||Tol|w, where w > 0 is such that Aw > 0. Furthermore, p(Tp) < p(Tp).

Proof. In the same way that the inclusion (43) implies the inequality (48) and in turn the inequality
(50), here the inclusion (53) implies that

(56) Mz.;lngl, j=1,...k;, i=1,...,p.

Combining (54) with (56) we have that
Y E MM <> B M7 = EM;

and thus, M(;I < M(;I, which implies the result, using theorems 2.7 and 2.8. 0

Next, we consider the case of multiplicative Schwarz. Again, we can show that using more subblocks
of smaller size results in slower asymptotic convergence rates. The iteration matrix for the multiplicative
Schwarz method corresponding to the finer partition (more subblocks) is given by

(57) r=1[ ]«

i=p J:kz

where P, = E;; M; 'A = RT A 'R;; A,

THEOREM 6.2, Let A be a nonsingular M-matriz. Consider two sets of subblocks of A defined by
(8) and (53), respectively, and the two corresponding multiplicative Schwarz iterations (3) and (57). Then
p(T) < p(T), and ||T||w < ||T||w for any vector w > 0.
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Proof. The idea is, again, to compare the iteration matrices factor by factor. Using the fact that each
I — P; is a projection, we can rewrite 7 (the iteration matrix for p blocks) so that it has exactly the same
number of factors as T":

1

(58) T =] - P)*.

i=p

The result now follows from the inequalities (I — P;) < (I — F;;), which can be established with essentially
the same argument as the one used in the proof of Theorem 5.3. O

7. Two-level schemes. In this section we assume that all local solves are exact; however, analogous
results hold for the case of inexact solves, provided that the conditions spelled out in section 4 are satisfied.
Suppose a “coarse grid” correction is added (multiplicatively) to the multiplicative Schwarz iteration (2).
This results in a stationary method with an iteration matrix of the form

(59) H = (I — GoA)T

where T is the iteration matrix of the multiplicative Schwarz method and Gy =

RI(RoART)"'Ry. We assume here that Ry is formed by some rows of the (n x n) identity matrix I, so
that RgAR{ is a principal submatrix of A. Typically, Ry is defined in such a way that it has at least one
row in common with each of the R; matrices that define the multiplicative Schwarz iteration, 1 < i < p.
Thus, the number of rows in Ry is no less than p, and should be much less than n. As before, associated
with this matrix Ry, we define matrices Fy and M, are such that EOM(;lA = GpA, and O < Ey < I.
Note that if A is an M-matrix, A = My — (Mo — A) is a regular splitting, and if A is s.p.d., My > O.
The (singular) matrix I — GgA defines the global coarse solve, which follows the multiplicative Schwarz
sweep. We are interested in comparing the convergence rate of the multiplicative Schwarz iteration with
and without the coarse grid correction.

THEOREM 7.1. Let A be a nonsingular M -matriz. Let T and H be the iteration matrices defined in (2)
and (59), respectively. Then p(H) < p(T), and for any vector w = A~ te > 0 with e > 0, |H|ly < [|T|w-
Furthermore, the splitting induced by H is nonnegative.

Proof. 1t is clear from Theorem 3.4 that adding a coarse grid correction to the multiplicative Schwarz
iteration preserves convergence: p(H) < 1. Hence, there exists a unique splitting A = F — (F' — A) such
that H = I — F~1A and the splitting is nonnegative by Theorem 3.4. Furthermore,

(60) Fl'=B1'+GyI-AB ) >B"'>0,

where A = B—(B— A) is the (unique) nonnegative splitting induced by T'. By virtue of (60) and Theorem
2.8 we conclude that p(H) < p(T'), and using Theorem 2.7, ||H || < ||T||w- O

THEOREM 7.2. Let A be a symmetric positive definite matriz. Let T and H be the iteration matrices
defined in (2) and (59), respectively. Then p(H) < ||H||a <||T'||a < 1. Furthermore, the splitting induced
by H is P-reqular.

Proof. From Theorem 3.7, we have ||T||4 < 1, and from Lemma 3.6 we have that || — GoA||la = 1.
Hence

|H[[a = ||(I = GoA)T||a < [T = GoAl[al|T[[a <|T][a <1.

The induced splitting is P-regular by Lemma 2.2. 0

Hence, a coarse grid correction results in an asymptotic convergence rate which is at least as good as
that of the multiplicative Schwarz iteration (2).

Theorems 7.1 and 7.2 refer to the case where the global coarse solve is multiplicatively applied to the
multiplicative Schwarz iteration. In [19], the case of additively corrected additive Schwarz methods was
studied. There remain two other situations to be analyzed, the so-called hybrid methods. In one case,
the multiplicative Schwarz method is additively corrected; this is called the two-level hybrid I Schwarz

method in [38]. In the other case, the additive Schwarz method is multiplicatively corrected, leading to
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the two-level hybrid II Schwarz method; see [38, pp. 47-48]. We begin with the multiplicative Schwarz
method with additive correction. In this method, the iteration matrix is of the form

(61) Hy=1-0(Go+B 1A

where # > 0 is a damping parameter, Go = RI (RgyART) 'Ry and A = B — C is the unique splitting
induced by T, the iteration matrix of the multiplicative Schwarz method. If A is an M-matrix this splitting
is nonnegative, and if A is s.p.d. this splitting is P-regular; see theorems 3.4 and 3.7.

THEOREM 7.3. Let A be a nonsingular M-matriz. If 0 < 0 < 1/2, the two-level hybrid I Schwarz
method, with iteration matriz (61), converges to the solution of Ax = b for any choice of the initial guess
2. In fact, for any w = Ae > 0 with e > 0, we have p(Hg) < ||Hg|lw < 1. Furthermore, if BEg + My is
invertible, the splitting induced by Hy is nonnegative.

Proof. We first show that Hy > O. Indeed, letting Ty = I — M(;lA, we have

Hy = 9(T + E()To) + (l — 9)[ — 0F,,

a nonnegative matrix for 0 < # < 1/2. Then we use that Gy > O and that B! > O and the fact that no
row of B~! can be all zeros to write for w = Ae > 0 with e > 0

How = w — 0(Goe + B~ te) < w,

concluding that || Hpl|., < 1.
For the nonnegativity of the splitting consider the matrix

My =0~ *My(BFEy + M)~ 'B.
This matrix is invertible, and
Myt =0B YBEy + My)M, ' = 0(E;M,* + B~1) > 0.

Further, Hy = I — M(;lA; thus, A = My — (Mp — A) is the unique splitting induced by Hy. To complete
the proof all we need to show is that I — AM;1 > O, for 0 < 6 < 1/2. This follows in a way similar to
the nonnegativity of Hy using the fact that A = B — C' is a nonnegative splitting and A = My — (Mo — A)
is a regular splitting. O

The hypothesis that BEy + My be nonsingular (not needed for convergence) is very mild. To see this,
let Ay = RogARY, which is a principal submatrix of A and thus a nonsingular M-matrix. Let 7 be the
permutation so that (4) holds for ¢ = 0. Then, we have the nonsingular matrix My of the form (11). Since
Ey is of the form (25), BEy has ng nonzero rows which are rows of the monotone matrix B. Thus, the
addition of the term BEy only affects the first ng rows of My (once permuted), and BEg + My is likely to
continue to be nonsingular.

THEOREM 7.4. Let A be a symmetric positive definite matriz. If 0 < 6 < %, the two-level hybrid
I Schwarz method, with iteration matriz (61), converges to the solution of Ax = b for any choice of the
initial quess x°. In fact, we have p(Hg) < ||Hglla < 1. Furthermore, the splitting induced by Hg is
P-regular.

Proof. We write for 8 > 0

1 Holla = [10(] — GoA) +6(I — B~ A) + (1 — 20)I|| 4
< O||I — GoAl|la +0||I — B~ *Al|la+]1-20| < 1,

where the last inequality follows from Lemma 3.6, Theorem 3.7, and the assumption § < 1/2. With
Lemma 2.2 the induced splitting is P-regular. O

Note that, because of the presence of the damping parameter 6, it is not generally possible to compare
the asymptotic rate of convergence of the two-level hybrid I Schwarz method with that of the one-level
multiplicative Schwarz method. In any case, the following simple example shows that, in general, one
cannot expect the convergence rate to improve as a result of the addition of a global coarse solve.
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EXAMPLE 7.5. Let

100 010
Rl_{o 1 0}’R2_[0 0 1]'

Then the eigenvalues of Hp are 1 — 20 (with multiplicity 2) and 1 — %9. This matrix is convergent for
0 < 6 < 1, showing that, in general, the restriction on # in the statement of Theorem 7.3 is a sufficient

condition only. The matrix is nonnegative if and only if 0 < 6 < % For # = 1, the spectral radius is

p(H,) = 5. The minimum of p(Hp) is attained for § = 7%, corresponding to 2/)(Hl_ga) = & ~ 0.3846.
The spectral radius of the one-level multiplicative Schwarz iteration matrix is p(T') = é ~ 0.1111. Thus,
for this particular example, supplementing the one-level multiplicative Schwarz method with an additive
global coarse solve results in a degradation of the asymptotic rate of convergence, for any value of the
damping parameter 6.

For completeness, we take a look at the two-level hybrid II Schwarz method, i.e., additive Schwarz

with a multiplicative coarse grid correction. The iteration matrix is now
(62) Hy = (I — GoA)Ty

where Ty is given by (29). Here 6 is the damping parameter; when A is a nonsingular M-matrix and
0 < 0 < 1/q (where g is the measure of overlap) we have ||Ty||,, < 1, with w = A7te > 0 and e > 0, and
when A is s.p.d. and 6 < 1/ (where ¢ is the number of colors) we have ||Ty||a < 1; see [22] and [19].

THEOREM 7.6. Let A be a nonsingular M-matriz. If 0 < 6 < 1/q, the two-level hybrid II Schwarz
method, with iteration matriz (62), converges to the solution of Ax = b for any choice of the initial guess
29, Furthermore, p(Hp) < p(Ty) < 1, for any vector w = A"te > 0 with e > 0, ||Hpl||w < ||To|lw < 1, and
the splitting induced by Hy is nonnegative.

Proof. Letting w1 = Thw, we have wy; < w. An argument identical to the one used in the proof of
Lemma 3.1 shows that

How = (I — GOA)w1 <w; < w,

hence ||Hg||lw < 1 and the two-level hybrid IT Schwarz method is convergent, provided that 0 < 6 < 1/q.
We already know that the unique splitting A = My — Ny induced by Tp is nonnegative. Let now A = B—C
be the unique splitting induced by Hy. This splitting is weak regular, since Hy > O and

Bl =M;'+Go(I - AM; ") > M; ' > 0.
It follows from Theorem 2.7 that ||Hg||w < ||T9||w- The splitting is actually nonnegative. Indeed,
I—AB ' =(I-AGo)(I - AM, ') > O.

Thus, by virtue of Theorem 2.8, we also have p(Hy) < p(Tp). O

THEOREM 7.7. Let A be a symmetric positive definite matriz. If 0 < 6 < 1/q, the two-level hybrid
IT Schwarz method, with iteration matriz (62), converges to the solution of Ax = b for any choice of the
initial guess 2°. Furthermore, ||Hg||a < ||To||a < 1, and the splitting induced by Hy is P-regular.

Proof. With Lemma 3.5 we have

[[Hol|a = [|(I — GoA)Tyl||a < [[I — GoAl|al|Tol|a < ||Tol|la < 1.

With Lemma 2.2 the induced splitting is P-regular. O
REMARK 7.8. More generally, we could consider two-level methods where the iteration matrix is of
the form (I —GoA)T and T represents one or more steps of a smoother. As long as T induces a nonnegative
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splitting of the nonsingular M-matrix A, or a P-regular splitting if A is s.p.d., one can show that the
coarse grid correction, represented by the singular matrix I — GgA, produces an asymptotic convergence
rate which is at least as good as that achieved by the smoother alone.

Finally, we consider the case of two multiplicative two-level schemes which use different global coarse
solves for the corrections, with one nested inside the other. As in section 5, we only consider the M-matrix
case. Let the iteration matrices be given by

(I —GoA)T and (I —GoA)T,

respectively. Here GGy and C?o correspond to subsets Sy and 5’0 of S, with Sy C So. In other words,
Go = RT(RoART) 'Ry and Gy = RT(RyART) 'Ry and every row of Ry is also a row of Ry. Then it
is easy to see that the convergence rate, as measured either by the spectral radius or by the weighted
maximum norm, is better for the method corresponding to the finer grid. The proof uses exactly the same
argument as the one used to prove Theorem 5.3.
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