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Abstract

The paper mainly concerns stability problem of strong shock pro-
files in viscous conservation laws. An example of 2x2 system in isen-
tropic gas dynamics is discussed. First by using a simple geometric
argument we prove that this system has two kinds of strong shock pro-
files and based on results of G. Kreiss-H.O. Kreiss and of K. Zumbrun-
P. Howard,we show that these shock profiles are nonlinearly stable if
and only if they are linearly asymptotic stable. In addition, we iden-
tify that in the scale of standard Lax shock profiles,the criteria in [4]

and in [9] for nonlinear stability are equivalent.
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1 Introduction

Due to its close relation with classical shock theory, people are interested in

systems of viscous conservation laws

ou  Of(u) 0%u
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u = (ug,ug, -, uy), f(u) : R* - R”
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and their traveling wave solutions. Here it is assumed that A(u) = (9f)(u)
has real, distinct eigenvalues

A(u) < Ag(u) < -+ < Ap(u)
the corresponding eigenvectors are denoted by {r;(u)}
A(uw)rj(u) = Xj(w)rj(w), j=1,2,---,n.
If {\j(u),r;(u)} satisfies

Vaj(u) - 7i(u) # 0

then the j-th family of A(u) is called genuinely nonlinear.
Let ur, ur € R be two distinct constant states, which satisfy the Rankine-
Hugoniot relation

flugr) = fur) — s(ug —ug) =0 (1.2)
and Lax’s entropy condition:
)\j(UR) <s< )\j(uL) and )\j_l(uL) <s < )\j+1(’LLR) (13)

for some 1 < j < nand s € R, we look for progressing wave solution to (1.1)
of the form

u(z,t) = ¢(&), {=x—st
which satisfies

lim 6(6) = 6, lim 6(6) = on (1)

{——o0
where ¢;, = ur, ¢gr = ugr. Such solution necessarily is a traveling wave of
equation (1.1) with velocity s, and it is also referred to be a “viscous j-shock
profile”.
In fact, to find the “viscous j-shock profile” consists in solving the fol-
lowing system of nonlinear ordinary differential equations
¢ df(¢) , do _

d—g—d—g—FSd—g—O, —OO<£<+OO



subject to boundary conditions (1.4). Thus the problem can be solved by
seeking connecting orbit of a first order system of nonlinear ODEs

d¢ _
¢
which connects two steady states ¢r and ¢g of this system. Here (0g)(4) =

f(@) = f(or) — s(¢ — ¢1) =: g(0) (1.5)

A(¢) — sI, which has eigenvalues

wi(@d) =Xj(o) —s, j=1,2,---,n.
The entropy condition (1.3) reads

,U'l((ﬁL) > 07 l:]a N, uj—1(¢L) < Oa

1.6
Nl(¢R) <0> lZl,---,j, :uj+1(¢R) >0 ( )

Let M;(¢r) and M,(4;) be the stable manifold of ¢ and the unstable man-
ifold of ¢y, respectively. The condition (1.6) implies

dim M,(¢g) + dim M, (¢,) = n + 1.

When M(¢r) and M, (¢py) intersect, i.e. My(¢dr) N M,(pr) # 0, then system
(1.5) necessarily has a connecting orbit between ¢7, and ¢, and the system
of viscous conservation laws (1.1) will possess a viscous j-shock profile.

The best known results on the existence of viscous shock profiles of general
conservation laws are confined to weak shock waves, i.e. when u; and ug
are close enough (see [3]), their proof used the centre manifold theory, but
certainly P. D. Lax in his paper [5] had laid down the base for the arguments
in [3]. A question that should be asked is: is it possible at least for certain
systems of dimension n > 1 to show the existence of viscous shock profiles
without the requirement of |ug — ur| being sufficiently small. C. Conley and
J. Smoller in [1] found that in some circumstances, 2 X 2 system may have
strong shock waves.

Another problem that has been intensively studied in the recent decade is
the nonlinear stability of viscous shock profiles (see [2],[6]-[8]). Most of these
studies mainly concern with weak shock profiles. However, we learned from a
recent paper of G. Kreiss and H.-O. Kreiss ([4]) that some algebraic criteria

for nonlinear stability are available, which, as declared in their paper, can be

3



applied to viscous shock profiles of arbitrary strength. However there is no
example in their paper. We also learned of results recently obtained by K.
Zumbrun and P. Howard in [9], where a criterion of nonlinear stability for
wider class of viscous shock profiles was given in terms of Evens function.
Notice that a major condition in Proposition 10.3 of [9] is not correct, where
the set {7"Ji : ajE < 0} is necessarily to be changed into {rji : a;-t z 0}
(outgoing eigenvectors).

In this paper, we shall analyze an example of 2 x 2 system in isentropic
gas dynamics. This system has been used as a model example in the study
of admissibility of viscous matrixes (see [1]) for conservation laws, but to our
knowledge till now this example has not been investigated in the context of
nonlinear stability. Firstly in section 2 using a simple geometric method we
prove that this system has two kinds of strong viscous shock waves. In sec-
tion 3, we investigate the nonlinear stability of these shock profiles in terms
of the criteria in [4] and [9]. For our example it will be shown that if a viscous
shock profile is linearly asymptotic stable,then it must be nonlinearly stable
with respect to zero-mass perturbations. Since linear stability is implied by
nonlinear stability, we then find that for this example the concepts of linear
and nonlinear stability for shock profiles are equivalent. In addition, we find
that when restrict to standard Lax shock profiles of genuinely nonlinear con-
servation laws, the criterion (D) in [9], which implies nonlinear Lp-stability,

is equivalent to the algebraic criterion in [4].

2 A 2 x 2 system and the existence of shock

profiles

Consider one dimensional isentropic gas flow, which under certain conditions

can be described by the following 2 x 2 system of viscous conservation laws

ov  Ou 0%

i PSR R
+ —

ot or 0z

where v(z,t) represents the specified volume of the gas, u(x,t) the velocity

of the flow, and p(v) is a function representing the relation between pressure
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and volume which depends on the gas property. Usually p(v) satisfies
p'(v) <0, p"(v)>0. (2.2)

Henceforth we assume that p(v) is a smooth function satisfying (2.2).
In system (2.1), f = (—u,p(v))T and

0 -1

which has real, distinct eigenvalues
A (v) = =V =p'(v) < A2(v) = /=P (v),

and the corresponding eigenvectors are

(1,/— T and ry(v) = (1, —/—p' (v))*.

From (2.2) we see that both families (X\;(v),r;(v)), ¢ = 1,2 are genuinely
nonlinear.

Given constant states (vp,ur) and (vg,ug) satisfying the R-H relation
(1.2) and the entropy condition (1.3), we look for shock profiles of system
(2.1). This consists in finding connecting orbits of the following first order

system of nonlinear ODEs

v _ =:¢g1(v,u
e = (0 ) o0 ) =00 s
df =p) —p(vr) — s(u —ur) =: g2(v, u)

which has equilibrium points (vg,ur) and (vg, ug).
Existence of the viscous 2-shock profile
In this case, the entropy condition (1.3) reads

—v/ =P (vp) < s < /=P (vL)

—v/ ' (vgr) < /—p'(vr) < s

which implies (since p” > 0) s > 0 and vy, < vg. Further, by the R-H relation

(2.4)

{ —(ur —ur) — s(vg —wvy) =0 (2.5)
p(

vg) — p(vr) — s(ug —ug) =0



we have up < uy.
The remaining arguments will use a geometric method and take advantage

of invariant manifolds. In the phase space with coordinates(v, u) the curve

1
g1(v,u) =0, ie. u=uy,——(v—og)
s

is a straight line and the curve

g2(v,u) =0, ie. u=mug+ é(p(v) —p(vr))

is concave. They intersect at (vp,ur), (vg,ur). Since g = A — sI, we see
that (vg,ur) is a hyperbolic saddle of (2.3) and (vg,ug) is a stable node of
(2.3). Let G be the bounded region in the (v,u)-plane confined by curves
g1(v,u) =0 and go(v,u) = 0, see Figure 2.1.

From the properties of p(v) and (2.5), we find

v

g when (v,u) € G. (2.6)

gl(v’u)

gg(U,’U,

IN

Then we claim that at every point

p € dG\{(vp,ur), (vg, ug)}

the right-hand vector of (2.3) always points into the interior of G' as shown
in Figure 2.1. In addition, by (2.5) we see that the tangent % = —/—p'(vy,)
of the unstable manifold at ¢y, = (v, ur) satisfies

1
;p’(vL) < —v/—p'(vr) < —s,

so it is also clear that the unstable manifold of ¢; points into the interior of
G.



hyperbolic saddle

Figure 2.1

Evidently, system (2.3) has no other equilibrium point except (v, ur)
and (vg, ug).

Based on these facts, we can conclude that system (2.3) possesses a unique
orbit which connects the two equilibria (vy,,u;) and (vg,ug) in G, corre-
spondingly equation (2.1) has a viscous 2-shock profile.

Existence of the viscous 1-shock profile

Here the entropy condition (1.3) reads

—V/ =P (vr) <5 < /=p(vr), s<—~p(v1) (2.7)
which implies
s<0, wg<wy, ug<uy (by R-H relation).
In (v,u) plane, now the shape of region G confined by the curves
g1(v,u) =0 and go(v,u) =0

is shown in Figure 2.2, and it turns out that

IA

0 _

91(v,u) 0 when (v,u) € G. (2.8)

g2(v,u

IN



From condition (2.7), we see that (v, uy) is an unstable node and (vg, ug)
a hyperbolic saddle of system (2.3).
(2.8) tells us that at every point

Pe aG\{(UL, U,L), (?}R, UR)}
the right-hand vector of (2.3) always points to the exterior of G. Then by

considering negative trajectories we can conclude that there exists an orbit

of system (2.3) which connects the equilibria (vy,,u.) and (vg, ug).

u

unstable node
(72 70 e

(7] S

Figure 2.2
Summarizing on analysis above we have proved the following theorem

Theorem 2.1 Assume that the given states (vp,ur), (vg,ur) and the pa-
rameter s € R satisfy the Rankine-Hugoniot relation (2.5) and the entropy
condition (2.4) ((2.7)), then system (2.1) possesses a viscous 2-shock profile
(viscous 1-shock profile) propagating with velocity s.

3 Nonlinear stability of shock profiles

To start, we recall the concept of nonlinear stability. Let U(x — st) = U(§)
be a smooth shock profile of the viscous conservation laws (1.1), and

lim U(§) = uy, §li>£—noo U(€) =ur

{——o0



where uy,up € R", s € R satisfy the R-H relation (1.2) and the entropy
condition (1.3).
Given initial data of type

v(z) =U(x) + wy(z) (3.1)

we consider the solution of system (1.1) with initial data (3.1) and denote it
by
u(z,t) = U(x — st) + v(z,t) (3.2)

here v(z,0) = w,(z) satisfies
+oo
/ v(z,0)dz = 0.

and is referred to “zero-mass perturbation”. We assume that v(z,0) are
smooth and small perturbations and that the corresponding solutions (3.2)
exist for all £ > 0. Then we say the shock profile U(£) is nonlinearly stable

if the maximum norm
[v(-,t)|o — 0, as t — +0o when v(z,0) is small enough.

In addition, consider the following linear equation

v 0%
— — sl = — .
5 +10F(U) = sIl = 52 (33)
and the associated eigenvalue problem
821) ) +o0 )
9ez @fU) = sl)v], = pv, |Jv]|” = N |[v[*d€ < oo. (3-4)

We say that U(€) is linearly asymptotic stable if (3.4) has no eigenvalues
with Rep > 0, u # 0.

In [4], combined with some smoothness assumptions of coefficients and
data, a criterion to justify nonlinear stability of viscous shock profiles was
created, which consists of four “structural conditions”:

(i) (3.4) has no eigenvalues with Rey > 0, u # 0.

(ii) equation

ov
a—g—[af(U)—sI]v:O (3.5)
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has a nontrivial solution vy = Ug, and the dimension of the eigenspace is
exactly 1.
(iii) # = 0 is not a generalized eigenvalue, i.e. equation

g_z _ [af(U) _ 3]]1) =D, D = constant

has no bounded solution v with D # 0.

(iv) equation

2
g—;; - [(0f(U) - sI)v]g = vy, — oo <z <400, o constant

(vo = Uk, see (ii)) has no bounded solution with a # 0.

The main result in [4, Th. 1.9] can be formulated as follows: under certain
smooth assumptions (see [4], (1.3)~(1.6)), if conditions (i)~(iv) are satisfied,
then the shock profile U(€) is nonlinearly stable.

It has also been identified in [4] that assumption (iii) is equivalent to the
“algebraic condition”:

the columns of M, = [ S st ] are linearly independent (3.6)
and that assumption (iv) is equivalent to
the n x n matrix M = [S{ZI, St up — uL] is nonsingular (3.7)

where ST consists of the eigenvectors of 3 f(ur)—sI corresponding to positive
eigenvalues, and S! consists of the eigenvectors of 0 f(ur,) — sI corresponding
to negative eigenvalues.

Now we concentrate on the 2 x 2 system (2.1) of Section 2. Let U(§) =
(v(€),u(€)) be the shock profile of (2.1) determined in Th. 2.1. Since

-8 -1
W)=l = [ P(E) —s ]

and the eigenvalues and eigenvectors of this matrix are
M) ==v-P(v), A(v) =+—p(v)
ri(v) = [LV=-p O], @) =1 -V-pr)],
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we see that the matrix in (3.6) is

M, =[1,—+/—p'(vg)]" for the viscous 1-shock profile

My =[1,4/=p'(vr)]"  for the viscous 2-shock profile,
hence condition (3.6), i.e. condition (iii) evidently holds. Besides, the matrix
in (3.7) is_

1 _
M = VR L for the viscous 1-shock profile
| —V/—DP'(vr) ur—uL
1 _
M = VR L for the viscous 2-shock profile.
—p'(vr) ur—uL

In both cases, it is easy to verify det M # 0 by using the R-H relation (2.5)

and the entropy condition (2.4) or (2.7), so condition (iv) holds as well.
Further, we discuss condition (ii). Assume on the contrary, equation (3.5)

has two independent bounded solutions ¢4 (&), ¢2(£), then by using Liouville’s

theorem, we have

W(gr,¢2) = Woexp{ s trace[df(U(§)) — sIldé}
= Wyexp{—2s(£ — &)}

where W represents the Wronski-determinant, Wo =W (é1 (&), ¢2(£o)). Since
s # 0 and Wy # 0 for properly chosen &, by taking limit (¢ — —oo or
¢ — 400), a contradiction will be generated for the left-hand side of (3.8)
is bounded as assumed. Therefore, condition (ii) is also valid for the system
(2.1).

Finally, condition (i) is nothing else,but a condition of linear asymptotic

(3.8)

stability,and nonlinear stability implies linear asymptotic stability. Then
applying the criterion and theorem in [4, Th. 1.9] leads to the following
conclusion

Theorem 3.1 Assume the function p(v) in (2.1) is smooth and satisfies con-
dition (2.2), then the viscous shock profiles of system (2.1) will be nonlinearly
stable if and only if they are linearly asymptotic stable.

The theory in [9] also can be applied to system (2.1).
A sufficient condition provided in [9] for nonlinear stability of a given
stationary wave u(x), reads

(D) :  Dg(X) has precisely [ zeroes in {ReA > 0}
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where Dy, ()) is the Evens function associated with the linearized operator
Lv := vz — (f'(1)v)s (3.9)

and [ is the dimension of the stationary manifold {u#’,§ € R'} to be the set
of all solutions connecting the same limit points uy = ii(+o0) with @° = 4.
It has been shown (Proposition 11.1, [9]) that for pure and overcompressive
shock waves, condition (D) impies nonlinear orbital LP-stability (p > 1) with

respect to perturbation in
Ag = {v() : [o(x)| <€A+ |2[°?)}

for ¢ sufficiently small. It also has been proved (Lemma 9.3, [9]) that condi-

tion (D) is equivalent to
o(L)\{0} C {ReX < 0} (3.10)
together with a “transversality condition”

(%)lDL(O) £ 0. (3.11)

Further, by Proposition 10.3 in [9], condition (3.11) is equivalent to that the
set of vectors
{r; :a; 2 0}U {/ 35 dm1<j< I} (3.12)
—00 )

is a basis of R", where a* rjc are the eigenvalues and eigenvectors of A* =

7 )
f’(ui).
These results can be shifted to traveling waves with speed s # 0 by

normalization z — £ = x — st, f(u) — f(u) — su.

Remark 3.2 The formulation of condition (3.12) in [9] (Proposition 11.1,
(1), (ii)) is not correct, where the eigenvector set {rji : a;t < 0} (incoming
eigenvectors) is necessarily to be changed into {r]i : a;-t 2 0} (outgoing eigen-
vectors). Condition similar to (3.12) has been used in many studies (see [6],

[7] and [4]).
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We see that for the shock waves (1-shock or 2-shock) of system (2.1),

u’(z) = u(x — 6), 0 € R, i.e. [ =1 and

/; %—I(L:dx:mr—u_.

Thus condition (3.12) is reduced to condition (3.7), which is valid as shown in
the previous part. Hence we have verified that for system (2.1) the condition
(D) is fulfilled if and only if (3.10) holds. Here, (3.10) is the same condition
as (i) for linear asymptotic stability. To some extent, the criterion in [9] is
designed for application to a wider class of viscous shock waves including
undercompressive,overcompressive and the standard(pure) Lax shock (see
Definition 10.1-10.2 in [9]). However, it would be of concern to compare
the criterion in [9] and in [4] when confined to the most interesting cases
of standard Lax shock waves of genuinely nonlinear hyperbolic conservation
laws.

Obviously, condition (3.7) implies (3.6), so condition (iv) contains (iii) in
the criterion of [4]. By Definition 10.1 and 10.2 in [9], for standard Lax shock
waves it turns out that

dimKer(L) =1=1
where Ker(L) and o(L) are referred in Lo(R). Therefore, the condition (ii) of
[4] acturely is implicitly contained in the definition of “standard shock wave”
of [9] and by the Lax entropy condition. Finally, since (3.10) and (3.12) are
equivalent to condition (i) and (iv) respectively, then we prove the following

conclusion.

Theorem 3.3 Assume B(viscosity matrix) = I. Then in the scale of stan-
dard Laz shock waves, the criterion (D) in [9] is equivalent to the algebraic
criterion ((i)-(iv)) in [4].

Finally, whether system (2.1) is linearly stable might depend on the form
of the function p(v), and we leave this as an open question. Also, one may get

an answer to this problem by using numerical method when p(v) is specified.
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