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1. INTRODUCTION AND MAIN RESULT

Following [Ri2] a (right) module D over an associative ring A said to be a diamond
provided it has a simple essential submodule and a superfluous maximal submodule.
Obviously any diamond is indecomposable. If A happens to be a finite-dimensional algebra
over a field k, then a module D is a diamond if and only D is a finite-dimensional module
with a simple socle and a simple top. (Recall, that the top of a module is the factor
module by the Jacobson radical.) Since any indecomposable module of length 2 is a
diamond, a finite-dimensional algebras A usually will have infinitely many isomorphism
classes of diamonds. On the other hand, an algebra A of finite representation type (i.e. A
has only finitely many indecomposable modules up to isomorphism) can have only finitely
many isomorphism classes of diamonds. At least if the field £ is algebraically closed, the
algebras of finite representation type are well studied. We refer to [GR] for an exhaustive
introduction into this theory.

Using the covering theory developed in [BG]|, the study of modules over finite-
dimensional algebras A of finite representation type over an algebraically closed field & is
reduced to the case that A is representation-directed. In particular, any diamond over an
algebra of finite representation type is obtained from a diamond over a representation-
directed algebra by application of the push down functor associated with the universal
Galois covering. Recall, that following [Ril] an algebra A is said to be representation-
directed if there does not exist a sequence X, ... , X, of indecomposable finite-dimensional
A-modules with n > 0 and Xy = X, such that for each i = 1, ..., n there exists a non-zero
non-isomorphism X; ; — Xj.

Since factor algebras of representation-directed algebras are again representation-
directed, for finding all diamonds over representation-directed algebras it suffices to look at
all representation-directed algebras having faithful indecomposable modules and to check
which of these faithful modules are diamonds. Fortunately, all representation-directed
algebras over an algebraically closed field having an indecomposable faithful module are
classified. They appear in 24 families (see [Bol]) together with many exceptions in low
dimensions (see [Drl]) which were found by a computer program and are accessible via
a data basis in the CREP system (see [DN]). Hence, it remains to find out which of the
algebras appearing in the families and in the data base have a faithful indecomposable
module which is a diamond. It is the aim of this note to present a convenient criterion
when this happens:

Theorem. Let A be representation-directed algebra over an algebraically closed. Then A
s obtained from a representation directed algebra having a faithful diamond by reorienta-
tion of arms if and only if the vector e = (1,... ,1) is the only sincere positive 1-root of

the Tits form of A.
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We will explain all the notation in the next section. But let us stress that the list of the
24 families (see [Bol],[Ril]) as well as the data base of the exceptional algebras (see [Drl])
for each appearing algebra provides the maximal (with respect to the natural product
order on Z") positive roots of the associated Tits form. Thus our result really makes
the classification of diamonds over representation-finite algebras into an easy exercise. In
fact, it is observed already in [Ri2] that among the 24 families one encounters precisely
(Bol), (Bol5), (Bol6), (Bol7), (Bo19), (Bo20), (Bo21) (for the labels used for the families
see [Ril]). For reasons of space we refrain from presenting the explicite list of the 157
exceptional algebras (up to isomorphism and duality) having a faithful diamond but refer
to [Drl] or better to the date base in CREP where everybody can extract the list easily
as we did.

2. REPRESENTATION-DIRECTED ALGEBRAS

We refer to [Ril] for the basic notation. For the study of diamonds we may assume
without loss of generality that our given algebra A is basic and connected. It is well-known
(see [GaQ]) that any basic finite-dimensional algebra A up to isomorphism an be written
as kA /I where A is a finite quiver and [ is an admissible ideal of the path algebra kA.
The quiver A is a combinatorial invariant of the algebra A. Since an arrow a @z — y
in A yields a non-zero non-isomorphism P(z) — P(y) where P(z) is the indecomposable
projective module associated with the vertex x, the quiver of a representation-directed
algebra A has to be directed (i.e. does not admit oriented cycles). The ideal I is not
an invariant of A but the number b(z,y) of minimal generators of I starting in x and
ending in y does not depend on the particular ideal I. If we denote by a(:z: y) the
number of arrows form z to y in A and label the vertices of A by 1,...,r, then it
is shown in [Bo2] that the quadratic form ¢ : Z" — Z called Tits form given by ¢(x) =
Do T =i oy ali, g+ (i, g)xiw for = (21, x,) € Z7 is weakly positive
(i.e. g(z) > 0 for all 0 # = € Z" with non-negative coefficients). Consequently, ¢ has only
finitely many positive 1-roots which are the vectors x € Z" with non-negative coefficients
satisfying ga(z) = 1.

The positive 1-roots are closely related to the indecomposable A-modules. We remem-
ber that we can identify the A-modules with the contravariant representations X of A
such that X (o) = 0 for all elements o of I. Using this identification the dimension vector
dim X € Z" is given by (dim X); = dim, X () for all vertices i = 1,...,r. By [Bo2]
the map dim yields a bijection from the set of isomorphism classes of indecomposable
A-modules to the set of positive 1-roots of ¢q. A vector z in Z" is called sincere if x; # 0
forall i = 1,... 7. Analogously, an A-module X is called sincere provided X (i) # 0 for
all © = 1,...,r. Thus the map dim yields a bijection between the set of isomorphism
classes of sincere indecomposable A-modules and the set of sincere positive 1-roots of 4.
It is well-known (see e.g. [Ril]) that an indecomposable module over a representation-
directed algebra is faithful if and only if it is sincere. Moreover, it is shown in [Ril] that
a representation-directed algebra which has an indecomposable sincere module is simply
connected (see [BG]). Hence A is completely separating in the notation of [Dr2] and there-
fore can be written as BS/J where S is a finite partially ordered set and J is an ideal of
the incidence algebra kS generated by elements (y, z) such that there is z in S satisfying
y < z < x. Recall, that the incidence algebra kS is the vector space with the basis given
by all pairs (y,x) such that y < z in S. The product (z,y)(y/,x) in kS is (z,z) for y = ¢/
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and 0 otherwise. For A = kS/J the quiver A of A is the Hasse diagram of S and we can
also write A as A = kA /I where [ is the ideal of kA generated by all differences u — v
of paths in A with the same origin and terminus together with all paths w starting in x
and ending in y such that there is a generator (y, x) of J.

Let A be an algebra of the shape A = k£S/J for a finite partially ordered set S. With
any subset 7" of S which is convex and relation-free (i.e. for each generator (y,x) of J not
both 2 and y may lie in J) there is associated an indicator module o7 which is defined by
or(z) = k for all z € T and 6p(x) = 0 otherwise. Moreover, the arrows a : © — y of A
are sent to the identity of £ for =,y in 7" and 0 otherwise. Observe, that the module dp
is indecomposable iff the set T is a connected subset of S.

Proposition. If A = kS/J is a representation-directed algebra with a sincere diamond
X, then J =0, S has a unique minimal and a unique mazximal element, X is isomorphic
to 65 and X is up to isomorphism the only sincere indecomposable A-module.

Proof. Since X is a diamond, there is an epimorphism ¢ : P(z) — X for some element
x of S. It is easy to see that P(z) = dp where T is the subset of all y in S such that
y > x. The sincerity of X shows S = supp X C supp P(z) = T. (For an A-module
X we denote by supp X the set of all elements y of S with X(y) # 0.) Hence z is
the unique minimal element of S and moreover J = 0 because T = S is relation-free.
Dually, S has a unique maximal element. If ¢ would not be an isomorphism, then its
kernel would be non-zero and X would be non-sincere. Let finally N be another sincere
indecomposable A-module. Since X is projective and dually also injective, there exist
non-zero homomorphisms X — N and N — X. Consequently, X and N have to be
isomorphic because A is representation-directed. O

The above lemma shows that, if A = kS is a representation-directed algebra with a
sincere diamond, then there are two possible cases. Either S is a finite chain or the Hasse
diagram A of S has the following shape where a(1) has at least 2 lower neighbors, b(1)
has at least 2 upper neighbors, and all elements of u of U satisfy a(1) > u > b(1).

\ /

b(n)=—— - =——b(1) a(l) =—— - =—a(m)

If S'is a chain, then the graph A underlying the Hasse diagram A of Sis of type A,. All

algebras A’ = kS’ where the graph A’ underlying the Hasse diagram A’ of S’ coincides with
A are representation-directed and the Tits from g4 coincides with g4. Analogously, in the
second case any algebra kS’ where the Hasse diagram A of S is obtained by reorientation
of the linear quivers a(1) < a(2) <+ --- « a(m) and b(n) < b(n — 1) < --- < b(1) in an
arbitrary way is representation-directed and has the same Tits form as A.

The algebras kS’ obtained in both cases are said to be obtained by reorientation of
arms from kS. Thus we have shown:

Corollary. If A = kS is a representation-directed algebra with a sincere diamond and
A" = kS is obtained from A by reorientation of arms, then A’ is a representation-directed
algebra such that e = (1,...,1) is the only sincere positive 1-root of the Tits form qar.
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3. THE COMBINATORIAL PART OF THE PROOF

Lemma. If A= kS/J is a representation-directed algebra and € = (1,...,1) is the only
sincere positive 1-root of qa, then J = 0.

Proof. If X is the indecomposable A-module with dim X = ¢, then by [Dr2] we know

X = dsuppx = 0s. Hence S is relation-free and therefore J = 0. O

Before continuing, we need another prerequisite. Let (—, —)4 be the symmetric bilinear
form associated with the quadratic form g4 and o; the reflection with respect to (—, —)4
along the canonical base vector e(i) for i = 1,...,r. This means that o;(z) = = —

2(e(i), x)e(i) for all x in Z". For x a l-root the vector o;(z) is also a 1-root of ga.
In particular, if € is the only sincere positive 1-root of g4, then 2(e(i),e)s > 0 for all
i=1,...,r because otherwise o;(¢) would be another sincere positive 1-root.

Proposition. If A = kS is a representation-directed algebra such that ¢ = (1,...,1) is
the only positive 1-root of the Tits form qa, then A is obtained from a representation-
directed algebra with a sincere diamond by reorientation of arms.

Proof. We proceed by induction on the cardinality r of S and observe that for r = 1
nothing is to prove. For r > 1 we first consider the case that any element of S is either
maximal or minimal. Thus kS = kA is a hereditary algebra of finite representation type.
By Gabriel’s theorem (see [Gal]) A has to be one of the Dynkin diagrams A,, D, or Eg,
E7, Es. But for all of these diagrams but A, the corresponding Tits forms have more than
one sincere positive 1-root.

Now we have to deal with the case that there exists an element x of S which is neither
minimal nor maximal. We denote by S’ the full subposet of S associated with S\ {z}. The
partially ordered set S’ is connected as well, the algebra kS’ is representation-directed,
and X’ = §g is a sincere indecomposable kS’-module. We assume that there is another
sincere indecomposable kS’-module Y’ different from X’. By [Dr2] there has to be an
element y of S’ satisfying dimy Y'(y) > 2. Let L be the left adjoint of the restriction
functor from the category of kS-modules to the category of k£S’-modules. Hence LY is
an indecomposable kS-module such that LY'(z) = Y'(z) for all elements z of S different
from z. By [Bo2] the support of LY’ is convex and therefore LY” is a sincere module not
isomorphic to dg, a contradiction.

Thus we can apply induction to £S” and consider the Hasse diagram A" of §'. The case
that A’ is a graph of type A, is clear. Otherwise A’ has the following shape:

b(t);(\-\- <—b(1)< U \a(1><—--’:<—a(s)
2 <.
— o~
S <.
— ™

b(n) a(m)
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We denote by S* the set of upper neighbors and by S’ the set of lower neighbors of
2 in S. The sets S* and S' are disjoint non-empty antichains in S’ such that z < y for
each z in S! and y in S*. That kS is representation-directed implies immediately that
1St +]S¥| < 3. If S'U S* is contained in U' := H U {a(1),... ,a(s),b(1),...,b(t)}, then
the claim is clear. So we assume otherwise and distinguish several cases.

Case 1: |S!| 4 |S*| = 2. Since both S' and S* are non-empty, we have S! = {2} and
S* ={y} with z <y in S". Up to duality we may assume y & U".

Case 1.1: y € {b(t +1),...,b(n)}, hence z € {b(t),... ,b(n)}. If there is an arrow y — 2
in A , then in A it is replaced by two arrows y — z and x — 2. Thus A has the
correct shape. Otherwise y has two lower neighbors and z has two upper neighbors in
A. Consequently A contains a subgraph of type D, which is not bound by relations. We
arrive at a contradiction to A being of finite representation type.

Case 1.2: y € {a(s+1),... ,a(n)}, hence z € {a(s+1),... ,a(m)}. The same arguments
as in case 1.1 can be applied.

Case 2: |SY +|S%| = 3. Up to duality we now may assume S' = {z1, 25} and S* = {y}.
Thus either y € U’ or without loss of generality z, ¢ U’. In both situations we observe
that there does not exist any element w of S’ satisfying z; > w < z;. Therefore A contains
a full subquiver of the following shape where no other arrows and no relations start or
stop at x.

Y
i

21 & X — 29
We obtain a contradiction by the calculation 2(e(z),e)a =2 -3 = —1. O
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