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Abstract

In this survey article we will discuss the structure of properly discontinuous
groups of affine transformations and in particular of affine crystallographic groups.
One of the main open questions here is Auslander’s conjecture claiming that every
affine crystallographic group is virtually solvable.

1 Introduction

The motivating questions are the following:

Question (Milnor ) Is every properly discontinuous group of affine transformations vir-
tually solvable?

Question (L. Auslander) Is every crystallographic group of affine transformations virtu-
ally solvable?

It turns out that already in dimension 3 the answer to Milnor’s question is negative.
Concerning the Auslander conjecture, a number of positive results have been obtained.
They will be described below. But the question in general is still open.

The contents of the paper are as follows. Roughly speaking, sections 2 through 5 present
the questions mentioned above and put them into perspective. Sections 6 through 9
deal with answers and section 10 gives further results. In more detail, after establishing
notation in section 2, the questions mentioned above are presented and put into context
in section 3. Their geometric significance, namely for flat affine manifolds, is discussed in
section 4. The case of crystallographic — and more generally properly discontinuous —
groups of affine isometries is covered by Bieberbach’s theory. One part of this theory is
described in section 5, another part in section 10, subsection 5. At these places it is also



discussed how and to which extent this theory generalizes for the more general situation
of arbitrary affine groups. Coming to the answers, we see in section 6 that every properly
discontinuous affine group in dimension < 2 is virtually solvable, we describe all of them
and discuss which of their features survive in higher dimensions. For dimension 3, we
present in section 7 a proof of the key case of the Auslander conjecture. In section 8 the
displacement function a of Margulis is defined. It is essential for his construction of a
free properly discontinuous affine group on affine 3-space. We try to give the reader a
geometric intuition of the relevance of this invariant. In section 9 we generalize this to
SO(n+1,n), a key case for higher dimensions. In section 10 further results are collected.

I would like to thank my coauthors G. Margulis and G. Soifer for arousing my interest in
these questions and A. Lubotzky for his encouragement to write this survey. I also thank
Yale University and the Isaac Newton Institute for their hospitality during the time that
this survey was written. I thank these institutions and the NSF and the SFB 343 in
Bielefeld for financial support.

2 Afline space

In this section we give the basic definitions concerning affine spaces and establish notation.

Throughout this article all vector spaces are over R and of finite dimension. Affine space is
a vector space where you forget the zero. To be precise, an affine space E is a set together
with a simply transitive action of a vector space V. The action is usually denoted as
addition V X E — E, (v,z) — x + v. So for any two points z,y in E there is a unique
vector v € V' such that x + v = y. This vector is usually written as the difference of the
two points: v = y — x. For every v € V the map T, : E — E, T,,(z) = z + v, is called
the translation by v. And V is called the vector space of translations of E and denoted
V = TE. Given two affine spaces E and F a map f : E — F is called an affine map if
there is a point zy € E and a linear map A : TE — TF such that f(zo+v) = f(z0) + Av.
Then f(x+v) = f(z)+ Av holds for every x € E and every v € TE with the same linear
map A. The map A is called the linear part of f and denoted Lf. One can regard TE
as the tangent space of E at every point of E and Lf as the tangent map of f at every
point of E. We have the chain rule

L(fog)=LfolLg.

An affine map f : [E — F of affine spaces is an isomorphism iff Lf : TEE — TF is a linear
isomorphism. Let Aff(E) be the group of affine automorphisms of E, also called the group
of affine transformations of E. We have an exact sequence of groups

1 —-TE — Aff(E) - GL(TE) — 1.
For every x € [E this exact sequence has a splitting homomorphism

0. GL(TE) — Aff(E),
given by  0,(A)(z+v) =z + Av.



So the affine group is isomorphic to the semidirect product of V' = TE with GL(V'), where
GL(V) acts on V in the natural way:

AE(E) = V x GL(V).

Homogenization. It is sometimes useful to think of an affine space as an affine hyper-
plane in a vector space of one dimension more, as follows. Let V be a vector space and
let IF be the affine hyperplane

F={(v,1); veV}

in the vector space V @ R. Then F is an affine space with V = TE. Conversely, given an
affine space E with TE = V then for every z € £ the map ¢, : E — F, t,.(x +v) = (v, 1),
is an isomorphism of affine spaces. As a consequence we obtain a group isomorphism
between Aff(E) and the subgroup

{(6‘ i) A€ GL(V),teV)

of GL(V @ R) given by sending the above matrix in GL(V @ R) to g(A,t) € Af(E) with
g(A,t)(x+v) = z+t+ Av. In particular, we may regard Aff(E) as a linear group, namely
as a subgroup of GL(V @ R).

3 The questions

3.1 Definition Let I' be a group acting on a locally compact space X. The action
is called properly discontinuous if for every compact subset K of X the set of returns
{yeT; yKnNK # 0} is finite. The action is called crystallographic if it is properly
discontinuous and the orbit space I'\ X is compact.

Now let E be an n—dimensional real affine space and let I' be a subgroup of Aff(E).
Since Aff(E) acts on E it makes sense to say that the subgroup I" of Aff(E) is properly
discontinuous or crystallographic. The question is: What is the structure of I'? More
precisely:

3.2 Question (L. Auslander 1964 [Au 1]) Is every crystallographic subgroup T of
Aff(E) virtually solvable?

Actually, Auslander stated as a theorem a positive answer to this question. But the proof
turned out to be false. The content of the Auslander conjecture is that the answer is yes,
i.e. that every affine crystallographic group is virtually solvable.

Later, Milnor asked the following more general question.

3.3 Question (Milnor 1977 [Mi]) Is every properly discontinuous subgroup T" of
AfH(E) virtually solvable?

Here and in what follows a group I' is said to have a certain property P wirtually if T’
contains a subgroup A of finite index which has the property P.
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To put these questions into perspective recall the following

3.4 Theorem (Tits alternative [T1i]) LetT be a subgroup of GL(n,C). Then

I' is either virtually solvable or contains a free non—abelian subgroup.

The Tits alternative applies to Aff(E) and its subgroups since Aff(E) is isomorphic to a
subgroup of GL(n + 1,R), as explained at the end of section 2. So the questions above
really ask to which of the two types of groups described by the Tits alternative do our
groups I belong. It was expected that the answers to these questions were yes. It turned
out that the answer to Milnor’s question is no. The first counterexample is due to Margulis
[Ma 1, Ma 2], and we will explain below the geometry behind this counterexample, see
section 8. The answer to Auslander’s question is not known, in general. So far only
positive answers have been obtained.

Why is one interested in these questions? We will give an algebraic motivation in this
paragraph and a geometric motivation in the next section. Much is known about discrete
subgroups and in particular lattices in solvable Lie groups, see e.g. Raghunathan’s book
[Ra], and also for lattices in semisimple Lie groups, see Margulis’s book [Ma 4]. The affine
group is a Lie group which is of none of these types, neither solvable nor semisimple, it is
of what is sometimes called mixed type. And it is one of the simplest and most natural
groups of mixed type, namely the semidirect product of GL(n,R) with R". And yet we
do not know the answer to Auslander’s question.

A remark concerning the relation between the notions “discrete” and “properly discontin-
uous” is in order here. The group Aff(E) is a Lie group in a natural way. Every properly
discontinuous subgroup I" of Aff(E) is discrete, as follows immediately from the definition.
The converse is not true. For instance, if we regard GL(n,R) as the group of affine trans-
formations fixing a point O € R", then every discrete infinite subgroup of G L(n,R) is not
properly discontinuous, since the very definition of proper discontinuity implies that for
a properly discontinuous action the isotropy group I'y, = {y € T ; vz = x} of every point
x € E be finite.

On the other hand, properly discontinuous subgroups of the affine group are geometrically
more interesting than just discrete subgroups, as explained in the next section. There is
an important case, however, where the two notions coincide, see section 5.

3.5 Remark A group I' is called polycyclic if it contains a sequence of subgroups
=Ty >T7 >--->T; = {e} such that I';;; is normal in T'; and T';/T;;; is cyclic
for: = 0,...,t — 1. Clearly, every polycyclic group is solvable. The converse is not
true, in general. But every discrete solvable subgroup of GL(n,R) is polycyclic (follows
from [Ra, Proposition 3.8]). So our questions are sometimes stated as: Is every properly
discontinuous (resp. crystallographic) affine group virtually polycyclic?



4 Flat affine manifolds

There is a geometric interest in properly discontinuous and in particular crystallographic
groups since they are the fundamental groups of manifolds with certain geometric struc-
tures, namely complete flat affine manifolds.

To understand what a flat affine manifold is, recall the following definition of a (C'°°—
manifold. A C'*°—manifold M is a Hausdorff topological space and has an atlas 2 of local
coordinate systems ¢ : U — ¢(U) C R", where U is an open subset of M and ¢ is a
homeomorphism of U onto an open subset ¢(U) of a real vector space R™. Any two local
coordinate systems of this atlas are C*—compatible, i.e. if ¢ : U — p(U) C R™ and
YV — (V) C R™ are in our atlas 2, then the transition map ¥ oo™t : (U NV) —
Y(UNV)is a C™ map. The definition of a flat affine manifold is exactly the same except
that one requires that the atlas 1 be affine, that is that the transition maps are locally
restrictions of affine maps R" — R™.

It thus makes sense to say what an affine line segment in a flat affine manifold M is,
namely it is an injective map o : I — M from some open interval I C R to M which
when composed with any local coordinate system of the given affine atlas 2 of M gives
a map from I to some R™ which is locally the restriction of affine maps. Note that an
affine line segment is uniquely determined by its image up to an affine reparametrisation,
that isif 0 : [ — M and 7 : J — M are two line segments with o(/) = 7(J) then there
is an affine automorphism g € Aff(R) of R such that 7 = 0 0 g. An affine line in M is
an affine line segment defined on all of R. A flat affine manifold M is called complete if
every affine line segment in M is the restriction of an affine line in M.

If M is a flat affine manifold its universal covering manifold M is easily seen to be a flat
affine manifold in a natural way. And M is complete iff M is complete. Now every simply
connected complete flat affine manifold M is isomorphic qua affine manifold to R", if
dim M = n. It follows that the group of decktransformations I' = 7; M is in a natural
way a properly discontinuous subgroup of Aff(R™). The action of I' on R™ has the property
that no element v # e has a fixed point. This property is equivalent to I' being torsion
free. The reason is that every finite group of affine transformations has a fixed point, for
instance the center of gravity of an orbit. Conversely, if ' is a properly discontinuous
torsion free subgroup of Aff(R™) then T'\R" is a complete flat affine manifold M with
mM = 1T'. We thus have

Question of Milnor, geometric version: Is the fundamental group of every complete
flat affine manifold virtually solvable?

Question of Auslander, geometric version: Is the fundamental group of every com-
pact complete flat affine manifold virtually solvable?

Note that a compact flat affine manifold need not be complete, in contrast to the situation
in Riemannian geometry. Compare also section 10.5.

4.1 Remark The argument above shows that the geometric version of the questions
of Auslander and Milnor are precisely the special case of the corresponding questions of



section 3 for the case that I' is torsion free. It suffices in fact to answer the questions of
section 3 for torsion free I', for the following reason. It suffices to answer them for finitely
generated I'. For properly discontinuous I' this follows from the Tits alternative. And
crystallographic I' are finitely generated anyway. Now apply Selberg’s lemma, by which
every finitely generated subgroup of G'L(n,C) contains a torsion free subgroup of finite
index, cf. [Ra, Theorem 6.11].

5 The classical case, groups of affine isometries and
Bieberbach’s theorems

Let <, > be a positive definite bilinear form on the vector space V. Then on any affine
space E with TE = V one can define a metric by d(z,y) =<y — 2,y — 2 >"2. Let
G = Isom(E) be the group of isometries of E. Then G is a subgroup of Aff(E), in fact
it is the group of those affine transformations of [E whose linear part is in the orthogonal
group O of the quadratic form <, >. We thus have an exact sequence

1 - TE — Isom(E) - O — 1.

In this case a subgroup I' of Isom(IE) is properly discontinuous iff " is a discrete subgroup
of Isom(E). The reason is that the whole group G = Isom(E) acts properly on E. This
means that for every compact subset K of E the set of returns {g € G ; gK N K # 0}
is compact. To see this note that the group TE of translations acts properly on [E and
hence the extension Isom(E) by the compact group O does, as is easy to see.

For the case of isometric affine actions the two questions about the structure of discrete
and crystallographic subgroups I" of G = Isom(E) have long been answered, in response to
Hilbert’s 18th problem formulated by Hilbert at the International Congress of Mathemati-
cians in 1900. The crystallographic subgroups of G are the groups which are associated
with crystals occurring in nature, whence their name.

5.1 Theorem (Bieberbach) FEvery discrete subgroup I' of G is virtually abelian.
Every crystallographic subgroup T of G is virtually a translation group.

So for a crystallographic subgroup I' of G’ the subgroup A =T'NTE of translations is of
finite index in I and hence the image L(I") of I under the linear part map L is finite, since
L(T") = I'/A. Furthermore A is crystallographic, too, since its finite index overgroup I'
is. So A is a lattice in TE. Choosing a basis for A we see that L(I") is represented by
integral matrices with respect to this basis. These facts are the starting point for the
classification of crystallographic groups, cf. [Wo, BBNWZ].

Bieberbach’s theorem above gives an algebraic result. The papers of Bieberbach [B 1,
B 2, B 3, F| give in fact the following description of discrete subgroups I' of G which
contains very precise geometric information about how I' acts on the affine space.

5.2 Theorem (Bieberbach) IfT" is a discrete subgroup of G there is a I'—invariant
affine subspace F of E such that the restriction homomorphism r : I' — T'|F has finite
kernel and a crystallographic subgroup of Isom(F) as image.
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One gets an amazingly good intuition of the behaviour of I' by looking at the very special
case of a screw motion in R? of a cyclic group around a line F as axis. One can use the
geometric insight of the two Bieberbach theorems to develop an algorithm for deciding
the following question, see [Ab 1, Ab 2] . Given a finite subset S of G. Let I' be the
subgroup of G generated by S. When is I' discrete?

Coming back to Aff(E), one may ask if one cannot improve on Auslander’s question,
namely that every crystallographic subgroup I' of Aff(E) is virtually abelian or virtually

nilpotent. The answer is no, in general, if dimE > 3. For an example, let eq,..., e,
be the standard basis of R™ and let I" be the subgroup of Aff(R™) generated by the
n — 1 translations by ey, ...,e,_1 and the map z — Az + e,, where A = g (1) and

B € GL(n —1,Z). Then I is a crystallographic subgroup of Aff(R") and I' is nilpotent
iff B is unipotent.

There are generalizations of Bieberbach’s theorem for subgroups of Aff(E). A very general
and useful fact is the following

5.3 Theorem Let G be a Lie group and R a closed connected solvable normal subgroup
of G. Let m : G — G/R be the natural map. Let H be a closed subgroup of G such that
HY, the identity component of H is solvable. Let U = w(H) be the closure of w(H). Then

the identity component U° of U is solvable.

For a proof see [Ra, Theorem 8.24]. Bieberbach’s theorem 5.1 is an immediate corollary.
The following corollary is proved as in [Ra, Corollary 8.27]. Tt is often useful as a reduction
step when dealing with discrete groups. For a typical application see the proof of 7.1. The
reader should be warned that [Ra, Corollary 8.25 and 8.28] are false. T thank D. Witte

for pointing this out to me.

5.4 Corollary Let G be a connected Lie group and R its radical. Let T be a discrete

subgroup of G and let m : G — G/R be the natural map. Suppose w(1") is Zariski dense
in G/R. Then w(T") is discrete.

For the case of Aff(IE) there is an even closer generalization of Bieberbach’s theorem proved
by Carriere and Dal’bo. Let I' be a subgroup of Af(R") and put I')q =T'N L‘l(L(F)O).

Think of I'yg or rather L(I'),q = L(I') N (F)0 as the non discrete part of L(T).

5.5 Theorem [CD] IfT is a discrete subgroup of AfF(R™), then T\ is nilpotent and
finitely generated. If U is crystallographic then Uyq is unipotent, i.e. L(I'yq) is unipotent.

In 10.2 f. we come back to comparing Bieberbach’s theory for Euclidean crystallographic
groups with the more general situation of affine crystallographic groups.



6 A lemma, dimension 2

Let us return to the full group Aff(E) of affine transformations. Let " be a properly
discontinuous subgroup of Aff(E). Passing to a subgroup of finite index, we may assume
that I' is torsion free and hence every element v # e of I' has no fixed point, see remark
4.1. The following lemma is easy but basic.

6.1 Lemma Ify € Aff(E) has no fized point then 1 is an eigenvalue of L(7).
We can give the following more precise description of v: After choosing a base point in E

and a basis ey, ..., e, of TE suitably, an element v € Aff(E) with no fixed point can be
written in the form

(6.2) yr = Az +1
with

B 0
(6.3) A= <0 JT) b= en,

where B € GL(n —r,R) and J,. is an r x r Jordan matrix

1 1 o --- 0
0 :
=1 . -0 0
: .. 1
0 --- --- 0 1

with > 1. So embedding Aff(E) into GL(n + 1,R) as at the end of section 2 we have
B 0
7= (O JT+1> .

It is worth giving a proof. After choosing a base point for [E we can write v in the form
yr = Az 4+t with A € GL(TE) and t € TE. Then ~ has a fixed point iff Az +¢t =z
has a solution iff ¢ € Im(A — I). Thus if v has no fixed point one arrives at the form
6.3 using the following two facts. By choosing an appropriate base point for E one can
change t to an arbitrary element ¢ = ¢ mod Im(A — I). Thus if ¢ ¢ Im(A — I) then 1
is an eigenvalue of A and one can take t as the last vector e, of a Jordan basis of the
primary space corresponding to the eigenvalue 1.

As an application of the lemma we see
6.4 Corollary T is virtually solvable if dimE < 2.

Proof The case dimE = 1 is trivial since Aff(E) is solvable. For dimE = 2 we use a
few basic facts about algebraic groups. We may assume that ' is torsion free, so 1 is
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an eigenvalue of L(7y) for every v € T'. The same then holds for the algebraic closure
G of L(T'), hence G is of codimension at least one in GL(2,R). The only possibility for
a non-solvable algebraic subgroup of GL(2,R) of dimension < 3 is SL(2,R), which is
impossible by the eigenvalue 1 criterion.

Using the more precise description of formula 6.3 one can classify the torsion free elements
of Aff(2). One can go further and describe all the properly discontinuous subgroups of
Aff(2), virtually, see [Ku]. Here is the result. Consider the following three subgroups of

()0 o)
() ()
() ()

H, T and P stand for “hyperbolic”, “translation” and “parabolic”, respectively.

6.5 Proposition Each of these three subgroups of Aff(R?) acts properly on R?,
hence every discrete subgroup of any one of them acts properly discontinuously on R2.
Conversely, every properly discontinuous subgroup T' of Aff(R?) contains a subgroup A of
finite index which is a discrete subgroup of H, T or P, after an appropriate choice of a
basepoint and a basis for TE.

Recall from section 5 that an action of a locally compact topological group G on a locally
compact topological space X is called proper if the set of returns {g € G; gK N K # 0} of
G is (relatively) compact for every compact subset K of X. If T # {e} the three cases of
proposition 6.5 are disjoint with the following exception: A cyclic group of translations is
in T'N P in suitable coordinates. Incidentally, the groups 7" and P are conjugate by the
polynomial automorphism f of R?* where f(z,y) = (z + %, Y).

There are numerous consequences of this classification in dimension 2 and it is interesting
to ask if the corresponding statements are true in higher dimensions. Let I' be a properly
discontinuous subgroup of Aff(E). The statements of the corollaries are for dimE = 2.

6.6 Corollary (dimE = 2)T is virtually abelian.

We had already seen that this is no longer true if dimE > 3, for an example see the
remark before 5.3.

6.7 Corollary (dimE = 2)T is virtually a discrete cocompact subgroup of a connected
Lie subgroup G of Aft(E) and G acts properly on E.

For virtually solvable properly discontinuous groups this is true for arbitrary dimensions
of E. But no uniqueness of G can be achieved, see [FG].

6.8 Corollary (dimE = 2) Suppose T is properly discontinuous. Then T is crystal-
lographic iff T is virtually isomorphic to Z2.



In higher dimensions, there is of course a purely group theoretical characterization of the
crystallographic groups among the properly discontinuous ones, as follows. A properly
discontinuous subgroup I' of Aff(E) is crystallographic iff the virtual cohomological di-
mension of I' equals dim [E. This criterion is essential for one of the proofs of the Auslander
conjecture in dimension 3, see the proof of 7.1 below.

6.9 Corollary (dimE = 2) A subgroup I' of Aff(E) is crystallographic iff it is virtually
a cocompact subgroup of a connected Lie group G C Aff(E) acting properly and simply
transitively on E. Actually, then G is an algebraic subgroup of Aff(E).

In higher dimensions, the first statement is still true for virtually solvable crystallographic
subgroups I' of Aff(E), see [FG] and 10.2. The second statement is not true in higher
dimensions. And no uniqueness of G can be achieved.

6.10 Corollary (dimE = 2) IfI is a torsion free properly discontinuous subgroup of
Aff(E) then T\E is diffeomorphic to a cylinder S* x R or a torus S* x S*.

The second case occurs of course iff ' is crystallographic. In dimension 3, every crystal-
lographic subgroup of Aff(E) contains a subgroup A of finite index such that A\E is a
differentiable 2-torus bundle over the circle, see [FG]J.

7 The Auslander conjecture in dimension 3

We have all the ingredients to give a proof of at least the key case of the Auslander
conjecture in dimension 3.

7.1 Theorem [FG] Every crystallographic subgroup T of Aff(E) is virtually solvable
if dimE = 3.

Proof of one case Using the eigenvalue 1 criterion of lemma 6.1 one sees that the
theorem is true unless the semisimple part of the algebraic hull of " is SL(2,R) x {1} or
SO(2,1) in appropriate coordinates. In the first case, one can show that the image of T
cannot be Zariski dense in SL(2,R) x {1} if T is properly discontinuous. The proof uses
dynamical properties of such affine maps and is thus similar in spirit to the considerations
of the next section. Now let us only consider the second case. So suppose L(I') is contained
and Zariski dense in G = SO(2,1). Then L(I') is a discrete subgroup of G, by 5.4. We
claim that L : I' — G is injective. If ker(L|I") # 0, then © := ker(L|I') is a lattice in
the group T of translations of E, since the representation of G, and hence of L(I'), on
T is irreducible and © is an L(I')-module and a discrete subgroup of 7. But then ©
must be of finite index in T, since ©\E — I'\E is a covering map of compact spaces —
assuming I" is torsion free. Hence L(I') = I'/O is finite, contradicting that L(I") is Zariski
dense in G. This shows that L : I' — G is injective. So I' is isomorphic to the discrete
subgroup L(T") of G. But every discrete subgroup of G acts properly discontinuously on
the symmetric space X of G. The complex upper half plane is a model of X, so X is
a 2—dimensional contractible manifold. It follows that L(I") has virtual cohomological
dimension at most 2. On the other hand, I' acts crystallographically on E = R3, hence
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has virtual cohomological dimension 3, a contradiction. Note that for this last step of the
argument it is crucial that ' is crystallographic.

For a geometric proof using the dynamics of affine maps, see [S 2|. The author actually
shows the result for semigroups.

7.2 In [FG] Fried and Goldman proceed to classify all the crystallographic subgroups T’
of Aff(E) for dimE = 3. As an abstract group I is virtually isomorphic to Z? x4 Z where
Z acts on Z? by the powers of a matrix A € SL(2,7Z) with positive eigenvalues ([FG] end
of 5.4). This group I sits naturally in the Lie group G = R? x4 R. Every such G can be
embedded into Aff(R?) in such a way that the resulting affine action of G' on R? is proper
and simply transitive. These embeddings are not unique up to conjugation in Aff(R?), in
none of the different cases distinguished. The cases are: If A is hyperbolic, i.e. tr A > 2,
then G is solvable not nilpotent. If A is the identity then G is abelian. If A is neither,
then G is isomorphic to the 3—-dimensional Heisenberg group. One such embedding for
every case is given by sending ((u,v),t) in Z% x4 Z or R? x4 R to

1 0 t
0 At ) u
v

The proof of the classification relies on Lie theory, see 10.2 f.

8 A free properly discontinuous affine group in di-
mension 3

In this section I will describe an invariant for certain affine transformations due to Mar-
gulis. This invariant is crucial for the counterexample to Milnor’s question in dimension 3.
Higher dimensional analogues of this invariant are similarly essential for the Auslander
and Milnor questions in those dimensions.

So suppose dimE = 3. We mentioned already, in the proof of 7.1, that a properly
discontinuous subgroup I" of Aff(EE) is virtually solvable unless L(I") is virtually contained

in SO(2,1).
8.1 Solet v € Aff(R?), A := L(y) € SO(2,1) and suppose trA > 3. Then A

has three real eigenvalues: 1, A > 1 and A=! < 1. The action of A on R? is easy to
understand. A fixes the line A°(y) := Eig(A, 1), it acts by expansion by the factor A on

11



A*(v) := Eig(A, \) and by contraction by A" on A~ (v) := Eig(4, A\71).

A*(y)

The orbit under < A > of any point & (A (y) U A= (7)) @& A%(y) is contained in a hyper-
bola contained in a plane parallel to A*(y) @ A~ (). The element A is therefore called
hyperbolic.

8.2 It is equally easy to understand the action of an affine transformation v with L()
hyperbolic. There is a unique y—invariant affine line in [E, called the azis of v and denoted
C(7). We have TC(y) = A%(y) and ~ induces a translation on C(v), denoted 7(7). Note
that 7(v) € A(7). So for a point

r=2"+v" +0v” € R?
with 2° € C(v), v¥ € A*(y) we have
'z =2 + nr(y) + At + AT
7 has a fixed point iff 7(y) = 0. We thus assume 7(vy) # 0.

Let us see what happens to a rectangle R = {z° + s7(v) + tv*; s € [0,1], t € [, +¢|}
in the plane D*(y) := C(y) + A*(y) of length 7(v) and small width 2¢ with symmetry
axis C'(y). After n times applying v we obtain the rectangle v"R = {2° + s7(v) + tv™;
s € [n,n+ 1], t € [-A"e, \"¢]} of the same length but exponentially growing width 2A"e
for n € N.

YI(R)

L
o

D*(y) C(y)
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8.3 Let us now look at two affine transformations. So suppose 71,7, are in Aff(R3)
such that L(vy;) € SO°(2,1) are hyperbolic and 7(v;) # 0 for ¢ = 1,2. Let us assume
furthermore that they are in general position. To be precise we shall need only that
At (m) ¢ A%(re) @ A*(12) and A (72) ¢ A°(m1) ® AT (). Then D*(y1) N D*(72) is
a line, say L. Let us see what happens to our rectangles R; and Ry defined as above:
Y*R; intersects L for n € N large since TL }f A*(7;), and the intersection v'R; N L is
a line segment in L of the form {y; + tp; ; t € [n,n + 1]} for some point y; € L for
n >> 0, where p; € T'L is the projection of 7(7;) onto T'L along A*(v;). We have p; # 0
since 0 # 7(v;) € A%(;), hence 7(v;) & A% (7). So p; and py are non zero multiples of
each other. Let us consider the case that they are positive multiples of each other, i.e.
po =1 -py with r > 0.

In this case, as in the picture below, there are an infinite number of pairs (ny, ng), ny —
+00, ny — +00, such that v1* Ry N 752 Ry # (). But this cannot happen if T' is properly
discontinuous, since it is easy to see that there are infinitely many different elements

D+(V2) /

among the ;™" 5.
/ ’ :
R2

P2y

C>

Py m{.—

- /Aq:

R
D*(y1) c]

Let us state the result.

Two elements 71, 72 in Aff(R?) as above are said to form a positive pair if py = r - py for
r > 0.

8.4 Lemma A properly discontinuous subgroup I of Aff(R?) does not contain a positive
pair.

Maybe, if 71,72 do not form a positive pair, then 7, 7, * do? To answer this question and
for other purposes it is good to associate an invariant to every single hyperbolic element
and to decide if two form a positive pair by comparing their invariants.

To define such an invariant, we need to give A°(y) an orientation. Let B be the quadratic
form
B(l’,y,Z) :xQ +y2 _Z2

on R? with coordinates (z,y, z) corresponding to the group SO(2,1). The set of isotropic
vectors {(z,y, ) ; B(z,y, z) = 0} is also called the light cone. The set of non zero isotropic
vectors has two connected components, one of which we call the positive light cone N,
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say those with z > 0. If L(vy) is hyperbolic then every eigenvector x+ € A* () and every
eigenvector x~ € A~ (y) is isotropic. Note further that every eigenvector z° € A°(y) is
orthogonal to both * and 2~ with respect to B and that B(a",2") > 0. Hence there is a
unique eigenvector 2° € A°%(vy) such that B(z",2%) = 1 and (2=, 2T, 2%) form a positively
oriented basis of R? whenever 2= € A~ (y) NN and 2+ € AT (y) NNT.

Az

’ y
>
The invariant is now defined by

(8.5) a(y) = B(2’(v),7(7)).

This definition is due to Margulis [Ma 1, Ma 2, Ma 3]. We remarked above that 7(y) = 0
iff v has a fixed point. Thus a(v) # 0 if v has no fixed point. Furthermore, if we have
Y(xo +v) = xg + L(7)v + t for some zy € R3, v € R?, then

(8.6) a(y) = B((y),vz — z)

for every « € E since yx—z = 7(y) mod Im(L(y)—1) and Im(L(y)—1) = AT (y)® A~ (v)
is orthogonal to z%(y) with respect to B. Note that A*(y1) = AF(y) and A°(y 1) =
A%(), hence 2°(y 1) = —2%(y) and thus

(8.7) a(y™) = a(y).

If we have two elements 71, 2 as in section 8.3 then it is easy to see that (7 (v1), ¥ (71), w)
and (27 (72), % (72), w) have opposite orientations for 0 # w € TL. Thus 71, 72 form a
positive pair iff a(y;)a(y2) < 0. We thus have the following consequence of lemma 8.4.
One has to mention that the case that 7;, 79 are not in general position is easy to handle
by a similar argument using the intersection of C(v;) @ AT (y1) with C'(y2) @ A~ (7).

8.8 Corollary If T is a properly discontinuous subgroup of Aff(R?®) then a(y) is
positive for every hyperbolic v € ' or negative for every hyperbolic v € T'.

Recently Goldman and Margulis [GM] conjectured that the converse of 8.8 holds, as
follows.
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8.9 Conjecture Suppose I' is a subgroup of Aff(R3) such that L(y) € SO°(2,1)
is hyperbolic for every v # e in I' and a(y) > 0 for every v # e. Then ' is properly
discontinuous.

So far this conjecture is open. But the following weaker form was proved by Margulis
[Ma 1, Ma 2]. Let 71, 72 be two elements of Aff(R3) with L(~;) hyperbolic in SO°(2,1),
a(v;) > 0 and 77 and 7, in general position. Then the group generated by ; and ~,
contains a subgroup I' which is free, acts properly discontinuously and for which L(T") is
Zariski dense in SO(2, 1). This proves the following theorem 8.10. The invariant « is used
in the proof in two essential ways. First of all it is proved that under the above hypotheses
a(y172) equals a(y1) + a(y2) up to a controllable error term. Then this estimate is used
to prove the existence of the subgroup I'. Here one looks at a(gv), v € I, for a suitably
chosen element g € SO(2,1) x R3.

8.10 Theorem There is a free properly discontinuous subgroup I' of Aff(R?) with
L(I") Zariski dense in SO(2,1).

The invariant o has a number of further interesting features, as follows.

8.11 Remark Let I' be a subgroup of Aff(R?®) such that L : I' — S0°(2,1) is
injective and L(v) is hyperbolic for every v # e. For a given point z € R? the map
u: L) — R3 u(L(y)) = vz — x defines a cocycle whose cohomology class [u] €
H'(L(T'),R3) is independent of the choice of x. Mapping u to the invariant o gives a
map H'(L(T'), R3) — R*®) from this cohomology group to real valued functions on L(T).
Drumm and Goldman recently showed that this mapping is injective, i.e. a is a complete
invariant of the cohomology class given by the translational part.

8.12 Remark One can also interpret a as the derivative of the trace of v and also
as the derivative of the displacement length ¢(), that is the minimum distance that ~
moves a point of the symmetric space of SO°(2,1). Using this and Teichmiiller theory
Goldman and Margulis [GM] gave a new proof of the following theorem of Mess [Me].

8.13 Theorem Let I' be a properly discontinuous subgroup of Aff(R®) with L(I') C
S0°(2,1). Then L(T') is not cocompact in SO°(2,1).

8.14 Remark Drumm and Goldman have been pursuing a program of detailed study
of the geometry of the manifolds T\R?, where T is a free properly discontinuous subgroup
of SO(2,1) x R3, see [Dr, DrG 1, DrG 2, DrG 3|.

9 Higher dimensions

The Auslander conjecture has recently been proved for dimE < 6, announced in [AMS 2].
The proof involves a discussion of several cases and the details still have to be published.
In this section we discuss the case of SO(n + 1,n) which is a key case for dimension 5
with n = 2, and is for dimension 7, i.e. n = 3, a major unsolved case.
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9.1 Much of the discussion in this section is a generalization of section 8. A difference
occurs in formula 9.3, namely that a(g™!) = £a(g) where the sign depends on the parity
of n. This has decisive consequences for our question.

Suppose v € Aff(R**!) and L(y) € SO°(n + 1,n). Consider the decomposition of R
into the direct sum of the subspaces

R = A7 (y) @ A%(7) @ AT(7)

where A=(v), A%(y), A*(y) are determined by the condition that they are the maximal
L(~)-invariant subspaces such that the eigenvalues of L(y)|A™(y) (resp. L(7) | A°(v),
resp. L() | A*(y)) are of modulus < 1 (resp.= 1, resp. > 1). An element 7 is called
pseudohyperbolic if dim A°(v) = 1 and the eigenvalue of L(v) | A°(7) is +1. Let Q be the
set of pseudohyperbolic elements of SO°(n + 1,n) x R*"+1,

For every v € € there is exactly one invariant affine line C(v), called the axis of -,
and C(v) is parallel to A°(7y). The restriction of v to C(7) is a translation by a vector
7(y) € A°(w), called the translational part of ~y. The affine transformation y € Q has a
fixed point iff 7(y) = 0. Let Qy = {v € Q | 7(y) # 0}. The dynamical properties of
v € )y are completely analogous to those discussed in 8.2.

9.2 We proceed to define the invariant o for v € €. To do this we have to introduce
an orientation on A°(v). Let B be the quadratic form on R?**! given by

B2y, ... Topg1) = ]+ Ty — Ty — = Ty

Let ¥ be the set of all maximal isotropic subspaces of R*"*! with respect to B. The
projection ¢ : R#"*1 — R™ q(xq,...,Tons1) = (Tpyo, ..., Touy1) induces an isomorphism
q:V — R" for every V € W. Thus if we give R™ an orientation, this endows every V € W
with an orientation. Similarly, for V € ¥ the B-orthogonal subspace V+ := {w € R,
B(v,w) = 0 for every w € V} is mapped isomorphically onto R™™! by the projection
p: R R (2, ... 20,41) = (21,. .., 2,41). Thus giving R™*! an orientation we
can endow every V+, V € U, with an orientation. The point is that we then can give
every line Rw C V+, Rw ¢ V., an orientation, depending on V', namely we define w to be
positively oriented with respect to V', and write w >y 0, if for every positively oriented
basis (vy,...,v,) of V the basis (vy,...,v,, w) of V* is positively oriented.

9.3 We of course want to apply this for affine transformations. So let v € Q. The
subspaces A% () are maximal isotropic and the eigenspace A°(7y) is contained in V* for
V = A*(y). We have B(2° 2% > 0 for every 2°(y) # 0 in A°(y). Hence there is a
unique eigenvector z°(y) € A°(y) such that B(z°(y),2%%)) = 1 and z°(y) is positive
with respect to AT (vy). We now define the invariant

(9.4) a(y) == B(z(v), 7()).
We have
(9.5) a(y) = B(2°(y),yz — z)

for every z € R* since (yz — z) — 7(y) € Im(L(y) — ) = AT (y) ® A~ (y) = 2%(y)*.
This definition coincides with the previous one for R3 by the following observation applied
for Vi = A=(7), Va = A*(3).
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9.6 Observation IfVy, Vo, € ¥ with Vi NV, = {0} then the sum orientation of
Vi @ Vit = R s independent of the pair Vi, Vs.

The sum orientation of the sum V @& W of two oriented vector spaces V, W in this order

is of course the orientation given by any basis of the form (vy,..., vy, wy,..., w,) where
(v1,...,vm) is a positively oriented basis of V' and (wy,...w,) is a positively oriented
basis of W.

All of this is completely analogous to what was said in section 8. A new phenomenon
occurs if we compute a(y™1):

(9.7) a(y™h) = (=1)"a(y),

since A*(y) = AT(y™'), A%(y) = A°(v7"), 7(y7") = —7(7) and 2°(v™") = (=1)" 2°(7),
as follows from the observation 9.6 for V; = A%(y).

9.8 Proposition Suppose 1, 72 € Qo and the intersection of any two of the four
vector spaces AE(v;), i = 1,2, is zero. If (—=1)""a(y)a(ye) < 0 then the group T
generated by v and 7y is not properly discontinuous.

The proof is the same as for 8.4. The condition that 7;, 79 form a positive pair translates
into the condition in 9.8, using the observation 9.6.

A proof generalizing that of 8.10 yields

9.9 Theorem There is a free properly discontinuous subgroup T' of Aff(R**1) with
L(I") Zariski dense in SO(n+ 1,n) if n is odd.

For n even the situation is completely different:

9.10 Theorem There is no properly discontinuous subgroup I' of Aff(R* 1) with
L(T") Zariski dense in SO(n+ 1,n) if n is even.

Once we found two elements v;, ¥2 in Qq fulfilling the hypothesis about the spaces A% (%),
either 71, 2 or 1, 75 ' fulfill the hypothesis of 9.8, as follows from 9.7 since n is even. One
step in the proof is to find one pseudohyperbolic element. Note that to be pseudohyper-
bolic is not an algebraic condition, e.g. A € SO°(2,1) is hyperbolic iff tr A > 3. Neverthe-
less one finds a pseudohyperbolic element, in fact many, in every Zariski dense subsemi-
group of SO%(n + 1,n). The relevant notion is that of prozimal elements [GoM, AMS 1].
This notion is due to Furstenberg and was used in his work on boundaries. Proximal
elements were also used in Tits’ proof of the Tits alternative [Ti], cf. theorem 3.4.

Theorem 9.9 tells us that there is a properly discontinuous subgroup I' of Aff(R7) with

L(T') contained and Zariski dense in SO°(4,3). An open problem is if there is crystallo-
graphic I" with these properties. Auslander’s conjecture claims there is none.
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10 Further results

The Auslander conjecture has been proved for some further special cases. One of the most
general results obtained so far is the following theorem.

10.1 Theorem [S 1, To] LetT be a crystallographic subgroup of Aff(E). Suppose
L(T") is contained in a real algebraic group all of whose simple quotient groups have real
rank at most one. Then I' is virtually solvable.

For further results under assumptions about L(I') see [KW, K].

The paper [GrM] contains a classification of those crystallographic groups I' for which
L(T) is contained in O(n — 1, 1), up to commensurability.

Bieberbach proved that every Euclidean crystallographic group is a finite extension of its
translation group, see theorem 5.1, second part. In the following theorem which holds
for an arbitrary affine crystallographic group, supposing it is virtually solvable, the group
of all translations is replaced by a group H which acts simply transitively and by affine
transformations on affine space. Recall that an action of a group H on a set X is called
simply transitive if the map H — X, h —— hx, is a bijection for one — equivalently for
every — x in X.

10.2 Theorem [FG] For every virtually solvable crystallographic subgroup T of
Aff(E) there is a closed connected solvable Lie subgroup H of Aff(E) with the following
properties:

(a) H acts simply transitively on E.

(b) A:=TNH is of finite index in I and cocompact in H.

(¢c) A and H have the same algebraic hull.

Fried and Goldman actually have a similar theorem for properly discontinuous virtually
solvable subgroups of Aff(E). Note that H is not unique, in general. Theorem 10.2 is an
essential tool in the classification results in [FG] and [GrM]. These authors first classify
the possible groups H and then the possible groups I' or A. In view of theorem 10.2 the
following problem gains additional relevance: Determine all the connected Lie groups H
which have a simply transitive continuous action by affine transformations on some affine
space E. Then H — E, h —— hx, is a diffeomorphism for every = € E. And it was
known for a long time that H must be solvable [Au 2, Mi]. But only much later examples
of nilpotent simply connected Lie groups were exhibited which do not have a simply
transitive action by affine transformations on some affine space [Be|. As a consequence
Benoist gives an example of a finitely generated torsion free nilpotent group which is not
an affine crystallographic group.

Here are geometric versions of these results, first of Bieberbach’s and then of Fried and
Goldman’s.

10.3 Corollary FEvery compact flat Riemannian manifold has a finite cover by a flat

torus. Fvery complete flat Riemannian manifold is finitely covered by a flat Riemannian
vector bundle over a torus.
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10.4 Corollary Every compact complete flat affine manifold with virtually solvable
fundamental group is finitely covered by a solvmanifold.

A solvmanifold (nilmanifold) is a manifold of the form G/T" where G is a connected
solvable (nilpotent) Lie group and T' is a cocompact discrete subgroup of G. Benoist’s
example shows that there are compact nilmanifolds which do not have a complete flat
affine structure.

10.5 The following result is interesting to note: Every virtually solvable affine crystal-
lographic subgroup of Aff(E) virtually preserves the Euclidean volume of E [GH]. This
supports the Markus conjecture which claims that a compact affine manifold is complete
iff it has a parallel volume.

10.6  Bieberbach also showed that in each dimension there are only finitely many
isomorphism types of Euclidean crystallographic groups and that isomorphic Euclidean
crystallographic groups are conjugate in the affine group. None of these results is true
for affine crystallographic groups: There are infinitely many isomorphism types of affine
crystallographic groups in dimension 3 already, as follows from the examples in 7.2. Also
already in dimension 3 isomorphic affine crystallographic groups may not be conjugate,
they may fall into an uncountable number of different conjugacy classes in the affine
group, see [FG].

Other features of Bieberbach’s theory also break down: Given H and A as in theorem
10.2, there may be groups I' which lie in infinitely many conjugacy classes in Aff(E)
and the indices |I" : A| may be unbounded. An example in dimension 6 is given in the
paper [GrS]. In this paper the authors make a detailed study of the structure of virtually
solvable affine crystallographic groups. An essential tool is a refined version of 10.2.

Also a simply transitive affine group H may contain infinitely many pairwise abstractly
noncommensurable Zariski dense cocompact discrete subgroups A, see [GrM]. Here two
groups A and B are called abstractly commensurable if A contains a subgroup of finite
index which is isomorphic to a subgroup of finite index in B.

10.7  Polynomial automorphisms. TInstead of looking at the group Aff(E) of affine au-
tomorphisms of affine space one can consider the group P(V') of all polynomial automor-
phisms f of the real vector space V. So with respect to some basis of V' the components of
f as well as its inverse are given by polynomial functions in the coordinates. Thus Aff(IE)
consists of those polynomial automorphisms all of whose component functions have total
degree 1. Now that it is known that not every polycyclic group is an affine crystallographic
group, one can ask the question if every virtually polycyclic group I' has a homomorphism
into P(V') such that the corresponding action of I' on V' is properly discontinuous and
['\V is compact. The answer is yes, even with polynomial diffeomorphisms of bounded
degree [DI]. The authors also asked the following more general version of Auslander’s
question: Suppose I' is a subgroup of P(V') such that the corresponding action of I' on
V' is properly discontinuously and the orbit space I'\V is compact. Is then I' virtually
polycyclic?
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