On abstract homomorphisms of Chevalley
groups with nonreductive image I

L. Lifschitz, A. Rapinchuk

The efforts in the study of abstract homomorphisms between the groups
of rational points of algebraic groups are aimed at proving that under cer-
tain conditions any group homomorphism u: G(k) — G'(k'), where G and
G' are algebraic groups over (infinite) fields k¥ and k' respectively, can be
obtained from a field homomorphism & — k' and a k'-rational homomor-
phism G — G', where G is obtained by the change of scalars from & to
k" (such homomorphisms are called standard). In their fundamental paper
[BoT], Borel and Tits showed, in particular, that if G and G’ are absolutely
simple, G is k-isotropic, and p has a Zariski dense image, then any homo-
morphism y is (basically) standard ([BoT : 8.1]). In fact, the main result of
[BoT] is more general and describes abstract homomorphism when only G is
assumed to be absolutely simple (and k-isotopic) while G’ is allowed to be
an arbitrary reductive group, but its statement is more technical (cf. [BoT],
8.16). In the same paper (loc. cit., 8.18) Borel and Tits pointed out that
dropping the assumption that G’ be reductive opens a way to the existence
of essentially new homomorphisms. Namely, given a field extension K/k and
a derivation §: k — K, for any algebraic group GG defined over the field of
constants kg = {z € k|d(x) = 0} one can consider a homomorphism

ns: G(k) = G(K) x g(K),  ns(9) = (9,2(9)),

where the semi-direct product is formed using the action of G on its Lie alge-
bra g via the adjoint representation, Qs(g) = g7 '®5(g) and ®;(g) is obtained
by applying § to every matrix entry of g; moreover, if § is nontrivial, 75 has
a Zariski dense, hence nonreductive (as g is the unipotent radical of G x g)
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image (for details - c¢f. §2). In [T], Tits formulated a general conjecture
that under sufficiently general hypotheses on G and k£ and without assuming
G’ to be reductive, for any abstract homomorphism ¢: G(k) — G'(k') there
should exist a commutative finite dimensional k’-algebra A and a ring homo-
morphism a: k — A such that ¢ can be written as ¢ = 1) o ry/p o & where
a: G(k) -4 G(A) is induced by « (4G is the group obtained by the change of
scalars), ra/x 4 G(A) = Rasw(4G)(K') is the canonical isomorphism (R4,
is the functor of restriction of scalars), and v is a rational k’-morphism
from R/ (4G) to G'. In the same paper Tits proved this conjecture for
k = k' = R and also announced its truth for G a simple simply connected
split k-group if £ is not a nonperfect field of characteristic two. However, this
result still leaves open the question about an explicit decription of abstract
homomorphisms as one would like to know precisely what algebras A and
what rational homomorphisms v can actually arise. Subsequently abstract
homomorphisms with nonreductive image were not analyzed (to the best of
our knowledge).

The goal of this paper is twofold. Firstly, we show that if G is an abso-
lutely simple simply connected split (in other words, Chevalley) group over
a field k£ of charactersitic zero, then any homomorphism of G(k) such that
the Zariski closure of its image has a commutative unipotent radical, can be
obtained from Borel-Tits’ construction. This result does not depend on Tits’
result from [T] and gives an explicit description of such homomorphisms.
Secondly, we describe a generalization of Borel-Tits’ construction which al-
lows one in particular to construct abstract homomorphisms for which the
unipotent radical of the Zarsiki closure of the image has arbitrarily large
dimension and nilpotency class.

For abstract homomorphisms whose image has a commutative unipotent
radical we prove the following.

Theorem 3 Let G be a simple simply connected Chevalley group over a field
k of characteristic zero. Furthermore, let G be a connected algebraic group
over an extension K of k, and p: G(k) — G(K) be an abstract homomorphism
with Zariski dense in G image. Assume that:
1) the unipotent radical V = R,(G) is commutative, and
2) if G' = G/V, then the composition G(k) — G(K) — G'(K) of
W with the canonical morphism G — G' extends to a rational K-
homomorphism \:G — G'.



Then

(i) there ezists a finite extension L/K over which V.=V, & --- &V,
where all V;’s are copies of the adjoint representation of G';

(i) let H=Gx (g ---® g), where g is the Lie algebra of G on which

T
G acts via the adjoint representation; then there exist derivations
01,...,0,:k — L and an isogeny 7: H — G such that p = T ons, 5,
where ns,,...5,: G(k) = H(L) is defined by

L (g) = (ga Q51 (g)’ IREE! er (g))

We fix some notations in §1, and after some preparations in §§2-3, prove The-
orem 3 in §4. The latter section also contains some applications of Theorem
3 among which we mention here the following.

Theorem 4 (“Superrigidity”) Let G be a simple simply connected Cheval-
ley group over a finitely generated field k of characteristic zero, d = tr.deg.qk.
There exists an algebraic k-group Gy of dimension (d+1)-dim G having a com-
mutative unipotent radical, and a group homomorphism 1: G(k) — Go(k) with
Zariski dense in Gy image such given an abstract homomorphism pu: G(k) —
G(K) as in Theorem 1, there exists a unique rational K-homomorphism
p:Go — G such that p=pout.

In §5 we give a sufficient condition for the unipotent radical of the image of
an abstract homomorphism to be commutative. Finally, in §6 we generalize
Borel-Tits’ construction as described in the following theorem.

Theorem 6 Suppose there exists a monzero derivation 0:k — K, and let
ko denote the field of constants of §. Given a connected algebraic ko-group
G, for any n > 1 one can construct a connected ko-group G, of dimension
(n+1) - dimG such that there exists an abstract homomorphism G(k) —
Gn(K) with a Zariski dense image. If G is reductive, then the unipotent
radical Ry(Gy) has dimension n - dim G; if moreover G is semi-simple, then
the nilpotency class of Ry(Gn) is n.

Part of this work was done when the first-named author was visiting the
University of Bielefeld as a guest of the GIF project (summer 1999). The
second-named author was partially supported by grants from NSF and BSF
USA-Israel.



1 Notations and conventions.

Everywhere in this paper GG will denote a simple simply connected Chevalley
group scheme. We let T denote a (fixed) split torus in G, and let R = R(T, G)
be the corresponding root system. We fix an ordering on R, and denote by Il
(resp., Ry) the set of simple (resp., positive) roots relative to this ordering.
We will denote the Lie algebra of G as g, and let { X, }acr U{Ha}aen denote
a Chevalley basis of g corresponding to the choice of the maximal torus and
the ordering on R. For a € R, we let

ua(t) = exp(tX,)

denote the canonical parametrization of the corresponding 1-parameter uni-
potent subgroup U, C G. Furthermore, G, will denote the subgroup (iso-
morphic to SLs) of G generated by U, and U_,, T, = T N G,, and g, will
be the Lie algebra of G,.

Throughout the paper the ground field £ will always have characteristic
zero. Whenever convenient, we will tacitly identify G' with the group of its
points over a suitable algebraically closed field containing k.

Given an abstract homomorphism pu:G(k) — G(K) into the group of
rational points of an algebraic group G over a field extension K/k we will
typically be assuming that the image of u is Zariski dense in G and will use
the corresponding script letters to denote the Zariski closure of the image
of objects associated with G, e.g. T = p(T'(k)), Go = Ga(k), etc. Since
G (k) does not have proper normal subgroups of finite index, the assumption
about the density of the image of iz implies that G is automatically connected.
Furthermore, since G(k) is its own commutator subgroup, the radical R(G)
coincides with the unipotent radical V' = R,(G). Everywhere in this paper
we will be assuming that the homomorphism G(k) — G' = G/V obtained by
composing i with the canonical projection G — G/V extends to a rational
homomorphism \: G — G'. Then, in particular, for any connected k-subgroup
H C G, the subgroup u(H(k)) is also connected (as such is any unipotent
group in characteristic zero). It follows from the Levi decomposition (cf.
[Mo]) that G’ can be identified with a subgroup of G, and then G = G' x V.
Then p admits a presentation of the form

1(g) = (Mg),v(g)) for g€ G(k), (1)
with v(g) € V, which will be used throughout the paper.
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Let \:G — G’ be a k-isogeny. Then ' (prime) will generally be used
to label objects pertaining to G' (e.g. ¢ will denote the Lie algebra of
G'). However, we will not distinguish beween the root systems R(T,G)
and R(T",G"), where T" = A\(T'); more precisely, we will identify these using
the homomorphism \*: X (7") — X(7T') of the character groups induced by
A. The differential d\: g — ¢’ is an isomorphism of the Lie algebras, and
{X! Yacr U{H Yacu, where X! = dA\(X,) and H', = dA\(H,), is a Chevalley
basis in g’'. We also let u! (t) = exp(tX],), and note that A(u,(t)) = ul,(¢).

2 Derivations and Homomorphisms

For an extension K of k we let K[e|, where €2 = 0, be the algebra of dual
numbers over K. It is well-known (cf., for example, [J], Prop. 8.15) that an
additive function 6: k — K is a derivation if and only if the map é: k — K|[e],
given by 8(z) = x 4 0(z)e, is a ring homomorphism. Moreover, given a
derivation ¢, the homomorphism 4 is in fact a homomorphism of ky-algebras
where kg = {x € k|6(x) = 0} is the subfield of constants in k. It follows that
for any algebraic k¢-group G one can consider the group homomorphism
©s: G(k) — G(K[e]) induced by the ring homomorphism §. If we fix a matrix
realization of G, we can write s as follows:

vs5(9) = g+ Ps5(9)e,

for any g € G(k). Then 1 + g '®;(g)e € G(K[g]), i.e. Q(g) := g 'Ps5(g) €
g(K), where g is the Lie algebra of G (cf. [Bo], 3.20). Then

ns: g = (9,%2%(9))

defines a group homomorphism G (k) — G(K) x g(K). The construction of 7,
is due to Borel and Tits (cf. [BoT], 8.18) where it was also stated (without
proof) that if § # 0, then 7 has Zariski dense image (we will generalize
this fact in §6). The goal of this section is to show in particular that any
(abstract) homomorphism p: G(k) — G(K)x g(K) such that u(g) = (g, ) for
all g € G(k) is of the form ns for a suitable derivation 6: £ — K. To formulate
this result in a bit more general setting, we need one additional notation.
Given an isogeny \:G — G', welet G =G x g, ' = G’ x ¢, and denote by
A: G — G’ the rational homomorphism given by A(g, X) = (A(g), dA\(X)).
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Theorem 1 Suppose G is a simple simply connected Chevalley group over
k. Let p: G(k) = G'(K) = G'"(K) x ¢'(K), where K is an extension of k, be
an abstract homomorphism of the form (1) §1 for a K-isogeny \:G — G'.
Then

1) there existsv € g'(K) such that for a = (1,v) one has au(G(Z))a™t C
G'(K);

2) for any p: G(k) — G'(K) as above satisfying u(G(Z)) C G'(K), there
exists a unique derivation 6:k — K such that = A o n;.

PROOF. We let I' = G(Z) if G has rank > 1, and ' = G(Z[%]) if G has rank
one, and will think of I' as a subgroup of G(k). Then it follows either from
the Superigidity Theorem (cf. [Mar], Ch. VII, 3.10) or from the positive
solution of the congruence subgroup problem for I' (cf. [BMS], [Mat| and
[S]) that u(T) is a semi-simple K-defined subgroup of G’,' and therefore is
conjugate to a subgroup of G’ by an element of R, (G")(K) (cf. [Mo], §7 and
[BoS], Prop. 5.1), so 1) follows.

Now, suppose a homomorphism u:G(k) — G'(K) of the form (1) §1
satisfies

mG(Z)) C G'(K). (1)
Let « (resp., U) denote the maximal root (resp., the maximal unipotent
subgroup) corresponding to the fixed ordering on R. Then the subgroup
U, (k) and U(Z) commute elementwise, implying that u(U,(k)) and u(U(Z))
will commute. Since u(U(Z)) C G, this fact means that if (x, X) € u(U,(k)),
then X is fixed by A(U(Z)), so in view of Zariski density of U(Z) in U we
obtain that X belongs to the centralizer of U’ in ¢, i.e. to (X],), the subspace
spanned by X/ . This implies the existence of a function §: £ — K such that

p(ua(a)) = (uq(a), 6(a)Xy). (2)

In particular, U, = u(Uy(k)) is contained in U, := U], x (X]). Similarly, one
proves that U_, = u(U_o(k)) is contained in U}, := U’ , x (X' ). It follows
that G, = (G4 (k)) is contained in G, := G', x g/, where g, is the Lie algebra
of Gl

To identify u(T,(k)), we need some additional notations. We let Ni, =
{9e @ lgUlgcU}, and N = Ny NN .

IThis can also be proved by purely combinatorial computations, cf. [St2] and [R].
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Lemma 1 N =T} x (H]).

PROOF. The inclusion N’ D T x (H)) is obvious. Suppose (g, X) € N. Then
g € G' normalizes both U/, and U’ ,, and therefore g € T, hence (1, X) € N.
Suppose X =aX_,+bH,+cX,. We wish to prove that a = ¢ = 0. To prove
that ¢ = 0, we observe that since (1,aX, + bH,) € N, we obtain that
(1,cX_,) € N,. However, as the following computation shows, the latter is
impossible unless ¢ = 0 :

(1, =X ) (ua(1),0)(1, X_a) = (ua(1), Ha + Xa)

Similarly, one finds that a = 0, proving the claim.
It follows from the lemma that u(7,(k)) C T.(K)x K H.,, i.e. there exists
a function 7: £* — K such that

p(ha(t)) = (A(ha(t)), T(t) H,),

he being the canonical parametrization of T, (cf. [St1]).

Next, we will establish that the function ¢ introduced above is a deriva-
tion. It is a consequence of (1) that §(1) = 0, so the required fact follows
from the following.

Proposition 1 Suppose 6:k — K and 7:k* — K are two functions such
that the maps

Ua(k) = G(K), ua(a) = (Mua(a)),d(a)Xa),

and

To(k) 3 G(K),  ha(t) = (Mha(t)), 7(t) Ha)

extend to a homomorphism p: By (k) = T,(k)Un(k) — G(K). If 6(1) = 0,
then

1) 6 is a derivation;
2) () = 0(t)/t for all t € k*.

PRrROOF. Since p; and po are homomorphisms, we obtain that § is additive
and 7 satisfies 7(t1t2) = 7(¢1) + 7(t2) implying that o(t) := t7(¢) satisfies

O'(tltg) = U(tl)tQ + t10'(t2) for all tl, tg € k*. (3)
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Next, applying p to the identity A (t)uq(a)ha(t)™" = ugy(at?), after compu-
tations in G(K), we obtain

§(at®) = 6(a)t® + 2at’7(t). (4)
For assertion 1) we need to establish the “product rule” for § :
d(ab) = 6(a)b+ ad(b) (5)
for all a,b € k. Letting a =1 in (4) and taking into account (3), we obtain
§(t?) = 2t%7(t) = 2to(t) = o(t?) (6)

for all t € k*. If at least one of a or b equals +1, (5) is immediate. Otherwise
we will write

where

axl b bt1
a = = —
+ 9 ’ + 9 )

observing that none of a., by is zero. Then using additivity of § we obtain

§(ab) = 6(ab%) + 6(a®b>) — 6(a2b*) — 6(a®b2). (7)
On the other hand, using (6) and then (3), we obtain
a2 12) = o(a2) = o(@ B2 +a2o(12) = (a2 )12 + a2 6() , etc.
Substituting these equations into (7), after obvious simplifications we obtain
6(ab) = 6(a% — a® ) (b3 — b*) + (a% — a®)o(b5 — b*) = 6(a)b + ad(b),

proving (5), and therefore assertion 1).

Since § is a derivation, we have §(¢?) = 2t6(¢). On the other hand, in view
of (5) and (3), 6(t?) = o(t?) = 2to(t). Comparing these equations, we obtain
d(t) = o(t) for all t € k*, implying assertion 2).

Lemma 2 7;5(uq(t)) = (ua(t),0(t) Xa)-



Proor. We have:
0s(ua(t)) = exp((t + 6(t)e) Xa) = exp(tXa)exp(d(t)eXy)
= uu (1) (1 + 6(t)eX,),

implying the required result.
Now, we observe that since § is trivial on Z, for any g € G(Z) we have

(A ons)(g) = (Ag),0) = u(y) (8)
To conclude that ;1 = A o 75, we need the following.

Lemma 3 For any long root o € R(T,G) the subgroups G(Z) and U,(k)
generate G (k).

PRrROOF. We need the following two facts: 1) G(Z) contains representatives
of all cosets in the Weyl group (cf. [St1], §3), and 2) the Weyl group acts
transitively on roots of the same length (cf. [Bou], Ch. VI, §1, Prop. 10).
This implies that the subgroup H C G(k) generated by G(Z) and U,(k)
contains Ug(k) for all long § € R(T,G). In particular, if all roots have the
same length, then immediately H = G(k) as Ug(k) for all g € R(T,G)
generate G(k) (since G is simply connected). Next, if R(T, G) contains roots
having different length, we choose a short root # not orthogonal to . We
claim that

Us(k) — {1} = {tug(1)t |t € Tu(k)}. 9)
This follows from the relation

ha()us(1)ha(t) ™ = us(t'>*)

(cf. [Stl], Lemma 20(c)) as (3,a) = 1 because « is a long root and 3 is
a short one. Since To(k) C H, we obtain from (9) that Uz(k) C H. Using
transitivity of the action of the Weyl group on all short roots, we obtain that
H contains U, (k) for all v € R(T, G), hence H = G(k).

REMARK. Using commutator relations in Chevalley groups (particularly
those described in Lemma 33 (for Bs) and in statement (3) on p. 151 (for
() of [St1]), one can show that the assertion of our Lemma 3 remains true
in characteristic zero also for a short root a.

Now, we are ready to prove that y = A ons. By Lemma 2 and (8) that p
and A o7, coincide on G(Z) and U, (k), and therefore it follows from Lemma
3 that they coincide everywhere, completing the proof.
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3 The Case of Commutative Unipotent
Radical

Let p: G(k) = G(K) = G'(K) x V(K) be an abstract homomorphism of the
form (1) §1 associated to a K-isogeny \: G — G'. In this section, if otherwise
1s not stated, the unipotent radical V' of the image group G will be assumed
to be commutative (and nontrivial). Then V is a vector group which can be
considered as a G'-module. The goal of this section is to determine for which
V' a homomorphism p as above can have a Zariski dense image.

Proposition 2 Let G be a simple simply connected split group. If V # 0
is an (absolutely) irreducible G'-module such that there exists an abstract
homomorphism pu: G(k) — G(K) = G'(K) x V(K) of the form (1) §1 with a

Zariski dense image, then V is the adjoint representation of G'.

We begin with a couple of lemmas. For a root a € R(T,G) we let
W, denote the kernel of the projection U, — U/, = A(U,) induced by the
projection G — G’ (obviously, W, C V).

Lemma 4 Let G be an arbitrary simple simply connected split group as
above. Suppose V.=V, & --- ® V., where V;’s are irreducible G'-modules,
and p: G(k) — G' x V is an abstract homomorphism of the form (1) §1. Let
& (resp., U) denote the mazimal root (resp., the mazimal unipotent subgroup)
corresponding to the ordering on R. Then

(i) Wy is contained in the fized subspace VV' of U' = \(U);

(ii) for any long root a € R(T,G), one has dimU, < r+1; in particular,

if V' is irreducible, then dimU, < 2.

Proor. The fact that Uz is contained in the center of U implies that
u(Uz(k)), hence also Wy, is contained in the center of u(U(k)). However,
since (1, w) € W5 commutes with p(U(k)), w is contained in the fixed sub-
space VU of U’ = projection of u(U(k)) to G, proving (i). Since for an ir-
reducible G’-module the U’-fixed subspace is one-dimensional (cf. [H], 31.3),
we obtain dimW < dim VY = r, and therefore dimi; < r + 1. Since U,
for a long root « is conjugate by an element of G(k) to Us, this implies our
claim.

Next, we will establish a bound on the dimension of G in terms of that of
U,, a a long root. It is important to emphasize that the following lemma s
true without the assumption that the unipotent radical V' be commutative.
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Lemma 5 Let « € R(T,G) be a long root. If dimpu(U,(k)) = d, then

dim u(G(k)) < d-dimG. In addition, if there exists a root 3 € R(T,Q)
for which the dimension of T or Ug is < d, then dim u(G(k)) < d - dimG.

PROOF relies on one fact for G = SLy, which again is true without any
assumptions about the unipotent radical. To formulate it, we denote by T
(resp. U) the group of diagonal (resp. upper unitriangular) matrices in SLs.

Lemma 6 Let G = SLy and p: G(k) — G(K) be an abstract homomorphism
of the form (1) §1. Then

dim p(T'(k)) < p(U(k)).

PROOF. Let

(11 (10 dwe (01
YZlo1) "Tlrr ) MEYELL 0 )

First, we claim that for 7 = p(7T(k)), its intersection with the centralizer
Zg(1(u)) has order < 2. For this we observe that the conjugation by u(w)
inverts any element of 7 and takes p(u) to p(v). It follows that any element
t € T commuting with p(u) has to commute also with p(v). But u(w) €
(u(u), p(v)), so t = p(w)tp(w)* =t i.e. t2 = 1. Since T is commutative,
all its elements satisfying this relation form a subgroup consisting of semi-
simple elements. This subgroup projects injectively to G/R,(G), from which
the required assertion easily follows. Now, consider the map

6T = U=p(UF), te [t

It follows from what we have previously established that for any ¢ € T
the fibre ¢~'(¢(¢)) has not more than two elements. So, by the dimension
theorem dim7 < dim, as claimed.

Returning to the proof of Lemma 5, we conclude from Lemma 6 that
dim p(7T,(k)) < d, and the same is true for any long root. Let 8 € R(T,G)
be a short root. Pick a long root a not orthogonal to 3; then it follows from

(9) §2 that dim u(Ug(k)) < dim p(7,(k)) < d. Applying Lemma 6 one more
time, we obtain dim p(73(k)) < d. Since

vk =[]0y k) and Ty = ] T(h),

>0 v simple
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we conclude that
dimU < d- (# of positive roots) and dim7 < d - (rank of G).
Now, using the Bruhat decomposition

G(k) = JU®)T (k)wU(k),

(w runs through a set of representatives, taken from G(k), of all elements of
the Weyl group) we obtain

dim u(G(k)) < d- (2 - (# of positive roots) + (rank of G)) =d-dimG.

Finally, if for some root § € R(T,G) the dimension of 73 or Uz is < d, then
the same is true for all roots of the same length as (3, in particular, there is
always a simple root with this property. Then the above method using the
Bruhat decomposition gives a sharper bound: dim u(G(k)) < d - dimG.

PROOF OF PROPOSITION 2. Case G = SL,. It follows from Lemma 4
that dim p(U(k)) < 2, and then according to Lemma 5 we have dimG < 6,
i.e. dimV < 3. Obviously, the case dim V' = 1 cannot occur in our set-up. Let
us also eliminate the case dim V' = 2. In this case A must be an isomorphism,
so we may identify G’ with G and assume that A\ = idg, and V must be
the standard representation of G = SL,. Let z = ( _é _2 ) , and let
u(z) = (z,v). Since z belongs to the center of G(k), and u(G(k)) is Zariski
dense in G, pu(z) must belong to the center of G, in particular, commute
with V. It follows that z must act on V trivially, while in fact z acts as
multiplication by —1 - a contradiction. Thus, the only remaining possibility
is dim V' = 3 in which case V corresponds to the adjoint representation of G
(or G').

General case. Again by Lemma 4, d = dim p(U,(k)) cannot exceed two.
If d =1, then by Lemma 5

dim p(G(k)) < dim G

so p(G(k)) cannot be dense in G as V # 0. Thus, d = 2.
Now, we fix an ordering on R(7,G) and let & (resp., U) denote the maximal
root, (resp., the maximal unipotent subgroup) corresponding to this order.
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Since d = 2, we conclude that dim W5 = 1 in the notations introduced prior
to the statement of Lemma 4. On the other hand, according to Lemma 1(i),
W C VU, where U' = A\(U). Since V is irreducible, V¥ is 1-dimensional
and coincides with the eigenspace V() of 7" = A(T') corresponding to the
highest weight ¢ of p. Thus,

W5 =V (6). (1)

We observe that Vi := R,(Gs) coincides with Gz NV as Gz/(GaNV) =~
GY, is reductive; in particular, W5z C Vj. Since dimU; = 2, we conclude
from the case of SLy that Vj is the adjoint representation of G = A(Gjs),
and moreover W coincides with the eigenspace of T, = A(Tj;) of weight &.
Comparing with (1), we obtain that

5| T.=a|T..

Furthermore, let S C T be the kernel of &. Then S(k) commutes with G4(k),
so p(S(k)) will commute with G5 implying that A(S(k)) acts on W trivially,
ie. 0(A(S(k))) = 1. We see that o and ¢ coincide on TZA(S(k)), which
implies that § = & as T4A(S(k)) is Zariski dense in 7. This means that V' is
the adjoint representation of G’ (or G).

Theorem 2 Let u: G(k) — G(K) = G'(K)x V(K) be an abstract homomor-
phism of the form (1) §1 associated with a rational homomorphism \: G — G'.
If i has a Zariski dense image, then:

(i) over a suitable finite extension L/K there exists a decomposition
V=Vi&- - &V, where each V; is a copy of the adjoint represen-
tation of G,

(ii) dim p(Tp(k)) = dim p(Us(k)) =r + 1 for any § € R(T,G).

ProoOF. It follows from complete reducibility of representations of reduc-
tive groups in characteristic zero (cf. [H], 14.3) that there exists a finite
extension L/K over which V =V, @& ---® V, where each V; is an absolutely
irreducible G’-module; let 7;: V' — V; be the corresponding projection. Then
the composite map

i G(k) 5 G'(L) x V(L) @8 @'(L) x V(L) 2)
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has a Zariski dense image, so it follows from Proposition 2 that V; is the
adjoint representation of G'.

For (ii) we observe that it follows from Lemma 4 that for a long root
« one has dim¥U, < r + 1. If there were a root 8 € R(T,G) for which the
dimension of T or Ug is < (r+1), then we would obtain from Lemma 5 that

dim u(G(k)) < (r +1)dim G = dim G,

so u(G(k)) could not be possibly be dense in G. A contradiction proving (ii).

4 Theorem 3 and Its Consequences

Theorem 3 Let G be a simple simply connected Chevalley group over a field
k of characteristic zero. Furtheromore, let G be a connected algebraic group
over an extension K of k, and p: G(k) — G(K) be an abstract homomorphism
with Zariski dense in G image. Assume that:
1) the unipotent radical V = Ry(G) is commutative, and
2) if G' = G/V, then the composition G(k) — G(K) — G'(K) of
1 with the canonical morphism G — G' extends to a rational K-
homomorphism \: G — G.

Then

(i) there exists a finite extension L/K over which V. =V, & --- &V,
where all V;’s are copies of the adjoint representation of G';

(i) let H=Gx (g --- D g), where g is the Lie algebra of G on which

T
G acts via the adjoint representation; then there exist derivations
01y...,0;:k — L and an L-isogeny 7: H — G such that pp = Tons, s,
where ns,,...5,: G(k) = H(L) is defined by

Ns1,....00 (g) = (ga Q(51 (g)’ SR er (g))

PROOF. According to part (i) which has already been established in Theorem
2, we can identify each V; with g’. Consider the homomorphism pu;: G(k) —
G'(L) x V;(L) given by (2) §3. By Theorem 1 there exist an element a; =
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(1,v;) € G'(L) x V;(L) and a derivation d;: k — L such that p;(g) = a;
ns,)(g)a; for all g € G(k). Then 7: H — G defined by

(g: 21, ..., ) = a  (A(g);dN(z1), . . ., dA(z,))a,

where a = (1;v1,...,v,), is as required.

1(Ao

Now, let us specialize our considerations for the topological situation.
Suppose k is topological field and K/k is a topological field extension. Let
u:G(k) = G(K) = G'(K) x V(K) be a continuous homomorphism as in (1)
§1. Pick a finite extension L/K over which V =V, @®---@®V,, the direct sum
of copies of the adjoint representation of G’ and extend the topology of K to
L (for example, by identifying L with K*X]). Since the topology on V(L)
is the direct product topology with respect to an arbitrary basis, it follows
from (2) §2 that the derivations 0,...,0,: kK — L arising in the description
of u given in Theorem 3 are continuous (for any extension of the topology
from K to L).

A remark regarding how Theorem 3 fits in with the conjecture of Tits
mentioned in §1 is in order. Obviously, for a single derivation §:k — K
the homomorphism 7s: G(k) — G(K) X g(K) can be decomposed as follows:
ns = ¥ o Rk k © @s Where @;: G(k) — G(K[e]) (here € = 0) is induced by
the ring homomorphism k£ — K[e], x — z + 6(x)e, Rx[)/x is the restriction
of scalars, and 1: Rx[) )k (G) — G X g is the rational map given by:

g+eX — (g,g_lX). (1)

In the general case, given pu:G(k) — G(K) x V(K), the decomposition
V =Vi®---®V, into the direct sum of copies of the adjoint representation of
GG may require passing from K to its finite Galois extension L whose Galois
group we will denote by &. Then one can pick some i,...,4 € {1,...,7}
such that V.= W; & --- @ W, where W, is the sum (not necessarily direct)
of the Galois conjugates V;7, o € &. There exists a K-defined homomor-
phism of G(K)-modules 7;: Ry, /x(Vi;) — W;. Furthermore, pick derivations

J

d1,...,0,:k — L such that (after possible conjugation) u = ns, . s5.. Then u
can be decomposed as follows:
where A = K@®Le;®---@®Le; and g,¢; = 0 for all 4, , Dby oy G(k) — G(A)

is induced by the ring homomorphism k — A, z — x+6;, (z)e1+- - -+0;, (x)e,
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Rk is the restriction of scalars, ¥: Ry x(G) — G x Ry k(g)" is similar to
(1), and 7: G x Ry k(g)' = G x V is given by

(g, wi,...w) = (g,m(wy) + - - - + m(wy)).

We remark however that in some instances the decomposition (2) is less
convenient to work with than the presentation p = 7 o, .5 in Theorem
3 (though the latter may not be defined over K) as m may have kernel of
positive dimension (cf., for example, the proof of Theorem 5 below).

For further reference, we will record here a computation of the dimension
of the image of 7s,,..,-

Lemma 7 Let 61,...,0;:k — K be a collection of derivations. Then
dimny, . 5(G(k)) = (r+1)-dimG

where T is the number of linearly independent (over K) derivations among
O1,y...,0; (i.e. the dimension of the K-linear span of d1,...,9;.).

Proor. If derivations 6,1, ...,d; are linear combinations of ¢1,...,d,, then
the morphism
Gxg —>Gxg,

given by the projection g' — g” to the first 7 coordinates, induces an isomor-
phism between 75,5, (G(k)) and ns,,...5, (G(k)). So, it remains to be proven
that if 61, ..., 6, are linearly independent, then

dim N81,....00 (G(k)) = (T + 1) -dimG.

According to Theorem 2(ii), it suffices to show that for a root o € R(T,G)
the group U, = s, .5, (Us(k)) has dimension (r+1). It follows from Lemma
2 that

No1,.0n (Ua () = (Ua(t), 01(8) Xa, - - -, 0 (1) Xa)-

Since (Ua, 0) = 1s,,....6,(Ua(Q)) C U,, we conclude that dimU, = 14+m where
m is the dimension of the closure of the image of the additive map x: k — A",
k(t) = (01(t),...,0,(t)). However since char k = 0, closed additive subgroups
of A" coincide with subspaces, so the fact that m < r would mean that there
is a linear relation between 4y, ..., d,. Thus, m = r, proving the lemma.
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REMARK. Derivations d1,...,d,: k — K are linearly independent if and
only if there are points x1,...,x, € k such that the vectors

(01(x1)y -y 01(2r))y «ovy (0p(x1),-y00(2)) € K7 (3)

are linearly independent. One implication here is obvious, the other is an
elementary fact from linear algebra which we will recall for the sake of com-
pleteness. Pick the largest [ such that there exist z1,...,z; € k for which
the vectors

(01(x1), -+, 00(21)), v (Op(m),...,00(2))) € K"

are linearly independent. We may suppose that det (6;(z;)),;_, , # 0. If
[ < r, there are aq,...,q; € K such that

5l+1(xj) = 0151(.1'_7') + -+ alél(xj) for all ] = 1, ceey l.
Since 01, ...,0;,0;+1 are linearly independent, there exists z;,; € k such that

O+1(zig1) # a101(xpg1) + -+ - + @by (xy41),

and then the vectors

((51(11)1), ey 5,»(11)1)), PPN (5r($l+1)a ey 5,»(.1‘[4_1))

are linearly independent, contradicting maximality of I. So, [ = r, and the
vectors (3) are linearly independent.

Theorem 4 (“Superrigidity”) Let G be a simple simply connected Cheval-
ley group over a finitely generated field k of characteristic zero, d = tr.deg.qk.
There exists an algebraic k-group Gy of dimension (d + 1) - dim G having
a commutative unipotent radical, and a group homomorphism v:G(k) —
Go(K) with Zariski dense in Gy image such given an abstract homomor-
phism p: G(k) — G(K) as in Theorem 1, there exists a unique rational K-
homomorphism p: Gy — G such that = po .

PROOF. The proof of Theorem 8.42 in [J] implies that the space of derivations
Der(k, K) has dimension d over K. We pick a basis 61, ..., 68, of Der(k, K)
and consider the homomorphism

L= Ny,..0.0 G(k) = Go(K),
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where Gy = G x g% It follows from Lemma 7 that Im ¢ is Zariski dense in
Go- Now, let u: G(k) — G(K), where G = G’ x V, be an abstract homomor-
phism of the form (1) §1. We will assume (as we may) that p has a Zariski
dense image. Pick a factorization p = 7 o 1,5, provided by Theorem 3
where §;: k — L are appropriate derivations. Since 64, ...,60,; form a basis of
Der(k, L) over L as well, there are expressions

d
6i = Z oz,-joj
j=1

with a;; € L. Let m: Gy = G x g* — G x g" be the morphism given by the
equation

d d
w(x;aq,...,aq) = (; Z Q1aj, - - ., Z ;).
j=1 j=1

Then p = po for p = 7 om. The uniqueness of p follows from the Zariski
density of Im¢ in Gy. By construction, p is defined at least over L. Moreover,
L(G(k)) C Go(K) and p(L(G(k))) = p(G(k)) C G(K). It follows that for any
o € Gal(K/K), p and its Galois conjugate % coincide on ((G(k)). By the
uniqueness of p, we obtain 7 = 7, hence 7 is K-defined (cf. [Bo|, AG, 14.3).

5 Detecting homomorphisms whose image
has a commutative unipotent radical

Theorem 5 Let pu:G(k) — G(K) be an abstract homomorphism with a
Zariski dense image. If for a long root o the unipotent radical of the group
Ga = W(Gya(k)) is commutative, then the unipotent radical of G is also com-
mutative.

PROOF. Assume that V = R,(G) is not commutative. Then replacing y by
its composition with the canonical rational homomorphism G — G/[V, [V, V]],
we may suppose from the very beginning that V' = [V, V] is central in V, in
particular, abelian. Let p':G(k) — G' := G/V' denote the composition of
u with the canonical homomorphism G — G/V’'. We know from Theorem 3
that V/V' = R,(G') can be written as

VIiVi=Vie---aV,, (1)
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where V;’s are copies of the adjoint representation of G'.
Next, let G, = G, x W be the Levi decomposition of G, where by our
assumption W is commutative. Then

W=W,&---& Wy,

where W;’s are copies of the adjoint representation of G!,. It follows from
Theorem 2 that

dim p!(Uy(k)) =7+ 1 and dimp(U,(k)) = m + 1,

implying, in particular, that m > r.
We have
WGalk) = Gl (216 @ Z,),

where Z,;’s are copies of the adjoint representation of G, (we observe that
since dim p/(U,(k)) = r + 1, the number of Z;’s is equal to r, the same
number as in (1). According to Theorem 3, there are presentations p|g, k) =
T 0Ny, AN |G k) = T O, ... ¢, TOr some isogenies 0: G X g} — G, and
T7:Gy X g — 1'(Go(k)) and some derivations w;:k — L (i =1,...,m) and
G:k— L (i=1,...,r) where L is some finite extension of K. By Lemma 7,
the derivations (3, . .., (, are linearly independent, so by the remark following
the lemma there are points z1,...,x, € k such that the vectors

(gl(xl)V"’CT(xl))’ S (gl(xr)"":gr(xr)) € K’

are linearly independent. Then we pick (m — r) linearly independent vectors

(bll,...,blm),..., (bm—rla---,bm—rm) c Km

such that

Zbijwj(l'k)zo foralli=1,....m—rand k=1,...,r (2)

=1

m

Consider derivations §; = Z bijw;, and let kg C k denote the subfield consist-
j=1

ing of elements on which all 64, . .., d,, , vanish (if » = m, then by convention
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ko = k). It follows from our construction that zi,...,z, € ko, implying that
the restriction of (i,...,{ to ky remain linearly independent, and therefore
dim p!(Uy (ko)) = 7 + 1. It follows now from Theorem 2 that the unipotent
radical of p/(G(ko)) contains r copies of the adjoint representation of G,
implying that u/(G(ko)) = G/V'. Tt follows that for Vy = u(G (ko)) NV, one
has V5V’ = V. On the other hand, in view of the equations (2) among the
restrictions of wy,...,w,, to kg there are not more than r linearly indepen-
dent, hence dim u(U, (ko)) < 7+ 1. In view of Lemma 5 this implies that
dim p(G(ko)) < (r+1)-dimG, i.e. dimVy < 7r-dim G = dim V/V". It follows
that V' = Vj x V'. Then Vj ~ V/V' is abelian, and therefore so is V - a
contradiction.

6 On constructing abstract homomorphisms
with nonreductive image.

The goal of this section is to generalize the construction of abstract homom-
rphisms with nonreductive image given by Borel and Tits (cf. [BoT], 8.18).

Theorem 6 Suppose there exists a monzero derivation 0:k — K, and let
ko denote the field of constants of §. Given a connected algebraic ko-group
G, for any n > 1 one can construct a connected ko-group G, of dimension
(n+1) - dimG such that there exists an abstract homomorphism G(k) —
Gn(K) with a Zariski dense image. If G is reductive, then the unipotent
radical Ry(Gy) has dimension n - dim G; if moreover G is semi-simple, then
the nilpotency class of Ry(Gn) is n.

The first step in the proof is a construction of certain ring homomorphisms
attached to a derivation. Fix an n > 1 and consider the algebra K[e,| where
gntl = (. A given derivation §:k — K can be extended to a derivation
K — K (cf. [J], Prop. 8.17); though this extension is not necessarily unique,
we will denote it also by § (our construction goes through for any extension).
We let K denote the field of constants in K so that ky = Ky N k. Then one
defines t5,: k — Kle,] by:

0*(z) o

o1 Ep Tt

ton(z) =z + §(x)en +
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and 65, K[e,| = K[e,] by:

Og,n(z (1,1'6;) = (Z %5] (azz'j)) Eil, (2)

=0

3

where as usual 0! = 1 and 6°(z) =z for all z € K.

Proposition 3 (i) 65, is an automorphism of K[e,| as Ky-algebra.

(ii) tsn = bs © ¢ where 11k — K is the identity embedding; in particular,
tsn 1S an injective homomorphism of ko-algeras.

(iii) For a nonzero derivation 6:k — K, the image of t5,, is dense in K|e,)
for the Zariski topology on K|e,] as an (n+ 1)-dimensional affine space
over K.

PROOF. In the first assertion, only the multiplicativity of 65, requires veri-
fication for which we will use the “Leibnitz rule”:

3(ay) Z() (2)67(y). 3)

t=

Let a = Zaisfl, b= Zbﬁfr Then ab = Zcz-ei where ¢; = Zasbi,s. On
i=0 s=0
the other hand, 65, (a)05, (b Z die’, where

j=0 \1=0 m=0

A direct computation using (3) shows that

di = ZZ (Z G — t)!(st(as)5j_t(ai—j—s)> =

7=0 s=0 t=0

i 1=

] - (i ( ’ >6t(a5)67 (aij_ s)) = 5 1!5 (asi_j_s) =

=0 s=0 1" \i=
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i q i—j i q
ﬁ(s] (Z asai—j—s) = Z ﬁéj(ci—j)-
=0 5=0 =0

It follows that 65,,(a)05,(b) = s5.n(c) = 65, (ab), as claimed.
Next, we claim that
0_sm © 05 = idgle,)s (4)
implying in particular that 6, is an automorphism of Kle,]. Since K|g,] is
generated as a ring by K and &,, it suffices to check (4) separately on &, and
K. But 05,(en) = €, = 0_sn(€n), proving (4) for ,. Furthermore, for a € K

we have
n

"1 .
(0_sm 0 b5n)(a) =0_sn (Z Eﬁ(d)s%) = Z €€,
1=0 i=0
where

i 1 j 1 i—j _ 1 i
W=D (o) s

So, eg = a and e; = 0 for ¢ > 0, implying (4) on K.
Assertion (ii) is immediately obtained by comparing of (1) and (2).
Since algebraic subgroups of K|e,] coincide with (vector K-) subspaces,
the fact that Im ¢5, is not Zariski dense in K[e,| would mean that there
exists a nontrivial relation

Z a;0'(z) = 0 (5)

for all x € k, where a; € K.

First, suppose there exists ¢ € k such that §(c) = 1. Then §%(¢') = 4! for
any i > 0, hence §(c') = 0 for all j > i. Let 39 € {0,...,n} be the smallest
index with the property a;, # 0. Using (5) for x = ¢, we obtain

0= aioéio (Cio) = (’io)!aio,

implying a;, = 0, a contradiction.

In the general case, pick ¢ € k such that a := §(¢) # 0, and introduce the
derivation w(z) = o 16(z). An easy inductive argument shows that for any
[ > 1 there exists a relation of the form

l
w'(z) =) Bid'(z) forallz ek
=1
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with 3; € K. It follows that there exists a linear transformation o: K[e,,| —
Kle,] such that t,, = o o ts,. Since 6(c) = 1, our previous argument shows
that Im t,,, is Zariski dense in Kle,], and the Zariski density of Im t;,
follows.

In the sequel we will refer to t5, as the n-th Taylor homomorphism asso-
ciated with the derivation § (we note that for n > 1, the homomorphism t;,,
may depend not only on the derivation é: £ — K but also on the choice of
an extension of § to K).

For the construction of the group G, we will describe the operation of
restriction of scalars Ry,j/¢, where £ is an arbitrary field, in explicit terms.
If A™ is the m-dimensional affine space over the universal domain €2, we let
A™ denote the m-dimensional affine space over the algebra Q[e,] considered
as the (n 4+ 1)m-dimensional affine space over ). Given a point a € A™, for
any integer [ between 1 and n + 1 we let

AMa,l) ={z = (z1,...,2m) € AT | 2; = a;(mod £,Q[e,))

forall i=1,...,m}.
Given a Zariski closed subvariety V' C A™, we let V, denote the closed
subvariety of A™ consisting of all zeros in (Q[e,,])™ of the ideal defining V.
(Of course, V, is none other but Rqp,j/0(V); besides, if V' is defined over a
subfield ¢ C €, then so is V,,, and V,, = Ry, )¢(V).) For a point a € V and we
let V,(a,l) = VNA"(a,l). For convenience of further reference we will record
in the following lemma some elementary properties of these constructions.

Lemma 8 (i) Let f: A™ — A™ be a rational map. Then

1) for any n > 1, f induces a rational map f,: AT — A", moreover,
iof f s defined over a subfield ¢ C §2, then so is fp;

2) if f is defined at a € A™ | then f, is defined on A™ (a,1);

3) if [ is defined at a, then for any |, 1 <1 < mn, one has f,(A™ (a,l1)) C
A™2(f(a),1); more precisely, for v = a+aiel, +- -+ ane® € A™(a,l),
where a,a; € A™, one has

fulz) = f(a) + dof(a))el + -+

where d, f: A™ — A™2 s the differential of f at a and ... stands for
the terms involving higher powers of €.
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(ii) Let V.C A™ be a closed subvariety. If & = a + ajel, + -+ € V,, where
a,a; € A™, then a € V and a; € T,(V') (the tangent space).

PROOF. Let g € Qfty,...,tn] be a polynomial. We first observe that given
a point @ = a + a16, + -+ + anep € AP, where a,a; € A™, there exist
polynomials Gy, ..., G, in (n + 1)m variables such that

g(d) = g(a) + Gl(a)gn +- 4+ Gn(a)‘SZa

so g extends to a regular map A™ — A!. Furthermore, the equation

(2 @=s@ -S04 (DY (G(a))n] )

9(a) 9(a) 9(a)

where G(a) = G1(a)e, + - - - + Gn(a)el}, shows that (1/g) defines a rational
map A" — A}. It follows that a rational map f: A™ — A™ extends to a
rational map f,: A7 — A7, defined over the same subfield £ C Q as f, and
moreover the explicit expression (6) for the inverse shows that if f is defined
at a € A™ | then f, is defined at any point of 4™ (a, 1).

Now, if @ € A™(a,l), then for any polynomial g € Qty,...,t,] one
has g(@) = g(a)(mod &' Qe,]). It follows that if g/h is a rational function
(g9,h € Q[t1,...,ty]) such that h(a) # 0, then for any point @ € A7 one has

(9/h)(@) = (9/h)(a)(mod e, Qen)).

For a rational map f: A™ — A™2 this implies the inclusion f,(A™ (a,l)) C
A™(f(a),l). More explicitly, by Taylor’s formula for the polynomials one
has

gla+aey, +--) = g(a) + ((grad, g) - ar) &g, + -+

and
h(a+ wel, +--+) = h(a) + ((grad, h) - @) el, + - - -,

where grad, = (%(a), ey %(a)) , and - is the standard inner product on
A™ . Tt follows that
(9/h)(a+ ae;, +---) =

(@) + (erad, 9) )+ - n0) (1 (EEe ) o

24



(0/h)(@) + <[h(a)(grada g)h(—a )g(a)(grada h)] ,al) g

(9/h)(a) + (grad, (9/h) - ar) e, + -+
This computation implies that given a rational map f: A — A™2 defined
at a point a € A™, one has

fn(a-i‘algln-i"")=f(a)+daf(al)6£,+---.

For (ii), we observe that for any polynomial g that vanishes on V and any
point a + a;el, + -+ - € V,(a, 1), one has

0=gla+ae, +---) =gla) + ((grad, 9) - @) ', + - - -,

implying that q,; is orthogonal to grad, g. This being true for any polynomial
g that vanishes on V, we obtain that a;, € T, (V).

Construction of the group G,. Let G be an algebraic group defined over
a subfield ¢ C Q. We fix a matrix realization G C GL,4 for which G is closed
also in the matrix algebra My ~ A®. Then the above construction yields a
closed ¢-subvariety G, C Mgy, = M4(Qe,]) which turns out to be a group.
In fact, this group is none other but Ry,j/.(G), i.e. for any f-algebra A one
has G,(A) = G(Ale,)). For any | between 1 and n + 1, G,(l) := G(Ey,1) is
a closed normal subgroup of G, (“congruence subgroup of level I”); observe
that G,(n + 1) = {E4}.

Assume from now on that G is connected. Then it is known (cf. [Bo],
Theorem 18.2(ii)) that G is f-unirational, i.e. there exists a /-defined domi-
nant rational map f: A™ — G.

Proposition 4 1) G,/G,(1) =~ G, and G,(1)/G,(l + 1) ~ L(G), the Lie
algebra of G, for any [ between 1 and n;

2) The group G, is connected of dimension (n + 1) dim G;

3) The map f,: A" — G, is dominant;

4) If G is reductive then G,(1) is the unipotent radical of Gy;

5) If G is semi-simple, then G, (1) has nilpotency class n.

ProoF. 1) For | = 1, the group G,(1) coincides with the kernel of the
homomorphism G, — G induced by the ring homomorphism Q[e,|] —
sending ¢, to zero. Since the latter admits a cross-section Q — Q[e,], then
so does the homomorphism G,, — G, proving that G,,/G,(1) ~ G.
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Now, let I > 1. If E; + A&l +... € G,(I), then A € L(G) (cf. Lemma
8(ii)), and the correspondence

Eq+ Aeh+...— A

defines a group homomorphism «:G,(l) — L(G) whose kernel is precisely
Gn(l + 1). So, it remains to establish the surjectivity of x. For this purpose
we will use the dominant /-defined map f: A™ — G. By modifying f by a
(left) translation we can ensure that there exists a point A™(¢) such that
f(a) = E4 and the differential d, f is surjective (because charf = 0, cf. [Bo],
AG, Theorem 17.3). According to Lemma 8(i), 3), for a + X&', € A™(a,l),
one has
fala+ Xeh) = Bq+ (dof)(X)el + ..,

so the surjectivity of d,f implies that of k, completing the proof of 1).
Assertion 2) immediately follows from 1). For 3), we observe that as
follows from our proof of 1), for any [ between 1 and n the composition

(AR (a,1)) 53 T, (Gn(1) — Tiy(Gn(1) /Gl + 1))

is surjective. Since G,(n + 1) = {E;}, we conlude that 7,(A"(a,1)) dofy
Tg,(Gn(1)) is surjective. In conjunction with the surjectivity of d,f, this
implies the surjectivity of d, f,,: To(A') = Tr,(Gr), and the dominancy of f,
follows (cf. [Bo], AG, Theorem 17.3).

Since all sections G, (1)/G,(I+1), 1 > 1, are unipotent, the group G, (1) isa
connected unipotent normal subgroup in G,. So, if G ~ G,,/G,(1) is reductive,
Gn(1) is the unipotent radical of G,. Finally, suppose G is semi-simple. We
will need the following well-known and easily verifiable commutator relation:
given g = E;+ Ae, ++-- € G,(1), h= Eg+ Bel, +--- € G, (1), then

ghg 'h ' = Eq+ (AB — BA)eh™! + -

Since L(G) = [L(G), L(G)], it easily follows that [G,(1),G.(l)] = G.(l + 1)
for any [ > 1, implying that the nilpotency class of G, (1) is n.

PROOF OF THEOREM 6. We return to the notations introduced in the
statement of Theorem 6. Fix an n > 1 and consider the ky-group G, con-
structed above. Then all properties of G,, listed in the theorem have already
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been established in Proposition 4. So, it remains to construct a homomor-
phism G(k) — G,(K) with a Zariski dense image. For this we will use the
n-th Taylor homomorphism ¢5,:k — Kle,] constructed in Proposition 3.
Since G is ko-defined, ¢5, being a homomorphism of ko-algebras, induces a
group homomorphism 3: G(k) — G(K|e,]) = Gn(K), and we only need to
establish that 3 has a Zariski dense image. Let f: A™ — G be a ky-defined
dominant rational map as above. Consider the following commutative dia-
gram:

Am(k) = A™(K[e]) = A7(K)

fi fa d

Gk 5 G(K[e)) = Ga(K)

in which ¢, just like 3, is induced by ¢;,,. Proposition 3(iii) implies the density
of the image of a. On the other hand, according to Proposition 4(iii), f, is
dominant, and the density of the image of 3 follows.

We would like to conclude this section with an observation which gener-
alizes for our set-up the observation made by Tits ([T], 2.4) that the group
of motions of 3-dimensional euclidean space has (a lot of) noncontinuous au-
tomorphisms. Let K be a field having a nonzero derivation : K — K, K be
the field of constants of §, and G be a connected algebraic Ky-group. Fix an
n > 1. Then the automorphism 605 of K|[e] (where "1 = () constructed in
Proposition 3 induces a group automorphism ©; of G, = G(K|[¢]). Moreover,
©; maps the subgroup G(K) C G,(K) corresponding to the identity embed-
ding K — K|e], to the subgroup H C G,(K) obtained by using the Taylor
homomorphism ¢5,: K — Kle|. Thus, ©s takes a subgroup whose Zariski
closure has dimension dim G' to a subgroup with Zariski closure having di-
mension (n+ 1) - dim G, so O is strongly “noncontinuous.”

AFTERWORD

In Part II of this paper we will extend the notion of Taylor homomorphisms
to the case of “several variables.” More precisely, given [ derivations d;: k — K,

1 =1,...,1, we will construct for any n > 1 a ring homomorphism %, 5, . 5:k —
n+1
i

linearly independent over K, the image of t,5, .5

Klei,...,g) where all ¢;’s commute and satisfy € = (. If the derivations d; are

, 1s going to be Zariski dense
in K[e1,...,&)] regarded as (n + 1)'-dimensional affine space over K. Then the

proof of Theorem 6 extends without any changes to show that for any connected
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algebraic group G defined over the field of constants kg of all §;’s, the homomor-
, induces an abstract homomorphism G(k) — G(K|[e1,...,g]) with
a Zariski dense image. Furthermore, we will show that any ring homomorphism
k — Kleq,...,&] can be obtained from a suitable Taylor homomorphism by a
sequence of so-called twists, and then will derive from Theorem 3 by induction

phism .5, .

on [ that for G a simple simply connected Chevalley group, any abstract homo-
morphism G(k) — G(K]|e1,...,€]) of the form (1) §1 corresponds to a certain
ring homomorphism k¥ — Kleq,...,&]. Finally, we will show that any abstract
homomorphism G(k) — G(K) of the form (1) §1 factors through a homomorphism
G(k) — G(A), where A is a K-algebra having the structure similar to that of
Kley,... €], which will complete the explicit description of abstract homomor-
phisms of Chevalley groups in characteristic zero.
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