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ABSTRACT
We consider closed hyperbolic 3-orbifolds obtained by surgery on the smallest hyper-
bolic 3-orbifolds with a non-rigid cusp, and coverings of these orbifolds by hyperbolic
3-manifolds obtained by surgery on links. We relate surgeries on the orbifolds to surg-
eries on the links. Applying the program SnapPea to the links the volumes of these
hyperbolic 3-orbifolds can be computed, among them various of the hyperbolic orbifolds
of smallest known volumes.

Keywords: Hyperbolic 3-orbifolds of small volume, surgery on 3-orbifolds and links,
Picard orbifold, Borromean rings.

Introduction

Computations of volumes of hyperbolic 3-orbifolds whose singular sets are links
in the 3-sphere, or which are obtained by surgeries on links, are possible due to
J. Weeks’ computer program SnapPea. If the singular set of a 3-orbifold is a graph
which is not a link, there is no such general procedure and the computation of vol-
umes is more difficult, in general, and has to be done case by case. The small volume
hyperbolic 3-manifolds have been studied extensively. The smallest known manifold
My, of volume 0.942707, was found independently by Fomenko and Matveev, and
by Weeks, and the ten smallest volume manifolds are discussed in [HW] and [MV1]
and are obtained by surgery on the hyperbolic knots and links of smallest known
volumes. Thus it seems to be useful to study also the closed 3-orbifolds obtained
by surgery on the smallest cusped hyperbolic 3-orbifolds.

In the present paper we are interested in closed hyperbolic 3-orbifolds obtained
by surgery on the smallest cusped hyperbolic 3-orbifolds, and in coverings of these
orbifolds by hyperbolic 3-manifolds obtained by surgery on links. We relate surgeries
on the orbifolds to surgeries on the links. Applying the program SnapPea to the
links the volumes of these small hyperbolic 3-orbifolds can be computed. We note
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that any closed hyperbolic 3-orbifold can be obtained by surgery on a hyperbolic
orbifold with a non-rigid cusp (i.e. a cusp on which surgery, or Dehn filling, can be
performed).

As an example, the smallest orbifold with a non-rigid cusp is the Picard orbifold
(the quotient of the hyperbolic 3-space by the Picard group) which is covered by the
complement of the Borromean rings, and the orbifolds obtained by surgery on the
Picard orbifold are covered by manifolds (resp. cone-manifolds, in general) obtained
by suitable surgeries on the Borromean rings.

We shall consider only orientable 3-orbifolds; our main references for the theory of

orbifolds are [Th] and [DM].

As in the case of hyperbolic 3-manifolds, the volumes of hyperbolic 3-orbifolds form
a well-ordered non-discrete subset of R of order type w®, and each volume occurs
only for finitely many orbifolds. In particular, there is a hyperbolic 3-orbifold of
smallest volume (which is still not known), and also of smallest limit volume. The
singular set of the smallest known hyperbolic 3-orbifold is shown in Figure 0.1
(the underlying space is the 3-sphere, labels 2 on edges are omitted), its volume is
(approximately) 0.039050.

Figure 0.1. The smallest volume orbifold.

By [A], the unique smallest hyperbolic 3-orbifold with a non-rigid cusp is the Picard
orbifold, the quotient of hyperbolic 3-space by the Picard group PSL(2,7Z][i])), of
volume 0.305321 which is thus the smallest limit volume. By Thurston’s hyperbolic
surgery theorem, the volume of a cusped orbifold is the upper limit of the volumes
of the orbifolds obtained by surgery on its cusp. As all hyperbolic orbifolds whose
volumes are bounded by some constant are obtained by surgery on one of finitely
many cusped orbifolds ([DM]), it follows that all but finitely many hyperbolic 3-
orbifolds whose volumes are smaller than that of the Picard orbifold are in fact
obtained by surgery on the Picard orbifold.

The smallest cusped hyperbolic 3-orbifolds were found by Meyerhoff and Adams:
they all have exactly one rigid cup, so their volumes are not limit volumes (see [NR]
for various descriptions of these orbifolds).

The three smallest hyperbolic 3-orbifolds with a non-rigid cusp were found by
Adams [A], their volumes are 0.305321, 0.444451 and 0.457982; we will call these
orbifolds the Adams orbifolds and denote them by A, A2 and Ajg; in particular, A;
is the Picard orbifold H? / PSL(2,Z][i]). The underlying space of A; is the 3-sphere
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minus one point S\ {oo}, its singular set is shown in Figure 0.2. We denote by
A1 (p, q) the orbifold shown in Figure 0.2 obtained by (p, q)-surgery on the cusp of
Aj (see section 1 for definitions).

oo 3 (p,9) 3

3 3
Figure 0.2. The orbifolds .4; and A (p, q).

Tt is well-known (see [A], [BFLW] or [H1]) that .4; is 24-fold covered by the com-
plement of the Borromean rings which is the 3-component link 63 in Rolfsen’s
notations [R]. In section 2 we will show that the manifold 63(p,q) (or orbifold, or
cone-manifold) obtained by (p, q)-surgery on all three components of the Borromean
rings is a regular 24-fold covering of the cone-orbifold A; (p — 2¢, p+ 2¢) obtained by
(p — 2q, p+ 2q)-surgery on the cusp of the Picard orbifold. Using SnapPea (see e.g.
[AHW]) this allows to compute the volumes of the orbifolds obtained by surgery on
the Picard orbifold.

The second Adams orbifold can be obtained as the quotient Ay = H? /PG L(2, O7),
where for a positive square free integer d we denote by Oy4 the ring of integers of
the field Q(v/—d). In particular, also A; is arithmetic. The underlying space of A,
is S2\ {00}, and its singular set is shown in Figure 0.3 (see [FF] where a picture of

HB /PSL(2,07) is presented, or [H2]).

(r,9)
" 3 y J 3

Figure 0.3. The orbifolds .45 and Az (p, q).

It is remarked by Adams [A] that 45 is 12-fold covered by the complement of the 3-
component link 63 in S3. Some link complements commensurable with A, are given
in [GH] and [H1]. In section 3, we shall obtain the exact correspondence between
surgery parameters for the orbifold As and the link 63. Finally, the orbifold A3
is 16-fold covered by the complement of the 4-component link 83. and the exact
correspondence between surgeries on .43 and on 8% will be studied in section 4.
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1. Preliminaries

For rational numbers p and ¢, there is a unique presentation (p, q) = d(p’, ¢') where
p’ and ¢’ are coprime integers and d is a positive rational number.

By definition, the result of (p, ¢)-surgery on a knot in S is the cone-manifold whose
space is the 3-manifold obtained by the usual p'/q’-surgery on the knot, and whose
singular set, labelled by d, is the central curve of the surgered solid torus, with a
cone angle of 27/d around it (see [Ke] or [Ko] for cone-manifolds); note that this
cone-manifold is a manifold (i.e. with empty singular set) or an orbifold exactly if
a is equal to one or an integer, resp.

A rational (p, ¢)-tangle is an orbifold given by a rational tangle of slope p’/q’ whose
two arcs are labelled by two, with an additional arc labelled by d of cone-angle 27/d
(which, if d = 1, is not present, see [D] for details and pictures); some illustrating
examples are shown in Figure 1.1. Then, the result of (p, ¢)-surgery on a non-rigid
cusp of a 3-orbifold is the cone-orbifold obtained by gluing a (p, ¢)-tangle to the
cusp as indicated in Figure 0.2; the cone-orbifold i1s an orbifold exactly if d is an
integer.

(2,1) (-1,2) (0,4) (—3,6)

Figure 1.1. Examples of tangles.

Also, the well-known properties (see [C]) of rational tangles presented in Figure 1.5
will be used below.

a— — — 3 a— — 3 a— -
(p.g)| [(k, 1) (p,9) 0 = X
= - — 5 v —§ v | —y
I I J
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(p+kq,q) (=q,p) O/f(r)y=_ |(p,29)
7 —d N 3 T 0

Figure 1.2. Properties of tangles.

2. The Borromean rings, the Picard orbifold and the Wolcott f-graphs

In this section we consider the class of closed 3-manifolds obtained by surgery on
the Borromean rings 63 shown in Figure 2.1.
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Recall that 63 has symmetries which exchange each two of its components. We
denote by 63((p1,91), (2, 92), (p3,¢3)) the cone-manifold obtained by surgery on
the three components of the Borromean rings 63, with surgery coefficients (p1, q1),
(p2, ¢2) and (ps, g3). We note that all manifolds obtained by surgery on the White-
head link 57 and the figure-eight knot 4; belong to the above class: these are ex-
actly the manifolds 63((p1, q1), (P2, ¢2), (—1,1)) = 52((p1,91), (p2, q2)) respectively
63((p1,q1), (—1,1),(1,1)) = 41(p1, q1). The Borromean rings 63 is a hyperbolic link
[Th], so most of these manifolds are also hyperbolic.

(p1, q1)-surgery

(P2, q2)-surgery

— T

Figure 2.1. The Borromean rings 63.

The orientation-preserving symmetry group of 63 is isomorphic to the symmetric
group Sy of order 24 (see e.g. [BoZ] or [Z1]), and this symmetry group can be
realized by an orthogonal action of S4 on the 3-sphere leaving invariant the link.
We will consider first the case of S4-equivariant surgery on 63. This means that the
surgery coefficients for the three components of 63 are the same, say (p, ¢). We will
denote the corresponding cone-manifold by 63(p,q) in this case. The action of S4
on the complement of 63 induces an action of S4 on 63(p, q).

Theorem 2.1. For rational numbers p and q, the cone-manifold 63(p, q) obtained
by S4-equivariant (p, q)-surgery on the Borromean rings is a regular Ss-covering of
the cone-orbifold Ay (p— 2q, p+ 2q) obtained by (p—2q, p+ 2q)-surgery on the cusp
of the Picard orbifold.

Proof. Consider the cone-manifold 63((p1, q1), (p2, g2), (ps, g3)) obtained by surgery
on the Borromean rings (see Figure 2.1).

The axes of two involutions 7 and ¢ from the symmetry group S, are pictured
by dashed lines. The involution 7 is a strong inversion for two components of 63.
The singular set of the orbifold 63((p1, ¢1), (P2, ¢2), (3, 93))/{(7) (quotient-orbifold)
is presented in Figure 2.2.

The involution ¢ of 63 induces an involution of this quotient-orbifold. The singular
set of the orbifold 63((p1, q1), (P2, q2), (P3, q3))/ {7, &) is presented in Figure 2.3.
This singular set is a generalization of a spatial §-graph in the sense of [W]. In partic-
ular, if i = 2¢1/p1, j = 2q2/p2 and k = 2q3/ps are integers, then the corresponding
singular set coincides with the Wolcott §-graph W(i, 7, k).
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(p1,4q1)-tangle

(Pz, Q2)-

tangle

(p3, 2¢3)-surgery

(p37 2(]3)‘

surgery
Figure 2.2. The orbifold 63((p1, q1), (P2, 92), (p3, 43))/{T).
(p3, 2¢3)-tangle
g ||
(P2, 2q2) (p1,2q1) = (p1,2q1) | || (P2, 292) | | [ (P3, 243)
L |
Figure 2.3. The orbifold 63((p1,q1), (p2, q2), (p3, 3)) /{7, o).
From now on, we consider Ss-equivariant surgery, that is (p1,¢1) = (p2,¢92) =

(p3, q3) = (p,q). Then, obviously, the singular set from Figure 2.3 has a symmetry
p of order 3 that exchanges tangles and leaves vertices of the graph fixed. The
singular set of the quotient-orbifold (63(p, ¢)/(r, o))/{p) is shown in Figure 2.4 (see
also Figure 1.2).

3 3 3 3
3 | 3 — | —
(P, 29) = (p, 29) = -t-Hp+ 2q,2q)————l--
A
L 1

Figure 2.4 The orbifold (63(p, q)/(r, o)) /{p).

Obviously, the singular set in Figure 2.4. has a symmetry A of order 2. The singular
set of the quotient-orbifold ((63(p, q)/(r,o))/{p))/()\) is presented in Figure 2.5.

As we see, this quotient orbifold coincides with the orbifold A;(p — 2¢,p + 2q)
obtained by (p — 2q, p + 2¢)-filling on the cusp of the Picard orbifold A;.
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Figure 2.5 The orbifold ((63(p, ¢)/(r,o))/{p))/{\).

This finishes the proof of Theorem 2.1.

Let Dy = Zy x Zo be the normal subgroup of S4 generated by the involutions 7
and o in the proof of Theorem 2.1. As it was remarked above, the singular sets
of 63((1,4),(1,7),(1,k))/Dy are the Wolcott #-graphs W(i, j, k) considered in [W].
They have the property to be non-planar (not homeomorphic in S? to the planar
-graph), but all three constituent knots formed by any two of the three edges of
the #-graph are trivial. Tt follows from [N] that the unique Dy-covering of such a
f-graph is a homology 3-sphere. In this case the 2-fold branched covering of S3
along any of these three constituent knots is S® again, and the preimage of the
third edge is a knot in S3 whose 2-fold branched covering is the Dy-covering of the
f-graph. Note that the manifold 63((p1,q1), (P2, 92), (p3, ¢3)) is a homology 3-sphere
if and only if it is of the from 63((1, 1), (1, 7), (1, k)).

For integers i, 7, k, consider the knots K(i,j, k) introduced in [Z4] and shown in
Figure 2.6 where j and k denote numbers of half-twists on two strings, and ¢ denotes
the number of full twists on three strings.

J

ey

..

I_I

k

Figure 2.6 The knot K (3, j, k).

In general, the three knots K(i,7,k), K(j, k,¢) and K(k,1i,J) are pairwise non-
equivalent (see [Z4]).

Theorem 2.2. The homology 3-sphere 63((1,1), (1, j), (1, k)) is the regular branch-
ed D -covering of the Wolcott 0-graph W (i, j, k), and also the 2-fold branched cov-
ering of each of the three knots K (i, j, k), K(j,k,%) and K(k,1, 7).

Proof. The first statement follows from the first part of the proof of Theorem 2.1.
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Regarding the second statement it was shown in [Z4] that, in the 2-fold covering
of any of the three constituent knots of the f-graph W(i, j, k), the preimage of the
remaining edge is one of the three knots K (i, 7, k), K(j, k, 1) or K(k, 4, j), respectively.
This finishes the proof.

Another interesting case occurs when one choses surgeries of types 1/n and also
2/n for the components of the Borromean rings (where n is odd in the second case).
In this case the singular set of the quotient orbifold contains some extra arcs of
branching index two. Again the quotients of the three involutions in Dy give the
3-sphere but now the branch sets will be links in general (see also [MV2]).

Remarks.

a) Hyperbolic volume.

By Theorem 2.1, an orbifold A (z, y) obtained by surgery on the Picard orbifold has
a 24-fold covering by the cone-manifold 63((y+x)/2, (y — x)/4) obtained by surgery
on the Borromean rings. Applying SnapPea to the Borromean rings one obtains
the volumes of these cone-manifolds (if hyperbolic) and, dividing by 24, of the
corresponding orbifolds. The smallest volumes we found are 0.040890 of .4, (4, 1)
(covered by 63(5/2,—3/4)) and 0.052654 of A;(3,2) (covered by 63(5/2,—1/4)).
These seem to be the second and third smallest known volumes of hyperbolic 3-
orbifolds, after the volume 0.039050 of the orbifold shown in Figure 0.1.

We remark that independent computations of the volumes for small surgeries on
the Picard orbifold have recently been obtained by V. Petrov [P], by explicitly
constructing orbifold fundamental polyhedra.

b) Manifolds of equal volumes.

By Theorem 2.1, the cone-manifolds 63(2p, ¢) and 63(2q, p) are Sa-coverings of the
orbifolds A, (2p — 2¢,2p + 2q) and A;(2¢ — 2p,2p + 2¢) which are homeomorphic
(by a reflection). It follows that 63(2p, ¢) and 63(2q, p), if hyperbolic, have the same
volume.

¢) Non-hyperbolic manifolds.

The manifold 63(1, 1) is the Poincaré homology 3-sphere, with a spherical structure,
so also the quotient 63(1,1)/S4 = A;(—1,3) has a spherical structure.

The 2-fold branched covering of the Borromean rings, or equivalently, of the orbifold
63(2,0), is the Hantzsche-Wendt manifold M which has a euclidean structure, so
also the quotient 63(2,0)/S4 = A1(2,2) = M/(Z3 x S4) has a euclidean structure.
Here Zy x S4 is the orientation-preserving isometry group of the Hantzsche-Wendt
manifold M, see [Z1].

The manifold 63(0,1) is the 3-torus so the quotient 63(0,1)/Ss = A1(—2,2) is
euclidean.

d) Heegaard genus.

As the Borromean rings are a 3-bridge link, any 3-manifold obtained by surgery on
the Borromean rings has Heegaard genus at most three. For integer co-prime surg-
eries with p > 1, the manifolds 63(p, q) have Heegaard genus three because their
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first homology is the 3-generator group (Z,)®. On the other hand, all manifolds
obtained by surgery on the Whitehead link and the figure-eight knot (which are
2-bridge links) are also obtained by surgery on the Borromean rings and have Hee-
gaard genus at most two, among these the ten hyperbolic 3-manifolds of smallest
known volumes (see [MV1]).

By Theorem 2.2, the manifolds 63((1, ), (1, ), (1, k)) are 2-fold branched coverings
of the 3-bridge knots K (7, j, k) (see Figure 2.6), so the Heegaard genus of the ho-
mology 3-spheres 63((1,1), (1, ), (1,%)) is at most two.

e) Maximally symmetric manifolds and equivariant Heegaard genus.

Some of the manifolds 63(p, ¢) are maximally symmetric Ss-manifolds ([Z2]): they
admit a Heegaard splitting of genus three invariant under the Ss-action which real-
izes the maximal order 12(g — 1) for finite group actions on handlebodies of genus g.

By Theorem 2.1, the manifolds 63(1 + 2¢,¢) and 63(1 — 2¢, q) cover the orbifolds
A1 (1,1 + 4q) and A, (1 — 4q, 1), respectively. These orbifolds admit a decompo-
sition along an embedded 2-sphere into two handlebody-orbifolds (see [Z2]). The
preimage of this 2-sphere gives a Heegaard splitting of genus three of the corre-
sponding 3-manifold such that the covering group maps each handlebody of the
Heegaard splitting to itself. So the manifolds 63(1 & 2¢, ¢) are maximally symmet-
ric Sg-manifolds of genus three; note that also the usual Heegaard genus of these
manifolds is three if ¢ is different from F1.

Using SnapPea the smallest volume we found for hyperbolic 3-manifolds of type
63(p, q) is 2.468232 for 63(3, 1). This manifold is a maximally symmetric S s-manifold
of (equivariant and usual) Heegaard genus three, and there is some evidence that this
might be the smallest volume of any hyperbolic 3-manifold admitting an Ss-action
(and maybe also of Heegaard genus three). We note that also the Fomenko-Matveev-
Weeks manifold M; = 63((—5,1), (=5,2),(—1,1)) is a maximally symmetric Dg-
manifold of (equivariant and usual) Heegaard genus two ([MV1], see also the next
section; here D denotes the dihedral group of order 12. Apart from manifolds
of Heegaard genus two and three, the only other maximally symmetric hyperbolic
3-manifold for which the equivariant and the usual Heegaard genus coincide is the
manifold constructed in [Z3], of genus 11, with an (As x Zs)-invariant Heegaard
decomposition of genus 11.

3. The link 62, the orbifold A;, and the Takahashi manifolds

We consider the n-component alternating links L,, defined as in Figure 3.1 for n = 3
and n = 4; in particular, L3 = 63 and L4 = 87.
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Figure 3.1. The links L3 = 63 and L, = 8.

Remark that by [H1], 71(53\ 6%) is commensurable with PGL(2, O7) and m1(S®\8%)
is commensurable with PGL(2, O3).

Let Ln(p,q) = Ln((p,q),--.,(p,q)) be the cone-manifold obtained by surgery with
coefficients (p, q) for each component of L,, so 63(p,q) = Ls(p,q) and 8}(p, q) =
La(p,q). It was shown in [Th] that, for n > 3, the link complement S* \ L, is
hyperbolic, so also almost all of the manifolds L, (p/q) are hyperbolic.

Denote by A% (p,q) the 3-orbifold with underlying space S® and singular set the
spatial graph shown in Figure 3.2, so one of its edges has singularity index n and
all other edges have singularity index 2. For n = 3 we get the orbifolds A3(p,q) =
As(p, q) obtained by surgery on the second Adams orbifold.

(. 9)
X

Figure 3.2. The singular set of A% (p, q).

Theorem 3.1. The cone-manifold L, (p,q) is a regular 4n-fold covering of the
cone-orbifold A% (p, p + 2q).

Proof. By the Kirby calculus, the manifolds L,(p/q) can be obtained also by
surgery on the 2n-component links £, see Figure 3.3. More precisely, the manifold
Ln(p,q9) = Lu((pyq),- -, (p,q)) coincides with Lan((1, 1), (p + 2¢,49),...,(1,1),(p+
2q,q)). The manifolds obtained by surgery on Ls, are usually refered to as Taka-
hashi manifolds as nice presentations of their fundamental groups were found in
[Ta].

The link £, has a strong inversion (involution) 7 whose axis is indicated by a dotted
circle in Figure 3.3. This involution induces an involution, also denoted by 7, of the
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manifold L, (p, ¢). The singular set of the quotient-orbifold O(n,p,¢) = L. (p,q)/T
is shown in Figure 3.4, where we use a = (p+ 2¢, q) to simplify notations (compare

also [KV], [RS]).

(p+2q,9) (p+2q,9)
(p.q) (p.q)

7\ \p;//

(p,9)
Figure 3.3. The links L3 and Cs.

FIIIL

Figure 3.4. The singular set of O(n,p, q).

In notations from [KV] and [RS], the singular set of O(n,p, ¢) is the closure of the
rational 3-strings braid (0'119/(1+20'2)". For example, if p/qg = —3/2 then the closure
of (¢ /‘0'9)3 is the knot 949 (see [BuZ], p. 265).

The orbifold O(n, p, q) (or its singlar set) has an obvious cyclic symmetry p of order
n permuting the tangles. The singular set of the quotient-orbifold O(n,p, q)/{p) is

shown in Figure 3.5.

-

Figure 3.5. The singular set of O(n,p, q)/{p).
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Let us redraw the singular set as in Figure 3.6.

L 1 _ }r— T
OO ] NOOT— L'\
,—w

Figure 3.6. The singular set of O(n,p, q)/{p).

From Figure 3.6 we see that the orbifold O(n,p,q)/{p) admits an involution &
(its axis is given by the dashed line). The singular set of the quotient-orbifold
(O(n,p,q)/{p))/{c) is shown in Figures 3.7.

a2 |, a2 |,
n: L g

Figure 3.7. The singular set of (O(n,p,q)/{p)/){c).

I:a/z .

o

o

Using tangle operations as in Figure 1.2, the singular set is equivalent to that of
the orbifold A5 (p, p+ 2¢) (see Figure 3.2).
This finishes the proof of Theorem 3.1.

The theorem admits to compute the volumes of the orbifolds As(z, y) using surgeries
on 63. The smallest volume we found is 0.065965 for the orbifold .A3(3, 2) (covered by
63(—3,1/2)) which seems to be the fourth smallest volume known for hyperbolic 3-
orbifolds. The second smallest volume we found is 0.078559 of the orbifold .A5(—3, 1)
which is covered by the Fomenko-Matveev-Weeks manifold M; = 63(—3, 2).

As in section 2, the manifolds 63(p, (£1 — p)/2) (where p is odd) are maximally
symmetric Dg-manifolds of Heegaard genus two, among them the manifold M.

We remark that the Fibonacci manifolds uniformized by the Fibonacci groups
F(2,2n) can be obtained as L, (—3, 1), so the Fibonacci manifold H?/F(2,2n) is a
covering of A} (3, 1).
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4. The link 83 and the orbifold Aj;

Denote by 83(p, q) the cone-manifold obtained by (p, q)-surgery on all four compo-
nents of the link 83 (see Figure 4.1). Let A3(p, q) be the orbifold whose singular set
is presented in Figure 4.1.

1,

Figure 4.1. The link 83 and the orbifold As(p, q)

By the Kirby calculus, the cone-manifold 83(p, q) can be obtained by surgery on
the link L£g that belongs to the series of links considered in the previous section; in
fact, 85(p, q) = Ls((p+24,9), (1,1), (p+24, ), (1, 1), (p.0), (=1,1), (p,9), (1, 1)) is a
Takahashi manifold.

Using the strong inversion (involution) of Lg considered in the previous section,
we obtain 83(p,q) as the 2-fold branched covering of the closure of a generalized
3-strings braid.

After three further steps of involutions, we get the following result.

Theorem 4.1. The cone-manifold 83(p, q) obtained by (p, q)-surgery on the com-
ponents of the link 8% is a regular 16-fold covering of the cone-orbifold As(p,2q)
obtained by (p, 2q)-surgery on the third Adams orbifold As.

The smallest volume of an orbifold of type Asz(z,y) that we found by SnapPea is
0.117838 of Aj3(3,2), covered by the manifold 85(3,1). We note that A3(3,2) is
a m-orbifold, i.e. all singularity indices are equal to two; in fact it is the smallest
m-orbifold that we know. The smallest known m-orbifold whose singular set 1s a
knot or link is the m-orbifold whose singular set is the knot 9.9, of volume 0.471354,
whose 2-fold branched covering is the Fomenko-Matveev-Weeks manifold M.

We remark that the volume of M is eight times that of the orbifold .45(3,2). The
orbifold .A3(3,2), whose singular set is a spatial handcuff (or pince-nez) graph, has
no regular covering of order less or equal to eight by a manifold.
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