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1. INTRODUCTION AND MAIN RESULTS

Let X, X1, X5,... be independent identically distributed random elements
with values in a real separable Hilbert space H. Let (x,y) for z,y € H denote
the inner product in H and put |z| = (z,2)Y?. We assume that E|X;|? < oo
and denote by V a covariance operator of X;

(V.T,y) = E(Xl - ]EXlaI)(Xl - Eley)

Let o*f > ag > ... be the eigenvalues of V and let eq, es. ... be the correspond-
ing eigenvectors which we assume to be orthonormal. We define

n

S, =n 21 Z(XZ —EX;),

i=1
where 02 = E|X; — EX;|2. Without loss of generality we may assume that
EX; = 0 and E|X;|*> = 1. The general case can be reduced to this one when

we consider (X; — EX;)/o instead of X;, i = 1,2,.... For any integer k& > 0
we put
k k
a(V)=]]er". @)= (o7 *"" (1.1)
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In what follows we use ¢ and ¢(-), with or without indices, to denote generic
constants and constants depending on parameters in brackets. Except for
¢;(V) and ¢;(V) the same symbol may be used for various constants. Let
Y, Y1, Ys, ... be independent H-valued Gaussian (0, V') random elements. Put
for any a € H

F(z) = P{|S, —al* <z}, Fy(z) = P{|Y —a|* <z},
50(a) = sup | F(z) — Fy(o).

It is known (see e.g. Sazonov (1968) and Bentkus (1986)) that in the case
H =R% d < oo, i.e. in the finite dimensional case, we have

Sn(a) < cEIX, |2 o® n~Y/2
1
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and the bound is optimal with respect to the dependence on moments, eigen-
values as well as n.

However in the infinite dimensional case the situation essentially changes.
Here we have (see e.g. Sazonov (1981), ch.2)

sup o, (a) > 1/2.

The development of bounds for d,(a) in the infinite dimensional case can be
divided roughly into three phases: proving bounds with optimal

— dependence on n;
— moment conditions;
— dependence on the eigenvalues of V.

The first phase started in the middle of 60-s with bounds of logarithmic
order for d,(a) (see Kandelaki (1965)) and ended with the result:

5a(a) = O(™7),

due to Gotze (1979), which was based on a Weyl type symmetrization inequal-
ity, which since then has been successfully applied and developed by a number
of authors.

The second phase finishes with a paper by Yurinskii (1982) proving

(V)

n

on(a) < (1+ laf’) E[X: P,
where ¢(V') is denotes a constant depending on V' only.
At the end of the third phase it was proved (see Sazonov, Ulyanov and

Zalesskii (1988b), Nagaev (1989), Senatov (1989))

cce(V)
NG
where cg(V') is defined in (1.1). Tt is known that for any ¢y > 0 and for any
given eigenvalues o7, . .., 0¢ of a covariance operator V there exist (see example
3 in Senatov (1985)) a vector a € H, |a| > ¢p, and a sequence X, Xy, ... of

i.i.d. random elements in H with zero mean and covariance operator V' such
that

On(a) < (1+a’) E[X4]?, (1.2)

liminf v/n 8,(a) > ccs(V) (1 + |al?) E| X% (1.3)

Thus, bound (1.2) is the best possible in case of finite third moment of | X;].
For further refinements see Senatov (1997).

At the same time better approximations for F'(x) are available using an

additional term, say Fj(z), of its asymptotic expansion. This term Fj(x) is
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defined as the unique function satisfying Fj(—oc) = 0 with Fourier-Stieltjes
transform equal to

- 212
Fi(t) = —

Here and in the following we write e{z} = exp{ix}.
Introduce the error

An(a) = sup |F(z) — Fo(z) — F(z)]

Ee{t|Y —a*} (3(X,Y — a)|X|* + 2it(X.Y —a)®). (1.4)

Note that F1(¢) = 0 and hence Fi(x) = 0 when a = 0 or X has a symmetric
distribution, i.e. when X and —X are identically distributed. Therefore, we
get

A (0) = 5,(0).

Similar to the developments of bounds for ¢,(a) the first task has been
to derive bounds for A, (a) with optimal dependence on n. Starting with a
seminal paper by Esseen (1945) for finite dimensional spaces H = R?, d < co
who proved

An(0) = O(n~ Y@+, (1.5)

a comparable bound
A, (0) = O(n™7)

with v = 1 — ¢ for any € > 0. was finally proved in Gotze(1979, 1984), based
on Weyl type inequalities mentioned above. Further refinements and general-
izations in the case @ # 0 and 7 < 1 are due to Bentkus and Zalesskii (1985),
Nagaev and Chebotarev (1986), Sazonov, Ulyanov and Zalesskii (1988a). Note
however, that the results in the infinite dimensional case did not even yield
(1.5) as corollary when 04,1 = 0. Fifty years after Essen’s result the optimal
bounds (in n)

c(9,V)

AL(0) <
c(13,V)

E|X, %, (1.6)

Anla) < (14 Jal®) E|Xy [, (1.7)
where c(i, V) < exp{co;?}, i =9,13. were finally established in Bentkus and
Gotze (1997), using new techniques which allowed to prove optimal bounds in
classical lattice point problems as well.

The bounds (1.6) and (1.7) are optimal with respect to the dependence on
n (Gotze 1998b) and on moments. The bound (1.6) improves as well Esseen’s
result (1.5) for Euclidean spaces R? with d > 8. However the dependence on
covariance operator V in (1.6), (1.7) can be improved. Nagaev and Chebotarev
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(1999) considered the case a = 0 and got a bound of type (1.6) replacing ¢(9, V)
by the following function ¢(V):

(V) =c (e(V) + (ca(V)05°)
where ¢13(V) and ¢g(V') are defined by (1.1). This improves the dependence on
the eigenvalues of V' (compared to (1.6)) but still requires that o3 > 0 instead
of the weaker condition g9 > 0 in (1.6).
The aim of the present paper is to derive a bound for A,(a) in the general
case a # 0 depending on twelve largest eigenvalues of V' only (see Remarks
after Corollary 1.4).

Theorem 1.1. There exist absolute constants ¢, ¢y, co such that for any a €

H

C

An(a) < - c2(V) - (E[X1])' + E(X1,0)*) (1 + (Va,a))

c 5.0
' /NOSMSN i - 1
where f,(t) = Ee{t|S, — a|*} and

c1n O'4 49 C O'8 n
e N = it .
)2 o1 (co(V))?/? EIXu|*

Theorem 1.2. There exists an absolute constant ¢ such that

/ | fu(t)] gt < & EIX1* (0} (co(V)Y 058 + (co(V))V? 05,
No<lt<n  It] n

Remark. The proof of Theorem 1.2 is based on Lemma 2.12. See the
examples following Lemma 2.12 explaining why the bound of Theorem 1.2
depends on first nine eigenvalues of V' only. Theorems 1.1 and 1.2 together

imply
Corollary 1.3. There exists an absolute constant ¢ such that
Aua) < S(en(V) 4ot o7 (V)Y + o5 (V)
x (E|X1|* + E(X1,0)") (1 + (Va,a)).

Corollary 1.4. If
c1z(V) 2 o1 a5 (es(V))Y2, (1.9)
then there exists ¢ such that
An(a) < % c2(V) (1+]al®) E|Xy* (1.10)
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Remark. Condition (1.9) is not very restrictive. For example, it is satisfied
when 0y = - -+ = 09 and arbitray o;, ¢ = 10, 11,....

It follows from Lemma 2.6 (see below) that for any given eigenvalues
o?,...,0%, > 0 of a covariance operator V there exist a € H, |a| > 1, and
a sequence X, X, ... of i.i.d. random elements in H with zero mean and
covariance operator V' such that

liminfn A,(a) > ccp(V) (1+]al®) E| X%

n—oo
Hence, (1.10) is best possible in the sense that it is impossible that A, (a) is
of order O(n1) uniformly for distributions of X; with arbitrary eigenvalues
07,05, .... This means any explicit bound in terms of eigenvalues has to
depend on the first 12 eigenvalues of V.

For earlier versions of this result on the optimality of 12 eigenvalues and a
detailed discussion of the connection of the rate problems in the central limit

theorem with classical lattice point problems in analytic number theory, see
the ICM-1998 Proceedings paper by Gotze (1998b), and also ibid. (1998a).

Note however that in special 'symmetric’ cases of the distribution of X; or
of the center, say a, of the ball, the number of eigenvalues which are nec-
essary for optimal bounds may well decrease below 12. For example, when
E(X,b)> = 0 for all b € H, by Corollary 2.7 (see below) for any given
eigenvalues o?,...,02 > 0 of a covariance operator V there exists a center
a € H, |a] > 1, and a sequence X, X, Xo,... of i.i.d. random elements in H
with zero mean and covariance operator V' such that

liminfn A, (a) > c cs(V) (1 + |a|*) E| X"

n—oo
Hence, in this case an upper bound of order O(n™!) for A, (a) has to involve
at least the eight largest eigenvalues of V.

Furthermore, lower bounds for nA,,(a) in the case a = 0 are not available. A
conjecture, see Gotze (1998b), says that in this case the five first eigenvalues of
V suffice. This conjecture is motivated by the special case where the sums of
random vectors have independent coordinates where indeed we have A, (a) =
O(n~') provided that o5 > 0 only, see Bentkus and Gotze (1996).

The proofs of the Theorems are given in Section 3. They are based on the
Lemmas from Section 2.

Acknowledgement. We would like to thank our colleagues in the SFB
343, V.Bentkus, A.Tikhomirov and A.Zaitsev for helpful discussions.



2. AUXILIARY RESULTS

Let Z; for j = 1,2,... be ii.d. random elements with distribution ) such
that @ = (Q1+ @Q2)/2, where Q1, Q) are probability measures, Q(Br) = 1 for
a ball Bp = {x € H : |z|* < L} with some L > 0 and a covariance operator
V' oof ()1 has a trace trV’ < 2. Let Y be a Gaussian random element with
parameters (0,aV), a > 0. Assume that Y, Zy, Zy;, Z; for j = 1,2,... are
independent random elements. Let [, m,ng,n be positive integers such that
[<m, l+m<n, ng<n. Put

I+m

no
U1 = n_l/Q ZZ]', U2 = n_l/QZZOj.
1

1

Lemma 2.1. (see Lemma 4 in Sazonov, Ulyanov and Zaleskii (1991)) For
any A > 0, any integer r > 0, | > L2, and t satisfying

1] < ()L n(l In(L-20)) 2

as well as for arbitrary t if | < L2, we have

|E exp {it|Uy + Uz + Zy|*}(z, Uy + Us)"|
< 1 K (exp{—cal} + c(A) (L2 /D)4 + W2 (cst?lm/n?, V")),
where ¢; = ¢;(r), j =1,2,3,
K, =E|(z,U; + Uy)"| when | <r+1,

and forl >r+1
r+1

Ky =) El(z, Uy + Uy)|
j=1
with Uy; = n~ Y2330 Zy by = l(L+m)/(r+1)],j = 0,7, kypy =1+ m
and Uy; for j = 1,r + 1, form a partition of a sum Uy into r + 1 parts (some
of which may be empty);
t1 = min{|t|, L™ n(m In(m/L?)) "2},
h(s, V') =1 +2s(a))*) /2
j=1
and (07)? > (05)* > ... denote the eigenvalues of V.
Moreover, for any t we have

E exp {it]Y + Us + Zo|*}(z, Y + Uy)"| < esKoh?(cst’a, V),



where ¢; = ¢j(r), j =4,5 and

r+1

Ky =) El(,Y;+ Uy)|".

=1

where Y;, j = 1,7+ 1 are i.i.d. Gaussian random elements in the represen-
tation Y = Z;H Y; and Uy;, 7 = 1,7+ 1, form a partition of a sum Uy into
r—+ 1 parts some of which may be empty.

We shall use the following Rosenthal type inequality (see e.g. Pinelis (1980)
and de Acosta (1981)):

for independent random elements X1, ..., X, in H with mean zero and for
any q > 2 we have

B Y Xl < clg) QUEIXI"+ (_EIX[?)"?).

Lemma 2.2. Let T > 0, b € RY, b # 0, [ be an integer, | > 1, Y =
(Y1,...,Yy) be a Gaussian random vector with values in R2, Yy, ..., Yy are
independent and BY; = 0, EY? = o? fori = 1,2,...,2l; 0} > 03 > -+ >
02, >0 and a € R?. Then there exists a positive constant ¢ = c(l) such that

T
I = ‘/ s Eexp{is|Y + af*}e™ds|
-

<c[]e" (2.1)

Proof. It is known that
2l
Eexp{is|Y + al’} = [ (1 — 2is0}) /? exp{ials/(1 — 2is0?)}.

j=1

Using Euler’s formula for complex exponentials we get for positive g and any
deR!
d2

g +id = /g% + d?e* with ¢ = arcsin ————.
/92 _|_d2
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Therefore, for I we have
] = ‘/ -1 Zst 1+43 -1/4
2a2 202 ia%s 1Q;
% 4505 _ %t Wiy
exp( 1+ 45201 j) exp(l_i_%%? + 2 ) s}
T 2l 2
-1y a;s ©j
= t b —_— 4+ =
\/Ts rlg<s +Z::(1+4520?+2)>

( i 2a2 252 21
xexp [ — 79 (1 + 4s%09) ™/ 4ds|,
= 1+ 45204 j> H

J=1

where ¢; = arcsin(2s0? /(1 + 4s%0})/?) and

) {cos:r if [ is odd,
trig(x) =

sinz if [ is even.

This decomposition has been suggested to us by N. Blagoveshchenskii.
We may write

_ 1 T
- 2H‘“'/ ‘S““<S”Z(1+4sz 5%—5)))
21 2.2 2 1/4
2a s°0;
— ” _— ds|. 2.2
XeXp( ZJ T 450 > <1+4so) d 22)

Note that
21 2 4

1/4
ST
11 <m) < Vlsloa.
j=1 J

Therefore it follows from (2.2) that in order to prove (2.1) it is enough to show

r a25 1 s
- b I R
|//U2 Ssm s +Z<1+4s2 +2(<,0J 2))

2l 2@2 2 2 2l s 0_4 1/4
X — —_— — ds| < c. 2.3
b ;1+4s2 o ],1;[1(1+4320;.1> 5| <e (23)



We shall use the following obvious inequalities

45204 \ ! 1
0<1—(——-"2— < f =1,2,...,2[
(1 + 4520;.1) 4520y, or J = ’

|sin(z +y) —sinz| < |y| and |z]e7 <1 for any z,y € R:;

0< g —arcsin(1 —2) < 23222 for z:0< 2 < 1.

In view of these inequalities the bound (2.3) follows from

( 221 2a2 2 2 >
‘ —sm (sb) exp —|ds| < (2.4)
p= 1+ 4s%0

Zl

The inequality (2.4) is a conequence of the second mean-value formula for
integrals (Bonnet’s theorem) since the function

2 2.2 2
2ajs%0
J
exp | — —
P ( Z 1+ 45%-)
]:]_ J
is a bounded and monotone function of s for s > 0 and for any positive a and

b we have
b .. T
sin x sin x
‘ / dac‘ <2 / dx
w T 0 T

Lemma 2.3. Let Yy,...,Y,, Y/, ...)Y] be i.i.d. Gaussian (0,C) random el-
ements in a Hilbert space H. Let 0% > 02 > ... be the eigenvalues of C. Put
W = (detA)?, where A = {a;;}},_, and a;; = (Yi,Y]). Then

(3 Vi

EW =(@d)?* Y o .. .0 (2.5)

11 14’

The Lemma is proved.

1<i) <+ <ig<oo

(EW?)1/2 < 29 EW. (2.6)

Proof. Without loss of generality we may assume that an orthonormal
base {e;} in H consists from the eigenvectors of C'. By the assumptions of the

Lemma we have
[ee]
Y, = E Yije;s E ejv
j=1

where {Y;;}, {Y};} are independent real normal random variables

EY;; = EY]; =0, E}gﬁ:E()g;)Qza?, i=1,....d; j=1,2,...

J
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According to the extension of the Lagrange identity for the determinants to
Hilbert spaces, (see e.g. Greub (1978), ch. 5, §5.7, problem 4 or Smirnov
(1964), ch. 1,81, sect. 7) we can write

detA =) " detY (i) - detY”(i), (2.7)

where V(i) and Y”(i) are the matrices {Yi; }f,_, and {Y{; }#,_, respectively
and the symbol < indicates that the indices (iy,...,iq) are subject to the
condition 1 <1y < --- < iy < 0o. Note that E detY (i) =0,

E(detY(i))2 = d!O'Z-Zl ----- o?

and E detY (i) -detY (j) = 0 for any ¢ = (i1,...,44) with 1 <4y <--+ <ig < 00
and i # j, i.e. there exists [ € {1,...,d} for which ¢; # j;. Using (2.7) we get

EW = 3" E(detY (i) - E(detY”(1))?,

which implies (2.5).
The inequality (2.6) is a direct corollary of the logarithmic inequalities for
Gaussian measures (see e.g. Bogachev (1998), Corollary 5.5.9, p. 228).

Let X, Xy,..., X, denote i.i.d. random elements in a Hilbert space H with
EX =0, cov(X) = C and ¢} > 02 > ... be the eigenvalues of C.
Put S,, = m™?(X1+---+X,,). Let Spu1, S, 1, Smas - - - S, 4 be 2d indepen-

dent copies of S,,. Put W,,(X) = (det A,,(X))?, where A,,(X) = {as;(X)},,
and a;;(X) = (Smi, S,,;)- Denote by W the same variable as in Lemma 2.3,

Lemma 2.4. There exist the constants c1q and coq such that for any integer
m satisfying

E|X|* E|X|*
X (B "
mo, m
we have
[E W? —EWy,(X)] < c2a(E W)?. (2.9)

Proof. Let Y,Y1,Y],..., Yy Y, denote independent Gaussian (0, C') random
elements in H.
Since
EX=EY =0, cov(X)=-cov(Y),

for any by, bo, b3, by € H we obtain

]Eﬁ(Sm, b) = Eﬁ(Y, bi) + % (E f[(x, bi) — Eﬁ(y, b,)) . (2.10)

i=1 i=1
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Applying (2.10) sequentially to variables S,,1,S,, 1, Sma, ..., S, We get

d d
EW2(X)=EW?+> m ™21y 4y " m 2y (2.11)
=1 1 =1 2

where >, and Y, are sums of 22! resp. 2% summands of type

/

cE W2(Z11 Z;, Z2a Z2a s Zia Y;,7K+1:Y;/+17Yvi,+17 - -;Y'da Yd,)
resp.

cERW* 2y, 7y, ..., Zi 73, Y, Yoty Yo, Vo)
here the cofactors ¢ are real numbers uniformly bounded by a constant cg, i.e.
le] < ¢

and cg depends on d only; Z; resp. Z; are either equal to X; or Y; resp. X; or
Y;: and

W(Z1, 24y Ziy 73, Yig1, Yoy - -, Ya, Vy) = (det B)?
where B = {by;} ) with by; = (T}, T}) and

T, Z for k<, T _ Z,;, for k <u,

T Y for k>d, TR Y, for k>

Moreover, it is easy to see that for a non-increasing sequence {a;} of non-
negative numbers such that > a; < oo, we have for any integer d > 2

—d
E Ay - - - Ay > 2 aq E Qi oo - Qg (212)
1<i1 <+ <ig <00 1< <+ <ig_1 <00

Using an expansion of the determinant in the elements of rows and cofactors,
together with Lemma 2.3, (2.11) and (2.12) we arrive at (2.9) provided that
m satisfies (2.8).

Lemma 2.5. (Cf. Lemma 4.7 in Bentkus, Gitze (1997)). Let A be a non-
degenerate d x d matriz. Let X € R% be a random vector with a covariance
matriz B. Assume that there exists a constant cg such that

P{X|<ec} =1 [Al<ec |B|<ca

Let U and V' be independent random vectors which are sums of n independent
copies of X. Then

IEe{t(AU,V)}| < c(d) | det A|"*M>4(t;n) for |t| >0,

where

M(t;n) = 1/\/|tln + /|t] for |t| > 0.
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Proof. It is enough to repeat the proof of Lemma 4.7 in Bentkus, Gotze
(1997) with minor modifications using

/ exp{—|Az|?} dz < 2 | det A,
|z]<1

Let X, X1, Xs,...,X, denote i.i.d. random vectors in R? with zero mean
and covariance operator V and eigenvalues o7 > o3 > --- > 03. Put S, =
nV2(X; + -+ X,) and

F(z) = P{|S, —a|* < x}.
Let Y be a Gaussian vector distributed according to N(0,V) in R% Put
Fy(x) = P{]Y —a|* <z}
and denote by Fi(z) the function of bounded variation satisfying Fi(—oo) = 0
with Fourier-Stieltjes transform given by
—2t2
- NG
In fact (see e.g. Bentkus, Gotze (1997)) Fi(z) can be written as a signed
measure g of a ball B(a,z) = {y € R?: |y — al?> < z}. We have

Fi(t) Ee{t|]Y —al’} (3(X,Y — a)|X|* + 2it(X.Y — a)?).

Lemma 2.6. In the Euclidean spaces R%,d = 2,3,...,13, there exists a dis-
tribution P of X and balls B(a,r) with |a| > 1 such that for given values

0%, ...,05 | of the eigenvalues of the covariance operator V- and all sufficiently
small oy
liminf nsup |P{|S, —a| <r} — P{|Y —a| <r} — u{B(a,r)}|
> ¢(P)la| D2 (gy - - - gar)t |02 4 g2 (0 — 3a2)|, (2.13)

where a; = EX, and X = (X1, ..., Xy).

Corollary 2.7. Assume that az = 0 and that the conditions of Lemma 2.6
are satisfied . Then we have for all d =2,...,9

lim infnsup |[P{|S, —a| <7} = P{(Y —a) <7} = p{B(a, 1)}

> ¢(P)|a| D2 (gy - e oa1) o (g —302).  (2.14)

Proof. We shall follow the arguments of Example 3 in Senatov (1985).
We choose a distribution P in R? such that the projections onto vectors
of an orthonormal basis eq,...,e4_1 in R? are normal distributed with zero

mean and variances o%,...,02 ;. Furthermore we may choose P such that
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the projection onto e, has zero mean, E(X, e4)? = 02, az > 0, ay —3ag > 0
and it satisfies a Cramer condition of smoothness. Moreover we assume that
the components of this random vector X under P are independent. Let G
denote the distribution function of the projection of P onto e;. Obviously,
the projections of distribution of S,, onto ey, ..., es_1 for any n will be normal
with zero means and variances o3, ...,03 ; while the distribution function G,
of the projection of distribution of S, onto e; has the following asymptotic
behaviour (this follows from classical results on Edgeworth approximations of
sums of i.i.d. vectors, see e.g. Petrov (1987))

) = Q1($) + Q21($) + Q22($)
vn n

where ®(zx) is the distribution function of the normal law with zero mean and
variance o2,

+o(n™!) as n — oo,

2

Qi(z) = —m(a—ﬁ—l)GXP(_ﬁ/(QUi))a

Onlr) =~ (2 =102+ 15(2) ) e 20,
~ (=3a)) (jz\s L,z oxp(—22/ (962

Qxn(r) = 724\/%03 ((Ud) 30(1) xp( /(203)).

Consider the ball B = {y € R¢: |y — aey| < R}, where a is a positive number
depending on R to be determined later.

We have

~

I=®,(B)-P,(B) = Z/b (0)(Rm-(:1;1) — Rpi(22))®(du) + o(n 1),

where P"(B)N: P{(S,—a|l < R}, ®1(B)= P{|Y —a| < R}+u(B), Ru(z)=

—Qo;(z)/n, @ is the projection of P onto R4t which coincides with the cor-
responding projection of the distribution of Y, bz(0) is the ball in R4~ with
center at 0 and radius R, 1 = a — 7, 9 = a+r, r* = R? — |u|* and
lul* =uf+ -+ uj_,.

It is easy to see that there exists ¢y such that for x > cyo, the functions
R,i(z) are positive and decreasing. Put a = R + cyo4. Then for any u € bg(0)
the differences R,;(z1) — Rpi(x2) are non-negative.

The arguments are similar for the first two summands in the expression for
I. Therefore we shall give a proof for
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[1 = / (Rnl(ﬂfl) — Rnl(xg))@(du)
br(0)
only. There exists a constant ¢; such that for all v > ¢yoy
Rnl(v) Z 2Rn1(v + clad).

Since x9 — 1 = 24/ R? — |u|?, there exists ¢z such that for v : |u| < /Roy
and R > cyoy we have
Rn(arl) Z 2Rn($2)

Therefore for R > co04 we get

~

1
Il Z —/ Rnl(acl)(b(du)
2 b /R (0)
d
and, since c304 < 11 < 404,

~

I > cado;'n ™ @ (b/ps7(0)).
Since for sufficiently small o5 we have

~

d—1
®(b /s (0)) > chin(l, VRog/o;) > c¢(Rog) Y 2 gy - oq_1)
i=1

with some constant ¢ depending only on d, we arrive at the first summand on
the right-hand side of (2.13) as a lower bound. Repeating similar arguments
for

/b | URaa(a1) = Ruaaz))

concludes the proof of the Lemma.

Lemma 2.8. (See Sazonov (1981), p.85). Let X be a random element with
values in H such that EX = 0, E|X|> < co. Denote by V the covariance
operator of X. LetY denote a Gaussian (0,V/2) distributed random element
and let ¢ denote a real random variable such that

E¢ =0, EC? =1/2, E¢* = 1.

Suppose that X, Y and ¢ are independent. Then Z = ( X +Y has mean zero,
covariance operator V and for any hy, ho, hs € H we have

E(X, h1)(X, ho)(X, hs) = E(Z, hi)(Z, ha)(Z, hs).



15

Lemma 2.9. Let k and n be natural numbers, n > k, and X1, ..., Xy, be k-n
i.i.d. random elements with values in H. Let f(xy,...xy) be a functional of
x1,...25 € H with values in R such that it is linear with respects to each
variable. Assume that g : H — R is such that Ef(Xy,..., Xz)g(T) exists,

where T' = X1 + Xo + -+ + Xy Put S = Eg(T) > f(Xiy, ... Xi,), where
the summation is taken over all values of iy,...,1, € {1 2...,kn} which
are pairwise different. Then S can be splitted into m = m(k) summands

of type Bg(T) f(Wh, ..., W), where W; = 3"y X, N(1)U---UN(k) =
{1,2,...,kn}, NG)NN(j) =0 fori# j and N(i )/n—> 1 asn — oo for all
ie{l,2,... k}.

Proof. We prove the Lemma in the case k = 2 and g = 1. In this case it is
enough to show that

2n
S= Y Ef(Xi, X)) = 2(Ef(T1,T3) + Ef (T, Ta)), (2.15)
i,j=1
iJ#J'
where
ZX“ T, = Z = Xos1 + Ty
J=n+2
We have
S =51+ 9, (2.16)
where

n

2n
i=1 j=1
J#i

It follows from the conditions of the Lemma that
2n
Y Ef(X1,X;) = ZEf Xy, X;) + EBf (X3, To)
=2

= ZEf(Xl,Xn+j+Ef<X1,T2>

Jj=2

= Ef(X1,T) +Ef(X1,T3). (2.17)
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Since X7, X, ... Xy, are identically distributed we get similarly to (2.17) for
any i € {1,...,n}

S EF(X. X;) = Ef(X,.T)) + Ef(X,.T5) (218)

j=1
J#

and for any i € {n+1,n+2,...,2n}

2n
Y Ef(X:. X)) =Ef(Xin. To) + Ef (Ximn. To). (2.19)
j=1

j;i
Combining (2.16) - (2.19) we obtain (2.15). Thus the Lemma is proved in the
case k = 2 and g = 1. It is easy to see that similar but more tedious arguments
prove the Lemma in the general case.

Let Z,Z,7%,,...%Z, be iid. random elements,
Z1 =X+ Y1, (2.20)

where ¢; and X; have the same distribution as ¢ and X resp. in Lemma 2.8.
Let Y, Y be the independent Gaussian (0, V') random elements. According to
Lemma 2.8 we have

EZ, =EY =0, cov(Z;) =cov(Y) =V, (2.21)

where cov(Z;) denotes the covariance operator of Z;.
Put T, =n Y272, + -+ Z,),

Iy = Ee{t|T, — a’}(EzL(Z) — Ey L(Y))(Ez(Z) — ExL(Y)),
where
L(u) = e{t(Ju/vn]* + 2(T,, — a,u/v/n))}
and Ex f(X,Y) means that we consider expectation with respect to X only.
Lemma 2.10. If
n T EIX|*+E(X,a)")(1+ (Va,a)) < 1, (2.22)
then for any T > 0 and x > 0

[ ) < P xR0 Ve, 229

t n?

Proof. In the following we say that a function f(n,t) belongs to a class of
functions F iff for any 7" > 0 and x > 0 the quantity

\/T e{—xt} f(n,t) dt]

t
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can be bounded from above by the right-hand side of (2.23), provided that
(2.22) holds. Thus we have to show that Iy € F.
Below we shall use often the Taylor formula for a smooth function f(s)

m—1
F90)s /50 + (( / fom — A" A (2.24)

7=0
Using (2.24) we can write

ef{t(jul* + (b,u))} = eft(b,u)}(1 +itlul* + (it)*ju[*E e{tr|u*}(1 — 1))
= 1+it(bu) +itful> + Y K;(bu), (2.25)

J=0

where 7 is a random variable uniformly distributed on [0; 1] and

Ko(byu) = —t*Jul'"Ee{t((b,u) + T|u|*)}(1 —7),
Ki(b,u) = —t*|ul*(b,u)Ee{tr(bu)},
Ky(byu) = —t*(b,u)*Ee{tr(b,u)}(1 — 7).

It follows from (2.21) and (2.25) that

Iy = Ee{t|T, —al*} Z(Kl(m —2a,7/v/n) — Ki(2T, — 2a,Y/\/n))
x (K; (2T, — 2a,72/\/ﬁ) — K;(2T,, — 2a,Y //n))
= Z Iy = Iog + L + I + Ro(t). (2.26)

7,1=0

Note that up to absolute constants R(t) is a sum of terms of the type

201 202 U\ % U (71
— T, — a, —) (Tn —a, —> e{t|T, + bl|2 + bot},
‘f \/ﬁ ( vn vn

where U (resp. U) is either Z or Y (resp. either Z or Y); random elements
U,U,T,,b; and by are independent; P{b, = 0} = 0; oy, a9, a3,y are non-
negative integers such that

H*E

alSQa a2§27 O[3+OZ4§2,
20&14‘0&3 §4, 2a2+a4 §4,

2001 + 209 + a3 + oy > 6.
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Using the wellknown techniques of splitting sums and conditioning on cor-
responding sets of random variables, together with Rosenthal type inequality,
Lemmas 2.1 and 2.2 and Fubini’s theorem we get

Ro(t) € F. (2.27)

Now we consider Ios. We have

Ly = —4t'Ee{t|T, —a|’} Y (Ky(Tn, Z/Vn) = Ko (T,, Y/ V)

J,1=0

X (Ko(Tp, Z /1) — Koi(T,,, Y [y/1))
_ Z L. (2.28)

7,1=0

where for 7 =0,1,2

Koy (b, 1) = G) (b, u) (@, W) TEre {tr(2b — 20, W)} (1 — 7). (2.29)

The further arguments are based on the following ideas:

a) Since the covariance operators of Y, Z,Y and Z coincide we obtain for
j=0,1,2 and any a,b € H that

E (b, Z)(a, 2)*7 = E(b,Y)(a,Y)*? =E (b, 2)(a, Z)*
= Eb,Y)(a,Y)*’ (2.30)

Therefore, applying the Taylor expansion (2.24) with respect to s for a
function

f(s,u) =e{stT(2b — 2a,u)}

(see (2.29)) with m = 1 we have to bound the remainder terms in (2.28)
only.

b) While using Taylor expansions to show that I, € F, we have to make
sure that the error terms occuring in our arguments involve moments of
random elements of order at most four.

This tedious but straightfoward procedure has been described in detail in
similar problems in Bentkus, Gotze (1999), Lemma 8.4. Therefore we restrict
ourselves to necessary remarks which are specific to our task only.

Applying (2.24) for f(s,U) and f(s,U) we can write > o<jii<o Lji as a sum
of terms of the type

cx (1, %)ﬁl @ %ﬁ (1. %)ﬁ3 (& %)"4 C(t 1T+ i b bt}
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where U, U, T,, by, by are independent and (31, B2, 33, B4 are non-negative inte-
gers such that

Bi+Ba=0s+0s=3, [i+[:<4
Similarly to (2.27) we can show that

Y LyeF
0<j+1<2
Now we show that
Ly € F (2.31)
We have
Loy = —4'E{t|T,, — a|*}(1 — 1) (1 — 72)
< > 2V, 2/5m)(Z, )V, 2]V R)e{im (2T, — 2, Z/Vn)}

iyj’k’lzl

— (%N YNR)(Z;)N/R, Y V) eftn (2T, — 2a,Y/v/n))]
< [(Zu/ /. Z/Nm) 2/, Z m)e{tma(2T, — 20, Z /)
— (BN NI 2T (el ima(2T, — 20,7 /)]
= 23: D, (2.32)

where

Dy represents the summands with ¢ = 5 =k = [;

D5 represents those summands where three of four indices 7, j, k and [ coin-
cide;

D3 represents all remaining summands.

Since D, is a sum of n terms of type

ct* E e{t|T, — a|’ +t (21, — 2a, (nU + 1U) /v/n)}

Z, UN (2, T\’
1— 1-— —_— — R
X( Tl)( TQ) <\/ﬁ7\/ﬁ) <ﬁ7ﬁ) )
it follows from Fubini’s theorem and Lemmas 2.1 and 2.2 that

D, e F.

In order to bound Dy it is enough to consider without loss of generality the
part Dy of Dy which corresponds to the case when i = j = k # [. We shall
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use (2.24) for a function f(s) = f(s,U) with m = 1. Then we get that Dy
can be written as a sum of n terms of the type

ct” E e{t|T, — af* + 2¢(T,, — a, (nU + mmU)/v/n)}

X7o(1 = 7)(1 —7) <%’ %)2 <%’ %>

U 71 U
Tn y T — e Tn - W, 7/ = )
< » ﬁ)<ﬁ+ ® “ﬁ)

where Tn(l) = Tn — Zl/\/ﬁ
Similar to (2.27) we get Doy € F and therefore

D, e F.

In order to obtain bounds for D3 we argue in a similar way using (2.24) for
both functions f(s,U) and f(s,U) and additionally apply Lemma 2.9. Thus,
(2.31) holds.

Similar arguments show that

Lo+ 1y € F.
The Lemma is proved.
Let X, X1,...,X, beiid. random elements satisfying the conditions of
Theorem 1.1. Let Z, Z1, ... Z, beii.d. random elements constructed in Lemma

28. Put T, = n Y2(Wy + --- + W,), where Wi,..., W, are independent
random elements and W; is either X; or Z;.

Lemma 2.11. [f
nHEIX*+E(X, a1+ (Va,a) <1
then

/ L \Ee{t|T,, + X/v/n—al*} — Ee{t|T,, + Z/\/n — a|*}| dt

No |t|
< G(V)
=73

(EIX]* +E(X, a)"),

where

4 4/9
N, — ( Lg) |
(E[X1)
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Proof. The arguments are similar to those used in Lemma 2.10. Just note
that instead of (2.25) we use
2

e{t(|u|2—|— (byu))} =1+it(b,u)— %t2(b, u)2 —|—it|u|2 —t2|u|2(b, u) —1—2 K]/-(b, u),

=0
where K;(b,u) = Ko(b,u) with Ky(b,u) from (2.25),
K (bu) = —it’lul’E e{tr(b,u)},
Ky(bu) = —%ﬁ@ﬂoﬁgeﬁTwﬂox1—Tf.

We shall apply Lemmas 2.1 and 2.2 as well.

Lemma 2.12. (See Lemma 3.2, Theorem 10.1 and formulas (10.7)-(10.8) in
Bentkus and Gétze (1999)). Let o(t), t > 0 denote a continuous function such
that 0 < ¢ < 1. Assume that

o(t) et +7) < OMU T, N) (2.33)

forallt > 0 and 7 > 0 with some 0 > 1 independent of t and 7. Then for any
0O<B<land N >1

/1 @dtgc(s)e(N—lJr(B\/N)_d/Q) for d>8. (2.34)
B/VN

Examples. Assuming condition (2.33) the bound (2.34) has an optimal
dependence on N in the following sense. There are two examples of sequences
of functions pn(t) and ¥y (t), N = 1,2,... satisfying (2.33) with 6 = 1 and

such that )
t In N
/ onvlt) gy s N s N—23....
N-1/4 t 4N
1
Un (t) c(d) 3
dt > —= for d>9,N > ——.
/]VQ/d t - N o - T 92/d
See Seleznev (1999). In fact, it is enough to take
1— Nt for 0<t< N7
D for N7'<t< N7Vt N2
enll) = N(t—NYH 4Nt for NV*_N2<t< N4
N1 for N7/4<t,
1— Nt for 0<t< N7
Un(t) = {0 for N 1<t<1-NL

Nit—1+N1Y/2 for 1-N1<t,
cd) = (4— 2% -1,
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3. PROOFS OF THE THEOREMS
Proof of Theorem 1.1 We write
Ay(a) < App+ Apo, (3.1)

where

Am = sup|F(z) - G(a)],

ANpo = sgp |G(z) — Fo(z) — Fi(2)],

G(r) = P{(Z+--+ Zn)/Vn—af* <2}

and 71, Zo, ..., /7, are i.i.d. random elements constructed in Lemma 2.8 when
we take X = X;. Denote

G(t) =Ee{t|(Zi + - + Zu)/v/n — a|*}.
Using Theorem 2 in Petrov (1987), ch.5, sect.1. we get

N | § A oo
F(t) — .
Ay < cl/ Mdt + 2 sup | e{—tz} G(t) dt|. (3.2)
-N |t‘ N >0 —00
According to the construction of Z; it follows from Lemma 2.2 that
su%)| e{—tx} G(t) dt| < c- (V). (3.3)
x> —0oQ
We write
NOE@) - G(t
/ O =GOy <14 4 1, (3.4)
N 2]
where

I, = /NO Mdt,

—No |t|

F(t
L - / | ()Idt,
No<[t|<N |t

I - / GO 4y
No<lti<n ||

It follows from Lemma 2.1 that
cs(V)
Ny

IgSC'
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Using the coincidence of the moments of the first three orders for the distribu-
tions of X7 and 7; (see Lemma 2.8) and applying Lemma 2.11 and standard
arguments (see e.g. Sazonov, Ulyanov and Zalesskii (1988a, 1991)) we get
(V)
n

I, <c (E| X1|* +E(Xy, a)"). (3.6)

We now consider A,,».

We shall use the following approximation formulae for the Fourier inversion.
A smoothing inequality of Prawitz (1972) implies (see Bentkus and Gotze
(1996), Section 4) that

1 )

F(z) = 3 + ?V.P. /Ke{—xt}}%(t)% + R, (3.7)

for any K > 0 and any distribution F' with characteristic function F , where

1[5 .
Rg—/ F(t)|dt.
|R| % _K| (t)]

Here V.P. [ f(t)dt = lim._, J,
integral.

For any function /' : R — R of bounded variation such that F'(—oo) = 0 and
2F(z) = F(x+) + F(z—) for all x € R the following Fourier-Stieltjes inversion
formula holds (see e.g. Chung (1974))

F@) = 2F(00) + —= Tim V.P. / e{—zt} B(t) 2. (3.8)
=Y t

2 27{' M —o00

H>e f(t)dt denotes the principal value of the

The formula is well-known for the distribution functions. For functions of
bounded variation it extends by linearity arguments.
Using (3.7) we can write

) " A . dt
G(z) — Fy(z) = %V.P./ e{—xt}(G(t) — Fo(t))7 + Ry, (3.9)
where similarly to (3.5) we obtain
Rl <c- 532/). (3.10)

Applying (3.8) to Fi(x) and using (3.9) we get

G(z) — Fy(z) — Fi(z)

= %V-P- /n e{_ft} (G(t) = Fo(t) — Fy(t))dt + Ra, (3.11)

—-n
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where by Lemma 2.1 and (3.10) we have for R

c(V
R <e- O @+ Bl @) (3.12)
By Lemmas 2.2 and 2.10 combining (3.11) and (3.12) we get
V
Amgc-qi HMXH%HMXL@SQ+4VQ@) (3.13)

Combining (3.1)-(3.6) and (3.13) we arrive at (1.8).

Proof of Theorem 1.2. Let mg denote an integer satisfying (2.8) with
d=9. Put S,,, =my 12 (X 1+ +X ), where X; denotes the symmetrization
of Xj.

Since for any real non-negative random variable Z such that EZ = 1, EZ? <
A we have

P{Z > 0.5} > 0.25 A2,
it follows from Lemmas 2.3 and 2.4 that

P{W,,,(X) >0 - og} > c. (3.14)

Replacing the nondegeneracy condition NV (p, d, s, Z) (see (3.2) in Bentkus and
Gotze (1999)) by the condition (3.14) and applying Lemmas 6.3, 6.7 and 7.1
from Bentkus and Gotze (1999) and our Lemma 2.5 we get

WOy (o, [ 50,)
A@QM dt < c H+Awta, (3.15)

where ©(t) is a continuous function such that 0 < ¢ < 1 and
o(t) ot +7) < ceo(V) M (TNmg/n, n/mo). (3.16)
Since for any € > 0
M(te, n) = e M(1, né®),
an application of Lemmas 2.12, (3.15) and (3.16) concludes the proof of The-
orem 1.2.
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