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Throughout this paper k& denotes an algebraically closed field. All algebras considered
here are basic connected finite-dimensional k-algebras. The stable category mod A of
the category mod A of finite-dimensional right modules over a selfinjective algebra A has
the canonical structure of a triangulated category. We say that selfinjective algebras
A and II are stably equivalent in case the stable module categories mod A and mod Il
are equivalent as triangulated categories. It is well-known that if two algebras are
derived equivalent, then they are stably equivalent (Keller-Vossieck [12, 2.3], Rickard
[14, Theorem 2.1]). We are interested in the cases when the converse statement holds.
In [2] we classified representation-finite selfinjective algebras, and as a corollary we have
obtained that two such algebras are derived equivalent if and only if they are stably
equivalent, namely the converse statement holds for these algebras.

Here recall that the frequency of a representation-finite selfinjective algebra A(# k)
is equal to the rational number s/n where s is the number of isoclasses of simple A-
modules and n the number of vertices of the tree class of A (see [2, 2.1]). In this paper
the converse statement for algebras with integral frequency will be generalized to a
wider class containing representation-infinite algebras.

Let A be an algebra and n an integer > 1. Then an algebra of the form T}(A) :=

A/{¢v?) for some automorphism ¢ of A, is called a twisted n-fold trivial extension of A,

A

where A denotes the repetition (= the repetitive algebra in Hughes and Waschbiisch
[10]) of A, (ﬁ is the automorphism of A induced by ¢ in an obvious way, and v, is
the Nakayama automorphism of A (see [2, 2.3] in which A and ¢ were denoted by
AZ and ¢Z, respectively). A twisted m-fold trivial extension of A for some integer
m > 1 is called a twisted multifold trivial extension of A, and it turns out to be a
selfinjective algebra. Note that if ¢ is the identity automorphism 1 of A and n = 1,
then T(A) is isomorphic to the trivial extension T(A) := A x DA of A by the A-A-
bimodule DA := Homy (A, k), from which the terminology was taken. Using this notion

representation-finite selfinjective algebras with integral frequency are characterized as
follows (see [2, 6.1]):

Proposition. Let A be an algebra and n an integer > 1. Then A is a representation-
finite selfinjective algebra with frequency n if and only if it is (isomorphic to) a twisted
n-fold trivial extension of an algebra which is tilted from a hereditary algebra kQ defined
by a Dynkin quiver Q).
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An algebra A is called piecewise hereditary if it is derived equivalent to a hereditary
algebra H (Happel [8, IV.1]). Note here that the ordinary quiver @ of H has no
oriented cycles and H = kQ. This @ is called a type of A (type is uniquely determined
up to “reflections”). We are now in a position to state our main result in this paper.

Main Theorem. Let A and II be twisted multifold trivial extensions of piecewise
hereditary algebras A and B, respectively. Assume that a type of A is an oriented
tree. Then A and I1 are derived equivalent if and only if they are stably equivalent.

Note that a type of a piecewise hereditary algebra A is an oriented tree if and only
if the first Hochschild cohomology H'(A) := H'(A, A) of A vanishes (see, e.g., Happel
[9, Theorem 2.2]).

In section 2 we recall fundamental facts about the repetition of an algebra, the
repetition of an isomorphism and right modules over the repetition of an algebra;
and prepare Lemmas 2.5 and 2.6 to investigate the action of an automorphism of a
hereditary algebra A on the stable Auslander-Reiten quiver of the repetition of A. In
section 3 we collect necessary facts on derived equivalences from [2]. We make full use
of Proposition 3.2 (= [2, Proposition 5.4.3]) to deduce derived equivalences between
twisted multifold trivial extensions. In section 4 we first recall facts about trees, and
then give a special orientation on a tree, which is needed in later sections. Section 5 is
devoted to a reduction of the problem on piecewise hereditary algebras to hereditary
tree algebras. In section 6 we show that the underlying graphs and folding numbers are
invariant under stable equivalences (Lemma 6.2). In section 7 we show that in many
cases stably equivalent twisted multifold trivial extensions of a hereditary tree algebra
are isomorphic. Finally in section 8 we give a proof of Main Theorem.

1. PRELIMINARIES

In the sequel every tree considered here is assumed to be finite and connected. For a
quiver @ we denote by @, by Qo, by Q1 and by kQ the underlying graph of @, the set of
vertices of @), the set of arrows of ) and the path-category defined by @), respectively.
An algebra A is called a tree algebra if its ordinary quiver is an oriented tree.

For an additive category A, we denote by H(A) and H"(A) the homotopy category
of differential complexes and the homotopy category of bounded differential complexes
in A, respectively; and when A is an exact category, we denote by D(A) and by D"(A)
the corresponding derived categories.

Recall from Gabriel-Roiter [7] that a small category A is called a spectroid (= a
locally finite-dimensional category in [6]) if the following three conditions are satisfied:

(i) Distinct objects of A are not isomorphic;
(ii) Every object of A has a local endomorphism algebra; and
(iii) The space A(x,y) is finite-dimensional for every z,y € A.

For a spectroid A, A is called finite if A has only a finite number of objects; and A is
called locally bounded if for every x € A, there are only finitely many y € A such that

Az,y) #0 or Ay, z) 0.
For a spectroid A, we denote by Mod A the category of all (right) A-modules (=

contravariant functors from A to the category Mod k of k-vector spaces); by mod A the
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full subcategory of Mod A consisting of finitely presented objects; and by pro A the full
subcategory of Mod A consisting of finitely generated projective objects. In addition,
mod A denotes the stable category of mod A. By D := Homg(-, k), by Q4, by 74, by
I'4 and by I'4 we denote the usual selfduality of A, the loop functor mod A — mod A,
the Auslander-Reiten translation of A, the Auslander-Reiten quiver of A and the stable
Auslander-Reiten quiver of A, respectively.

As in [1] we regard every algebra A as a finite spectroid, namely fixing a set obj(A) :=
{ei1,...,e,} of orthogonal local idempotents of A with e; +---+e¢, = 1, A is identified
with the finite spectroid ¢(A) defined as follows: the set of objects of ¢(A) is obj(A)
and c¢(A)(z,y) := yAx for all 2,y € obj(A) and the composition of ¢(A) is given by
the multiplication of A. Therefore, in particular, automorphisms of A are required to
preserve the set obj(A). The expression x € A stands for x € obj(A).

By Aut(X) we denote the group of automorphisms of a quiver, a graph, a translation
quiver or a spectroid X.

2. REPETITIONS

First we recall the definition of the repetition of an algebra (from [2, 1.2] to fix the
notation) and the way how to compute repetitions for tree algebras from a more general
construction in [2, 1.3, 1.5].

Definition. Let A be an algebra.

(1) A k-category A, called the repetition of A, is defined as follows (Cf. [10], [7]).
Objects are the pairs zI" := (z,n) with z € A and n € Z.

) (= (fn)lf € A w)}  iTm=mn
A(a:["], y[m]) = {pl" = (p,n)|p € DA(y,z)} if m=n+1; and
0 otherwise.

The composition
Ayl™ 210y s Azl ytmly — Azl 210)

is given as follows:
(i) If m = n,l = m, then this is the composition of A:
Aly, z) x A(z,y) — Az, 2).
(ii) If m = n,l = m + 1, then this is given by the right A-module structure of
DA(—,7):
DA(z,y) x A(z,y) — DA(z,x).
(iii) If m = n + 1,1 = m, then this is given by the left A-module structure of
DA(—,7):
Ay, z) x DA(y,x) — DA(z, ).
(iv) Otherwise the composition is zero.
(2) For each n € Z, we denote by A" the full subcategory of A formed by z!" with
x € A, and by 1. A5 Al A,z — 2l the embedding functor.
(3) The Nakayama automorphism v4 of A is defined by
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o a2l = gl
o vy(fM) = fn+11 and
° VA(SD[n]) — 90[n+1]
for all x € A and for all f € A(z,y), ¢ € DA(y,z) with =,y € A.

Note that A is a locally bounded spectroid.

A path p from y to z in a quiver with relations (@, I) is called maximal if p & I
but au, pf € I for each arrow a of @ with tail x and each § with head y. (This was
called complete in [2].) For a k-vector space V with a basis {vy,...,v,} we denote by
{v},...,v}} the basis of DV dual to the basis {vy,...,v,}. In particular if dim, V =1,
v* € DV is defined for all v € V\{0}.

Lemma 2.1. Let A be a tree algebra and ©: kQ — A a display-functor ([7, 8.1, 8.3a])
with I := Ker ®. Then
(1) @ uniquely induces the following display-functor oF k@ — A for A:

(i) Q is obtained from the disjoint union Q x Z of copies QU of Q by adding
arrows oz@[/]m 2l — YU+ for all i € 7, whenever there 1s a maximal path p
fromy to x in (Q, 1) (we sometimes denote this ayw by ).

(i) & is defined as follows:

o B(al) = (D)l

o d(all) .= (®a)l!; and

o d(ayl) = (B())"
for all i € Z, all vertices x of Q, all arrows o of Q and all pairs (z,y) of
vertices of Q such that there is a maximal path p fromy to x in (Q, I)

(2) Ker ® is equal to the ideal I defined by the full commutatzmty relations on Q and

the zero relations . = 0 for those paths i of Q for which there is no path from

the head of u to the x+Y with 2 the tail of u. (Therefore note that if a path

Qpy...oq 18 in 1, thenaw...a[f] is in I for alli € Z.)

To recall the repetition of an isomorphism we cite the following from [2, 2.3] without
proof.

Lemma 2.2. Let¢: A — B be an isomorphism of algebras. Denote by ¢¥¥: Ay, x) —
B(Yy, vx) the isomorphism defined by 1 for all x,y € A. Define 1&: A— B as follows.
For each zll € A, (zl!) .= (y)li;
For each fl e A(ac[i],y[z) ¢(fl]) = (Y, and
For each ¢l € A(alll, yt+1) (o) := (D((2) ) ()W = (o ()~
Then
(1) 4 is an isomorphism.
(2) Given an isomorphism p: A— B, the following are equivalent.
(a) p =1
(b) p satisfies the following.

(i) pva = vpp;
(i) p(ALT) = AL



FROM STABLE EQUIVALENCES TO DERIVED EQUIVALENCES 5

(iii) The diagram
A Y B

1001 l llm

Al plo]
p

18 commutative; and
(iv) p(o) = (g o ()™ for all 2,y € A and all ¢ € DA(y, z).

Lemma 2.3. Let p: A — B and 0 : B — C be isomorphisms of algebras. Then we
have (op) = 6p.

Proof. This is straightforward by the definition of the repetition of isomorphisms. [

We recall a presentation of right modules over the repetition of an algebra. For
an algebra A define a category & = €4 as follows (cf. [8, 2.1]) (note that we are
dealing with right modules, not with left modules as in [8]). The objects of £ are
the sequences (M;, m;);cz with M; € mod A for all ¢, M; = 0 for almost all i, and
m; € Homy(M; ®4 DA, M;_y) for all i satistfying m;_; o (m; ® 4 DA) = 0, and for each
(M;, m;);, (N;,n;); € € the morphism space E((M;, m;);, (N;,n;);) is defined as the set
of all (f;)iez € [liez Homa(M;, N;) such that n; o (f; ®4 DA) = f;_1 0m; for all i € Z.

Then the following is well-known.

Lemma 2.4. Let A be an algebra. Then the category mod A of finite-dimensional
(right) A-modules is equivalent to the category & 4.

We identify mod A with &4 by this lemma.

Using this description of mod A the canonical embedding mod A — mod A is defined
by M+ (M;, m;); with MO M, M; = 0 for all  # 0 and m; = 0 for all ¢ € Z. Denote
by n : mod A — mod A the composite of this embedding and the canonical functor
mod A — mod A. Then by 8, Lemma 2.3] 7 is a full embedding. The following is easy
to verify.

Lemma 2.5. Let A = kQ for some quiver Q. Then Qf = {n(A(-,z))|z € Qo} forms
a section of the component of I ; containing Q. Therefore if we put Q" to be the full
subquiver of [I' ; defined by @), then the component of I ; containing Q' is identified
with 7.¢)' .

Let A be an algebra and ¢ € Aut(A) Then ¢ induces an equivalence ¢(-) : mod A —

mod A defined by *M = M o¢' : A — modk for all M € modA. Similarly

¢ € Aut(A) induces an equivalence ¢(—) : mod A — mod A. With this notation we
have the following, which is used to investigate the action of ¢ on components of the
stable Auslander-Reiten quiver of A.

Lemma 2.6. Let A be an algebra and ¢ € Aut(A). Then we have ‘73(77(X)) =~ (¢ X)
for all X € mod A.

Proof. This is straitforward. O
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3. DERIVED EQUIVALENCES

For a group GG acting on a class S we say that a subclass E of S is G-stable if gr € E
forall g e G and = € E.

Let A be an algebra and ¢ € Aut(A). Then ¢ acts on mod A as ¢(-). In particular
for A(-,z) with x € A, we have ?(A(-,x)) = A(¢ (-),z) & A(-, ¢x), and the last
isomorphism is given by ¢ itself. Therefore the subset {A(-,z) | x € A} of proA is
not (?(-))-stable in a strict sense. This makes it difficult to give explicitly a complete
set of representatives of isoclasses of indecomposable objects of HP(pro A) which is
(HP (9 (-)))-stable. To avoid this difficulty we used in [2] the formal additive hull ©A
of A defined below instead of pro A.

Definition. Let A be a spectroid. Then by @A we denote the following category (|7,

2.1 Example 8]). Objects are finite sequences (z1,...,z,) of objects of A; morphisms
are defined by (®A)((z1,....20), (Y1, -, ¥m)) = {(ji)ijlui € Alzi,y;), for all 4, 5}
for all objects (x1,...,2,), (Y1,...,Ym); and the composition is given by the matrix

multiplication. We regard that A is contained in @A by the embedding (f: z — y) —
((f): (z) — (y)) for all fin A,

Remark. Let A and ¢ be as above.

(1) Define a functor na: @ A — proA by (z1,...,2,) — A(—,21) B B A(—, xp)
and (p5:)i; — (A(—, pji))ij- Then ny is an equivalence, called the Yoneda
equivalence.

(2) Let F: A — B be a functor of spectroids. Then F' naturally induces func-
tors ®F: @ A — @B and F := HP(®F): H* (@A) — H"(®B), which are
equivalences if I is an isomorphism. Namely, @F is defined by (z1,...,2,) —
(Faq,. .., Fz,) and (pj;) — (Fp ;) for all objects (1, ..., x,) and all morphisms
(ij;) in ®A; and F is defined by @F componentwise.

(3) The automorphism ¢ acts on HP(®A) as ¢, and “HP(na)(X ) = HP(n4)(H(X "))
for all X* € HP(A).

We cite the following from [2, Proposition 5.1] which follows from Keller [11] (Cf.
Rickard [13], [1, Proposition 1.1]).

Proposition 3.1. Let A and B be spectroids. Then the following are equivalent:

(1) There is a triangle equivalence D(Mod B) — D(Mod A); and
(2) There is a full subcategory E of HP(®A) such that
(a) For any T,U € E and any n # 0, H*(©A)(T,U[n]) = 0;
(b) A is contained in the smallest full triangulated subcategory of H*(DA) con-
taining E that is closed under direct summands and isomorphisms; and
(¢) E is isomorphic to B.

Definition. We say that spectroids A and B are derived equivalent if one of the equiv-
alent conditions above holds. In (2) the triple (A, E, B) is called a tilting triple and
E CHP(®A) is called a tilting spectroid for A.

The following statement which we proved in [2, Proposition 5.4.3] is very useful.
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Proposition 3.2. Let (A, E, B) be a tilting triple of locally bounded spectroids, n: E =B
an isomorphism and ¢ € Aut(A). Assume that E is (§)-stable. Then T3 (A) is derived
equivalent to TJ}(B) for any integer n > 1, where 1 is an automorphism of B defined
by the commutativity of the diagram

E-".B

‘S

F —— B
n

4. A SPECIAL ORIENTATION OF A TREE

Let T be a tree with the set of vertices Ty. Then we denote by Aut(7) the group
of all automorphisms of 7. For each f € Aut(T") we set Fix(f) := {z € Ty|f(z) = z}.
Consider the set Auto(T") := {f € Aut(T)|Fix(f) # 0}. Then it is well known that the
set () feauto(r) FiX(f) is non-empty. Therefore Auty(1") forms a subgroup of Aut(7); and
Auto(T') = Aut(T) holds if and only if T has a fized vertez, i.e., (e pnr) Fix(f) # 0
(an element of this set is called a fized vertex of T'). Further it is well known that
if Auto(7T) # Aut(T), then Aut(T)/ Auto(T) has order 2 and T has a unique edge
a:x ysuch that f(a) = a for any f € Aut(T), and T has the following form

T~

(4.1) e \

where L and R are subtrees of T" isomorphic to each other. Here both vertices z and y
are fixed by all f € Auty(7T), and g(z) = y and g(y) = z for all g € Aut(T")\ Auto(T).

Note that if a quiver @) is obtained from T by giving an orientation p, then each
automorphism of () is considered as an automorphism of T" preserving the orientation
p, i.e., the group Aut(Q) of all automorphisms of @ is a subgroup of Aut(7’). By the
remark above we further have Aut(Q) C Auty(7). We call the orientation p admissible

if Aut(Q) = Auto(T).

Lemma 4.1. Let T be a tree. Then there is an admissible orientation p of T' such that
the quiver Q := (T, p) has a unique source.

Proof. Take x € (. Auto(T) Fix(f). Define an orientation p as follows: for each edge
a:y—=zin T, make a to be an arrow y — z if and only if d(z,y) < d(z,z), where
d(x,t) is the distance between x and t for each t € Tj.

(1) z is a unique source of Q. Indeed, since d(z,z) = 0 and d(z,y) = 1 for all
neighbours y of x, x is a source. If y € T is not equal to x, then there is a unique
shortest linear subtree combining x and y of length (= the number of edges) d(z,y) > 0.
Let z be the neighbour of y in this subtree. Then d(z, z) = d(z,y) — 1 < d(z,y). Thus
@ has an arrow z — y. Hence y is not a source.
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(2) p is admissible. Indeed, let f be in Auto(7"), and y — 2z an arrow in Q). Then
f(z) = x and d(x,y) < d(x,z). Since f preserves the distance we have d(z, f(y)) =

d(f(x), f(y)) < d(f(z), f(2)) = d(x, f(2)). Thus we have an arrow f(y) — f(z) in Q.
Hence f € Aut(Q). O

5. REDUCTION TO HEREDITARY TREE ALGEBRAS

For an algebra A recall from [8, I11.1.4] that the dimension vector dim X of an
X" = (X" d")iez € D*(mod A) is defined by

(5.1) dim X" =) *(~1)"dim X",
i€z
where dim X is the usual dimension vector of the A-module X; for all 7.
We denote by \/,.; &; the disjoint union of a family (A&;);c; of translation quivers,
thus A; forms a connected component in \/,_; &; for each i € I.
In the next lemma we collect fundamental facts on the Auslander-Reiten quiver of
the derived category of a piecewise hereditary algebra.

Lemma 5.1. Let A be a piecewise hereditary algebra having a type Q and let n =
rank Ko(A). Then

(1) The Auslander-Reiten quiver I'pb(yoq 4) Of DP(mod A) has the form

FDb(rnodA) = \/(Xz \ R7)7
i€z

where X; = 7.0) and R; is isomorphic to the union of all regular components of
the Auslander-Reiten quiver of kQ (R; = 0 if Q is Dynkin, and is a union of
quasi-serial components otherwise) for all i € Z, and the shift maps X; to X;q
and R; to Riy1; and further DP(mod A)(X; V Ry, X; V' R;) = 0 if i > j and
DP(mod A)(R;, X;) = 0 for all i.

(2) The map dim : X; — Z" defined by X+ dim X is injective for each i € Z.

(3) If F : D"(mod A) — D"(mod A) is an equivalence of triangulated categories,
then there is a unique j € Z such that F'(X;) C Xiy; and F(R;) C Ry, for all
i € Z. We call this j the jump of F.

Proof. (1) Using a derived equivalence between A and kQ the assertion is reduced to
the corresponding statement on k@), which follows from [8, Proposition 1.5.5].

(2) By [8, Proposition III.1.5] the assertion is also reduced to the corresponding one
on k@, which is easy to verify using (5.1).

(3) Since Aj is not isomorphic to any component of R; for any i € Z, there is
some j € Z such that F(X;) € X;. Then since F' commutes with the shift, we
have F(&X;) C X4, for all ¢ € Z. Further since for each i € Z there exist nonzero

morphisms X~ — VY — 7 with X € X,, Y € R; and Z € X, we have nonzero
morphisms FX ' — FY' — FZ" with FX € X;;; and FZ" € X;;41, which shows
that F'Y" € R;y; by (1). Hence F(R;) C R;y;. The uniqueness of j is obvious. O
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Lemma 5.2. Let A be an algebra that is derived equivalent to an algebra kQ defined by
a tree Q oriented by an admissible orientation. Then there is a tilting triple (A, E, kQ)

such that E is (¢)-stable for all ¢ € Aut(A).

Proof. Put B := k@. Since A has finite global dimension, we have identifications
DP(mod A) = H"(pro A) = H”(DA) in an obvious way. We keep the notation of the
previous lemma. Since A is derived equivalent to B, we have an equivalence

F:H(@B) - H* (@A)

of triangulated categories. Let F be the full subcategory of HP(A) with {F(z) | € B}
the set of objects. Then (A, E, B) is a tilting triple. Since the objects of B are contained
in a component of the form Z(), we may assume that £ C Ay. Let Qg be the full
subquiver of A formed by the objects of £. Then Qg is a section of & because the
full subquiver Qg of I'pp (104 5y formed by the objects of B is a section of the component
of I'pb(mea gy containing it. Of course Qp = Qp = @, and by these isomorphisms we
identify @ with Qz. Then Xy = ZQ. Let ¢ be an automorphism of A. We show that
E is (¢)-stable.

Now since A has only finitely many objects and the automorphism ¢ of A induces a
permutation of objects of A, there is some integer m > 1 such that ¢"(a) = a for all
a € A. Thus we have

(5.2) o™(a) =a forall a € A.

This implies that ¢"(X) = X for all X € @A. Therefore by (5.1) we have dim ¢"(X ') =
dim X for allNX' € H"(pro A) ZNHb(@A). Again by (5.2) the jump of ¢ must be zero,
i.e., we have ¢(Xy) = Ay. Then ¢ induces an automorphism p of Xy = Z@Q. Hence for

each X € Xy we have p™(X ") € &, and dim p"™(X ") = dim X . Therefore by Lemma
5.1(2) we obtain

(5.3) P(X ) =X forall X' € A
By Riedtmann [15, Theorem 4.2], we have an exact sequence

(5.4) 1 (T) Aut(ZQ) —2— Aut(Q) —— 1,

where p is the canonical morphism. Put ¢ := p(p) € Aut(Q). We show the following.

(5.5) ¥ € Auto(Q)

Suppose that ¥ € Auto(Q). Then Q has the form (4.1). We show that p™ does not
have any fixed vertex, which contradicts (5.3). If m is odd, then since ¥ exchanges L
and R in (4.1), so does ™ = p(p™), which shows that p™ cannot have fixed vertex. If
m is even, then there is some 0 # t € Z such that p?(i, 2) = (i +t,9?(2)) for all (i, z) €
ZQ. Then also in this case p™ cannot have fixed vertex, and (5.5) is proved. Since
Auto(Q) = Aut(Q), (5.5) enables us to define Zy € Aut(ZQ) by Z(i, z) = (i,9(2))
for all (4,2) € ZQ. Then since p(p) = ¥ = p(Zy), we have p = (Zy))7' for some [ € Z
by (5.4). But by (5.3) we have [ = 0, thus p = Zi). As a consequence Q = Qg is

(p)-stable, which means that E is (¢)-stable. O
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The following proposition says that a twisted multifold trivial extension of an alge-
bra derived equivalent to a hereditary tree algebra is derived equivalent to a twisted
multifold trivial extension of a hereditary tree algebra.

Proposition 5.3. Let A be an algebra that is derived equivalent to an algebra kQ
defined by a tree Q) oriented by an admissible orientation. Then for any ¢ € Aut(A)
and any integer n > 1 there is some ¢ € Aut(kQ) such that T} (A) is derived equivalent

to T} (kQ).

Proof. This is immediate by the lemma above and Proposition 3.2. O

6. INVARIANTS UNDER STABLE EQUIVALENCES

Let A be a locally bounded spectroid. We denote by N, the Nakayama functor
mod A — mod A, which is known to be an equivalence when A is selfinjective. It is
well-known that Ny = Q3?74 on mod A. Further when A = B for some algebra B,

5 2 ¥5(-) on mod B.

The next lemma is a special case of [5, 3.5]. We give an alternative proof of it in
this case using [8, Theorem 4.9].

Lemma 6.1. Let H be a hereditary algebra. Then H is locally support-finite.

Proof. By [8, Theorem 4.9] there exists an equivalence DP(mod H) — mod H such that
the restriction to mod H is the identity. By this equivalence we identify I'pb(imoa ) and
sI';;. We use the notation in Lemma 5.1. We may assume that I'y is contained in
Xo VRyV &j. Then, in particular, the €2 4-shifts of 'y cover the whole ¢I'y, i.e.,

(6.1) U (Ta)o) = (Ta)o
1E€EZL

because the shifts of I'y cover the whole I'pb(imeq gy- By the definition of the canon-
ical embedding mod H — m_odﬁ the supports of modules in I'y as H-modules are
contained in H. Since the supports of the projective covers of modules supported in
H are contained in HI% U HI=1 by definition of repetitions, the g-shifts of modules
in I'y; are supported in H® U HI=1. Now by (6.1) for any module X in (I, there is
some m € Z such that N7'(X) = QEIQngL(X) belongs to 'y U Q4 (T'y) and is sup-
ported in HI% U HI71. Hence X is supported in H™ U HIZ1=™] because Ny = v (-).
Accordingly, H is locally support-finite. O

Lemma 6.2. Let A and B be algebras derived equivalent to kQ and kR for some
oriented tree () and some quiver R, respectively. Assume that a twisted m-fold trivial
extension of A is stably equivalent to a twisted n-fold trivial extension of B for some
integers m,n > 1. Then we have Q = R and m = n.

Proof. We may assume that the orientation of @) is admissible. Put H := kQ. Let
¢4 € Aut(A) and ¢p € Aut(B) and put A = T3 (A) and IT = T} (B). Assume that
A is stably equivalent to II. We show that Q = R and m = n. By Proposition 5.3
there is a ¢ € Aut(H) such that A is derived equivalent to A" := T)"(H). By Lemma
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6.1 H is locally support-finite. Then by [4, Proposition 2.5] and [6, Theorem 3.6] the
canonical Galois covering functor H — A’ with group (¢v}}) gives an isomorphism
g /(Wi (<)) = [I'pr. Since the jump of 77 (<) is equal to 2m, we get

2m—1

Ja= Iy \/ (X VR,

i=0
where X; & Z@Q and R; is empty or a union of quasi-serial components for each i.
Similarly by [6, Theorem 3.6(b)] the canonical Galois covering functor B — II with
group (¢pprp) yields an isomorphism of the quotient

2n—1
Lp/(PP7R () =\ (X VR,

i=0
onto the union of some components of ;I'y, where X/ = ZR and R/, is empty or a union
of quasi-serial components for each i. But since A and II are stably equivalent, we have
J'n = 'y =2 I'a, which implies that \/?Zg "X/ v R!) is isomorphic to the union of
some components of \/f:‘o_l(?(i VR;). Therefore ZR = Xj = X; = 7Z(Q) for some i. Then
by [8, 1.5.7] we have Q = R. Thus R is also an oriented tree. Applying the argument
above for @ to R we see that [’y = \/2251()({ V R.). Hence we have

2

2m—1 2n—1

\ (XivR) = \/ (X VR).

1=0 i=0

Counting the number of components isomorphic to ZQ we get m = n. O

7. HEREDITARY TREE ALGEBRAS

Let @@ be an oriented tree and put A := k(@. Note in this case that if there is
an arrow « @ x — y in @, then A(z,y) = ka. If ¢ € Aut(A), then ¢ induces an
isomorphism rad A(x,y)/rad® A(z,y) — rad A(¢(z), #(y))/rad® A(¢(z), ¢(y)). This
shows that there is a unique arrow ¢(z) — ¢(y) in @, which we denote by 7(¢)(«).

Since A(o(z), p(y)) = kn(d)(a), we have ¢(a) = ¢o7(¢)(a) for a unique ¢, € k™ =
kE\{0}. By setting 7(¢)(z) := ¢(z) for all x € Qy, we can define a 7(¢) € Aut(Q). In

this way we obtain a homomorphism
m: Aut(A) — Aut(Q)

of groups, which is called the canonical map. Moreover ¢ € Ker 7 if and only if ¢(x) = =
for all x € Qy, and then the correspondence ¢ — (¢4)acq, Provides us an identification

Kerm = (k%)%
For a morphism §: @) — R of quivers, we denote by k(3 the induced algebra homo-

morphism k@) — kR. Note that if @ o R—= 3 are morphisms of quivers, then
we have k(v3) = (kv)(kB).
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Proposition 7.1. Let Q) be a tree oriented by an admissible orientation, ¢, € Aut(kQ)
and n an integer > 1. Assume that T (kQ) is stably equivalent to T} (kQ). Then m(¢)

is conjugate to w(¢) in Aut(Q).

Proof. Put A := kQ, A := Tj(A) and II := T}(A). Let F': mod A — modII be an
equivalence (of triangulated categories). Then F' commutes with both the Auslander-
Reiten translations and the loop functors, i.e., we have

mFX = FrpaX; and
OnFX =2 FOp\X

for all X € mod A. Since Np = Q§27'B on mod B for any algebra B, we have
(7.1) NnFX =2 FNLX,

for all X € modA. Now let Ay : mod A — modA and Ay : mod A — modII be
pushdown functors. Then since they are exact and preserve projectivity and almost
split sequences, they commute with both the Auslander-Reiten translations and the
loop functors. Hence we have

(7.2) Naan X = MN;X,
(7.3) NoAnX = ApN X,

for all X € mod A. Since A is locally support-finite by Lemma 6.1, we have I'y =

D4/(PA0)) = L 4/(3() 0 N3) and (T 22T 4/(°() o M), Thus

2n—1

I'a = \/ (‘)(Z \% RZ): and
=0
2n—1

o=\ (%R
=0

with X, = X/ =2 ZQ and R; = R, =2 \/ (regular components of A) for all i. Define
Qa (resp. @n) to be the full subquiver of ;I'y (resp. (I'm) with the set of vertices
{An(A(-,z))|x € Qo} (resp. {Amun(A(-,z))|z € Qo}). Then by Lemma 2.5 we can
identify, say, Xy = ZQx and A = ZQn. Since O : mod IT — mod Il is an equivalence
of triangulated categories, we can replace F' by QfF, if necessary, for some a € Z to
have F/(Xy) = A . Then F' induces an isomorphism ZQx — ZQmu. Since b (resp. @)
commutes with 74 by Lemma 2.2, we see that *(-) (resp. ¥(-)) commutes with *(-) o N'%
(resp. ¥(-) o N%). Therefore we can define ¢' € Aut(;I'a) and ¥’ € Aut(;I'n) by the
commutative diagrams

r () r . e
st 4 st A st A4 —>SFA

(7.4) /\AJ{ l/\/\ : )\nl l)\n

SFA 7’ SFA SFH T SFH
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of translation quivers. Define an isomorphism fy : Q@ — Q (resp. fr: @ — Qp) of

quivers by fa(x) := Mn(A(-,x)) (resp. fu(z) := Aan(A(-, z))) for all z € Qy. Then by
Lemma 2.6 and (7.4) we have commutative diagrams:

() m()
Q——Q Q——Q
fAl/Z ZlfA , fnlz Zlfn
QAWQ:QA QHWQH)QH

These yield commutative diagrams:

70 " 70 70 Y 70
(7.5) ZfAlz lefA , anlz Zlan
ZQA T ZQA ZQH 7) ZQH

Next we show the commutativity of the following diagram.

7Qxr —L— 7Qy

(7.6) r| |7

ZQn T ZQn

Since I ¢', 1’ are quiver morphisms, and since Xy = ZQ, has no double arrows, it is
enough to show that F¢'z = ¢'Fx for all vertices x of X,. Let x be a vertex of AXj.
Then there exist vertices y and z of JI'; such that A\\(y) = 2 and Ap(z) = Fz. Since

)\A(‘i(/\/’gy)) = A (y) = z and )\H(’ﬁ(/\/’gz)) = An(z) = Fz, we have
FACWE) = dn(*(Vf2)).
Now by (7.2), (7.1) and (7.4) we have
FAC(NTY)) = FANG(%y)
= FNM(%y)
= NEFA(%y)
- NﬂLF(f)/)\Ay
= NGF¢'z.
Further by (7.3) and (7.4), we have
An("(M2) = Ao (")
= N (2)
= Nﬂl’@b/)\nz
= Ny Fx.
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It follows from these equalities that N} F'¢'z = Nfj'Fx for all x € X. This verifies
the commutativity of (7.6) because N is an equivalence.

Define an isomorphism a : ZQ — ZQ by putting a := (Zfn) 'FZfx. Then by (7.5)
and (7.6) we have a commutativity of the inner central square of the following diagram

\ /Q

70 7% 70
p(a) |2 alZ Zla Q| pla)
ZQ—> 7Q

S

m(¥)

Q Q

where pr : ZQ — Q and p : Aut(ZQ) — Aut(Q) are the canonical morphisms. Since
the four trapezoids are commutative and since pr is surjective both on vertices and on
arrows, the outer square of the diagram is also commutative. Hence 7(¢) is conjugate

to m(¢) in Aut(Q). O

Proposition 7.2. Let Q) be an oriented tree with a unique source and n an integer
> 1. Then we have Tj(kQ) = T} (kQ) for all ¢ € Aut(kQ). Therefore 13(kQ) is
determined by w(¢).

Proof. Put A :=kQ and ¢ := m(¢) € Aut(Q). Let ®: kQ — A be the identity, which
is a display-functor. Then we have a display-functor d : kQ — A where I := Ker ®

is generated by full commutativity relations and some zero relations by Lemma 2.1.
We put [ := @(ﬂ) for all morphisms 3 in kQ. Since (p) = 7r(/<:1/)) there is some
A € Kerm = (kX)) such that ¢ = \-kt. Put g := (kvJvt. Then gbuA = \g by Lemma
2.3 and we have to show that A/(\g) = A/(g). To this end it is enough to construct
an automorphism p of A such that the diagram

A
(7.7) g |30
A

:]>><— :]>>

is commutative.

First we construct an automorphism p of k@, and then we verify that p(f ) C I,
which makes it possible for p to induce an endomorphism g of A. Here p turns out to
be an automorphism because Iis locally finite-dimensional. Finally we check that this
p makes the diagram (7.7) commutative.

Now set p(z) := x for all vertices z in Q and p(7y) == py -y for all arrows v in Q,
where p, € k> are defined as follows:
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(i) In the case where v = ol with a € Q, and i € Z, define p~ inductively using the
rules
Pl =1 forie {0,1,...,n—1}
Palitn] = P(y=1a)li] - Ao fori>mn; and
Pali—n = P(ya)lil * /\;é for 7+ < —1.
Then for all @ € @1 and ¢ € Z, we have
(78) p(wa)[iJrn] = Pl - )\¢a.
(ii) In the case where v = 3*! with 8 = oy, ...a; a maximal path in Q and i € Z,
define
(7.9) Ppelil = (pa%] .. .pa[li])il.

Next we show that p(I) C I. For zero relations ay, ...a; € I, we have

P .. .a1) = plam) ... p(ay)
= Do + -+ Poy * O - - O

= 0.

Hence it is enough to check that p(p1) = p(u2) for each pair of parallel paths gy, po
from a vertex zl! to a vertex yl*1 for some z,y € Qo and some i € Z with iy # 0,

7iz # 0. For a path a,,...a; in Q (resp. in Q) we set pa,.. a1 = Pam - - - Loy (TESD.
Aoy = Ay, + -+ Aay)- Now g7 and pg have the form

g = elitlg i

Lo = C[i+1 6 1]6[2]
for some paths v, d,¢,( in () and maximal paths a, 3 in @) as in the following diagram
(a ~Z~1p denotes that o is a path from a to b):

ad
[4] / \\

plil ~ s gl ol ~Eis i

et
b[i-H.] a[i+1]
g[:;\ ;/E[iil]

ylit1]

By definition of p we have

p(p1) = p(l+1) p(axtil) p(y17)
= Ptit il Polil Pl - BT
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and

pp2) = peivupgia " psia - i
= pc[i+1]pg[i]_1p5m . m

Hence it is enough to show that
(7.10) Peli+1] ,Oam_lpﬂ,m = Pcli+1] pmi]_lpam-

Since 0 # 7i7 € A(zl, ylit1) = DA(y, z), we have A(y,z) # 0, which means that there
is a path 0:y ~~~x in ). Therefore we have the following paths in Q:

[0}

z

(4

L
Y

Hence a = 70¢ and 8 = §0( because @ is an oriented tree. Then

a
b

—1 -1
Peli+1) Palil Patil = Peli+1] (Pl Poli Pelil) Poyll

—1 —1
= Peli+11 Pl Pelil

and

pg[i+1]pgwflpg[i] = ,Og[i+1],00[i]_lpg[i]_1-

Note that both a and b are sources in (). Hence by assumption, we have a = b, thus
e = (. Therefore the equality (7.10) holds. Hence the automorphism p of k@ induces
an automorphism g of A. It remains to verify the commutativity of the diagram (7.7).
This is obvious on objects . Therefore it is enough to check the commutativity on
arrows in Q, namely to show the following two facts:

(7.11) w(g(a®)) = (Ag)(u(a))  for all & € Q, and i € Z; and
(7.12) 1(g(B)) = (Ag)(u(B*))  for all maximal path 8 in Q and i € Z.

The statement (7.11) follows from (7.8). Indeed, using (Ya)li+" = ()l in A,
we have

(g(al?)) = p((sha)l+nl)
= Payiienl - (Ya)litr]
= Pt Mo - ()l in A
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by (7.8) and
(Ag)((alh)) = (Ag) (paii - olf)
= pati A((a) )
= Pl Ao - () in A,
Thus (7.11) holds.
For (7.12) put B = ...a1: Y ~==z . Then
g(B+1) = (kpy(B+)
= (80 (ky) =)+
= (W),
The last equality follows from (8% o (ki)™*)(¥3) = 1. Thus

u(g(B*)) = p((3)*li*n)
= Prypylitn - (YB)*i
= (P(wam)mn] .. .p(wal)[iﬂ])—l . (Zbﬂ)*[pm}
= (P00 - YRRV, Ay )L - (0B3) ]

On the other hand,

g(u(B*1)) = g(pgea - B*1)
= pgeta - 9(B*1)
= pets (YB) I,

and
(Ag) ((B)) = pgeas - AM((18)7FF)
= pgeti - (B)7 0 ATHFF™
= Pp+li /\;é (),

17

The last equality follows from ((¢98)* 0 A1) (Ayg - ¥8) = 1 = (Ays - (¥B)*)(Ayp - ¥B).

Thus (7.12) holds. As a consequence, the diagram (7.7) is commutative.

O

Remark. (1) The proposition above is still valid even if we replace the word source

by the word sink. In this case we can use the formula pg.; 1= (pa[m] ..

instead of (7.9).

-1
. pa[1i+1]) .

(2) The proposition above can be generalized by a similar proof as follows: Let (Q, I)

be a commutative directed quiver such that two nonzero paths in (Q, I) starting

from distinct tails of some maximal paths do not have the same head. Then

T (kQ/1) = T ) (kQ/1) for all ¢ € Aut(kQ/1).
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Corollary 7.3. Let Q be an oriented tree with a unique source, ¢, € Aut(kQ) and
n an integer > 1. If ©(¢) is conjugate to w(¢) in Aut(Q), then we have T} (kQ) =

T2 (kQ).

Proof. By assumption there is a § € Aut(Q) such that Sn(¢) = 7(¢»)5. This implies
that (kB)(km(¢)) = (kn(¥))f(kG). Put A := kQ. Since (kB) commutes with v4 by

Lemma 2.2, we have a commutative diagram

A (km(d)) vy 4

A
(kﬁfl J{(WY
PR Y
This shows that T3}, (A) = T}, (A), from which the conclusion follows by Proposi-
tion 7.2. 0

Theorem 7.4. Let (Q be a tree with a fixed vertex oriented by an admissible orien-
tation with a unique source. Then two twisted multifold trivial extensions of kQ are
isomorphic if they are stably equivalent.

Proof. Tn this case we have Aut(Q) = Autg(Q) = Aut(Q). Hence this is a direct
consequence of Lemma 6.2, Proposition 7.1 and Corollary 7.3. O

8. PROOF OF MAIN THEOREM

It is enough to show that if A and II are stably equivalent, then they are derived
equivalent. By assumption A and B are algebras derived equivalent to k@ and kR
for some oriented tree ) and some quiver R, respectively; and A is a twisted m-fold
trivial extension of A and IT is a twisted n-fold trivial extension of B for some integers
m,n > 1. By Lemma 4.1 there is an admissible orientation p of @ such that the quiver
Q' = (Q, p) has a unique source. Since kQ and kQ' are derived equivalent, we may
assume from the beginning that () is a tree oriented by an admissible orientation and
with a unique source. Now assume that A and IT are stably equivalent. Then by Lemma
6.2 we have @ = R and m = n. Therefore kQ and kR are derived equivalent, and
hence we may assume that () = R, and that both A and B are derived equivalent to
kQ. By Proposition 5.3 A is derived equivalent to T%(kQ) and II is derived equivalent
to T (kQ) for some ¢, € Aut(kQ). Since A and IT are stably equivalent, T7 (kQ) and

T (kQ) are stably equivalent. By Proposition 7.1 there is a p € Aut(Q) such that

(8.1) o) = T(¥)p.
Case 1. p € Auto(Q). In this case p € Auty(Q) = Aut(Q). Thus by (8.1) 7(¢) is

conjugate to 7(¢)) in Aut(Q). Then by Corollary 7.3 we have T7(kQ) = T;}(kQ). As
a consequence, A and II are derived equivalent.
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Case 2. p ¢ Autg(Q). In this case @ does not have a fixed vertex, and p fixes a
unique edge, say a : x—y. Further p(z) =y and p(y) = z, and Q has the form (4.1).
The quiver ) was obtained from @ by letting 2 or ¥ a unique source as in the proof
of Lemma 4.1. We may assume that x is a unique source of (). Let @’ be a quiver
obtained from @ by letting y a unique source, and put A’ := kQ’. Then (8.1) yields a
commutative diagram

9) m(¢) 0

0| |°
Q — Q
(1))
of quivers, which gives the following commutative diagram by Lemmas 2.3 and 2.2.

(km(#)) v A
l (ko)
A/

%:&>

_
(koY
_

(km($)) v

s

Hence we have
(8.2) ey (A) = Ty (A).
Next we show the following.

Claim. T}, (A") and T}, (A) are derived equivalent.

Clearly

T:= P Ao @ ALt

z€LoU{z} teRoU{y}

is a classical tilting module with End4(7) = A’. Let F be the tilting spectroid in
HP (@A) corresponding to T, i.e., £ is the full subcategory of H"(®A) with the set of
objects { H(z)|z € LoU{z}}URyU{y}, where H(z) € H"(®A) corresponds to a minimal
projective resolution of 7 A(-, z) under the Yoneda equivalence H®(9A) — H"(pro A)
(section 3). Then the triple (A, £, A") is a tilting triple and there exists an isomorphism
¢ : E — A sending H(z) to z and ¢ to t for all z € Ly U {z} and t € Ry U {y}. It is
easy to see that (km(¢)) (H(2)) = H(vz) for all z € Ly, that (kn(¢)) (t) = 9t for all
t € Ry and that (kn(¢)) fixes both H(z) and y. Thus E is ((kn (1)) )-stable. Then
by Proposition 3.2 T} ) (A) is derived equivalent to T} (A’), where ¢/ € Aut(A') is
defined by the commutativity of the diagram
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In addition, it follows from the commutativity of this diagram and the definition of ®
that 7(¢’) = m(s). This implies 17, (A") = Ty’ (A’) by Proposition 7.2. Thus the
claim follows.

This claim together with (8.2) implies that 7}, (A) and T}, (A) are derived equiv-

alent. Hence T7(A) and T}}(A) are derived equivalent again by Proposition 7.2. As a
consequence A and II are derived equivalent. O
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