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Abstract

In this paper we describe the 2-torsion part of the Brauer group Br E of an elliptic curve
FE defined over an arbitrary field of characteristic # 2 in terms of generators and relations.
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1  Introduction

Let FE be an elliptic curve defined over a field K of characteristic different from 2 and given by an
affine equation

v} = f(x),
where f(x) is a unitary cubic polynomial over K without multiple roots. We will say that F is
split, semisplit or non-split if f(z) has 3, 1 or no roots in K respectively.

Let Br E be the Brauer group of the curve E. One of the main goals of this paper is to
accomplish (to some extent) a description of the structure of the 2-torsion part of Br E in terms
of generators and relations. The initial results in this direction were obtained in [Pu98] where a
description of quaternion algebras over E is presented and in [GMY97] where an explicit description
of generators of 3Br F for a split elliptic curve is given. Then the second author [Gul99] generalized
the results of [GMY97] for semisplit elliptic curves. Our paper, in fact, grew out of his preprint
[Gul99] and here we go further and obtain more complete results that concern generators as well
as relations for arbitrary elliptic curves.

Let K be a separable closure of K and Ef = F(K). The starting point of our consideration is
the following exact sequence arising from the Hochschild-Serre spectral sequence:

0 —-BrK — BrE - HY(K,E) —0. (1)
Since E(K) # (), the homomorphism & has a section, so that (1) induces the exact sequence
0— oBrK — 2BrE - 2H'(K,E) -0,

where the subscript 2 means the 2-torsion part.

The main result of the paper is formulated in Theorems 3.5, 4.12, 5.2 and 5.3. After some
preliminaries given in section 2 we construct a section for x in these theorems. This eventually
enables us to describe explicitly 2Br E in terms of generators and relations.

More exactly, let M be the 2-torsion part of £ and let I' = Gal (K /K). The Kummer sequence

0-M —F 5 FE— 0,
where the symbol 2 over an arrow means multiplication by 2, yields the exact sequence
0— B(K)/2 % HY(D, M) -~ ,HY (I, E) — 0.

Here § : E(K)/2 — H*(I', M) is a connecting homomorphism. In sections 3 through 5 we show
that there exists a homomorphism ¢ : HY (T, M) — 2Br E with the properties

Koe={(, e (ker(¢)) = 0. (2)



The second property implies that € factors through o H(T, E), i.e. there is a unique homomorphism
£: oHY(I', E) — »Br E such that ¢ o = ¢, and the first one shows that ¢ is a required section.
If f(z) = (z —a)(x—b)(x —c) with a, b, c € K, then M ~ Z/2Z & Z/2Z; hence

HYD,M) ~ K*/(K*)? x K*/(K*)%

It turns out that the map

e: K*/(K*)* x K*/(K*)* = 3Br F
which takes a pair (r, s) € K*x K* into the product (r, z—b)® (s, z—c) of quaternion algebras over
K(E) satisfies (2). Thus letting I = Ime, we obtain the natural isomorphism 3Br E ~ ;Br K & I
where, by construction, the second summand I is generated by quaternion algebras over K (E) of
the form (r,z —b) and (s, — ¢) with r, s € K*.

Let f(z) does not split over K. We denote the minimal extension of K over which a section e
is already constructed by L. Then using standard properties of restriction and corestriction maps
we show that for a special map 7 : HY (K, M) — H'(L, M) the composition ¢ = cor o e o T
satisfies (2). As a corollary of our construction, we again obtain the decomposition

oBrE ~ 9Br K ¢ cor (Imey). (3)

Note that in all cases the degree of L/ K is either two or three. This fact enables one to present
generators of the second summand in (3) in an explicit form. It turns out that all of them are
tensor product of quaternion algebras over K(E) of a very specific form.

It follows from the construction that all relations between our generators are given by algebras
from (e o §)(E(K)/2). These algebras are also presented in an explicit form in Theorems 3.5,
4.12, 5.2 and 5.3 and all of them are parametrized by K-points of the elliptic curve E. This fact
shows that two problems of an explicit description of the 2-torsion part of Br E' (of course, modulo
numerical algebras, i.e. algebras from »Br K) and the group F(K)/2 are, in fact, equivalent. So,
every time information about E(K)/2 is available we can effectively describe 3Br E and vice versa.

We justify the words about effectiveness in the second part of the paper where we consider an
elliptic curve E over a local non-dyadic field K. In section 6 we first recall some well-known facts
about the structure of E(K). The next two sections 7 and 8 deal with constructing generators of
E(K)/2. These results yield an explicit description of 2Br E in the concluding sections 8 and 9
very quickly. Thus, we reopen a result of Margolin and Yanchevskii [YM96]. It seems that in this
part our argument is more natural and shorter (cp. loc. cit.).

Though we do not touch a number case in the paper at all, it is worth mentioning that infor-
mation contained in sections 7 through 10 and supplemented by analogous consideration of dyadic
local fields would provide the basis for a computation of the 2-Selmer group S® (E/K) of E; hence
of the 2-torsion part of both Shafarevich-Tate groups III (E/K) and III (Br E) as soon as the rank
of E(K) is known. This would also lead to an explicit description of the Shafarevich-Tate group
1T [W(K(FE))] of the Witt ring W (K (F)), since, by a result of Parimala and Sujatha [P-S96], one
has 1T [W(K(F))] ~ III (2Br E).

We remark finally that by repeating almost verbatim our argument one can describe in a
similar way the 2-torsion part of Br X for a hyperelliptic curve X defined over a field K such that
X (K) # 0. However in order to keep the volume reasonable we do not consider hyperelliptic curves
in the present paper.

If A is an abelian group, A 2 A denotes the homomorphism of multiplication by 2 and 2A,
A/2 are its kernel and cokernel respectively.



|S| denotes the number of elements in a finite set S.

Throughout this paper all fields under consideration are of characteristic # 2. For a field K, we
denote K a separable closure; K* is its multiplicative group and K*? is the subgroup of squares.
By abuse of language, we will write s for a coset sK*2?, whenever there is no danger of confusion.

A variety is always a smooth projective and geometrically integral scheme over a field K. For a
variety X over K, we write K (X) for the function field of X and X (K) for the set of its K-points.
If L/K is a field extension, we put X, = X X gpec k Spec L. We also write X=X X Spec K Spec K
and for the brevity K-points of X will be denoted by the same symbol X.

If T is a profinite group, then H*(T', —) is a Galois cohomology functor.

In the paper we will consider quaternion algebras and their tensor products only. Thus, if
r,s € K*, then (r,s) and [(r, s)] always denote the corresponding quaternion algebra over K and
its class in the Brauer group Br K respectively. If F is an elliptic curve over K, then its Brauer
group is naturally isomorphic to the unramified Brauer group Bry,,(K(E)/K) (see [Lich69], [Co88]).
So we will always identify Br E with Br,,, (K(E)/K).

Acknowledgment. We would like to thank H. Abels and U. Rehmann for support during the
preparation of this paper and O. Izhboldin for useful discussions.

2  Preliminaries

Let E be an elliptic curve over a field K defined by an affine equation

where f(z) is a unitary cubic polynomial over K without multiple roots. Let O be the infinite
point on E. There is a natural structure of an abelian group on the set of K-points F(K) such
that O is a zero element. Throughout the paper we denote the 2-torsion subgroup in E by M. Let
I' = Gal(K/K) be the absolute Galois group of the ground field K. If

f(x) = (z —a)(z = b)(z —c)
is the decomposition of f(x) over K, then
M ={0, (a.0), (b.0) (c,0) }.

We say that E is split if a,b,c € K. In this case M C E(K); hence M is a trivial I'-module.
We say that F is semisplit if f(z) has one root in K only. If f(z) is irreducible over K, then we
say that F is non-split.

A starting point of our explicit description of 3Br FE is the following exact sequence:

0—BrK = BrE - HYT,E) —=0. (4)

Here the maps ¢ and x are defined as follows (see details in [Fadd51], [Lich69], [Mi81] or [Sch69]).
Recall that we identify Br E with the unramified Brauer group Bry,(K(E)/K). Then ¢ is induced
by the scalar extension functor: if A is a central simple algebra over K, then +([A]) = [A® K K(E)].

Next let h € Br E. By Tsen’s theorem (see [P82]), we have Br K(E) = H?(T', K(E)*). Hence
h can be viewed as an element in H?(I', K (E)*). Let Div E be the group of divisors on £ and let
P (E) be the group of principal divisors on E. Let i’ be the image of h under the homomorphism

H*(T',K(E)*) — H*(T,P(E))



induced by the map K(E)* — P (E) that takes a rational function f into its divisor div(f). Since
h belongs to the unramified subgroup of Br K(E) = H?(I', K(E)*), it follows that b’ lies in the
kernel of the homomorphism

H*(I,P (E)) — H*(I',Div(E)) (5)

induced by the embedding P (F) — Div(FE).

Let Div'(E) be the group of degree zero divisors on E. Clearly, H(T',Z) = 0, so that a
natural homomorphism H?(T', Div’(E)) — H?(I', Div(E)) is injective. Therefore, the kernel of (5)
coincides with the kernel of

H*(I,P (E)) — H*(I',Div’(E))

and the last one coincides with the image of the connecting homomorphism
o:HYI',E) — H*(I,P (E))
induced by the exact sequence
0—P(E) —DW(E) —E—0.

Since E(K) # () and H'(T,Z) = 0, we easily get H' (T, Div’(E)) = H'(T, Div(E)) = 1, so that
9 is injective. It follows that there exists a unique element h” € H*(T, E) such that 9(h") = K.
Then, by definition, k(h) = h”.

We claim that sequence (4) splits. Indeed, if € E(K) and K(F), is the completion of K(F)
at x, then Br K(F),; = Br K @ Homeon:(I', Q/Z). Let

s:BrE— BrK
be the composition
BrE — BrK(FE) — BrK(FE); 2 Br K @ Home:(T',Q/Z) — Br K

where the last homomorphism is the projection on the first summand. It is easy to check that the
composition ¢ o ¢ is an identical map and the claim follows.
In view of splitness, (4) induces the exact sequence

0— oBrK % sBrE - ,HYI'.E) — 0, (6)

which also splits. Since s H 1(F,E) can be easily computed, we obtain that for an explicit de-
scription of 9Br E it suffices to construct a section for x. To do it, we first consider the Kummer
sequence

O—)M—)ELE—)O_ (7)

It yields the exact sequence
0— B(K)/2 -5 HY(D, M) - ,HYD,E) — 0 (8)

where 0 : E(K)/2 — HY(T, M) is a connecting homomorphism. In the next three sections we will

construct a homomorphism e : H*(I', M) — 2Br E with properties

Koe=C(, € (ker(¢)) = 0.



The second property implies that e induces a unique homomorphism ¢ : s H!(I', E) — »Br E such
that € o ( = e. Then it follows that Kk oeo( = kK 0o e = (. Since ( is surjective, we conclude that
koe =1, 1i.e. ¢is a required section for k.

Letting I = Ime, we have oBrE =2 I ®Im: = [ @ 2Br K. As we see in sections 3,4 and 5,
elements in I are tensor product of quaternion algebras over K (FE) of a very specific form. So our
construction eventually gives a simple system of generators of 2Br E modulo numerical algebras
(i.e. algebras from Im ¢) and according to the construction of the maps € and ¢ all relations between
the generators are given by algebras from e(ker({)). Thus, to find all relations explicitly, we have
first to describe the subset Im§ € H*(I', M) and then apply ¢ to its elements.

Since the structure of the group H!(I', M) (and hence the construction of €) depends on splitting
properties of the polynomial f(z), for realization our program we consider split, semisplit and non-
split cases in the next three sections separately.

3  Split elliptic case

Let E be a split elliptic curve. Then M is a trivial I-module; hence we have
HY(I',M) = Hom (I', M) .

Fix two non-zero points in M, say (b,0) and (¢,0). Considering them as generators of M we have
an isomorphism
M=Z/257/2.

It induces the isomorphism
HY, M) = Hom(G, M) = K*/K** @ K*/K** .
Consider a map
€p : K*/K*2 — 9BrFE

which takes s € K* into the class [(s,z —b)]. Here and below for an element r € K the polynomial
x — r is considered as a rational function on E. Clearly, the quaternion algebra (s,z — b) is
unramified and ¢, is a homomorphism. Analogously, consider a homomorphism

e : K*/K** — ,BrE
which takes s € K* into the class [(s,z — ¢)]. Let now
e=e®e.: K*/K** o K*/K** =Hom(I', M) — »BrE. (9)

Using the description of x given in section 2 it is easy to show that x o e = (. According to our
plan we need also to make sure that ¢(Imd) = 0. To this end, we first describe the image of the
connecting homomorphism §.

To ease notation, for a point (u,v) € E(K) the coset (u,v) + 2E(K) will be denoted by the
same symbol (u,v). We start with a simple lemma which gives a formula for dividing a point
(u,v) € E(K) in the group E by 2. Let

r=+vu—a, s=vVu—»b, t=+vu—c and w=r+s—t.

Let also

1
ng( o4+ t))fu=rs—rt—st+u and ¢=w(p—u)+v.



Lemma 3.1 We have (p,q) € E and 2(p,q) = (u,v).

Proof. This is a straightforward calculation (see also the proof of Theorem 4.1 on page 38 in
[Hu87]) and we omit details to the reader. O

Proposition 3.2 Let (u,v) € E(K). Then

u ) if u#b and u # c,
b—c,(b—c)(b—a)) ifu=0b,
(c—a)(c—=b),c—b) ifu=c,
1,1) if u = oo.
Proof. If u = b, then u # a and u # ¢ and, analogously, if ©u = ¢, then v # a and u # b.
Therefore, by the symmetry argument, it suffices to prove the statement in the case u # b and
u # c. Moreover, we consider only “a generic case” where u — b and u — ¢ generate a subgroup in
K*/K*? of order 4, i.e. u— b and u — ¢ are nontrivial and different modulo squares. The other
cases can be handled in a similar way.

We keep the notation of Lemma 3.1. Since 2(p, q) = (u,v), the cocycle é(u,v) corresponds to
the homomorphism ¢, ) : I' — M that takes 7 to the point (p,q)” —(p, q). Let U = Gal(K/K(s))
and V = Gal(K /K (t)). We fix arbitrary automorphisms

ceU\V and 7eV\U.

Let ¥y, € Hom (I', M) be the homomorphism corresponding to the pair (u — ¢,u —b). Clearly,
Dlue) (V) = Y(ue) (7) = 0 for all v € Gal(K /K (s,t)) and () (0) = b, ¥y, (7) = c. So it suffices
to show that the abscissas of the points (p, q)” — (p,q) and (p,q)™ — (p, ¢) are b and ¢ respectively.

Note that, by construction, we have
o(ry=—-r, o(s)=s and o(t)=—t.

Then it easily follows that (p,q)? # +(p, ¢). Denoting by m the abscissa of the point (p, ¢)” — (p, q)
and taking into account the group law algorithm given on p. 58 in [Sil85], we have

o) )?
= () e
= (3(2‘;(};) +3u—rt—s2—t2—o(p)—p.

Since ¢ = w(p —u) + v and p = rs — rt — st + u , we can write

g+o(qg) = wp—u)+v+o(wo(p—u)+v

w(p —u) +o(w)o(p —u) + 2v

(r+s—t)(rs—rt—st)+ (—r+s+t)(—rs—rt+ st)+2rst
= 2r%s — 4rst + 2st?

= 2s(r—1t)?,

and
olp)—p=-rs—rt+st—rs+rt+st=2s(t—r).

Thus, we obtain

2\ 2
m = ((gigj«; ) +3u—12—s2—t2+2rt—2u
= —s’+u
The equality (p,q)™ — (p,q) = (¢, 0) is proved in exactly the same fashion. O



Proposition 3.3 ¢(Imd) = 0.

Proof. Let (u,v) € E(K). Since ko € = (, we have (ko €) (6(u,v)) = 0, i.e. the algebra e(d(u,v))
is numerical. We claim that this algebra is trivial. Indeed, we may assume that (u,v) is a point in
E(K) such that w — b # 0 and u — ¢ # 0. Then the evaluation of the algebra

€(d(u,v)) = [(u—c,x —b)] + [(u — b,z — ¢)]
at the point (u,v) gives
[(u—c,u—=b)]+[(u—bu—c)]=2[(u—c,u—>b)]=0.
This implies that the algebra e(d(u,v)) is itself trivial, as required. O
Summarizing the above results, we obtain the following

Proposition 3.4 Let E/K be a split elliptic curve over K, char K # 2. Let k : 2BrE —
2oHY (', E) be the homomorphism described in section 2 and let ¢ : HX (U, M) — yH' (T, E) be the
homomorphism induced by the embedding M C E. Let also

e: HY(T',M) — 2BrE
be the homomorphism defined by (9). Then
(i) koe=C(.
(ii) There exists a unique homomorphism

e: oHYTI',E) — 2BrE
such that eo( =€ and Koe = L g is an identical map.

Reformulating the results of Proposition 3.4 in terms of central simple algebras, we obtain
Theorem 3.5 Let E/K be a split elliptic curve defined by an affine equation
y* = (z —a)(z = b)(z —o),

where a,b,c € K and char K # 2. Lete: o H'(I', E) — 2Br E be the section for the homomorphism
k: oBrE — oHY(T, E) constructed in Proposition 3.4 and let I =Tme. Then

QBI' E = QBI' K D I
and every element in I can be presented by a biquaternion algebra
(r,x—b)® (s, —¢)

with r,s € K*. Conwversely, every algebra of such a type is unramified over E. An algebra A =
(ryx —b) ® (s,x — c¢) is trivial in I = Tm (¢) if and only if A is similar to an algebra of one of the
three following types:
(i) an algebra

(u—c,z—b)®(u—b,xz—c),
where u is the abscissa of a point in E(K) such that u—b# 0 and u — ¢ # 0;

(ii) an algebra
(b—c,z=b)((b=-c)b-a)z—c);

(iii) an algebra
((c=a)(c=D),z—b)®(c—b,x—c).



4  Semusplit elliptic case
Let E be a semisplit elliptic curve given by an affine equation
Yy’ = (z—w)(2® —d),

where w,d € K, char K # 2 and d is not a square in K*. Let L = K(v/d), T' = Gal (K/K) and
A = Gal (K/L). Clearly, A is a subgroup of index two in I and

M = M (Z/2),

where M2(7/2) is an induced T'-module. Therefore, by the Shapiro lemma (see, for example,

[Serre]), we have
HY(T', M) = HYT', M{(7/2)) =~ H' (A, 7/2) = L*/L** .

Let us consider the split elliptic curve F, = E X L over L. Fixing its points (b, 0), (¢, 0),
where b = V/d, ¢ = —v/d, we get the isomorphisms over L

M=7/207/2, H'AM)=L*/L**® L*/L*?.
Under these identifications the restriction map is given by the formula
res : HY(I,M) — H'(A, M), leL*/L*> —(1°,]) e L*/L**> @ L*/L*?, (10)

where o is the nontrivial automorphism L/K.
We denote the homomorphisms constructed in the previous section for the split curve Ep by
the same symbols but equipped with the subscript L. Thus, we have the homomorphisms

er : H'(A, M) — ,Br(EL),

Cp:HY A, M) — H' (A E)

and
er: oHY(A,E) — 3Br (Fp) .

Let
HY DO, M) = L*/1** = L)L o L*/L** = HY (A, M)

be the homomorphism which takes [ into the pair (1,1). We define the homomorphism
e: HY(,M) — 3BrE

by means of the following commutative diagram

HY(A, M) —%— ,Br (Er)
T cor
HY(T', M) i 2Br B



Proposition 4.1 Let E/K be a semisplit elliptic curve. Let ¢ : HY(T, M) — 2HY(I', E) be the
homomorphism induced by the embedding M C E and let € be the above homomorphism. Then

there exists a homomorphism
e: oHYI',E) — 2BrE

such that Koe =1 4 p (i.e. € is a section for the homomorphism k) and eo( =€ .
Proof is based on a diagram chase. We divide it in a sequence of simple observations.
Lemma 4.2 The restriction homomorphism
HY (T, M) == HY(A, M)
18 injective.
Proof. This easily follows from (10). O

Lemma 4.3 The composition
HYT,M) - HY(A, M) =5 HY(T, M)
coincides with the identical map 11 (v ar)-

Proof. By Lemma 4.2, the homomorphism res : H*(I', M) — H(A, M) is injective. Therefore, it
is sufficient to prove that resocoror =res. Let [ € L*. Using (10) we have

(resocorot)(l) = (resocor)(1,1) = (1,1) + (1,1)7 = (1,1) + (1°,1) = (1°,1) = res(l) .

O
Lemma 4.4 koe= (.
Proof. The commutative diagram
1 CL 1 - KL
HY (A, M) ———— ;H'(\,E) 2Br (EL)
HY(T, M) 2H' (T, E) - 2BrE
and Lemma 4.3 imply
Koe=FkKocoroepoT =corokyoerpo(porT =coro(porT=_ocororT=(.
O

Lemma 4.5 coro(rporm=(.

Proof. Clearly, we have coro(;, = ( o cor. Multiplying from the right hand by 7 we obtain that
coro(r, oT =(ocoror =( (the last equality holds by Lemma 4.3). O

Lemma 4.6 ¢ (ImJ) C Im..

10



Proof. By Lemma 4.4, we have k o € = (, hence

e(Imd) =e(ker {) Cker k =Ime.

Lemma 4.7 ImeNIm¢ = 0.

Proof. Our computations are illustrated by the following commutative diagram

2H1(A7E)
SL
HY(A, M) = 2Br B, =<———— »BrL
S
HYT, M) . 2BrE<———= 1,BrK

Let b € 3Br E be such that b = e(h) = 1(a) for some h € HY(I', M) and some a € 2Br K. Let

¢ =(r(7(h)). Then
a=(sou)(a) =¢(b) = (socoroer)(c) = (corogroer)(c) =0,
because ¢, o e, = 0.

Lemma 4.8 €(Imé) = 0.

Proof. By Lemmas 4.6 and 4.7, we have € (Imd) C Ime NIm¢ = 0.

O

We are now in position to finish the proof of Proposition 4.1. Since € (Imd) = € (ker ¢) = 0,

it follows that there exists a unique homomorphism e : s H 1(F7E) — 9Br E such that e = € o (.

Furthermore,
KOEo( =KOE=KOCOrOELOT =KOCOroer, o, 0T =coroky o o oT =

=coro(poT=CocoroT =(.

Since ¢ is an epimorphism, it follows that Koe =1 H'(I,E)" Proposition 4.1 is proved. (]

To reformulate the results of Proposition 4.1 in terms of central simple algebras we need three

well-known lemmas which describe images of quaternion algebras under corestriction homomor-

phisms.

Lemma 4.9 Let F be a field and let P be a quadratic extension of F'. Then for elements a € F

and b € P we have
COI‘p/F[(a, b)] = [(CL, NP/F(b))] :

Proof. This is a well-known fact.

11



Lemma 4.10 Let F be a field and let P be a quadratic extension of F. Suppose that P = F( /s),
where s € F. Then for elements a,b € F with the property a + b # 0 we have

corpyp((a+Vs,b— /)] = [(a+b,(a® = 5)(b* —5))] .

Proof. Let
ot Vs and [ = b— Vs .
a+b a+b

Then t + 1 =1, whence [(¢,1)] = [(t,1 — t)] = 0 in Br P. Substituting ¢ and [, we have

o-ten= [(EE59)]

t =

a+b’ a+b

=[(a+Vs,b=Vs)+[(a+bb—vs)]+[(a+sa+b)]+[(a+batd)
Taking corp,r and using Lemma 4.9 we obtain that
0 =corp/pl(a+vs,b=Vs)]+[(a+bb"—s)]+ [0 —s.a+b)]+[(a+b (a+b)?)].
Therefore,
corpypl(a+/3,b— v/5)] = [(a+b,b% — s)] +[(a> — s,a+b)] .
O

Lemma 4.11 Let F be a field and let P = F(y/s) be a quadratic extension of F. Let uy, vy, ug, vy €
F be such that v1 # 0, va # 0 and vius # uive. Then

corp/p|(ur +v1V/s, us +v2/s)] =

[(v1,ui = vis)] + [(—v2, u3 — v3s)] + [(vruz — wrva, (uf —vis)(uj — v3s))] .

Proof. Let

uy Uz
a=— and b=-——.
V1 V2

Then
[u1 +v1v/5,uz +v2v/5] = [vi(a+ Vs), —va2 (b — V/5)] =
= [v1, —va] + [a + V5,0 — /5] 4 [v1,b = V5] + [a + /5, —va] .
Lemmas 4.10 and 4.9 give
corp /p[u1 + v1V/S, Uz + v24/s] =

[(a+b, (a® = 5)(b? = 5))] + [(v1, b2 = 5)] + [(—v2,0% — 5)]
and it remains to substitute a = wuj /vy, b = —ug/va. O
Theorem 4.12 Let E be a semisplit elliptic curve over K, char K # 2, given by an affine equation
y? = (z —w)(2? — d), where w,d € K and d is not a square in K. Let e : ;H'(T, E) — 3BrE be
the section for the homomorphism k : sBr E — oHY (T, E) constructed in Proposition 4.1 and let

I =TIme. Then
QBI'Eg QBI‘KEBI

and every element in I can be presented by either a quaternion algebra

(r,z —w),
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where r € K*, or a biquaternion algebra
(t,r? —t2d) @ (tx +r, (r? — t2d)(2® — d))

where r;t € K and t # 0. Conversely, every algebra of the above types is unramified over E. It is

trivial in I if and only if it is similar to a quaternion algebra
(‘T +u, (u - w)(:z: - w)):
where u s the abscissa of a point in E(K).

Proof. The first statement is trivial because ¢ is a section for the homomorphism x. To prove the
second one we have to compute €(h) in terms of quaternion algebras for all h € H*(T', M).

By definition, ¢ = coroey, o 7, where L = K (v/d). Recall that we identify L*/L** = HY(T, M)
and L*/L** @ L*/L** = HY(A, M) and that 7 : L*/L** — L*/L*>@® L*/L** takes | € L*/L** into
(1,1). Let I € L*. Then we have

(coroer o) (l) = (coroer) (1,1) = corp (g x(m [(l,x — Vd)] .
Let | = r 4+ t\/d. If t = 0, then, by Lemma 4.9, we have
corp(py/k(E) (1,2 — Vd)] = [(r,2? — d)] = [(r,z — w)] .
If t # 0, then, by Lemma 4.11, we have
corp(my/re(m)|(r + tVd,x = V)] = [(t,7% = 2d)] + [(1,2° = d)] + [(tz + 7, (¢ = *d)(a” = d))] =

= [(t,r?* — £2d)] + [(tx + 7, (r* — 3d)(z* — d))] .

It remains to find out when an algebra b € I = Ime is trivial. Let b = € (I). By Proposition 4.1,
we have € = £ 0 ( and kere = 0. So b is trivial if and only if [ € ker ( = Im .
Let (u,v) € E(K) and [ = §(u,v). The commutative square

é
E(L)/2 —"——=[*/L** & L*/L**

B(K)/2C L*/1*?

shows that
(17,1) =res (1) = (resod)(u,v) = (01, ores) (u,v) = 1, (u,v),

where ¢ is a unique nontrivial automorphism L/K. Proposition 3.2 gives
or.(u,v) = (u+ Vd,u —Vd).
Thus, | = u — v/d and finally we get
(€0 6) (u, v)

(corp g oero ) (1)
(corp xoer)(1,1)

corpx [(u —Vd,x + Vd)]
[+ 0, (0 — d)(a? — )
= [(z+u,(u—w)(z—w)).

13



The theorem is proved. O

For consideration of the non-split case it is convenient to have a reformulation of the last
theorem without conditions on the equation of E. Let E be a semisplit elliptic curve given by an
affine equation

y* = (x —a)g(x),

where a € K and g(z) is a unitary irreducible polynomial over K. Denote the roots of g(x) by b
and c. Let also E’ be a semisplit elliptic curve given by an equation

y? = (- w)(@® - d),

where

b b—¢)?
wza—% and dz( 40) .

Clearly, the map
E—F
b+c
2

is an isomorphism of elliptic curves. It induces the commutative diagram

(1, 0) = (u =

7’U)

0 2Br K 2BrE al ZJH'(I,E) —=0
0 2Br K BrE — = YT, E)—0

Let & : ng(F,E/) — 9Br E’ be the section for the homomorphism «’ : 3BrE’ — ng(F,E/)
described in Proposition 4.1. Let ¢ : oH'(I', E) — 2Br E be the section for the homomorphism
k: oBrE — oHY(T, E) defined by the following commutative square

QBI'E

2H1(F5E)

1R
4

2BrE'<———— ,H'\(IE)

’
1>

Theorem 4.13 Let E be a semisplit elliptic curve defined by an equation

y? = (z —a)g(2),

where a € K, g(x) is a unitary irreducible quadratic polynomial over K and g(z) = (x — b)(x — ¢)
over K. Lete: oHY(T', E) — oBr E be the section for the homomorphism k : 2Br E — 2H'(I', E)
defined above and let I =Ime. Then

oBrE = 2BrKdl1
and every element in I can be presented by either a quaternion algebra of the form

(ryxz —a),
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where r € K*, or a biquaternion algebra of the form
(t,r2 — W22 @ (t(x — h) +r, (r* — t2h2)g(x)),

where h = (b+¢)/2 € K, it € K and t # 0. Conversely, every algebra of the above types is
unramified over E. It is trivial in I if and only if it is similar to a quaternion algebra

(:z;—h+u,(u+h—a)(:z;—a)) )
where u is the abscissa of a point in E(K).

Proof. All statements follow from Theorem 4.12. O

5 Non-split elliptic case
In this section we consider a non-split elliptic curve E given by an affine equation
y? = f(2),

where f(x) is an irreducible unitary polynomial without multiple roots. Let a be a root of f(x).
We denote L = K (a) and © = Gal(K/L).
By construction, the curve E;, = E X L is either split or semisplit over L. Let

(r:H'(©,M) — >H'(0,E)
be the homomorphism induced by the embedding M C E and let
KL : oBrEp — ng(@,E)
be the homomorphism defined in section either 3 or 4. Let also
er : HY(©,M) — 3BrEg

be the homomorphism defined either by formula (9) in the split case or by means of the homomor-
phism 7 in the semisplit case (see section 4).
According to Propositions 3.4 and 4.1 there exists a section

r: oHY(©,E) — »,BrEy,

for the homomorphism ky such that the composition £, o {;, coincides with ¢;,. We are now in

position to prove the existence of ¢ and € with the same properties in the non-split case too.

Proposition 5.1 Let E be a non-split elliptic curve over K, char K # 2. Let k : sBrE —
oHY(T, E) be the homomorphism defined in section 2 and let ( : HY(T, M) — H' (T, E) be the
homomorphism induced by the embedding M C E. Let also € be the composition

e: HY(D, M) X% HY (O, M) & ,BrEp =% ,BrE

where €7, is as above. Then there exists a homomorphism ¢ : 2H1(F,E) — oBr E such that

co(=ecand koe=1 LH(T,E) is the identical map.

15



Proof. This is entirely analogous to the proof of Proposition 4.1. The only difference is that instead
of 7 we have to use the homomorphism H(I', M) "5 H'(©, M). O

Keeping the above notation we may reformulate Proposition 5.1 in terms of central simple

algebras. We should distinguish two cases.

Theorem 5.2 Suppose that the curve Ey, is split. Let f(x) = (x —a)(xz — b)(z — ¢), where a,b,c €

L = K(a). Let e : oHY[,E) — 3BrE be the section for the homomorphism r described in
Proposition 5.1 and I =TIme. Then

QBI"E = QBI'K D I
and every element in I can be presented by an algebra of the form
corpk ((r,z —b) & (s, — ¢)),

where r,s € L*. Conversely, every such algebra is unramified over K(E). It is trivial in I if and

only if it is similar to an algebra
cor/k (u—c,x—b)® (u—b,x —c)),
where u is the abscissa of a point in E(K).

Proof. This follows from the previous results. O

Theorem 5.3 Suppose that the curve Ey, is semisplit. Let f(x) = (x—a)g(x), where a € L, g(z) is
an irreducible quadratic polynomial over L and g(x) = (x —b)(x —c) over K. Lete: HY(T,E) —
oBr E be the section for the homomorphism k described in Proposition 5.1 and I = Ime. Then

o BrE= osBrK® 1
and every element in I can be presented by either an algebra of the form
cory /g (r,x — a),
where v € L*, or an algebra of the form
cory e ((t.1° — B*) ® (t(x — h) + 1, (r* — *h%)g(x)))

where h = (b+¢)/2 € L, r,t € L and t # 0. Conversely, every such algebra is unramified over
K(E). It is trivial in I if and only if it is similar to an algebra

corp /g (x —h+u,(u+h—a)(z—a))
where u is the abscissa of a point in E(K).

Proof. This follows from the previous results. O

The generators of 2Br E given in Theorems 5.2 and 5.3 are presented as the tensor prod-
uct of algebras of the form cory,x A, where A is a quaternion algebra over the cubic extension
L(E)/K(FE). We close this section by showing how one can rewrite these generators in the form
of the tensor product of quaternion algebras defined over K(FE).

Let P/K be a cubic extension and let P = K (s) for some element s € P.
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Lemma 5.4 FEvery element a € P can be written in the form

o= 01 + 038
o 03—|—04S’

where 01,05,03,04 € K.

Proof. Let V.= {01 + 625 | 61,602 € K} be a two-dimensional vector space over F. Since aV is also
a two-dimensional vector space over K, the intersection V' N aV has dimension at least one. Let
b € VNaV be a non-zero element. Then there exists 01, 05,603,604 € K such that

b= 01 + 028 = (93 + 048)@.

It follows that
o= 01 + 038
o 03 + 048 '

as required. 0

Lemma 5.5 Leta€ K and b€ P. Then

COI“P/K[(C% b)] = [(a, NP/K(b))] :

Proof. This is a well-known fact. O

Lemma 5.6 Let a,b € K be such that a +b # 0. Then
corp/gl(a+s,b—s)] = [(a +b,(a+b) Np/x((a+s)(b— s)))] )

Proof. Let

a+s b—s
t= d = .
a+b an a+b

Then t + 1 =1, whence [(¢,{)] = [(¢,1 — t)] = 0 in Br P. Substituting ¢,, we have

0=[(t1)]= [(Z—izi%)] B

[(a+s,b=s)]+[(a+bb—3s)]+[(a+s,a+Db)]+[(a+ba+Dd).

Taking corp,r and using Lemma 5.5 we obtain that
0=corp/r[(a+s,b—s)]+[(a+b Npx(b—3s)]+[(Ne/x(a+s),a+b)]+[(a+b,(a+b)?)].
Therefore,
corp/pl(a+s.b—3s)] = [(a+b, Np/r(b—8)] + [(Np/r(a+s),a+b)]+[(a+ba+b)],
as required. O
Lemma 5.7 Let uy,vy,us,v2 € K, v1 #0, vg #0 and vius # ujvs. Then
corp i [(u1 + v1s,ug 4+ v28)] =

= [(vl(vlug —u1v2), Np/k (u1 + vls))] + [(vg(ulvg — v1u2), v1(viue — u1v2) Np)k (u2 + ’1}28))] .

Proof. This is entirely analogous to the proof of Lemma 4.11 and so we omit details to the reader.
O

Using Lemmas 5.4,5.5 and 5.7 one can easily produce explicit formulas for computation of all
algebras in Theorems 5.2 and 5.3. However we do not present them because of their bulk.
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6 FElliptic curves over local fields

In the next few sections we demonstrate efficiency of the above cohomological methods by consid-
ering an elliptic curve E defined over a local non-dyadic field K. To get an explicit description of
oBr E, by Theorems 3.5,4.13, 5.2 and 5.3, we need only to describe explicitly all relations between
the generators indicated in these theorems what is equivalent to the description of the image of
the boundary map § : E(K)/2 — HY(T', M).

For an elliptic curve over local fields there is a natural p-adic filtration on the group of K-points
with finite quotients. Examining each quotient individually one can find very quickly generators
for the group E(K)/2. This leads in turn to the required description of Im§. All necessary facts
for our further argument can be easily elicited from standard textbooks, for example from [Hu87]
and [Sil85], and for the convenience of the reader we start with recalling them.

For the rest of the paper we use the following specific notation:

K — a local non-dyadic field, i.e. a finite extension of the p-adic field Qp, p # 2;
v — the discrete valuation on K;

O =0k the ring of integers of K;

O0* = O} — the unit group of O;

a = ag € 0" — a non-square element;

m = mx — a uniformizer for O;

k=0/7 O — the residue field of K.
Theorem 6.1 There is a natural isomorphism
HY(T,E) = Homeoni(E(K),Q/7Z) .

Proof. See [Tate57] or [Mi86]. O

Corollary 6.2 | ;BrE| =2-+/|HY(T, M)| .
Proof. By Theorem 6.1, we have
| 2HY(T, B)| = | 2Homeont (E(K),Q/Z)| = [Homeont (E(K)/2,Q/Z)| = |E(K)/2| .
On the other hand, sequence (8) shows that
| 2HN (D, B)| = [HY(T, M)|/|E(K)/2| .

Therefore,
|E(K)/2|* = |[H'(T, M)

and the result follows. O

Proposition 6.3 Let n be a natural number. Then
|E(K)/nE(K)| = [nE(K)|-10/n0].

Proof. See, for example, [Mi86], p. 52. O

Corollary 6.4 Let E be a non-split elliptic curve defined over a local non-dyadic field K. Then
QBI' E = QBI‘ K.
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Proof. Clearly, we have
| sBrE|=|3BrK|-| H ,E)| =|:BrK|-|E(K)/2]|.

Since FE is non-split, it follows that every nontrivial element from M is not defined over K.
Therefore, 2 E(K) = 0 and, by Proposition 6.3, we obtain that F(K)/2 = 0. This implies that
| :Br E| = | 9Br K |, as required. O

Let FE be an elliptic curve over K and let
y2 + a1y + asy = z° + a2x2 + a4 + ag

be a Weierstrass equation for the curve E/K with all coefficients a; € O. Since its discriminant
A is also an integer and since v is discrete we can look for an equation with v(A) as small as
possible. A Weierstrass equation is called a minimal equation for E if v(A) is minimized subject
to the condition a1, as, a3, aq, ag € O.

It is known (see [Sil85], Proposition 1.3, p. 172) that a minimal (Weierstrass) equation is unique

up to a change of coordinates
r=u’z" +r, y=uy +u’sx +t

with u € O* and r, s, t € O. Since, by our assumption, 2 € O*, a coordinate change y — 3y’ =
y + (a1 + a3)/2 shows that we may always assume that a; = az = 0, i.e. F is given by a minimal
equation of the form

y? =25 + apx® + ayx + ag . (11)
Later we need to know when (11) is a minimal equation for E. Let b, b4, bg, bs, c4, cg be the

usual combination of the a;‘s (see [Sil85], p. 46) and let A be the discriminant of equation (11).

Proposition 6.5 FEquation (11) with integer coefficients as, ag, ag is minimal if and only if either
v(A) < 12 or v(cq) < 4.

Proof. See [Sil85], page 186, Exercises 7.1. O

We assume that our elliptic curve E is given by a minimal equation (11). Reducing its coeffi-
cients modulo 7 we obtain the curve (possibly singular) E over k:

2 3~ .2 | ~ ~
Y°=12° + ax” + a4 + ag -

The curve E is called the reduction of E modulo 7.
Next let P € E(K). We can find homogeneous coordinates P = [zq, yo, z0] with integers
o, Yo, 2o such that at least one of them is in O*. Then the reduced point P = [Z0, F0, Zo] is in E.

This gives a reduction map
E(K)— E(k), P—P.

Since the curve E can be singular, we denote its set of nonsingular points by E'ns(k) and we
put
Ey(K)={P€ E(K)|P € E,s(k)}

Ei(K)={Pe E(K)|P=0}.
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Proposition 6.6 The following natural sequence of abelian groups
0 — E1(K) — Eo(K) — Eys(k) — 0
1S exact.

Proof. See [Sil85], Proposition 2.1, p. 174. O

Proposition 6.7 The group E1(K) is uniquely divisible by 2; in particular, we have E1(K) =
2F; (K).

Proof. See [Hu87], Corollary 1.3, p. 264. O
Let E/K be an elliptic curve and let E/ k be the reduced curve for a minimal Weierstrass

equation. One says that

(a) E has good reduction over K if E is nonsingular;

(b) E has multiplicative reduction over K if E has a node; in this case the reduction is said to be
split (respectively non-split) if the slopes of the tangent lines at the node are in k (respectively not
in k);

(¢) E has additive reduction over K if E has a cusp.

Proposition 6.8 Let E/K be an elliptic curve given by a minimal Weierstrass equation (11).

(a) E has good reduction if and only if v(A) = 0;
(b) E has multiplicative reduction if and only if v(A) > 0 and v(cs) = 0;
(¢) E has additive reduction if and only if v(A) > 0 and v(cq) > 0.

Proof. See [Sil85], Proposition 5.1, p. 180. O

7  Generators of E(K)/2 for a split elliptic curve over a local field

Let E be a split elliptic curve given by a minimal equation (11). Since M is a trivial I'-module, it
follows that all roots of the cubic polynomial f(x) = 23 + asx? + ayx + ag are in K. Then these
roots, clearly, belong to O, so that we may assume that E is given by a minimal equation of the

form
y> = (z—a)(z = b)(z —¢) (12)

with all a, b, c in O. In this coordinate system M consists of the points
O, P=(a0), Q=(,0), T=/(c0).

Recall also that, by Proposition 6.3, we have |E(K)/2| = |M| = 4.
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7.1  Additive reduction

Lemma 7.1 The group Eo(K) is divisible by 2.

Proof. Since FE has additive reduction, we have Fo(K)/F1(K) = k™; in particular the finite group
Eo(K)/E1(K) is divisible by 2. Then the result follows from Proposition 6.7. O

Proposition 7.2 The elements O, P, Q, T are representatives of E(K)/2.

Proof. In view of Lemma 7.1 we have Fy(K) C 2FE(K) C E(K) and by [Sil85], Theorem 6.1, p. 183,
the group E(K)/Eo(K) is finite of order at most 4. Since |E(K)/2| = 4, we get Eo(K) = 2E(K)
and it remains to note that the points P, @, T' do not belong to Ey(K). O

7.2  Multiplicative reduction

By our assumption, among the residues a, b, ¢ there are exactly two coinciding elements; say a = b.
Making a coordinate change, if necessary, we may assume that E is given by a minimal equation
of the form

y* = a(z+7"0)(z +7)

with 8 € 0*, m > 1 and v € O*. Recall that in the case of non-split reduction = coincides modulo
squares with «; otherwise « is a square in O*.

Lemma 7.3 There exists a point Ry = (u,v) € Eo(K) such that

u=at?, u+r"B=a¢®, u+y=s>, v=atqs
with t,q,s in OF.
Proof. The proof is easy. Namely, we have to find a solution of the system

axr? +71m3 ay?
ar® + Y o= 22

According to standard facts from the theory of quadratic forms over finite and local fields the

2 _ 22 represents —y € k*, whence, by the Hensel lemma, we can pick up units

quadratic form ax
t, s € O* satisfying the second equation. Substitute ¢ into the first equation. Since the residues of
the elements at? + 7™ and a coincide modulo squares, again, applying the Hensel lemma we can

find ¢ € O* satisfying the equation at? + 73 = ay?. O

Remark 7.4 Since the abscissa u of Ry is not a square in K*, Proposition 3.2 shows that 6(Ry) #
(1,1). Then it follows that Ry ¢ 2E(K).

Lemma 7.5 There exists a point Ry = (u,v) € E(K) \ Eo(K) with uw =nd, d € O, and such that
its image in the group E(K)/Eo(K) is not diwisible by 2.

Proof. The abscissa of every point from E(K) \ Eo(K) is of the form 7d with d € O because its
residue is the node. Further, we have A = 16(7™3v (73 —7))? and 73—~ € 0%, so that v(A) is
even. Then, by [Hu87], p. 266, the order of the finite group E(K)/Ey(K) is divisible by 2, whence

such a point do exists. O
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Remark 7.6 If the reduction is non-split, we can take Ry = (0,0), because in this case the group
E(K)/Eo(K) has order 2 (loc. cit.) and, of course, Ry = (0,0) & Eo(K).

Proposition 7.7 The points R1, Ra from the above two lemmas are generators of E(K)/2E(K).

Proof. Since |E(K)/2| = 4, we have E(K)/2E(K) = Z/2 x Z/2. By our construction and by
Remark 7.4, the images of Ri, R in F(K)/2E(K) are not trivial and they do not coincide. O

8 Generators of E(K)/2 for a semisplit elliptic curve over a local
field

As in the previous case we may assume that E is given by a minimal equation of the form
y* = (z - a)(2® - d), (13)

where a,d € O and the polynomial g(z) = 22 — d is irreducible over K. Let L = K(v/d) be
its splitting field and let A = Gal (K/L). As it was mentioned in section 4, the module M is
isomorphic to the induced module M (Z/2). This gives the isomorphisms

HY T, M)~ L*/L**,  HYA,M)=L*/L**x L*/L**.

Recall also that under this identification the restriction map H'(I', M) — H'(A, M) is given by
the formula | — (19,1), where [ € L* and o is the nontrivial automorphism L/K; in particular, res
is injective (see section 4). It follows then from the commutative square

E(L)/2 — s [*/L*? @ L* /1"

E(K)/2¢C L*/L*?

that n : E(K)/2 — E(L)/2 is injective too. Applying Proposition 6.3 we have |E(K)/2| =
| 2E(K)| = 2 and we want now to describe explicitly the image n(E(K)/2). The answer depends
on the type of reduction.

8.1  Multiplicative reduction.

For an elliptic curve given by (13) one has A = 64d(a® — d)? and ¢y = 16(a® + 3d). Since, by

Proposition 6.8, v(A) > 0 and v(cs) = 0, we obtain that v(d) > 0 and a € O*. Then according

to Proposition 6.5 the curve E has multiplicative reduction, so that (13) is its minimal equation

too. Note also that in view of v(d) > 0 and a € O* we have a®> — d € O*, whence v(A) = v(d).
We say that we are in case:

(M1) if either v(d) is odd or 4 divides v(d) and E has non-split multiplicative reduction;
(M2) if v(d) is even and either E has split multiplicative reduction or 4 does not divide v(d).
Proposition 8.1 Let Ry, Ry be the points in E(L) introduced in 7.2. Then in case (M1) the

nontrivial element of n(E(K)/2) coincides with Ry + 2E(L) and in case (M2) it coincides with
Ry + 2E(L).
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Proof. Consider case (M1). If v(d) is odd, then by, [Hu87], p. 266, the group E(K)/Ey(K) has an
odd order. So we may choose a representative R of a unique nontrivial element in E(K)/2 among
elements of Ey(K). Since Eo(K) C Eo(L) and n is injective, R coincides with R; modulo 2E(L).

Next suppose that 4 divides v(d) and E has non-split multiplicative reduction. Since v(d) is
even, the extension L/K is unramified, so that [k : k] = 2, where kr is the residue field of the
local field L. Tt follows that Fr, has split multiplicative reduction and, by [Hu87], p. 266, the group
E(L)/Eo(L) is cyclic of order v(AL) = v(Ak) = v(d); in particular, 4 divides |E(L)/Eo(L)|.

Let R be a representative of the nontrivial element of E(K)/2. Since E has non-split multi-
plicative reduction, it follows that |E(K)/Eo(K)| = 2 (loc. cit.), hence R can be chosen among
elements E(K)\E(K). To show that n(R) coincides with Ry modulo 2E(L) consider the 2-Sylow
subgroup G in E(L)/Eo(L). It is clear that R+ Ey(L) € G and it has order 2. Then R+ Ey(L) is
divisible by 2 in G and so in E(L)/Ey(L). But, by our construction (see Lemma 7.5), the element
Rs is not divisible by 2 in E(L)/Ey(L), so we obtain R+ 2E(L) # Ry + 2E(L) and similarly we
have R+ 2E(L) # Ry + Ry + 2E(L). Tt follows that R+ 2F (L) = Ry + 2E(L), as required.

Consider case (M2). We have already mentioned that (13) is a minimal equation for Ep. It
follows that Eo(K) C Ep(L) and that the natural embedding E(K) C E(L) induces the injection
b B(K)/Fo(K) — B(L)/Eo(L).

Suppose that F has split multiplicative reduction and v(d) is even. Then L/K is unramified
and again, by [Hu87], p. 266, the groups E(K)/E(K) and E(L)/Ey(L) are cyclic of the same order
v(A) =v(Ar) = v(d) implying ¢ is a bijection. Since v(d) is even, we can choose a representative
R of the nontrivial element of E(K)/2 such that R+ Ey(K) is not divisible by 2 in E(K)/Ey(K).
Then it is not divisible by 2 in E(L)/Eq(L); hence R + 2E(L) = Ry + 2E(L).

Suppose that F has non-split multiplicative reduction. Then according to [Hu87], p. 266, we
have |E(K)/Eo(K)| = 2 and |E(L)/Eo(L)| = v(d). Since 4 does not divide v(d), the group
Y (E(K)/Eo(K)) is a 2-Sylow subgroup in E(L)/Ey(L). Hence again picking up an element R
with the same property as above we easily get R+ 2FE(L) = Ry + 2E(L). O

8.2 Additive reduction

Proposition 8.2 (1) If L/K is unramified, then E(K)/2 is generated by P = (a,0).

(2) Let L/K be ramified. If a — /d is not a square in L*, then again E(K)/2 is generated by
P = (a,0). Ifa—+d=s> sc L* then E(K)/2 is generated by the point U = (u,w) € E(K),
where w = Np )k (s) +a and w = Np /i (s) Trik(s).

Proof. First let L/K be unramified. Then Ej, has additive reduction and by Proposition 7.2, we
have P ¢ 2E(L). It follows that P ¢ 2E(K), as required.

Next let L/K be ramified. Recall that, by Lemma 7.1, we have Ey(K) C 2E(K) and that
E(K)/Ey(K) is a group of order at most 4 (see [Sil85], p. 183).

If a — /d is not a square in L*, then, by Proposition 3.2, 61 (P) # (1,1), hence P ¢ 2E(L) and
the result follows.

Let a —vd = s2, s € L*. Then it is easy to check that 2U = P. This implies that P €
2E(K) \ Eo(K) and so |2E(K)/Eo(K)| > 2. But |E(K)/2E(K)| =2 and |E(K)/Ey(K)| < 4. Tt
follows that |2E(K)/Eo(K)| = 2, whence U ¢ 2E(K), as required. O

For the description of 3Br E we will need also to know whether (61, o n) (E(K)/2) belongs to
the unramified part of the subset res (L*/L*?) C L*/L** x L*/L*%. Tn other words, we will need
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to know whether vy, (a + v/d) and vr,(u + v/d) are odd or even. Here u is the abscissa of the above
point U. It turns out that the answer depends on the coefficients of a minimal equation (13) only.

Let a = 7™, d = 72%+t2d’ with o/,d’ € O* and A = 0,1. Using Propositions 6.5 and 6.8 one
can easily make sure that m > 0, 2k + X > 0 and that m =1 or 2k + X < 3. We will say that we

are in case:

(A1) if one of the following conditions holds:
(a) A=0, ie. L/K is unramified,
(b)yA=1,m=1k=0,

() A=1,m>1;

(A2)if A\=1,m=1,k>1and a —Vd g L*%
(A3YA=1,m=1,k>1and a —Vd € L*?

Lemma 8.3 (i) In case (A1) the group E(K)/2 is generated by P and vy(a +/d) is odd.
(ii) In case (A2) the group E(K)/2 is generated by P and vy (a4 Vd) is even.
(iii) In case (A3) the group E(K)/2 is generated by U and vy, (u 4 +/d) is odd.

Proof. First examine case (Al).

(a) Here L/K is unramified and at least one of the numbers & and m equals 1. So, obviously,
vp(a+Vd) = 1.

(b) Since L/K is ramified, we have vz (a) = v (7) = 2 and vz, (vVd) = 1. So vz (a + Vd) = 1.

(¢) We have vr(a) = 2m > 4 and vr(vd) = 2k + 1. Since 2k + A < 3, we obtain that
v (a ++d) = v (d) = 2k + 1 is odd.

Case (A2). Since L/K is ramified, we have vy, (a) = vp(7) = 2 and v (vVd) = 2k +1 > 3. It
follows that v, (a + vd) = 2.

Case (A3). Keeping the notation of Proposition 8.2 we have a — v/d = s? and u = Ny /x(s) +a.
It easily follows that vy, (s) = 1. Further, letting o be the nontrivial automorphism L/K we have

u+Vd= Ni/k(s) +a+ Vid =557 + 5757 = (54 57)s°.

Therefore, vy, (u + Vd) = vr(s + s7) + 1 and it remains to note that vz (s + s7) is even because
s+s57 € K. (]

9 Computing oBr E' over non-dyadic local fields: split case

Putting together the results of the previous sections one can easily obtain an explicit and very
short description of the 2-torsion subgroup of Br E for split and semisplit elliptic curves (note that
for non-split curves it was done in Corollary 6.4). Namely, let § : F(K)/2 — H'(T', M) be the
boundary map. The description of generators of E(K)/2 and their images under the map § given
in sections 7 and 8 enables one to construct explicitly a subgroup in H*(T', M) that complements
§(E(K)/2). If we restrict then the section € : H*(I', M) — 2Br E constructed in sections 3 and 4 at
this subgroup, we obtain immediately a description of the second summand in the decomposition
oBr F = 2Br K @ Im e as, by Proposition 3.3, and Lemma 4.8, the equality € (Imd) = 0 holds.

In this section we consider a split elliptic curve E given by a minimal equation of the form

v =x(x—b)(z—c), (14)
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with b, ¢ in the integer ring O. Its 2-torsion consists of the points O, P = (0,0), Q = (b,0) and
T = (¢,0). As in section 3, we may identify

M= (Q)e (1)~ 2/207/2

and
HY(D,M)~ K*/K** & K*/K** .

According to Proposition 3.2 the connecting homomorphism
§:B(K)/2— K*/K** & K*/K**

is given by the formula

(u—c,u—>b) if u#bandu#c,
5= (e “hye ) it 13
(1,1) if u = o0,
where (u,v) € E(K). Let
Co=(ayzx—c), Cpr=(max—c), Ba=(a,z—0b) and B,=(m,x—0b) (16)

be quaternion algebras over K (E). We distinguish the following three cases.

9.1 Good reduction

We start with the following
Lemma 9.1 6(E(K)/2) is generated by the pairs (a, 1) and (1, ).

Proof. Let K™ /K be a maximal unramified extension. It suffices to show that the images of our
pairs under the natural map ¢ : H*(I', M) — »H'(I', E) are trivial. To do so, first recall that, by
[LT58] and [L56], we have

HY(Gal (K™ /K), E(K"™)) = H (Gal (k/k),E) =0 .

This implies that res : H*(I', E) — H'(K™", E) is injective. On the other hand, obviously we have
(reso)(a, 1) = (resoC)(1, ) = 1, so the result follows. O

Proposition 9.2 We have
2BrE = »Br K @ {1, Br, Cr, Bx @ Cy} .
Proof. Tt suffices to note that the subgroup generated by the pairs (m, 1) and (1,7) complements

the subgroup §(E(K)/2) and that e takes these pairs to the quaternion algebras B, and C. O

9.2 Additive reduction

We may assume that v(b) > 1, v(c) > 1 and that at least one of these numbers is 1. Let b = 7™d
and ¢ = me, where d and e are units and m > 1. Proposition 7.2 shows that E(K)/2 is generated
by the points P, @, T. Applying (15) we get
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Lemma 9.3 6(E(K)/2) is generated by the pairs
§(P) = (—me,—m™d) and 6(T) = (me(re —x™d), me — 7™d) .
Proposition 9.4 We have
2BrE = 5Br K @ {1, Ba, Ca, Ba ® Ca} .

Proof. Tt easily follows from Lemma 9.3 that the subgroup generated by the pairs (a, 1) and (1, @)
complements §(F(K)/2) in K*/K** @ K*/K*? and it remains to note that e takes these pairs to
the quaternion algebras B, and C,. O

9.3 Non-split multiplicative reduction
We may assume that F is given by a minimal equation of the form
v =2(x+7"6)(z+ ),
with m > 1 and 3 € O. Note that in the notation of formulas (15) and (16) we have that
b=—7"p and c=—a.
Lemma 9.5 6(E(K)/2) is generated by the pairs (1,a) and (o, 7™ ().
Proof. Let R1, Ry be two points introduced in 7.2. It follows then from Lemma 7.3, Remark 7.6
and formula (15) that 6(R1) = (1, «) and §(R2) = (a, 7™ (), as required. O
Proposition 9.6 We have
2BrE = »Br K @ {1, By, Cr, Bx ® Cx} .

Proof. The subgroup generated by the pairs (m, 1) and (1,7) complements §( E(K)/2), so the result
follows. O

9.4  Split multiplicative reduction

We may assume that F is given by a minimal equation of the form
y? =x(z+7m6)(z +1).

Lemma 9.7 §(E(K)/2) is generated by the pairs (1,«) and (1, 7).

Proof. As above, we have 6(R;) = (1,«). Further, it follows from the construction that the
abscissa of the point Ry = (u,v) is of the form w = 7d. So applying formula (15), we obtain that
§(R2) = (1, mu+7™0G). But [§(E(K)/2)| = 4, whence v(mu + 7™ 3) is odd and the result follows.
(]

Proposition 9.8 We have
oBrE = oBr K @ {1, Ba, Bz, Bax} -

Proof. This follows from the fact that the subgroup generated by the pairs («,1) and (7,1)
complements §(E(K)/2). O
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10 Computing +Br E over non-dyadic local fields: semusplit case

We keep notation introduced in section 8. Assume that F is given by a minimal equation of the
form (13). Then E(K)/2and H*(I', M) are groups of order 2 and 4 respectively, so that §(E(K)/2)
can be complemented inside H'(I', M) by a single element. We will find such an element among
elements cor (H*(A, M)). Recall that 67, denotes the homomorphism E(L)/2 < H(A, M).

Lemma 10.1 Let § € H*(A, M) satisfies the condition (reso cor) () & (6. ores) (E(K)/2). Then
cor (0) complements 6 (E(K)/2).

Proof. By our assumption,
res (cor (0)) & (6L ores) (E(K)/2) = (resod) (E(K)/2) ,
so that cor (6) does not lie in §(E(K)/2). O

Let ay and 7wy be a non-square unit and a uniformizer of the integer ring Oy of L = K (\/c_i)
respectively.

10.1  Good Reduction
Proposition 10.2 ;BrE = ;BrK @ {1, (7,2 — a)}.

Proof. Clearly, (61,0 res) (E(K)/2) belongs to the unramified part of H'(A, M) = L* /L**®L* /L*>.
Since we have good reduction, d is a unit, whence 7 = w. We put § = (1,7). The equation
(resocor)(f) = (m,m) shows that 0 satisfies the condition of Lemma 10.1. Tt follows then from
Theorem 4.12 that oBr F is generated by 2Br K and the quaternion algebra

(cor oer) (1,m) = cor (m, 2 + Vd) = (m,2* — d) = (7,2 — a).

10.2  Additive reduction
Proposition 10.3 (1) In cases (A1) and (A3) we have
2BrE = 9Br K @ {1, cor (ap,z — Vd)}.
(2) In case (A2) we have
2BrE = oBr K ¢ {1, cor (7p, z — Vd)}.
Proof. Tt suffices to note that, by Lemma 8.3, in the first (resp. second) case the pair 6 = (1, a)

(resp. 6 = (1,7)) satisfies the condition of Lemma 10.1. O

10.3  Multiplicative Reduction

Proposition 10.4 In case (M1) we have
2BrE = 5Br K & {1, cor (7p, — Vd)}.
and in case (M2) we have

oBrE = 3Br K ¢ {1, cor (ap,x — \/E)} .
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Proof. Let R be a representative of a unique nontrivial element in E(K)/2E(K). Consider case
(M1). Let L™ be a maximal unramified extension of L. According to Proposition 8.1 we have
n(R) = Ry + 2E(L). Since, by construction, Ry € Eo(L) and Eo(L"™")/2Eq(L™") = 0 (see [Sil85],
p. 187), it follows that d7,(n(R)) belongs to the unramified part of the group H'(A, M) = L*/L**@
L*/L*?. Therefore one can take 6 = (1,7) and the result follows.

In case (M2) we have n(R) = Ra+2E(L). Since v(d) is even, the extension L/K is unramified
and Fr has split multiplicative reduction. We know that the abscissa u of Ry is of the form
u =, so that 67 (Rz) = (wu/ +Vd, mu’ — \/d). It is easy to make sure that v(wu’ + v/d) is odd.

Then 6 = (1, o) satisfies the condition of Lemma 10.1 and the result follows. O
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