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Abstract

We determine the representation type of the algebras whose quiver
has precisely two vertices and admits no loops by listing all maximal
tame and minimal wild algebras of this form. It turns out that such
an algebra A is tame if and only if A/rad®A is tame, and in this case
A degenerates to a biserial algebra. Moreover, A is wild if and only if
it is controlled wild.
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1 Introduction.

Let k be a fixed algebraically closed field. By an algebra we mean a
finite-dimensional associative k-algebra with an identity, which we assume
(without loss of generality) to be basic and connected. Let A be an algebra
and @ be the quiver of A. Then we can write A = kQ/I where I is an
admissible ideal of path algebra kQ ([Gal]).

The representation type of algebras is one of the main themes of rep-
resentation theory of algebras. The representation type of local algebras,
i.e. algebras whose quiver () has just one vertex, has been completely de-
termined ([BD,Br,D,Ge2,GP,HR,R1,R2]). Next, it is natural to determine
the representation type of two-point algebras. The complete list of maximal
representation-finite two-point algebras was given in [BG]. Concerning tame
representation type of two-point algebras, there exist only partial answers so
far: the tame triangular matrix algebras with two points were determined in
[HM], and the tame two-point distributive algebras were classified in [HM],
[Gel] and [DG].

In the present paper, our aim is to determine the representation type of
two-point algebras without loops, i.e. the algebras whose quiver Q = Q(i, j)



has two vertices 1 and 2, together with i arrows aq,...,a; from 1 to 2 and j
arrows [y, ..., 3; from 2 to 1.

Denote by k™(Q) the ideal of k@) generated by the paths of length n. We
say an algebra A is of type 17 (resp. of type Ts) if A is, up to isomorphism
and duality, of the form kQ(2,1)/(c1 1 + o1, Broq + 02,03, ..., 05, k" Q(2, 1))
(resp. of the form kQ(2,1)/(cyfy + 01, fras + 02,03, ..., 05, k" Q(2, 1)) with
arbitrary elements o, € k*Q(2,1). Likewise, A is of type Ty if it has (up to
isomorphism and duality) the form kQ(2,2)/(a101 + o1, azf2 + 09, (2161 +
T202) (Y101 + y202) + 03, (2301 + T4 f2) (Y301 + Ys2) + 04, 05, ..., 05, K" Q(2,2))
with arbitrary elements o, € k*Q(2,2) and numbers z,,y, € k such that
r174 # Toxz and y1ys # yoys. The following theorems are the main results
of this paper:

Theorem 1. Let A = kQ/I be a two-point algebra without loops. Then
the following are equivalent:
(1) A is tame;
(2) A is a factor of an algebra of type Ty, Ty or Tj;
(3) A degenerates to a biserial algebra;
(4) AJrad’ A is tame.

Theorem 2. Let A = kQ/I be a two-point algebra without loops. Then
the following are equivalent:
(1) A is wild;
(2) A has one of the algebras Wy, Wo, W3 from the following list as a factor
(up to isomorphism and duality);
(3) A is controlled wild.
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2 Tameness and wildness

Lemma 1. The algebras W1, Wy and W5 are controlled wild.

Proof. It is well-known that the algebra W; is wild hereditary. Using
covering theory ([BG]|, [DS], [Ga2], [MP]), we will prove that the remaining
two algebras are controlled wild. In case of W5, we construct a Galois covering
Wy with Galois group Z given by the quiver
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and the Elations a181 = 0 = asfB;. Then I/IA/; has a wild hereditary algebra

of type Ay as factor (indicated by thick lines in the figure above). By [H;
Theorem (3.3)], the algebra W5 is controlled wild with controlling index
C(Wg) S 1.

For the algebra W3, we construct the universal covering f/f/_é Its Galois
group is the free group (non-commutative) with two generators. The follow-
ing figure shows only a finite part of the quiver of VIA//g,, and the relations are
the same as for the algebra Wj.
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Now VIA//?, has a wild concealed algebra of type IE; as factor (indicated by thick
lines in the figure above). By [H; Theorem (3.3)], the algebra Wy is controlled
wild with controlling index ¢(W3) < 17. O

Lemma 2. The algebras of type 11, Ts and Ty degenerate to biserial
algebras, and they are tame.



Proof. Let A be of type T;. Given an element § € k*Q(2,1), we write
0 = >_,>3 0m where each 6,, is homogeneous of degree m (i.e., is a linear com-
bination of paths of length m). Then for £ € k we set 6(6) =Y, . €™ 26,
Further, we define A\(§) = a1 81 + 01(€) and p(€) = Bra; + 02(€). Finally, we
denote by A(€) the algebra kQ(2,1)/J(&), where J(€) is the ideal of kQ(2,1)
generated by k"Q(2,1) and A(&), p(§).0,(€),p > 3. Clearly A = A(1), and
for £ # 0 all the algebras A() are isomorphic to A. Thus the algebra A
degenerates to the algebra A(0) which is a string algebra ([BR]). By Geif’s
Theorem we have that A is tame. (Of course, we may also apply [CB;
Theorem B]). Similarly, an algebra A of type T5 also degenerates a string al-
gebra, thus it is tame, and an algebra A of type T3 degenerates to the algebra
A(0) = kQ(2,2)/ (a1 f1, aaBa, (11 +2232) (Y101 +y202), (23081 +2452) (Y3ar +
Ys2), k"Q(2,2)) with z,,y, € k, 2124 # 2223 and y1y4 # y2ys. By replacing
Y101 + Yoo and ysay + ysan with a; and as, one sees that A(0) is isomor-
phic to the algebra T := kQ(2,2)/((z101 + 2002) 01, (2301 + 2409) o, (2151 +
Tofa)ay, (x301 + x402)an, k"Q(2,2)). Choosing an appropriate bisection of
the quiver Q(2,2), the algebra T becomes a balanced homogeneous model
biserial algebra, thus it is tame ([CB,VFCB]). O

3. Classification

Recall that we are dealing with algebras with quiver @ = Q(i,7). It
is well-known that in the cases (i,j) = (1,0), (0,1) or (1,1) the finite-
dimensional algebras with underlying quiver Q(i,7) are of finite represen-
tation type. Furthermore, for (i,7) = (2,0) or (0,2), the corresponding
algebra kQ(7, j) is just the Kronecker algebra, hence tame. If i > 3 or j > 3
then each algebra with quiver Q(7,j) admits the wild algebra W; as a fac-
tor. Clearly, for all the cases above our theorems hold. Thus it remains to
consider the cases (i,7) = (2,1) and (2,2) (The case (i, j) = (1, 2) is dual to
the case (i,7) = (2,1)).

We say that the algebra A" = kQ /1" is obtained from A = kQ/I by arrows
replacement if I’ is obtained from I by substituting v; and 7, with z17; + 227
and x37vy; + 42 respectively, where v, and 7, are two different arrows in @
with the same start point and end point, and z,, are elements in k satisfying
x4 — Tox3 # 0. Moreover, we say that the algebra A" = kQ/I’ is obtained
from A = kQ/I by relations replacement if I’ is obtained from I by replacing
A1 and Ay with 1 A\; + 29X and x3\; + x4\ respectively, where Ay and As
are two generators of I, and z, are elements in k satisfying z124 — 2225 # 0.
Clearly, in both cases the algebra A’ is isomorphic to A.

First, we consider two-point algebras with quiver Q(2,1).
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Lemma 3. Let A = kQ/I be a two-point algebra with quiver Q = Q(2,1).
Then, up to isomorphism and duality, either A is a factor of an algebra of
type Ty or Ty, or A has the algebra Wy as its factor.

Proof. Denote by m (resp. n) the dimension of the k-vector space
(I/K5Q) N (kQ/KQ)(1.1)) (resp. (I/K*Q) N ((kQ/K*Q)(2,2))). Note that
m = 2 — dimy, rad® P4 (1) /rad® P4 (1), n = 2 — dimy, rad® P4(2) /rad® P4(2), and
0 < m,n < 2, where P4(1) and P4(2) are the indecomposable projective
A-modules corresponding to the vertices 1 and 2 respectively. Up to duality,
we can assume that m < n. If m = 0 or n = 0 then A has the algebra W5 or
its dual as a factor.

Case (m,n) = (1,1): Take A = z7010; + 20251 + 071 to be an element in
I with 21,25 € k and ;€ k3Q such that X\ = 210151 + 22000 is a k-basis of
(I/E3Q) N ((kQ/K*Q)(2,2)). Through arrows replacement, namely replacing
r101 + Toan With aq, and replacing a; with as in case xo = 0, we can choose
the relation A to be a10; + 01. Take p = y18101 + Y210 + 02 to be an
element in I with v,y € k and o, € k*Q such that p = y, 3101 + Y2510 is
a k-basis of (I/k3Q) N ((kQ/k3Q)(1,1)). If yo # 0, then replacing ra; + yas
with ay yields an algebra of type Ts. If yo = 0, then A is an algebra of type
Tl.

Finally, for n = 2, the algebra A is a factor of a two-point algebra with
quiver Q(2,1) and (m,n) = (1,1), therefore, up to isomorphism and duality,
A is a factor of an algebra of type T or Ts. O

Next, we consider two-point algebras with quiver Q(2, 2)

Lemma 4. Let A = kQ/I be a two-point algebra with quiver Q = Q(2,2).
Then, up to isomorphism and duality, either A is a factor of an algebra of
type T3, or A has the algebra Wy or W3 as a factor.

Proof. Again denote by m (resp. n) the dimension of the k-vector
space (I/R*Q) N ((kQ/K*Q)(1,1)) (resp. (I/K°Q)N((kQ/K*Q)(2,2))). Up to
duality, we can assume that n < m. Obviously 0 < m,n < 4.

Case (m,n) = (4,1): Since m = 4, the ideal I contains elements fia; +
o1, Biag + 09, Baay + 03 and face + 04 for some o, € E3Q. Take p =
T11 01 + xaa1 e + w3031 + w4093 + 05 to be an element in I such that p
is a k-basis of (I/k°Q) N ((kQ/k*Q)(2,2)). Through arrows replacement, it
is easy to see that A has the algebra Wy or W3 as its factor. In fact, we
distinguish the following two cases: If the vectors (z1,x9) and (x3,z4) are
linearly dependent, then we replace the arrows 3y, 35 such that p has the form
p = xhay Pe+xhanfr+ok, and hence A has the algebra W5 as factor. If (21, z2)
and (z3,x4) are linearly independent, then we apply an arrows replacement
on [y, B2 such that p has the form p = 2151 + xhaq B2 + vy + of. Then



the algebra A has W3 as factor.

Case n < 1: In this case, the algebra A has a two-point algebra with
quiver Q(2,2) and (m,n) = (4, 1) as factor, hence it admits one of Wy or Wj
as its factor.

Case (m,n) = (3,3): Let p; = f1a1 + x18100 + 01, p2 = Poay + x21a9 +
oy and p3 = [foay + x3P100 + 03 With o, € E3Q be elements in I such
that {p1, p2, pa} is a k-basis of (I/k*Q) N ((kQ/k*Q)(1,1)). Through arrows
replacement, we can choose p; = f1aq + 07 and py = [Baag + 05. Further take
elements A, Ao and Az in I such that {\;, Ay, A3} is a k-basis of (I/E°Q) N
(kQ/K*Q)(2,2)). By relations replacement we obtain one of the following
possibilities: Either Ay = o181 + y10002 + 04, A2 = 182 + Y2232 + 05 and
A3 = o1 + Yz fa+ 06, or A\ = a1 B2+ 110181 + 04, Ao = o1 + Y201 51 + 05
and A3 = aofs + yza1B1 + 06, or Ay = a1 + y10efi 4+ 04, Ao = a1 +
Y231 + 05 and A3 = ol + yzasfBi + 06, or Ay = 81 + yia1Be + 04,
Ao = a1 + Y1 8o + 05 and A3 = sy + ysa1 P2 + 0¢. In any case, up to
isomorphism and duality, A is a factor of an algebra of type T5.

Case n > 3: In this case, the algebra A must be a factor of a two-point
algebra with quiver (2,2) and (m,n) = (3, 3), therefore, up to isomorphism
and duality, A is a factor of an algebra of type T3.

In the following, we always assume that n = 2, and we take elements
A1, Ag in I such that {A;, A2} is a k-basis of (I/k%Q) N ((kQ/k*Q)(2,2)). Up
to isomorphism, we can choose the coefficient of a;3; in A\; to be 1. then we
obtain the following possibilities: either \; = a1 +x10981 + 2200982+ 01 and
Ao = a1 + Y1081 + Yo2 B2 + 02, Or Ay = a1 31 + T1011 82 + X202 82 + 01 and
Ao = a1 + Y101 B2 + Yoa B2 + 02, Or Ay = a1 31 + T1011 82 + 220281 + 01 and
Ao = Qs + 1101 B2 + Yoo 31 + 0. Through arrows replacement and relations
replacement, we can show that either A has the algebra W5 or Wy as a factor,
or that the relations have the form A\, = a1, + o1 and Ay = as85 + 0».

We suppose from now on that Ay = o181 + 01 and Ay = @9 + 09. If
m > 3 then it is easy to see that A must be a factor of an algebra of type
T5. Thus we only need consider the case m = 2. Take elements p; and
pa in I such that {py, pa} is a k-basis of (I/k*Q) N ((kQ/k*Q)(1,1)). The
following cases have to be considered: p; = (1aq + 21001 + 228205 + 03 and
pa = Prag + Y1201 + Y2 Seia + 04, O p1 = Brag + x1 0100 + Tafeg + 03 and
p2 = Brar + Y1812 + Yo otia + 04, OF p1 = Bray + 118100 + T2 Fr01 + 03 and
po = Poqs + y181a0 + Yooy + 04. As above, by arrows replacement and
relations replacement one can show that either A has the algebra Wy or W3
as a factor, or A is an algebra of type T3. O

Example. We consider the algebra A = kQ(2,2)/(a181 — aafa, a3y —
a1 Ba, o, Bace, k"Q(2,2)). Denote by p and A the relations a8, — asfs



and apf; — ay (s respectively. Replacing p+ A by p, we can choose p = (o +
a3)(B1—F2). In case char k = 2, we rewrite A as A = as(61 — F2) — (a1 +a2) 52
and, replacing a; + as and 31 — B2 with a; and (1 respectively, one sees that
the algebra A has a factor which is isomorphic to the dual of W3, hence
A is wild. In case chark # 2, however, replacing 2\ — p with A, we have
A = (—a; + a)(fy + (), i.e. the algebra A is of typ.e T3, thus it is tame.
This example also shows that if an algebra with quiver Q(2,2) is not of the
form as the algebras W, and T}, then its representation type depends on the
characteristic of the field k.

Proof of Theorem 1. By Lemma 1, Lemma 2, Lemma 3 and Lemma
4, we have (1) < (2) & (3). (1) = (4) is trivial. Note that all Wy, Wy and
W3 are radical cube zero. Therefore if A is wild then A/rad®A is wild, i.e.

(4) = (1). 0

Proof of Theorem 2. By Lemma 1, Lemma 2, Lemma 3 and Lemma

4, we have (1) = (2) = (3). By [H; Proposition (2.2)], (3) = (1). O
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