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1. Introduction

Let M be a complete connected Riemannian manifold of dimensipr2 without boundary
and leti,, be the Riemannian volume element&h Let us consider the elliptic operator

Lzo :=(A+2)p:=A¢p+(Z,V),

whereA is the Laplacian and is a measurable vector field ad. We say that a Radon measure
uon M satisfies the weak elliptic equation

(1.1) =0

if Z] e L} (w) and
(1.2) /szduzo, VfeCP (M),
M

whereCg° (M) is the space of all infinitely differentiable compactly supported functionsfon
Equation (1.1) is satisfied for invariant measures of a diffusion process withZjift In this
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work, we study the global behavior of solutions of equation (1.1) and obtain some sufficient

conditions for their existence. Then we apply our results to Gibbs distributions in the case where

the single spin spaces are Riemannian manifolds. In particular, we obtain some a priori estimates

for such Gibbs distributions and prove an existence result that applies to a wide class of models.
We recall that it has been shown ih7] and [15] that in the casé/ = R¢, one hag. = p dx

with ./p € H>Y(R?, dx) provided that a finite nonnegative measyresatisfies (1.1) with

|Z| € L%(w). In addition,

1
(1.3) /|Vﬁ|2dx< Z/|Z|2du.
R4 R4

Local Sobolev regularity results for arbitrary solutions of (1.1) have been obtaingd, i and
[13].

Concerning the existence and local regularity of solutions, the following result has been proved
in [16] and [11,13, respectively. Recall that a functiov on a topological space is said to be
compact if the set§V < ¢}, ¢ € R1, have compact closures.

THEOREM 1.1. — Assume that there exists> d suchthaiZ| € L{ .(Aym).

(i) If there exists a compact functidhe C2(M) with lim, _ o SURy >, LzV = —oo, where
we set as usuaupl = —oo, then there exists a probability measwresolving(1.1).

(i) Any Radon measurg solving (1.1) admits a continuous density Wg’cl()\M) with

respect toky . If i is nonnegative and not identically zero, theiis strictly positive.

In the case of a Riemannian manifold, it is natural to construct the fun&tiby using the
Riemannian distance function, which is related to various geometrical properties of the manifold.
Unfortunately, the square of the distance function may fail to be smooth whenever the cut locus
is nonempty, so that the above result frakd][is no longer applicable to sudh. Certainly, there
is no problem if the manifold possesses a pole (i.e., a posuch that exp: 7,M — M is a
diffeomorphism). Let us fix € M and leto(x) := o(x, 0) be the Riemannian distance between
x ando. The following is a direct consequence of Theorem 1.1.

COROLLARY 1.2.— Assume thab is a pole and/Z| € Lj.(Ay) for somea > d. Suppose
that there exists € C2[0, co) such that

(1.4) lim F(r)=oc0 and [F'(@Lzo+ F"(@)] = —c0.

lim
0—> 0
Then the assertion of Theoretri (i) is valid. Condition(1.4), in particular, holds forF (r) =
r2(log(r + 1)) provided

(1.5) gleoo(QLZQ + 1) log(o + 1) = —o0.

The first goal of this paper is to extend (1.3) and Corollary 1.2 to general finite-dimensional
Riemannian manifolds. Our second objective is to consider infinite products of Riemannian
manifolds. In particular, we introduce and study a new concept of a weak elliptic equation for
measures on infinite-dimensional manifolds. Applications to Gibbs distributions on lattices of
manifolds are obtained. In the case whafe= R?, the results in this paper (announcedis])
extend the results fron8] and [4] (for further development in the flat case, see alsg)[

The principal results in this work can be summarized as follows:

(1) (Cf. Theorem 2.2) 1M is a finite-dimensional Riemannian manifold with Ricci curvature
bounded below and positive injectivity radius and if a probability meaguwe M satisfies (1.1)
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with |Z| € L?(w), then (1.3) holds. In particular, this is trueyifis an invariant probability of a
diffusion process with drifZ such thatZ| € L2().

(2) (Cf. Theorem 3.1) Corollary 1.2 is valid for general Riemannian manifolds.

(3) (Cf. Theorem 4.2 and Theorem 4.3) An analogue of (1.3) is valid in the infinite-dimensional
case wherM is replaced by a countable product of finite-dimensional Riemannian manifolds.

(4) (Cf. Propositions 5.2, 5.3 and 6.8, Theorem 5.5) Analogues of Theorem 1.1(i) and
Corollary 1.2 are valid for a countable product of finite-dimensional Riemannian manifolds. In
particular, the corresponding results enable us to construct infinite volume Gibbs measures for a
broad class of lattice models with Riemannian manifolds as state spaces.

(5) (Cf. Theorem 8.3) A priori estimates are obtained for probability measures solving
equation (1.1) in infinite dimensions; these estimates hold, e.g., for the above mentioned Gibbs
measures.

In addition, as an application of our methods, in Section 7 we, for example, extend some
results on finite range vector fields obtained by R. Holley and D. StrogfgkJ. Fritz [28,29
(cf. Theorem 7.8), and A. Ramire27] (cf. Theorem 7.4). In particular, the previously known
fact that in dimensions one and two every stationary measure for the stochastic system associated
with a Gibbs measure is also Gibbsian is extended to considerably more general state spaces
(non-compact Riemannian manifolds) and more general interactions.

It would be interesting to study the objects considered in this work in the case of other infinite-
dimensional manifolds such as loop spaces or more general manifolds of mappings. In particular,
existence and properly defined regularity of solutions of the equdtign= 0 as well as the
non-uniqueness phenomena are important problems.

Finally, we would like to draw attention to Theorem 3.4 below which we obtain as a conse-
guence of the above mentioned Theorem 3.1 and which extends a recent result by A.-B. Cruzeiro
and P. Malliavin p4], proved, however, by completely different means (cf. Corollary 3.6 below).

2. Regularity of solutions

The class of allC*-vector fields onM is denoted by Vek(M), k =0,1,...,00. The
sub-indices 0 ana distinguish the fields with compact supports and bounded derivatives,
respectively. LetP(M) be the set of all Borel probability measures &h We shall define the
Sobolev spacelz’l(AM) as the closure of ;° (M) with respect to the norm - || ;21 given by

||w||§,2,1=/|w|2dAM+/|vw|2dxM.
M M

There exists a nonpositive self-adjoint operatowith domainD(A) ¢ H%1(1y,) such that

—/wmpd,\M =/(v1/f, Vo)diy, Vv e H>Y0u), ¢ € D(A).
M M

Let us putH?2(hy) := D(A). It is known thatA on C§°(M) is the usual Laplace—Beltrami
operator onM (defined locally in terms of the metric tensor, sé€]]. In addition, H21(1)
coincides with the Sobolev clagg?1(iy) of all functions f € L2(x);) such thatf belongs
to W,(Z)’Cl(Rd) in local charts andV 7| € L?(1y) (seef6,d). We recall thatW,’(;;:l(Rd) is the
class of all functions that are locally integrable of orgeiogether with their generalized partial
derivatives of the first order. The clag&*2(,) coincides with the collection of alf € L2(A )
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such thatAf in the distribution sense belongs Id(1y) (see §6]). Let ngél(kM), p =1,
be the class of all functiong on M that belong towlgél(Rd) in local charts. We refer todf]
concerning the definition of the heat semigrq), >0 on L?(ry); its characteristic property is
thato, Py = APy forall € C°(M).

We denote the space of all functiorfson M that are locallyi,-integrable of ordep by
LE (im).

Let us set

ey =1 r ecmy: su[ A" /] +[Va" f] < oo, ¥n > o}.

Given a nonnegative Borel measureon a Riemannian manifold/, we shall denote by
L2, Vec(M)) the Hilbert space of all.-square integrable vector fields @ with its natural
inner product

(X,Y)zzf(X,Y)dM-

Let I"(u) be the closure of the sgVy, ¢ € C5°(M)} in L2(1, Vec(M)).
For the rest of this section we fix a Borel-measurable vector #fetah M.

LEMMA 2.1.- Let u € P(M) have a density such that,/p W,(Z)’Cl(AM). Suppose that
£ e Whiay) and that|V £| € L2(2). Then:

C

() Vfel(w.
(ii) If n satisfieq1.2)and if the se{|V f| #~ 0} is relatively compact, then

/<Vf,2—2>du:0.
p
M

Proof. —(i) Let 6, € C;;"(Rl), r € N, be such thab, (r) = if |t| <r and supd/| < 2. By
considering compositiond. o f, one reduces the claim to boundgd Moreover, in the case
when f is bounded, by considering produg¢ts with ¢ € C3°(M) such thatG6< ¢ < 1,|V¢| < 2,
and¢ = 1 on a big ballvV (such a function exists for every bafl, see BQ] or [46]), we reduce
the claim to the case wheye= 0 outside a compact sét. Let¢; € C3°(M), j < m, be afinite
collection of functions with supports in local charts such fhgts; = 1 onK. Then it suffices to

prove our assertion for eagh . Hence we may assume thtt=R¢ (with a possibly different
Riemannian metric, however) and thahas a compact support B?. Moreover, the condition
that f has a compact support enables us to conddewith the standard inner product. Then it
remains to refer to43] (where the desired result was established in the proof of Theorem 3.1) or
to [20, Theorem 27

(i) Since the sef{|V f| # 0} is relatively compact and because of (i), we can fifyde
Cy°(M),n € N, such that the sdt),-1{f» # O} is relatively compact an@Vv f,, — Vf| — 0
in L?(u) asn — oo. Therefore, integrating by parts we obtain by (1.2)

\% \%

/<Vf,Z——p>dM= lim /<an,Z——p>dM= lim /sznduzo. O
p n—o0 p n—oo

M M M

THEOREM 2.2. — Assume that the heat semigroUR ), >0 on M sendsL1(1y) to L® ()
and satisfies the following conditiothere is a functiorC : [0, 1] — R4 with lim,_oC() =1
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such that
2 2
(2.1) VPl <CO)P,(IVel), VpeCy (M), Vi el0,1].

Letu € P(M) be such thatZ| € L?(u) and

(2.2) /szduzo, VfeCXM).
M

Thenu = p Ay, where/p € H>1(1y) and

\v4 2
(2.3) /' | dAM</|Z|2du.
M M

p

In addition, Vp/p, where we seVp/p =0 on {p = 0}, is the orthogonal projection of to
I () in L?(u, Veo(M)).

Proof. —It follows by Theorem 1(ii) and Remark 4(iii) inlfl] that the measure. has a
nonnegative density W|%>’cl()\M)- Let

Je(x) := Pep(x).

Sincep € LY(ay) and f; = Pyj2P:/2p € P.j2D(A), one hasf, € H2!1(/\M)A(recall that P,
sendsLl(ay) to L1(y) N L (A)). For everyp € CS°(M), we haveP.¢ € C;°(M), hence

/ (V. V f2) diyy = / Ag fo diy = — / P.(Ag)p iy

M M M
(2.4)

=—/A(Pw)duz/(z,V<Pg<p)>du.

M M
SinceCS°(M) is dense inH?1().y), we obtain

(2.5) / (V. V fe)diy = / (Z.V(Peg))du. Vo e H* ().
M M

Indeed, let{p;} C C3°(M) converge tap in H21(xy). Then by (2.1)

/IV(PM) —V(Pswj)lzdu <C(8)/P8IV¢? — Vo;l?pdiy
M M

<C@IPple~ [ V9 = o; P
M
whence (2.5) follows by the Cauchy inequality. Let= [, |Z|?du. We obtain from (2.5)
applied tog :=log(f: + &) —logs € H%1(xy) with § > 0 that
IV fel?
fe+d
M

diy = /(Z, VPep)du
M
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< J/|VPg<p|2du< C(s)J/PgWgoqu
\ M M
v 2
- C(e)J/|V<p|2P€deM < e [V g
fe+6
M M
Therefore,
\v4 2
Vel dk C(a)/|Z| du.
fg
By letting § — O we obtain
\v4 2
(2.6) /%d/\M§C(s)/|Z|2du.
&
M

Setg, = /f1/x- By (2.6), the sequencky,} is bounded inH?(x)). Since the embedding
W2YU: ay) € L2(U: vy) is compact for every balU with compact closure inV, there
exists a subsequendgg,, } that converges. y-a.e. and strongly i.2(U; Ap) and weakly in
W2L(U; ay) to a function inW21(U; Ay ). Since the measurefi Ay converge weakly to
1 asn — oo, we obtain thatg,, — /p Am-a.e. and that/p € H>1(ry). Estimate (2.3)
follows from (2.6), since”(¢) — 1 ase — 0. Finally, Vp/p e I'(r) by Lemma 2.1. Indeed, for
everyn € N one hasy;, := 2log(\/p +n~1) € Wil (). Clearly,|Vy, — 2V./p//pl — 0
in L2(w). It remains to note tha¥ p/p = 2v./p//p n-a.e. and thaVv, e I'(n) by Lemma
2.1. ThereforeY p/p is the orthogonal projection of in L?(u, Vec(M)), sinceZ — Vp/p is
orthogonal inL2(u, Vec(M)) to everyVy, € Cy°(M), hencetal"(n). O

It is worth noting that unlike Theorem 1.1, Theorem 2.2 is not valid locally: it can happen that
Lk =0with |Z| € LZ (), but the density of: is notin L2 (%) (see an example irL[]).

COROLLARY 2.3.— Assume that the Ricci curvature #f is bounded below and that

2.7) ianM(B(x, r)) >0, Vr>0,

whereB(x, r) is the closed geodesic ball with centeand radius. Letuu € P(M) be such that
|Z| e LY(n) and

/szdu 0 VfeCEM), f>

Then
(2.8) /szduzo, VfeC®(M)with sup|f| < oo, |[Lzfl+|Vf]e Ll(u).

If, in addition, | Z| € L?(w), then(2.3)holds for p := du/dAy.

Proof. —Since the Ricci curvature is bounded belavg is bounded above in the distribution
sense outside any neighborhood @ofBy the Greene—Wu approximation theorem (s@2, [
Theorem 3.2 and its Corollary)l there exists a nonnegative smooth compact functionmith



S50021-7824(00)01187-9 AID:1187 p. 7 (608-697)
E1PARIS2 2000/08/31 Prn:16/10/2000; 13:06 F:PXMP1187.tex; by:ML
V.I. BOGACHEV ET AL. / J. Math. Pures Appl. 00 (2000) 1-45 7

IVV|<1andAV < 1. Leth e C*(RY) be such that & 4 < 1, h(r) =1 forr <0,h(r) =0
forr >1and—-2 <’ <0. Let f € C*°(M) be bounded and nonnegative wjth; 1| + |V f| €
LY(w). For everyn > 1, we setf,(x) := fh(V(x) —n). Thenf, >0 and f, € Cy°(M). In
addition,

Lzfu=h(V —n)Lzf+ f(Lzh(V —n))+2(Vf,V(h(V —n)))
=h(V —=n)Lzf+ fh'(V=n)AV + fh"(V —n)|[VV|?>+ fh'(V —n)(Z,VV)
+2(V £, V(h(V —n))
>h(V—n)Lzf+ fh'(V=n)+ fh"(V =n)|VVI|?>+ fK'(V —n)(Z,VV)
+ 2V £, V(h(V —n)).

Letting
Sp=fH'(V—n)+ fh"(V=n)[VVIZ+ fB'(V —n)(Z,VV)+ 21 (V —n)(V £, VV),
we obtain
O}/sz,ﬂu}/h(V—n)szdu+/Sndu—>/szdu

asn — oo. Thus, we arrive at the estimafeLz f du < 0. Clearly, the same is true for every
boundedf € C*®° (M) with |Lz f| +|V f| € LY(w), sincef + sup|f| > 0. Replacingf by — f,
we obtain (2.8).

Since the Ricci curvature is bounded below, there exists> 0 such that|VP¢| <
expgKt]P:|Ve| for all t > 0 andg € C5° (see, e.g.,q]), hence (2.1) holds. Next, by the Li—
Yau heat kernel upper bound (se]), we obtain from (2.7) thaP; sendsL1(1y) to L® (1 y).
Obviously, (2.8) implies (2.2), hence (2.3) holds by Theorem 2.2, provided L?(x). O

Remark2.4. — By the proof of Corollary 2.3, we conclude thatife P(M) is such that
L% =0 and there exists a compact functigre C?%(M) such thaivV|andL;V are bounded
above, then (2.8) holds. One only has to realize that we have the following estimditg fpr
rather than that in the proof:

Lzfa=h(V—n)Lzf+ fh'(V—n)LzV + fh'(V —n)|[VV|?+ 2V, Vh(V —n))
>h(V—n)Lzf+2Vf.Vh(V —n)) = Cliyzny :=h(V —n)Lz f + Sq,
for someC > 0.

We note that if the injectivity radius of the manifold is positive (s&&,[Ch. IlI]), then,
according to Croke 3], one hasi (B(x,r)) > cr¢ for somec > 0 and all r € [0, 1].
Combining this with the Li-Yau heat kernel bound, we ha\V&|1_ . < ¢’t~%/2 for some
¢’ > 0 and allz € [0, 1] provided that the Ricci curvature is bounded below. Hence (see, e.g.,
Davies p6, Corollary 2.4.B the Sobolev inequality holds with dimensiare [d, c0) N (2, 00).

By Corollary 2.3, we have/p € H>(1y) andp e L™ "=2 (1) for n € [d, 00) N (2, 00).

COROLLARY 2.5.— Suppose that the hypotheses of Theo?edare fulfilled, but with(2.1)
replaced by the stronger condition that

(2.9) VPl < CO P (IVel), VeeC5(M), 1e[0,1],
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whereC : [0, 1] — R with lim,_,o C(r) = 1. Assume, in additionZ| € L?(xx). Then

\v4 2
(2.10) /' ’;' dkM§/|Z|2dAM.
p
M

M
In particular,logp € VVIf;Cl(AM).

Proof. —Let us apply (2.5) t@ = (f; +8) "1 — 81 e H%>1(1y) for § > 0. By (2.9) we obtain
that

VAP £l
(fg+8)2 C(‘g)/' <<f8+a>2) el

Pe(IZp) |V fel
fot8  fotd

see )</’ fe+38

di

1/2 ) 1/2
) ( IV fel dAM) .
(fo +0)2

M

2

i) < (2P 1) (. epil)l/z,

(2.11) =C(e )/

Using that

P.(1ZIp) = Pg(|Z|Fa+1
we conclude that

IV £ P

P.(p?/(p+1))
(fe +6)2
M

(212) (Pep +0)2

dias < 7 [ P(12Pp + 1) .

M

SinceP:(|Z12(p + 1)) — |Z)2(p + 1) in L () ase — 0 andP.(p2/(p + 1)) < P, p, we can
lete — 0in (2.12) to obtain that

fel? f ) p? / 2
limsu diy < Z +1)———diy < VAR ST
Hopf<f oz M M' T T M' I"dha

By standard arguments this implies that(pg- §) — logs € H%1(iy) and that

|V pl?

diy < | 1Z12dry.
(0 19)2 M /I |“dA
M M

By letting § — 0 we obtain (2.10).
In order to prove the last claim, l&f be a bounded geodesic ball. Then there exists 0
such that

U

f—/fdlu

U

2
dy <C / ViR, Vfe H2 o),
U
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wherery (A) = A (ANU)/ayu(U). Let £, = |log(min(p, n) +n~1)|. Then (2.10) yields that
the functionsf, — fU f,dry are uniformly bounded i 2(ry). Since f, — |logp| on the
set{p > 0}, by Fatou’s theorem we obtain that the sequefiGef, diy} is bounded. Hence

sup, 1 full L2¢,,) < oo and|log p| € L?(Ay). Therefore log Mf)’cl(kM). O

Note that the previous corollary implies, in particular, thatpog W21(x,,) if M is compact.
We recall that the hypotheses of this corollary are fulfilled/ifis compact andZ| € L* (A )
with o > dimM.

Remark2.6. — Letu be a Borel probability measure on a complete Riemannian manifold
such that|Z] € L{.(Am) With « > d and Lz is symmetric onL2(w) with domainCg° (M)
(which is equivalent taZ = Vp/p, wherep is the density ofu). Then the operatof, ¢ =
Ap + (Z, V) with domainC3°(M) is essentially self-adjoint oi.2(). This follows from
Theorem 1.1 in the same manner as in the ddse R¢ considered in11] (see also46] for the
caseZ = 0 and [7] for the case wher& is locally Lipschitzian).

3. Existence results in finite dimensions

Theorem 2.13 in16] is a general result on existence of invariant measures on Riemannian
manifolds. But as already pointed out ifif], the required condition, i.e. the existence of
Lyapunov functions, is not always easy to check. As pointed out in the introduction, we now
prove existence of invariant measures under conditions which are easier to verify in applications.

We recall thatv € cut(o), the cut locus ob, provided there is a unit vectdt € T, M such that
t =o(o,exfgtV]) ifand onlyifr € [0, o(0, x)] (see, e.g.,4,31)).

THEOREM 3.1. — Assume thak is a measurable vector field ovf suchthatZ| € Ly .(An),
wherea > d. Suppose that there exists a functibre C2[0, co) such that

(3.1) lim F(ry=oc0 and lim  sup [F'(o)Lzo+ F"(0)]=—oo,
e "% (o=r)\CUlo)

where once again we ssupy = —oco. Then there exists a probability measwyevhich solves
equation(1.1)and has a density ng’cl(AM).

Proof. —We assume tha¥ is noncompact because the result for the compact case is covered
by Theorem 2.3 in]6]. We observe that

Lz(Foo)=F"(0)(Vo,Vo)+ F'(0)Lzy = F"(0) + F'(0)Lz,.

Let us note that condition (3.1) may be fulfilled even if sup,\ cuyo) [F' (@) Lzo + F”(0)] is not
bounded above im from some intervalO, 7]. However, we can always chooge satisfying
(3.1) in such a way that > 0 and F = 0 on some interval0, t] such that the function
sugg>,}\cut(0)[F’(g)ng + F"(0)] is bounded above ine [0, +00). Indeed, let > 0 be such
that F” (o) + F'(0)Lz, < 0 if 0 > 7 and letm = max <. F(s). Let y € C2(RY) be such that
Y(s)=0if s <m, ¥ (s) =sif s >m+1andy’(s) > 0. Then the new functiofp := v (F) has
the desired properties, since by the above observation, one has

Lz( o Foo)=v'(F()[F"(0) + F(0)Lz] + ¥ (F©)(F (0))°

andy o F oo = 0if o < 7. In particular, by changing’, we may assume théto ¢ is C2 outside
cut(o). By (3.1), there existsg > 0 such thatF’(r) > 0 for r > rg. Indeed, leto > 0 be such
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that F” (o) + F'(0)Lzo < —1if o > ro. If F'(r) =0 for somer > rg, then by (3.1)F"(r) <0
(note that{o(x): x ¢ cut(o)} = [0, 00)). There isr1 > r with F(r1) > F(r). Then the function
F on[r, r1] attains its minimum at someyin € (r, r1), which is impossible, sinc&” (rmin) < O.
Let B, = B(o,1),1 > 1, be the closed ball of radidsaroundo. We denote bys; the interior of
B; = B(o,1) and byB; the complement oB;. By the proof of Theorem 2.3 inlfj] it follows
that there existg; € P(M) with densityp; such thatp; =0 on By, p; € H*Y(B;; »y), and

(3.2) /szdm =0, VfeC™(M)with suppf C BY.

Let us take an increasing functiahe C[0, co) such that

lim Gr)=+0c0 and Lz(Fop)=F"(0)+F'(0)Lz0<—Gop
r—>00

outside cuto). For fixed! and everys > 0, let i, € C*°(RY) be such that & h, <1,h) <0,
he(ry=rforr < F(l—¢)andh.(r)=F({ —3¢/4) forr > F(l —¢/2). Then

(3.3) Lz(hgeoFog)<—hy(Fog)Goo

outside cuto). Sinceh, o F oo € Vlﬁ%;g()»m) and is constant outsidg,_. />, we can take a
sequencé f,} C C°°(M) such that supp, C B/, sUp,>1 IV fullec <00, and lim,—.o |V f —
V(he o F o 0)| =0 Ap-a.e. Then, by the integration by parts formula, (3.2) yields

/(V(he oFoo), pZ—Vp)diy =n|Lmoo/(an, piZ —Vpr)ydiy

B B;
(3.4)

= lim /Lzﬁ,pdeMzo.

n—00
By
According to an observation of Cheeger and Gromall][ we can take a sequence of
closed smooth domaing,, such thatD,, C B} \ cut(o), D,, 1 By \ cut(o) and(Vo, N,) > 0,
where N,, denotes the outward unit normal vector fieldaad,,. Then we have the estimate
(V(he o F 00), Ny) > 0. By the integration by parts formula, (3.3) and (3.4) imply

/hé(Fog)Go@dm
D”l
(3.5) <~ [ Latheo F oo du
Dy,
<~ [IVouoroo pz-Vp)du<a [ 1nz-pidiu,
Dy, BI\Dm

wherec; = sup.cjo | F'(r)]. By first lettinge | 0 and thenn 1 oo, we obtain

(3.6) fGonMl <o0.

This yields that for every > 0, there exists a compact ball such thatu;(M\B) < ¢ for all /.
Hence the sequende} is relatively weakly compact. Let € P(M) be its cluster point in
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the weak topology. It is known (seé&f]) that, for everyn > 1, the sequencgp;: I > n + 1}
is bounded inW®1(B,; ). Therefore, there existg € W,g;:l(km such thatu = piy. Itis
readily seenthat*u =0. O

SinceG o ¢ is continuous and bounded below, the estimate (3.6) also holgs ifoplace of
. We shall now show that such an estimate for probability measures solving (1.1) is valid in a
more general situation.

PROPOSITION 3.2. — Suppose that is a probability measure solving equati¢h.1), where

Z is ameasurable vector field o such thalZ| € L{.(Am) Witha > d. Assume that there exist

a nondecreasing functiof € C2[0, 0o) with lim, . F(r) = 400 and a nonnegative function
G € C(M) such that, for some > 0, one has

Lz(Fopo)=F ooLzo+F ' 00<c—G
outsidecut(o). Then

(3.7) f Gdu<e.
M

The same is true if there exists a functidne C2(M) such thatLzV < ¢ — G and {V <
k}N{|VV| > 0} is relatively compact for each € N.

Proof. —~We know thatu = pi,s, wherep € W,‘(’;CI(AM). Now we can employ the arguments
used above to obtain (3.6). Namely, for fixee N, let i, € C*°(R1) be such that & &’ < 1,
hi” <0, hi(r) =r forr <k andhy(r) =k + 1 forr >k + 2. Then one has

2
Lz(hi o F o) =hi(F()[F'(0)]" +h(F(@)Lz(F o 0)
(3.8) < chi(F(0) — hi(F(@)G

outside cuto). Sinceh; o Fop € ng’cl()LM) and is constant outsidgy, , wherely is such that
F(r)>k+2if r > 1, we obtain by Lemma 2.1(ii) that

(3.9) /(V(hkoFog),pZ—Vp>dAM:0.
Blk

As in the proof of Theorem 3.1 we choose closed smooth domBjpssuch thatD,, C
Bp \ cut(o), Dy 1 B} \ cut(o) and(Vo, N,,) > 0, whereN,, denotes the outward unit normal
vector field ofd D,,, we obtain from the integration by parts formula, (3.8) and (3.9) that

/h;((FOQ)GdMSC/‘h;((FOQ)dM—/Lz(hkoFOQ)dM

D, m m m

<c— /(V(hkoFog),pZ—Vp)dAM
D

<c+cy / |pZ — Vp|diy,

B/k\Dm
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wherec;, = sup.ciq,, | F'(r)]. By lettingm 1 oo we obtain

[ HiFooGa<e.
B[k

which by Fatou’s lemma yields (3.7) by lettikgt oo, sinceh; (F o o) — 1. To prove the last
assertion we integrate by parts and use Lemma 2.1(ii) to obtain the eglialityh o V) du = 0.
It only remains to apply the estimatez (h; o V) < hj(V)(c — G) and letk — co. O

Example3.3. — Suppose that Rig —k, k > 0. If |Z] € Ljj.(Ay) With « > d and

lim;— 00 SUR, >\ cutin) (2, VO) < —vk(d — 1), then the assertion of Theorem 3.1 is valid. It
suffices to takeF () = r2 and note that lin_, o SUR,>rp\cuto) A0 < VE(d — 1).

We are now going to present a curvature condition for the existence and uniqueness of invariant
measures. Given@’ vector fieldZ, we set

3.10 k(ry= inf [Ric(Vo, Vo) — (Vv,Z, Vo)),
(3.10) (r) {@rl}r{cut(o){ ic(Vo, Vo) — (VvoZ, Vo)}

3.11 k(r)= inf —(Vyv,Z,Vo)l.
( ) (r) {Q}r}\cut(o){ (Vvg Q)}

THEOREM 3.4. — Assume tha¥ is a C* vector field such that
o0
(3.12) fk(r) dr = oo.
0

Then there exists a probability measurehat satisfieg1.1)with respect taCg° (M). If the Ricci
curvature is bounded below, then the same is true provided8&2)holds fork in place ofk.

Proof. —Fix x ¢ cut(o) and let/ : [0, o(x)] — M be the minimal geodesic fromto x. Denote
the unit tangent vector field alog= (s)se(0,00r)1 BY 7 = (Z5)sei0,000)1- Let (U} be parallel
vector fields along such tha{ 7, U;: i =1,...,d — 1} is an orthonormal basis at each point of
[. Finally, Iet{J,-}f.l;l1 be Jacobi fields alongwith J; (0) = 0 andJ;(¢) = U;(e), where and in
what follows we simply denote(x) by 0. We have (see, e.g., the second variation formula of
the distance ing2]) that

d-1 ¢

Ao = Z/(]VTMZ —(R(Ji, )T, J;)) ds,

i=17
where the integral is taken alorigover the length parameter and V, is the Levi-Civita

connection. Leth € CY[0, o] be such that:(0) = 0, k(o) = 1. By the index lemma (see3]
Theorem 1.5]lor [22]), we obtain

d-1 9
Ag < Z/(;vf[(hu,-)yz —(R(hU;, T)T, hU;)) ds
i:lo
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o o
=d-1 / (W)2ds — / h°Ric(7,T) ds.
0 0

Noting that
4 d 4
Zo = (Vo, z>=<7g,z>=/$(h27, z)ds=/[(h2)’<T, Z)+h*(V7Z,T)]ds,
0 0

we obtain
Q Q Q
Lzo<(d— l)/(h’)zds — /hzkds + /(hz)’(T, Z) ds.
0 0 0

Let & be a smooth function such that0) =0, 0< 2 < 1,h(r) =1 forr > 1 and|h’| < 2. We
have that outside cut) U {o < 1}

4
Lzo<4(d—-1)+4 sup |Z| — fk(r)dr + suplk|.
B(0,1) [0,1

By combining this with (3.12), we see that;p — —oo0 asp — oo (outside cuto)). We also
have that outside c()

Q Q
Lzo< Ao+ |Z(o)| + /(VTZ, T)ds < Ao+ |Z(o)| — /E(r)dr.
0 0

But if (3.12) holds fork, this tends to-oc asp — oo provided the Ricci curvature is bounded
below, henceAp is bounded above outside a neighborhood ahd cuto). Hence Theorem 3.1
applieswithF(r)=r. O

Remark3.5. — (i) Suppose that in Theorem 3.1 or in Theorem 3.4 onezhasvW, where
W e W,g’cl(/\M) and o > d. Then the function ex@y is 1y -integrable, which is verified by
the aid of (3.6). Namely, in the proof of Theorem 3.1, we take= const/) expW on B;.
Then, by (3.6), the sequence of measusgsis uniformly tight on M, whence the desired
integrability follows. Hence we can find a normalization constgnsuch that the probability
measureu := coexpW diy solves the equation’ i = 0.

(ii) It is seen from the above proof that we have used in fact the following weaker condition
instead of (3.12): assuming that the Ricci curvaturevbfis bounded below so that one has
Ap < C outside a neighborhood af and cuto), whereC € (0, +00), it suffices to have the
estimate

o

(3.13) /E(r)dr>C+|Z(0)}.
0

In the general case, it suffices to have the estimate
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o0
(3.14) /k(r) dr > 4(d — 1)+ 4 sup |Z| + suplk|.
B(0,1) [0,1]

0

In both cases, by the same reasoning as at the end of the above proof, we can apply Theorem 3.1
with F(r) = r2. For example, ifW € C2(M) is such that its second derivative is nondegenerate
outsideo and VW (o) = 0, then the fieldZ = « VW satisfies (3.13) for any sufficiently big
constanty. In this case, the probability measwavith the density consexp(—a W) is a solution
of LY =0.

(iii) It is worth noting that if Z = VW for someW e C2(M), (3.12) implies the Poincaré
inequality (see47]) and furthermore the super-Poincaré inequality (g6%)] since it implies
thatLzo — —oo as shown in the proof of Theorem 3.4.

We note that the existence and uniqueness of invariant measureg {tiffusion processes
have been proved by Cruzeiro and Malliavin i24] under some conditions including that
infk > 0. The proof of Theorem 3.4 enables us to improve their result as follows.

COROLLARY 3.6.—If Z is c! and either(3.12) holds, or the Ricci curvature is bounded
below and(3.12) holds fork in place ofk, then theL z-diffusion process is ergodic and has a
unique invariant probability measure.

Proof. —By the proof of Theorem 3.4, either of our conditions implies thap? < ¢ — G (o)
outside cufo) for somec > 0 and a positive functio& € C[0, co) suchthaiG (r) 1 oo asr 4 co.
Let (x/);>0 be theL z-diffusion process witho = 0. By 1t6’s formula foro (x;) (cf. [36]) we have

do?(x/) = 2‘/§Q(xt) db, + 1{x,¢cut(o)}[LZQZ(xt)] dr —dL,

for some increasing process and a Brownian motioh, onRR. Let 7, := inf{r > 0: o(x;) > n}.
We obtain

tAT,
(3.15) n?P(t, <1) <Eo?(xip7,) <E / [c — G(o(xy)]ds < ct.
0

Therefore,P(10 < 1) < P(1, <1) < ct/n? for anyt,n > 0. Hencers, = oo a.s. By letting
n 1 oo, the first inequality in (3.15) yields that

t
(3.16) E/ G(Q(XS)) ds <ect, t>0.
0

Let v () = 1 [§ P(x; € -)ds. We conclude from (3.16) thaw,),>1 is tight and hence has a
subsequence which converges weakly to spme (M). Then it is easy to check thatis an
invariant measure of the process (i.e., an invariant measure for the corresponding semigroup).
To prove the ergodicity and uniqueness, we shall show that, forvaayP (M), letting
vT;(-) = [ Pi(y,-) v(dy), whereP;(y, -) is the distribution at time of the L z-diffusion process
starting fromy, we have lim_, . vT;(B) = u(B) for every Borel setB. This follows by a
theorem of Doob (see, e.g24, Theorem 4.2]). Moreover, one has evearf; — u in the total
variation norm (seedd]). In order to apply the result cited, it suffices to note that the semigroup



50021-7824(00)01187-9 AID:1187 p. 15(1274-1381)
E1PARIS2 2000/08/31 Prn:16/10/2000; 13:06 F:PXMP1187.tex; by:ML

V.. BOGACHEV ET AL. / J. Math. Pures Appl. 00 (2000) 1-45 15

(T1):>0 is strongly Feller and stochastically continuous (i.e., for evegnd every ballB of
positive radius centered &t one has lim_,o P;(x, B) = 1), and the transition probabilities have
continuous strictly positive densities. All these properties follow from the conditionZhat
continuously differentiable. O

Let us single out an important special case of equation (1.1). betany Borel measure av
with densityp € W,%;cl(AM). SetZ = g* :=Vp/p. The vector field3* is called the logarithmic
gradient ofu. Clearly,|Z| € Llloc(u) and, by the integration by parts formula, (1.1) is satisfied
with respect to the clasSi°(M). This example corresponds to symmetric diffusionsionit
is easily verified (see, e.g.19]) that a probability measurg is uniquely determined by its

logarithmic gradieng” provided thatg*| € L1(xy).

Remark3.7. — The uniqueness problem for equation (1.1) will be discussed in a separate
paper. The cas#/ = R? has been studied irl[13,18. In general, there is no uniqueness for
probability measures satisfying (1.1) evervifis smooth (seelfd]). By a modification of the
methods employed irilB] and [45] we shall prove in a forthcoming paper that in the situation of
Theorem 3.1 there exists exactly one probability meagugech that.”, u = 0. In addition, there
is a unique strongly continuous Markovian semigrefiff), >0 on L(1) such that its generator
L# coincides withLz on C5°(M). Moreover,u is a unique invariant probability fo(rT,“)@o
on the space of all bounded Borel functionsMn Finally, there exists a Markov processi
(in the sense explained idf]) with the transition semigroup given k"), 0. If the drift Z
is continuous, then such a process can be constructed as a limit of usual diffusions generated by
Lz in compact regions exhausting.

4. The infinite product case: regularity

Let S be a countable set, e.g., I&t= N be the set of natural numbers. For eaehS, let M’ be
a complete connected finite-dimensional Riemannian manifoldAFarsS, let M4 = ;e g M
be equipped with the product Borekfield B,. We denote the distance function off from
a fixed pointo; by o;. Let 1, be the Riemannian volume element &', For everyx € M*
and A C S, let x4 € M4 be the natural projection of. For anyu € P(MS) and A C S,
let uac(dyaclx4) be the regular conditional probability f on M4° given By x M4 :=
(B x MA" | B By}, i.e., for every bounded Borel functighon M5, one has

ffdﬂz f / fxa x yae) ppac(dyaclxa) pa(dxn),

MA pAC

wherey 4 is the marginal distribution gft on M 4.
We set

FCE = U oM.
Acs, A is finite
Here and below, we regard a function &f* as a cylindrical function o3 in the natural way.
ReplacingC§® (M) by Cp°(M*#), one obtains the classC;°. Note thatFC;° is a linear space,

but 7Cg° is not. _
Let Z = (Z;);es be a collection of Borel maps a® such thatZ; (x) € T, M" and let

(4.1) LZ=A+Z::ZL,-, Li=A; + Z;,

ieS
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whereA; is the Laplacian o/’ , and the sense in which the sum is understood will be explained
later. In particularLy» makes sense ifr € ]—‘C§°. Moreover, letV := (V,);es, WwhereV; denotes

the gradient onM’, denote the gradient al>. We set|V f|2 =", _¢ |V, f|? for f: M5 — R
provided the right-hand side exists.

ieS

DEFINITION 4.1.— LetK be a certain class of boundéfimeasurable functions aiS. We
shall say that a Radon measuyxeon M3 satisfies the elliptic equation

(4.2) Liu=0

with respect to the clags if, for everyy e K, one hasL; € L(11) and

(4.3) Z/ Livy du=0.

ieSMS

Here V; denotes the gradient o’ .

For example, one can consider (4.2) with respeét to 7Cg° (then the series becomes a finite
sum). Another possibility is to consider the clags(M?3) of all bounded Borel functiong on
M3 such thaty; — ¥ (x1,...,x;,...) is a smooth compactly supported function & for all
ies.

One of the motivations for the study of equation (4.2) is that, as will be explained below, Gibbs
distributions onM ¥ satisfy this equation under very broad assumptions.

Suppose first that is a Borel probability measure av$ such thatZ? . = 0 with respect to
the classFC3° and that Z;| € LY(w) forall i. Given a finite setA = {s1, ..., s,} C S, we denote
by Z’j the conditional expectation of 4 := (Zy,, ..., Z,) with respect tou and theo-field
generated by the natural projection frad® to M4. Note thatu-a.e.

Zh(x)= f Za(xa X yae) pae(dyaclxa).

MAC

From now onZ’; will always denote this particulgz-version. In particularz’, (x) = Z% (x )
forall x e MS. Let

Ly =Ax+20 =) A+ 7l
ie/A
It is readily verified that one ha(sL‘@*;M = 0 with respect t(ng(MA). The following result

about the regularity of marginal distributions then follows immediately, by Theorem 1 and
Remark 4(iii) in [L1]. Let V4, denote the gradient o 4.

THEOREM 4.2. — Suppose thak’ 1 = 0 with respect taFCg°.

® Let|Z‘j1| € Ly,.(Aa) forsomex > 1,thenpa(xa) =du,/dr, exists angp, € Wl’(’);:l(AA)
for everyy e [1,dimM4/(dimM4 — « + 1)). Moreover, ifa > dimM4, thenp, €
W,g’cl(x ) and there exists a continuous strictly positive versiop of

(i) Under the assumptions of Corollagy3, if |2’} | € L?(u ) for every finite sett C S, then

dpa =@2drs with g € H21(14) and

1 2 1
/|VA¢A|2dAA<Z/|Zﬁ| duA<Z/|Z|2dM.
MA MA MS
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Our next result deals with the regularity of invariant measures with respect to a fixed
probability measure as ii[17 and [L5]. To this end, letW; W,é’cl()»,-) be such tha; (dx) :=
exp(W;)dr; € P(M'), and the following logarithmic Sobolev inequality holds for some 0
and alli € S:

(4.4) fleogfzdm<af|Vf|2dm, Vf e (M) with ffzdmzl.

We sety = ®;cs i 14 = ;e 4 ni- The Sobolev clas&/?1(n) is defined as the completion of
the linear span af Cy° with respect to the Sobolev norjm- || ;21 given by

||f||?,2,1=/|f|2dn+Zf|vif|2dn.

ieS

In the same way we definé?1(5 ). By [5] indeed the associated quadratic forms with respect
to n andn 4 are closable oi.2(n) andL2(n4), respectively. We shall assume that the meagure
satisfies the following condition: for every finite séf one has

(4.5) H?Y () ={f € L2a): f e WEima), IV fle L2},

whereW,(Z)’g(nA) is the class of all functiong € Lﬁ)c(n,‘) such that, in every local chart, has
a modification which is absolutely continuous on almost all lines parallel to the coordinate lines
and the corresponding partial derivatives are locallfz#iin 1) (thenV f is defined by means of
these partial derivatives).

One can verify that (4.5) is, e.qg., fulfilled if, has a density such that, for every compact
setK,0<c1(K) <o <c2(K) < o0.

LetY;:=Z; — ViW;, Y := (Yi)ies-

THEOREM 4.3. — Suppose that th@/!’s satisfy the hypotheses in CorollaB3 and that
(4.4), (4.5) hold. If © € P(M") is such thatL? u = 0 with respect to the clas&Cg°, where
|Zi| € L?(w) for everyi € S and

1/2
Y= (Z |Zi = Vi wl-|2> € L2(w),

ieS

thenu = pn with /p € HZ%1().

Proof. —~We may assume thaf = N. For any finite setA c N, we obtain by the above
results that gt 4 = fadr 4 with /4 € H>1(1»). Since|V; W;| = |Z; — Y;| € L?(), we have
IVAaWy| € LZ(/,LA), whereW, = ZieA W;(x;). Hence gh 4 = padny with /pa € H2’1(77A).
Indeed, pa = faexp(—W,), where both factors have modifications which are absolutely
continuous along almost all coordinate lines in any fixed local chart. Clegpy, has the same
property. In addition, the mappirig,./pa evaluated by means of such modifications coincides
na-a.e. with%(VAfA/Jf_ — VAWa fa) exp(—W4/2), which isn 4-square integrable, since
IVafal?/faand|VaWal?fa areinLt(ha). By Lemma 2.1Va W4 andVa fa/fa = L*(w)-
lim,_oValog(fa + &) belong tol" (i 4). On the other hand, the vector field

_Vafa

ZN — = =V AW+ Y
fa
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is orthogonal tolI" (i 4) in the spaceLz(uA,Vec(MA)). Therefore, we obtain the orthogonal

decomposition
\% \Y%
yh = ( AfA —VAWA> N (Zﬁ B AfA>’
fa fa
whence
AfA M
VAW, — dua < | Y5 dua
MA MA

Therefore, one has

\Y
VaWyp —

/|VA«/P_A’ dna =~ /

f’yﬂ| dua < /|Y| du.

Let A, ={1,...,n} and leto, = B(M*") x MAE. By (4.4) and (4.6), one has

(4.6)

/PAn logpa,dn = / pa, 109 pa,dna,

MS MAn

<a/;vm JPiPdna, < f|Y| d.

This means thatp 4, },>1 is uniformly integrable with respect tg. Furthermore, it is readily
seen tha(p,).>1 IS ao,-martingale unden. Then,p,, — pin L(n) for somep € L1().
We have /p € H>1(n) by (4.6). On the other hand, we have fgre 7Cg® and large
enough

/fdu=/fdmn =/prn dna, =/pr,l dn=k|i_>m00/fp/1k dn=/fpdn,

hence g = pdn. O

Additional results about regularity in infinite dimensions are given in Section 7 devoted to the
so called finite range case.

5. Existence results in infinite dimensions

We keep the notation introduced in Section 4, in particular, given vector figlds € S,
on M5 such thatZ; (x) € Ty, M, and we consider the elliptic operataks and (heuristically)
Lz;=Y,L;. _

Recall thato; € M' are fixed points.

Let A = (a;,j)i, jes be an infinite symmetric matrix witly ; > 0. Given a collection of positive
numbersy = (¢;)ies such thaty ", _¢; < oo, we denote byl(q) the spacd.® with respect to
the discrete measure dghthat assigng; to i. Given a collectiort = (§;);es of nonnegative
numbers, we writel§ < A& for somer > 0if 3, _ca; ;&; <2& foralli € S.

We shall assume thatis a union of an increasing sequence of finite setsn € N, which is
always possible, sincgis countable; a typical example§s= Z4, A, = {(z1, ..., za): |zi| <n}.
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Given a family (C;);es of real numbers, we writ€; — +oo if lim, . » infies\ 4, C; = +00.
The restriction of a functiory : M5 — R to M/~ is defined by the equality's,jo(xa,) :=
f(xa, x04¢) and is denoted by}y,, |, : M“" — R. Correspondingly, we set

ZAn|0('xAn) = Z(xAn X OA;)’ LAnlof = AAn fAnlo + ZAn fAnlo

for f: M5 — R such thatf,, |, € C2(M").
Let us introduce a class of test functions that will be employed below. Given nonnegative
functionsG; € C(M"), we set

W(x) =Y qiGi(x).
ieS

Suppose that the s& := {¥ < oo} is equipped with some completely regular topolagsuch
that the natural embeddin@, r) — M is continuous.

By Ky we denote the class of all bounded functiofisM$ — R with the following
properties:

(1) f is zero outside of one of the sefs:= {¥ < r},

(2) f has partial derivatives of all orders whose restriction&fté» are continuous, and such

that the restrictions of and of theL; f’s to £2 aret-continuous,

(3) all the functiond.; f are bounded and the serig$ ¢ L; f converges uniformly of,.

Note thatfa,|, € CS(M*) forall f € Ky.

Throughout, we use the following convention: every meagun M is considered as a
measure o/® (i.e.,asu ® 8, . ).-

The existence results in this section are based on the following simple lemma.

LEMMA 5.1.— Suppose that for alt € N the restrictions of the fieldg; to M4 x {oac}
are locally integrable in power bigger thatim M4+ (e.g., are Borel and locally boundpd_et
ANl <2 andzjesa,-,j < Aforalli € §. Assume that for eadghe S, there exist nonnegative
compact functions; € C2(M") and G; € C(M') such thatG; (o;) = 0 and, for some:, § > 0,
one has for alik € M5 andn € N

AiVi(xi) + (Vi Vi(xi), Zi(xa, x 042))
(5.1)
<c—(A+8)Gi(x) + Z a;,jGj(xj), i€Ay.
jEAll

Then there exist measurgs € P(M“») such thatl¥ | i, = O with respect taCSe (M) and

(5.2) /Gi du, <=, VneN,ies.

S| O

In particular, [¥du, < $>,cgq; and the sequencéu,} is relatively weakly compact.
Moreover, the same is trueW = F; op;, wherer; € C2[0, o0) is such thatim,_, », F; (r) = +00
and(5.1)holds for allx = (x;);es € MS with x; ¢ cut(o;), Vi € S.

Proof. —~We may assume th&t=N, A, ={1,...,n},and)_;2, ¢i = 1. Leto := (01,02, ...)
and

Wa(xa,) =Y qiGi(x).  Pu(xa,) =Y q:Vi(x).

i<n i<n
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By (5.1) and the estimaﬂeAH,l(q) < A, which means that
Y aiaijlzil <A qjlzjl,
i J

one has (recall thaF ; (o) = 0)
LA, 10Pn(x4a,) <c—8W(xa,)-
Therefore, by Theorem 1.1, there exigtse P(M4») such that
th,[\olin =0

with respect t(fgo(MA") and, by the last statement of Proposition 3.2 one has

fllfn dun <

AN

In the case whef; is replaced byF; o o; for F; € C2[0, o) and lim._, o, F(r) = 0o, we modify
the proof of Theorem 3.1 for the product manifdit'. Fori € A, let B;; = B(o;,1) be the
closed geodesic ball in¢’ with centero; and radiug. Let B = ]’[ieA” By;. Leth; . be chosen
for F; ash. in the proof of Theorem 3.1 has been chosenfoie obtain

(5.3) LA,,|0<Z gihie o Fio Qi) <c—8) qihj (Fio0)Gi(x).

€A, ieA,

Let ! € P(By) with density p' € H*(B; A p4,) for somea > dimM*» be such that (3.2)
holds with L 4,,, and M4» in place of Lz and M, respectively. Then (3.4) holds fax, 4, in
place ofx . Finally, let{D;, } be taken as in the proof of Theorem 3.1 Eﬁi and cuto;). Let

Dy :=[lien, D! . Then itis easy to obtain an analogue of (3.5) for the present situation, which
in turn leads to the existence pf, € P(M4) such tha'fL*jw,Mn =0and/ ¥, du, < c/é.

Let us regardu, as a probability onMS. Then [ ¥ du, < ¢/8, which yields that the
sequencéu,} is uniformly tight. Let us show (5.2). Let be fixed and le§; = [ G; dw,. Then
£ = (&) € 1(g). It follows by the above reasoning that

E<(A+8)te+ (h+06)7tAE,

where the sequende, c, ...,) € [1(¢) is denoted by. Iterating this inequality and using the
estimate||A||,1(q) < A, we obtain

c & A \" c & A\ c
< 1< 1=-1,
5 /\—i—(SZ(A—i—(S) A+SZ</\+5> 5

n=0 n=0

since} ;cgaij <A, sothatA() <i. O

PROPOSITION5.2. — Let 4, ¢, V;, G;, and Z; be as in Lemm&.1 such that(5.1) holds.
Suppose thatthe sefy ;. Ciq; G; < r} are r-compactwhenever; € R, such thaiC; — 400
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and that the restrictions df;’s to these sets are-continuous. Then there exigise P(M*) such
that

(5.4) f Gidu<

and L% u = 0 with respect to the clasky. Moreover, the same is true ¥; = F; o o;, where
F; € C2[0, 00) is such thalim,_, » F; (r) = +o00 and(5.1) holds for allx = (x;);es € M5 with
Xi ¢ cut(o;), Vi € S.

Proof. —Let us keep the same notation as in the proof of Lemma 5.1. The seqyeyice
constructed in that lemma is uniformly tight, hence there exists a mepsar®(MS) which
is the weak limit of some subsequenige,; } jen. It follows from (5.2) that there exist positive
numbergC;);es With C; — 400 such that

SUP/ZCiini du, < oo,
n

ieS

and the same is true fqr in place of u,. Hence by assumption the sequenrgg} is also
uniformly tight on £ with respect to the topology, henceu,;, — u weakly on(£2,7) as
J — oo. By the definition ofL 4, ,, we obtain for everyf € Ky that

n
/ZLifdﬂnZ/LAn|ofAn|0dM:1=Oo
i=1

Let K be the support of on £2. By definition, the bounded-continuous functiony"_; L; f
converge ta_f uniformly on K, whence we obtain the desired conclusiom

PrRoPOSITION 5.3. — Consider the situation of Propositidn2 In addition, suppose that for
everyi € S, there exist; € C[0, co) andy; € C(M) such thalim, ., y;(r)/r =0and

(5.5) | Zi )| < ¥ixi) + i (Zq;G,-(x;)), xeM’, i€S.

jes

If there exists: € C2[0, co) such thath’ > 0, h” < 0, h(co) = 0o, and || V;h(V;)|leo < 00,i € S,
then there existg € P(M*) such thai(5.4) holds andL? . = 0 with respect to the clasg(Cg°.
If, in addition, (5.5) holds forv; = y;(G;), then|Z;| € L1(x) and J Lz fdu =0 for every
feFecr.

Finally, under the assumptions of Corolla.3 for each M! in casey; = y;(G;) but
without the assumption on the above functigrthe above results hold fov; = F; o o; with
F; € C?[0, 0o) provided thatim,_, « F; (r) = oo and (5.1) holds for allx = (x;);ics € M5 with
Xx; ¢ Cut(o;), Vi € S.

Proof. —Without loss of generality, we assume that the sequénggin Lemma 5.1 converges

weakly ton. We only have to verify the equalitf Lz f diw = O for every f € FC5°, wherep
is the measure constructed in Lemma 5.1. We seeZ}j@n gih(V;) is a function satisfying

the assumption of Remark 2.4 fof4» and L 4,10- Suppose thaf (x) = fo(xa), wWhere fy €
C8°(MA), and letn be so large thatt ¢ A,. Then by Remark 2.4

/szdunszLifdunzf > Lifdu, =0.

ieA ieA,
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Clearly, by the weak convergence, we have

[ S airdn— [ airdu

ieA ieA

In addition, for every fixed € A, one has

(5.6) / (Zi, Vi f) it — / (Zi. Vi f) .
2 2

Indeed, the functiog = (Z;, V; f) is T-continuous ang-integrable. This follows by (5.5), since
¥i(x;) is bounded on the support ¢ and the functiory; (Zjes q;G;)is u-integrable by (5.4).
We obtain from (5.5) that

lim supf lgldu, =0.
R—+4+oc0 p
Ig1>R

This together with the weak convergence{gf,} yields (5.6). The second assertion is proved
by a similar argument. The last assertion can be proved in the same way by using Corollary 2.3
instead of Remark 2.4.0

Let us consider a typical example of a topolagthat can be used in Proposition 5.2.

Example5.4. — LetG,; (x) := g; (x;)”, wherep > 1. Lett be the topology on the sg¢¥ < oo}
generated by the metric

1/p
dp(x,y):= <ZC]iQi(xia yi)p) -
ieS
Then the setX, :={} ;¢ Ciq;G; < r} arer-compactifC; e Ry andC; — oc.

Proof. —Let x/) = (xl-(j))ieS be a sequence of points in the $&t. It is readily seen thak,
is compact in the product topology 815, hence there exist a subsequefig®’} c {x(/} and
a pointx = (x;) € K, such thatyl.(k) — x; ask — oo for every fixedi € S. Givene > 0, we can
pick ng such thaiC; > e~1if i ¢ A,,. Noting that

Y 4iGi()<ey CigiGi(x)<re

i¢Ang ieS

for all z € K., we obtain that/,(y*), x) < 2(re)¥/? + ¢ for all k sufficiently large, i.e.x is a
cluster point of{x/)} with respecttar. O

THEOREM 5.5. — Assume thasup_gdimM’ < oo and that eachM’ satisfies the assump-
tions of Corollary2.3with Ricci curvature bounded below by a constant independeant.eit

Zi(x) = Y;(xi) + Y; (x),
where the mappingk are continuous o/$, theY;’s are continuous o/’ and

(Yi.Vie) </ — (480, || <+ aijoix)”
J
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forsome’, § > 0, p > 1and(qa;, ;) given as in Lemma.1 If (5.4) holds forG; = gi”, then there
existsu such thatL? u = 0 with respect taFCg°. Moreover, one hasupg fgl.”du < 00.

Proof. —By the Laplacian comparison theorem, our assumptions impby < co(1+ Qi_l)
outside cuto;) U {o;} for somecg > 0 and alli € S§. Then (5.1) holds for some > ¢/, all
x = (x;) € M5 with x; ¢ cut(o;), G; =g, andV; = F o g; for someF € C*°[0, c0) such
that O¢ suppF and F(r) =r for r > 1,Vi € S. For r we take the topology generated by the
metricd,, discussed in Theorem 5.4. Therefore, the assertion follows from Propositiont5.3.

Finally, let us observe that the conditiga [|;1,, < 2 is satisfied ifAqg < Ag in the above
sense. A simple sufficient condition for the estimatg < Aq is this:a; ; = a(i — j), where
§=740< a(i) < clqiz, a(iy=a(—i), ) ;qi <c2,qi—jqj < c3qi, A = c1cac3. For example, if
d = 1, it suffices thay; = |i|™", a(i) < |i|~%, r > 1. In particular, as we shall see in the next
section, Example 5.5 yields the existence of Gibbs measures for many models with the finite
radius of interaction.

6. Applications to Gibbs measures

In this section, we discuss an important special case of the elliptic equdfion= 0 where the
Z;’'s are logarithmic derivatives gf along thex;’s; then every term in (4.3) vanishes separately
which simplifies certain technical issues. Note that if in this c&se L?(u), then the operator
Lz is symmetric onL?(1.). We shall now introduce a suitable concept of differentiability of
measures (and a local version of logarithmic derivative). Letddnote the divergence of vector
fields onM".

DEFINITION 6.1.— Let 1 be a Radon measure an®, leti € S be fixed, and lefC be a
certain class of functions differentiable alomgand separating the measures 8. We say
that u has the logarithmic derivativg; alongx; with respect tolC, if §; is a u-measurable
vector field such thag; (x) € T, M and, for everyy € K and every e Veq;"(M"), the set of
all compactly supported>-vector fields oM, one hasV; v, v), wdiv;v + ¥ (v, Bi) € L1(1)
and

6.1) [wrvrdu== [ v (@i + . p0) du

The logarithmic derivativgs; of 1 will also be denoted bg!".

We shall see that under broad assumptions, a measwi¢h the logarithmic derivativeg;
alongyx; satisfies the elliptic equatiab?, .« = 0. This follows from the formal integration by parts
on every term in (4.3), but requires a justification.

Let v be a fixed smooth compactly supported vector field on a Riemannian mandfedd
letU}, t € R1, be the corresponding flow, i.dJ} (x) solves the ordinary differential equation
x'(t) =v(x(1)), x(0) = x.

The following lemma is a straightforward modification of a result4é][proved in the linear
case for globally integrable logarithmic derivatives (cf. alSpgnd [7] for the manifold case).
Although the reasoning is essentially the same agd % [ve include a proof for completeness,
since some additional technicalities arise. This lemma shows how Gibbs measures fit into the
above framework of elliptic equations.

LEMMA 6.2.— LetX =M x Y, whereM is a finite-dimensional Riemannian manifold and
(Y, F) is ameasurable space, letbe a measure of = 5(M) ® F with the regular conditional
measuregt” on M x {y}, and letv be the projection ofut| to Y. Suppose thak’ is a class of
boundeds-measurable functions that satisfies the following conditions
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(i) foreveryy € K andy € Y, the functionx — ¢ (x, y) is continuously differentiable and
V¢ is bounded;
(i) (x,y) > ¥ (U (x),y) € K andg o ¢ € K wheneverp € C*(RY), ¢(0) =0, ¢ € K,
t eRY, v e Ve (M), andyy € K if Y1, ¥ € K;
(i) the classC separates the measures Bn
Let(x,y) — B(x,y) € TyM be ap-measurable mappin@.e., (8, v) is u-measurable for all
smooth vector fields on M) such thaty|8| € L(1) for everyy € K and

(6.2) /(vxw, v>du=—f1/fdiwdu—/w<ﬁ,v>du

for everyyr € K and every € Vecg®(M). Then, forv-a.e.y, u” admits a density’> on the fiber
M x {y} such that

(6.3) freWeiow) and B(x,y)=Vif @)/f ).

Proof. —~We can find an increasing sequence of measurableisetsX such that J; A, has
full measure and there exist functiopse K with ¢; > 0 onA;. Indeed, letCo = {yy € K: 0 <
¥ < 1}). By [27, Theorem IV.11.| there is a sequenag; € Ko such that, for every) e Ko,
one hasy < sup; ¢; u-a.e. Then the union of the sets = {¢; > 0} has full measure. Indeed,
if sup; ¢; = 0 on a positive measure st then for everyy € Ko, one hasy =0 p-a.e. on
A, hence the same is true for evepye K, which easily follows by taking compositions with
smooth compactly supported functions vanishing at the origin. Thus, the megguaad the
zero measure are not separatedhywhich is a contradiction. Moreover, we may assume that
p; =1o0nA;. Indeed, every; can be replaced by the sequence of functigns ¢;, where
e CPMY), 0< o <1, 0() =0if t <O, (1) = Lif k=2 <t <k, andge(r) =01if £ > k+ 1.
Let us consider the measure

Hj=9@jH.
Letting 8; = B + V., /¢, and using thaty1y» € K for all y1, ¥ € IC, we obtain from (6.2)
that
[evvrdny == [wdvod; ~ [ g v,

for every v € K and every smooth compactly supported vector figldn M. In addition,
1Bjl € Ll(uj). Let v be a fixed smooth compactly supported vector fieldMrand letU?,
t € R1, be the corresponding flow. Then we have

/[W(Uz”(xxy) —Yr(x, y)]du;

X
(6.4)

t
_ / / S (U, y)(divoee) + (8 (. ). v(0)) du ds
0 X

for all ¥ € IC, which is proved as follows. Both sides of (6.4) are continuously differentiable in
and vanish at = 0. We observe that for evegye K, one has

9
52U (), V)| i—o={Vre(x, y), v(x)).
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Therefore,

a a
o V(U2 = 5oy (U (U 0). ) = (V¥ (U7 00, 9)) o)

Hence the derivatives of the left and right sides of (6.4) are given by

[l @, ) v

X

and

- / V(U ), y)(divoee) + (B (r. ). v()) du,
X

respectively, hence are equal. The left-hand side of (6.4) equals the integralitti respect to
the measuréu ), — nj, where(u ), is the image ofu; under the shifi(x, y) — (U (x), y).
The right-hand side of (6.4) is the integral¥fagainst the measure

t

o= /([din + (Bj. v)]uj), ds.
0

Hence, by our assumption @@, we have
(Hj)e — =U]t‘~

This implies that (6.4) holds for all bounddgtmeasurable functiong, which enables us

to reduce the claim to the case = R¢ (however, with a Riemannian structure possibly
different from the standard one). Indeed, (6.4) is true, in particular, for all functions of the
form ¢ (x, y) = f(x)¥o(x,y), where f € C3°(M) has support in a local chakt and v € K.
Differentiating (6.4) at = 0, we arrive at the equality

f(vxwo, v>fduj=—f<vxf, v woduj—/wo(divU+<ﬁj,v>)fduj

for everyv € Ve®(M). This shows that the measufeu; satisfies the same condition ag
with 8; + V, f/f in place of8;. Therefore, it suffices to consider the case wherdias support
in U. Moreover, by considering vector fieldsthat are constant on the support 6f we may
assume that (6.4) is true for the constant fields = 1, ..., d, where{e;} is a standard basis in
R4, and allr from a fixed interval. Let us set

Bi(x) = ((Bj(x), e1) +diver, ..., (Bj(x), ed) + dives),

where div and(-, -) correspond to the Riemannian structureMf(so that the divergences of
the constant fields; may be nonzero). By the assumption thgt has support irU, we have
|Ej| € Ll(uj). We shall denote by-, - ) the standard inner productRf. Then, for every vector
v from the unit ballU; in R? and every < [0, 1], we obtain the relation

t

(6.5) (Wj)rw —pj= /‘((IB\J’ v) 'uj)sv ds.

0
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We set

M?Z(pjﬂy’ ie., ;;L.j(B)Z/‘M?(B)V(dy)-
Y

Now (6.5) yields the absolute continuity of the measuu%sfor v-a.e.y. Indeed, letp be a
probability density ofR? with supportinUy, pe(t) = e ¢ p(t/e), v = pe dx, € € (0, 1), and let

m(8) = [ ] re(B )
Y
Then for every bounded Borel functi@gn one has
/g(x,y)dnng f /g(X+8z, Y)p(2) dz w(dx) v(dy)
X Y Réx{y} RY

(6.6) szg(ersz, y)p(2) duj dz.

Re X

It follows from (6.5) and (6.6) that

/gduj—/gdﬂs

X X

= //g[d(ﬂj)_d(ﬂj)ez]p(Z)dZ

Ug X

)

<esuplgl| |Bj|w,

= f//g(x+51’y)(3i’1)dujdsz7(z)dz
U 0 X

since|(§j, )| < |Ej| on the support op. Therefore,
it = el < 28| B | 11, -

Clearly, every measura, with ¢ > 0 has absolutely continuous conditional measures on
R? x {y}. Hence, forv-a.e.y, the conditional measure’, admits a densityq]y.(x) with respect

to Lebesgue measure. Thus, we obtain from (6.5) that there exists a measuraplefstitll
v-measure such that for eveiry= 1, ..., d, every rationat, and everyy € Yp, one has for a.ex

t

g) e+ re) = g} = [(Byre)a))ox+ sei s
0

Therefore, for every e Yo, one haSq]y. € W,écl with qu;(x)/q;(x) = B\j(x, y), where D,
stands for the standard gradient®fi. The Riemannian volumg on M is given by a smooth
positive density; with respect to Lebesgue measure on the coordinate neighbothaeddeal
with. Henceg; = ¢f; . Therefore,

(6.7) Vi f] 0/ f] () = Bj(x, ).
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Indeed,aeiq; = ijae,.q + qd,, ij, so that

)

de;q e f; ;
+—
q f

= (Bj,e;) +dive;.

Now (6.7) follows from the identity,, g /q = dive;, which is readily verified by the integration
by parts formula:

/lpdiVe,-dxz—/Ww,ei)dA:—/%de

=/¢ae,qu=/¢ 9ed g Vi € CRU).

Recall thaty, ¥ = u’ for v-a.e.y, i.e, gj(x,y) f¥(x) = fy(x) for a.e.x. In addition,

Vip; =0 p-a.e. onA;, since the derivative of any dlﬁerentlable functiéhon R vanishes
almost everywhere on the sgf = 1}. Now the claim follows, since the union of the;’s has
full u-measure (heno@®? x {y}) N (U i A;) has full”-measure fov-a.e.y). O

COROLLARY 6.3.— Suppose that the hypotheses of Lenﬁﬂaare fulfilled. Then equality
(6.2) is valid for every functiony € L1(1) such thaty (-, y) € WIOC (Ap) for v-a.e.y and

IVawrl, v1Bl € LY(w).
Proof. —Forv-a.e.y, we have by the integration by parts formula

/(va /lﬂdIVU-f- B, v)]du”

M

Integrating iny, we arrive at (6.2). O

Remark6.4. — (i) It is clear from the above proof that the separation assumption (i} on
can be weakened; e.qg., it would be enough to replace it by the following condition:

(iii) " there exists a measurable setc X of full measure with respect to all shifig.),
generated by the fieldsas above such thit separates the measures on theiet

In particular, it is the case whef2 has full x-measure and is mapped by the transformations
U} into itself.

(ii) In turn, the collection of field® involved in the formulation may be considerably reduced.
For example, it suffices to have (6.2) for countably many fieide Ve (M) such that for
every pointn € M one can find a local cha@,, containingm and fieldsv,,, ..., v,, that are
constant and linearly independent®y, . Obviously, in the cas#f = R, it suffices to have (6.2)
for d linearly independent constant vectarsNext we observe that the requirement v €
forall v € K andg € Cgo(IRil) with ¢(0) = 0 in condition (ii) can be replaced by the following
assumption:

there exist functiong; € K such that the setg); =1} coverM x Y up to au-measure zero
set. Finally, ifC is a linear space and is stable under compositions @§thfunctions vanishing
at 0, then it is stable under multiplication, i.& is an algebra.

Remark6 5.— (i) If 4 is a Gibbs measure o’ specified by conditional densities” e
WIOC on the fibersM4 x {y}, y € M5\4 such thatv, f4/f4 is locally 1,,4-integrable, then
the previous lemma yields an “integration by parts characterization’; 0€., every probability
measureu’ on M5 that satisfies the analog of (6.2) with evetty = VAfA/fA in place ofp
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has the same conditional measureg.ashis is obvious from the fact that a probability measure
on M is uniquely determined by its logarithmic gradient if it is locally -integrable (cf. 15]).

(i) Itis worth noting that one can always find a suitable clagbat satisfies conditions (i)—(iii)
from the above lemma and (6.2). We shall deal with the versign’cduch thap” € W,%;cl(AM)
for everyy € Y. We take an increasing sequence of compactisethat coverd . Such sets can
be chosen with the property that, for every fixed, andi, the setU} (K;) is contained in one

ofthe K ;’s, which is obviously possible. Then we consider the s2ts € Y, j, r € N, such that

/’fo)’(x)’AM(dx) <r, Vyesf,.
K;j

Then the sets2; . coverY. Now we take forlC the class of all functions of the forrfi(x, y) =
OWP1(xX)@1(y), -, Yn(X)en(y)), Whereo € Cg°(R"), 6(0) = 0, ¥; € Cy°(M) has support in
one of the setK;, andy; is a bounded measurable function Brwith support in one of the
sets$2; . It is readily seen thakC satisfies conditions (i)—(iii) in the lemma. Equality (6.2) is
true, sincef (x, y) =0if y ¢ 22; - and|| f (-, ¥)IB”| I L1,y < rsupd| if y € £2; . Taking into
account Remark 6.4(i), one could use the smaller class formed by the pradacis; (y) as
above, since it satisfies the aforementioned modification of conditions (i) and (ii).

COROLLARY 6.6. —Suppose thafC is a certain class of boundefi-measurable functions
on.MS that satisfy the hypotheses of Lemfa with respect to every representation’ =
M x M and, in addition, that the second derivati\/@%xp, ¥ € IC, are bounded. Let be a

Radon measure ol having the logarithmic derivativeg; along thex;’s with respect tak
such that(Z;, V;v) € L1(w) for all € K andi € S. ThenL? u = 0 with respect tok in the
sense of Definitiod. L

Proof. —It suffices to show that

(6.8) fAilﬂdﬂ:—f(Zi,Viw)du, Yy ek, ieS.

For a fixedi € S, in accordance with Lemma 6.2, we have by the integration by parts formula

[ i) wlae'd) == [ 500 (a1

g g
Integrating this relation iy, we arrive at (6.8). O

Example6.7.—Let g, > 0 be such that), g, < oo and let u € P(M?) be such
that ¥ = Znesqngi,’ < oo p-a.e. for somep > 2. Suppose that the regular conditional
probabilities i (- [x;c) on M' x {xi}, xjc € M, have continuously differentiable densities
x; = expV;(x;, x;c) such that the mappings— Z; (x) = V; V; (x;, x;c) are continuous o/,

If Ql'-D e C2(M), thenL? u = 0 with respect to the clags of all functionsy with supports in the
sets{¥ < r} and bounded derivativeg ¢, Vl-z(p. In addition,/C separates the Borel measures on
the set{¥ < oo}.

Proof. —We only have to show thaC separates the Borel measures{@n < oco}. This is
obvious, sinceC contains all functions of the fornfio (¥), f € FCg°, 0 € CgO(IRil). Note that
we could employ the clagsp of functions

@) = ¢ (f1(xa,)0L(F (X)), -+, fu(x4,)600 (¥ (1)),
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whereo; € Cgo(Rl), fi € CgO(MA"), ¢ € C3°(R"), ¢(0) = 0. We remark thatCp satisfies the
hypotheses of Lemma 6.2, so that this class can be used to derive the existence of conditional
densities. O

PROPOSITION 6.8. — Suppose that in the situation of Propositis3, for all finite setsA C S,
there exists continuously differentiable functidng on M4 such that

ZA()CA X OAC) =VAUxA(xnp).

Then there existg € P(MS) such thatL with domainspanFCy° is symmetric or.2(p), and
foreveryf € FCg° and every e Vec;(M"), one has

(6.9) /(vl-f, v>du=—/f<v, Zi)dﬂ—/fdiViUdM~

Proof. —The claim follows by the proof of Proposition 5.3 applied to the probability measures
Un = cn€XpU 34, (See Remark 3.5(i)). O

Remark6.9. — Clearly, if Z; is continuous in the product topology @#3, then it is -
continuous. It is easily seen that the continuity assumptio#,ozannot be completely dropped.
However, in the situation of Proposition 5.3 or Proposition 6.8, in place of continuig; oit
is sufficient to have continuous field@ such thalZ; — Z;| < &;¥ with &; — 0. This is readily
seen from the proof.

Example6.10. — Suppose that the fields are continuous oS and that, for all finite sets
A C S, there exist continuously differentiable functioliig on M4 such that

ZA()CA X OAC) =VAUxA(xnp).

Let Vi(x;) = Gi(x;) = 0i(x;)?, p > 1, and letq and A be as in Lemma 5.1. Assume
that (5.1) holds outside of o). Then there existgw € P(MS) such that the regular
conditional probabilitieg.( - |x;) are given by continuously differentiable densitfs |x;) with

Vi f(xilx{)/f (xilx{) = Zi(x). In particular, if A;0; < co(1+ Qfl), then it suffices to have the
estimate

-1 o~ =~ _
ol Vioi. Zi) <T—hol +p 1Y aijof,
Jjes
wherec=c — 2cop — p(p — 1), k= p (A + &) + 2cop + p(p — 1).
Proof. —As observed above, the functions éxp are integrable om/* with respect to the
Riemannian volumes. Let, be the probability measure ai» with the densityc, expU ,, .
This measure will be regarded as a measure\oh x {o}. By Lemma 5.1, the sequence of

probability measureg,, on M“ x {0} has a weak limit poing that is concentrated on the set
2 = {¥ < oo}. Moreover, the sequendg,,} is uniformly tight with respect to the metric

1/p

dp(x,y) = <Z%‘Qi (i, yi)p) :

hence we may assume that — n weakly on(£2,d,). Let us take forkC the collection of all
bounded functiong on £2 such that: (i) is continuous with respect the metdg and hasi),-
bounded support, (i) the functions— ¥ (..., x;,...) on M' are continuously differentiable in
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x; with bounded gradients. We observe thats a linear space and contains all functions of the
form ¢6(¥), wherep € FCg°, 0 € Cgo(Rl). Hencek separates measures gh In addition,

v (f) € K whenever) € CgO(IRil), Yw(0)=0, f e K. Finally, ifv e Vecgo(M") andf € I, then
the functionx — f(x1,..., U/ (xi), xi11, ...) belongs to. Now, in order to apply Lemma 6.2,

it remains to verify that, for every € IC and every smooth compactly supported vector field
onM!, one has

/<w, v>du=—fwdivvdu—fwz,-,wdu.

This follows from the corresponding relations for flag's by the weak convergence i, } to u
on(£2,d,), since the functionsv; y, v), ydivv, ¥(Z;, v) ared,-continuous and bounded (note
that Z; is bounded o ,-bounded sets by their compactnesr). O

We observe that the above example enables one to construct measures with given conditional
distributions on M’ x {y'}, y' = (y;)j= € M, provided that these distributions have
continuously differentiable densities — ¢; expU; (x;, y'), where the fieldsZ; = V; U; satisfy
the corresponding assumptions. For example, if Migs have Ricci curvatures bounded
below and thev;’s are poles, then it suffices that; (x;, y') = —o; (x;)? + w;(x;, y'), where
\Viwi (xi, y)| <+ aijoj(yj)P 1, where we sef; = x;.

Remark6.11. — The idea of constructing measures on an infinite-dimensional pacth
a given logarithmic gradierg as invariant measures of a diffusion process with g if2 goes
back to S. Albeverio and R. Hgegh-Krohj,[who introduced the concept of vector logarithmic
gradient. Lyapunov functions technique has been applied for this purpo8&,8g[and in a
more general setting inLp]. Concerning applications of Lyapunov functions in the case where
there exists a diffusion process with generdtpsee P5,39,4(), and the references therein. The
approach initiated ing7,39 has been recently developed & fnd [4] in order to cover a broad
class of Gibbs measures. The above results in the flat case yield extensions of the analogous
results from B] and [4]. For further extensions in the linear case, sEg.|

In the next section we shall consider Gibbs measures in the finite range case.

7. Finite range vector fields

Let S = 27" and let M5 = [[,.s M, where theM’’s are Riemannian manifolds which
satisfy the hypotheses of Corollary 2.3, hence as shown in the proof of Corollary 2.3 they
also satisfy the conditions of Theorem 2.2. Suppose that we are given a fAmilyZ;);cs
of Borel vector fieldsZ; on M5 such thatz; (x) € T, M', i € S. We shall say tha¥ is of finite
rangeR if, for everyi € S, Z; depends only on the coordinates with j € i + A3, where
A ={s=(s1,...,8m) € Z™: |sj| <kR}.

Given a measure on a manifoldM, we define the divergence ofiameasurable vector field

Z onM with | Z| € L} .(v) as a function diVZ € L{ .(v) such that

(7.1) f(Z,Vf)dv:—/fdiv"Zdv, VfeC& (M),
M

M
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if such a function exists. It is easily seen thawvit= pdi,, wherep € W&,’Cl(/\M) and Z is
continuously differentiable, then

v
div'Z = dle+<Z —p>
P

where divZ is the usual divergence with respect to the Riemannian volume (i.e., the trace of the
derivative). In this case, we also have’diw = div Z. We shall denote div Z by divZ even if
the latter exists only in the sense of (7.1).

By analogy, one can define a divergence of a vector field on an infinite-dimensional manifold
with a measure. For example, if,;; (M") = 1 and A’ is the corresponding product-measure
on M3, then we shall say that a%-measurable vector field; with Z;(x) € T, (x;) and
|Z;| € L*(2.5) has a divergence di¥; (which can be denoted also by gif) with respect to
ASif div Z; € L1(15) is a function onM® such that

f(V,-w, Z,-)d/\S:—/godin,- dr8, Ve e FC.
MS MS

The divergence of a vector field = (Z;);cs can be defined a§_, ¢ div Z; provided that the
divergences diZ; exist and the series converges to a function fibhiu) in a suitable sense,
e.g., inL(u) or with respect to the duality with the linear spanft;°. We shall only use the
divergence of componens .

LEMMA 7.1.— ()Letpu e P(MS) and L% 7 = 0 with respect taFCy°, whereZ = (Z;);es
is of finite rangeR and |Z;| € L?(u). Letk € N and suppose that;, € P(M4%) is such that
Ve = eXP(Wi) ha, andpa, = fi vk, whereWj e WIOC (o), vk € H*1(vy). Assume that4.5)
holds for H2(vy). LetB* = V; Wy € L& .(vk) N L%(14,), i € Ax. Then

\v4 2
| ;ZJ dy, = Z /(Zi_ﬁ,-uksvifﬁdvk

iEAk,lMAk
(7.2)
\A
+ > f<z- i f">du.
e AN\ Ag— 18

(i) Assume in addition, that there exis!@l e P(MAe+1) such thaty is the projection of
vk+1 ONtOM A%, jia, 1 = fi1Vis1, v Fert € H2 (vep1), B exists andB ! € L2 (ve1)N
L?(pa,,,) for everyi € Ag. Assume4.5) also holds forH2 L(vk41). Then

Vi fil? N
Z /T:dvk= Z /<Zi_/3i »Vifk>dvk

i€Ak-1),0, 1€ AK-1y 4,
(7.3)
Vifi Vifi+1 ,
- Z < } ' } +’3;)A+1_Zi d'u“Ak+l'
TRV k k+1

Proof. —(i) First note that since (4.5) holds we have

V,‘ 2 Vi 2
/| f];k| dﬂk:4./%duk:4/|vf\/ﬁ|2dvk<oo

k
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and since|ﬁl.""|, |Z;| € L?(u), both integrals on the right-hand side of (7.2) exist. ket
C(M4%). Then

/ Anc fie dvg + Z /(Zi,Vﬂp)d/A:O.
Mk ieAkMS

Approximating fi by (n A /F1)? € H>1 (), n € N, allows to integrate by parts, so using that
Zi,i € Ar_1, depends only om 4, , we obtain again using (4.5)

/(V%ka)dwc:—z f(ﬂ;kavi¢>fkdvk+zf(Zi,Vi¢>dH

MAk iEAkMAk ieAkMS
(7.4) = > f (Zi — B, Vig) fdw + Y / (zi — B*. Vig)du.
iEAk_lMAk iEAk\Ak—lMS

The desired equality follows if we pM; ¢ = V; 1/ fx, but this requires some justification. We
observe that

[z vidu= [ (£ 500 fedn,

MS M2k
whereE; is the conditional expectation &f; with respect tqu and theo -field generated by,
Jj € Agx. Thus,|E;| € Lz(uAk). Since|ﬁl.‘”‘|, 1 Zi1, IV fx/fx| € LZ(MAA,), it suffices to show that
there exists a sequence of functignse C5°(M4%) such thalVe; — V fi/fi| — 0in L%(14,),
i.e., Vfi/fc € ['(na,). We havepa, = pia,, Wherep = fiexpWi and /p € H>1(ha,).
Hence

It remains to note thaV Wy € I'(u4,) by Lemma 2.1 andVp/p € I'(ux) by Theorem 2.2
(which applies by our assumptions stated at the beginning of this section).

Equality (7.3) is proved in a similar manner taking into account that for every\;\ Ax_1,
one has

/[AifﬂJr(Zi,Vi(P)]dM: / [Aig +(Zi. Vig)] fix1duiga

MS MAk+1

= / [—(Vig. Vi fiv1) + (Vie. Zi = B fira] dvisa.
MAk+1
With the above justification, one can repla¢e by V; fi/fx. O

LEMMA 7.2.— (i)Letjus1 € P(MA4+1) have the logarithmic derivativg;“** along.; for
somei € A and let|g/*"*| € L?(uy+1). Letuy be the projection oft1 to M 4. Thenuy has

the logarithmic derivativeﬂi‘“‘ alongx; and
(7.5) [ Pa < [ 1P dunsa
M2k MAk+1

(ii) Let, in addition,v;;1 € P(MA%+1) be such thaju, 1 = fir1vis1 and g = fi vk, Wwhere
VT € H>Y (), VFir1 € H>Y(viy1). Assume that botl 21 (v;) and H%1(v; 1 1) satisfy(4.5).
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Then, for every € A such that,Bi”"*l € Lﬁ,c(Vk) exists and depends only on the variabigs
j € Ak, one has

Vi fil? Vi feal?
(7.6) / | szk| iy < / IVi fi+1l dves 1.

X Ji+1
M2k MAk+1

Proof. —It is easily verified that the conditional expectation &#“1 with respect to the
measurqu,+1 and theo -field o, generated by the variablesg, j € Ay, serves aﬁl”k. Hence
we obtain (7.5). In order to prove (7.6), let us note that as shown in the proof of Lemma 7.1 both
integrals exist and tha* = g;*** sinceB;*** only depends on the variables, j € A;. The
left-hand side in (7.6) is equal to the square of the noriVef; / fi| in L?(ux), hence coincides

with the supremum of
Vi fi ?
i fk
sv)d
(./< Jx > Mk)

Mk

over allv € Vegg® (M) such thatv(x) € T, M" and || [v] || 2, < 1. Given such a field, we
have

diviy =divo + (v, B) = dive + (v, B*) = div*v.

1

Therefore, by (7.1) and the hypotheses tHgt™ € L2 (w), +/fk € H>1() and /fiz1 €

H?1(1x41), one obtains, by approximating by (n A /fx)2 € H>1(1), n € N, and the same
for fi41, that

f(Vifk,v)dez— / frdiv o dug
MAk

MAk

=-— / firrdivFudyg g = f (Vi frg1, v) dugga

MAk+1 MAk+1

Vi fepal? i
<< / %deH) </ |U|2de+1>
Jia

MAk+1 MAk+1

Vi fesal? i
i Jk+1
< /Ldum) .

2
fk+1

1/2

M Ak+1

This completes the proof.O

We assume in the next theorem thiét = M = T1 is a circle of unit lengthy is (normalized)
Lebesgue measure ad. It is well-known that one has the following log-Sobolev inequality

(7.7) / u?logu dig < f \Vul?die, e H* ). llull 2, = 1.
M4k M4k

Next, we shall employ the following lemma analogous to Ramirez’s inequality4#) [
Lemma §.
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LEMMA 7.3.-LetM =T and letu € H%1(%) be nonnegative and continuousuyife L2(1)
and/u € H>1(%), then

2
(7.8) /wudngwzudx+%/ Vul® g+ (minuy /wd,\.
M M M M

u

Proof. —Let ¢ = minu. Then

fWudA:f@ﬁ(u—c)d)»—i—cftﬂd)»
M

M M

1/2
<</wzlﬁ+ﬁlzdx\/|ﬁ—ﬁ|2dx> e fvan
‘M M

M

</¢2udx+ma>4ﬁ—ﬁ|2+c/¢dx.
M M

It remains to note that/u — +/c| is majorized by the integral dv./u| and apply the Cauchy
inequality. O

THEOREM 7.4.— Let A% be the product measure oW®, where M = T1. Suppose that
w € P(M?3) satisfies the equation’, u = O with respect taFC;°, where Z is of finite range
R andsup |Z;| < k < co. Assume also thativ Z; € L>®()5),i € S, exist and

n:=Y [divZi|e < oo, where|divZ|o := supldiv Zi.
ieS M3

Thenp = f2daS with £ € H>2(A5) and 5 |V f12dAS < /4.

Proof. -We setuy := w4, and i; := A% for simplicity. We know by Theorem 4.2 that
wr = fr A and fr € H%>1(4) has a continuous strictly positive version. Moreover,

IV fiel?
2

7.9
(7.9) 7

duk < f |ij Izduk <w2cardAg < k2R™(2k + 1),
Mk Mk

For fixedx 4, .\ andi € Ag \ Ax—1, we shall apply (7.8) to the functions

Vi fx
u(x;) = frr1(X A1\ {i) X Xi), Y(xi) =%, o (X A a\i) X Xi).

We have

/ V() () = — / div Z: 10g fi 2(dx;) < 1div Zi oo / llog fel A(cky).
M M M

Since fi = [i a4 fra1 dAM+1\A% we have

/ Min fi.q da et / |10g fi| A(dxi)
M

MAk+1\ Ak
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<f(n;infk)|logfk|x(dx,-) < 1+/(fk log i) (cx).
M l M
By (7.8), (7.7) we obtain

/ <Zi: M> Sierrdhgqa
S

MAk+1
Vi ficl?
a1 < [ ERL g
MAk+1 k
1 Vi figal? . 1 [ IVfil?
+ - ————drge1 + iV Z | 1+—/ dig |.
4 ./ S+ kit e 2 T ¢

MAk+1 M

By Lemma 7.2, for any € A, one has

Vi fil? Vi fil? Vi fiv1l?
(7.11) f | J;H fk+1d/\k+1=/ | ];kl Jiedr < / %ﬁc—&-ld)&k—kl-
fi o i S

MAk+1 MAk+1

Letegg := ZiéAH |ldiv Z; || o0, Which goes to 0 a& — oo. Then, by (7.10) and (7.11) we obtain

Vi
Z / <Zi, —fk> Sir1 gy

iEA/\,\Ak,]_MAk_H- fk
1 \ 2 P V fil?
<<K2+Z> Z / | sz+1l d/\k+1+8k+5k/ I J]:k| .
VN AP e

Combining this with (7.2) and realizing thﬁf" =0 (sincev; = A¢) and that

> /(Zhvifk)d)\k: > /(diVZi)fkdkkéﬁ / Jidrr =n,
M4k

iEAk_leA iGAk—lMAk
we obtain
V fil? 2.1/4 \v2 2
(7.12) / IV fxl dkk<n+€k+’( +1/ Z / [Vi fie+1l dpr
S 1—e 1—er . Ji+1
MAk IEA/\'\AkflMA/\,_*_l

for all k such that, < 1. Therefore, lettingip := ¢ and

\Y% 2
(7.13) Tii= ) / Vi fienal® dirr1, keN,
v Je+1

MAk+1
we obtain by (7.11) and (7.12) that

Vi ficl? n+er  «k2+1/4
T: < dig < T;
J Z Z k 1—€k+ 1— g k
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for all k£ with ¢, < 1. Let us show tha[:’;:l T; < n for all k. Otherwise, we hav{:’;f):l T; >
(1+e)(n + eky) /(1 — &) for someko > 1 ande > 0. Then there exists> 0 such that

k—1

Ty
Y Ti< = Vk>ko.
=1 ¢

This implies

k k-1 ko
YT, >A+0)) Tz >A+of RNy 1
j=1 j=1 j=1
for all kK > kg, which is impossible by (7.9). Thus, we ha¥g — 0 ask — oo. Noting that

fMAk ‘Vﬂ"‘z dX, is nondecreasing ik according to (7.11), we obtain form (7.12) that

V fil? vV fil?
sup/ ﬂdﬂ: lim / ﬂd)\sgn<oo.
k Tk k—o00 Tk
MS M5
As in the proof of Theorem 4.3, this yields that the sequengg;} converges weakly in
H?1(15) to somef € H%1(15) and thatw = f2A5. In addition, [,,s [V f|?dAS <n/4. O

Remark7.5. — The proof of Theorem 7.4 enables us to generadizeTheorem ¥ Namely,
suppose thaZ is of finite range with diZ; = 0 for alli € S. If 1 is a probability measure ol S
such that sup| Z;[loc < oo and L% u =0 with respect to the clasg(C;°, thenu = A5 (simply
note that in this case = 0). Unlike [42, Theorem }} no smoothness df; is required.

Now we shall consider a more general situation whE&rare complete Riemannian manifolds
and Lebesgue product measure is replaced by some probability measung. In the rest of
this section we shall refer to the following assumptions.
(A1) For everyi, M' is a complete Riemannian manifold of finite dimension satisfying the
hypotheses of Corollary 2.3.

(A2) The projectiony of v to M4%, whereA, is the same as above, satisfies condition (4.5),
has a density exj;) with respect to the Riemannian volume such thate W|%>’<:1(’\Ak)
and |V; Wi| € L2 .(v). SetB™ = (B/")ica,, B/* = ViWk, where we fix some Borel
versions.

(A3) H?Y(v) is well-defined (i.e., the linear span $iCg" with norm || - || 52, is closable

on L?(v)) and the logarithmic Sobolev inequality (4.4) holds for

THEOREM 7.6. — Letv € P(M®) be such thafA1), (A2), (A3) are fulfilled. Letu € P(MS)
satisfy L7, = 0 with respect taFCy°, whereZ = (Z;);es is of finite ranger, |Z;| € L%(w),
1Bl € L?(w), i € Ay, and let

(7.14) K= Z |Zi — B} |2du < o0.
i€ A\ Ak-1y;5

Suppose that, for alle A;_1, one hagZ;| € leoc(vk) and thatdiv’* (,81."" — Z;) exists and

(7.15) Je=sup [ | Y div(8* - Z;)|du < oo.

MS i€Ak_1
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Thenu = f2v, wheref € H>1(v).

Proof. —Let ur := ua, and fi := duy/dvr. By the same reasoning as in Theorem 4.3, we
have thatf; exists and that/fi € H>(vy). LetV; := Z; — B/*, i € Ax_1. We shall show that

(7.16) > /(V,,ka ) dug = / > divV; fidug <

€A1

WAk Mk €A1

By (7.15), it is enough to justify the integration by parts in the equality on the left in (7.16). We
shall do this for any nonnegativ such that/ i € H>(v) and|V;|? fi and_; 4, , divV** V; fi

are in LY(v;) (here we do not use thaf is related touy). Then it suffices to prove (7.16)
for boundedf; passing to the functions r’rﬂyﬁkl/z, n)? and lettingn — oo (note that|V; |/ fx,

IV fil/~/Fx € L2(vr) due to our assumptions). Moreover, we may assume fihhts compact
support by passing to functiogs f, where¢; € CgO(MAk) are nonnegative uniformly bounded
functions with uniformly bounded gradients aggl= 1 on B(o, j). There exists a sequence
Y} cCy (M4%) of nonnegative uniformly bounded functions with supports in a compact set
K such thatwj — Jfe in H2Y () andy; — /fx we-a.e. Since the desired integration by
parts formula holds 1‘01;02 in place of f, it remains to note that/fx Vi — v; Vi| + [2Vy; —

V fi /Tl = 0in Lz(vk) due to our assumptions;*|, | Z;| € Lloc(Vk) so that|V;| e Lloc(”k)
Thus, (7.16) is established.
By Lemma 7.1 we obtain

IV fil?
f; Jie dvg
i
Mk
\%
=y f(zi—ﬁ,-”",vifk)dukJr > <Z — B, ffk>fk+1dvk+1
iEAk—lMAk ie A\ Ap— LA k
(7.17)
1 V;
ST+3 Z / |:|Zi_/31“}k|2+| Al :|fk+ldl)k+l
iEAk\Ak_lMAk+l fk
1,1 Vi fil?
<J+ = ——d
+ oK+ 5 > -

1€ ARNAk-1y 4,

Hencell|V fil /v fill L2y < 27 + «2. By the same reasoning as in Theorem 4.3 we obtain that
the sequence/f; converges weakly iH21(v) to some functionf. The logarithmic Sobolev
inequality yields thaj. = f2v (cf. the end of the proof of Theorem 4.3)0

We observe that in the case of the one-dimensional lattice- Z) condition (7.14) is
equivalent to the condition syp, - |Z; — ﬁl.”"|2du < 0o. We also note that, as one can notice
from (7.17), itis enough to replacg in (7.14) by the conditional expectati@}ﬁj‘k Z; of Z; with
respect tou and theo-field generated by 4, . Clearly, (7.15) is fulfilled if3}” = Z;, since then
Zi=p*foralli e Ap_1.

COROLLARY 7.7.—Assume that in the situation of Theor&n6 one hasz; = g} = g!* for
some Borel versions. Then=v.

Proof. —By Theorem 7.6y = f2v, wheref € H2(v). Itis readily seen thag!* = 2V; f/f +
B} . HenceV; f =0 v-a.e. since it holdg.-a.e. but also holds-a.e. on the sdtf = 0}. Then by
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the logarithmic Sobolev inequality we haf@‘z log f dv <0, which yields thatf =1 (see, e.g.,
[10, Lemmal.7]j. O

We shall now see that, even without the assumption about the log-Sobolev inequality every
solution of the elliptic equation with a symmetric solution is also symmetric provided it satisfies
condition (7.18) below. This means, in particular, that every invariant measure satisfying (7.18)
is Gibbsian provided that there is a Gibbsian invariant measure. This result extends well-known
results by Holley and Stroocl3f] and Fritz 28,29. Some ideas of the above cited papers are
used below.

THEOREM 7.8.— Let v € P(M*) be such tha(Al) and (A2) are fulfilled and that it has
logarithmic derivativess” with respect ta#Cy° along x; for all i € S. SetZ; := g}, where
we fix some Borel version. Assume tlat= (Z;);cs is of finite rangeR. Let u € P(M5) be
such thatL.”, u = 0 with respect taF C3°, where| Z;| € L2(1). LettingE’jk Z; be the conditional
expectation ofZ; with respect to the -field generated by 4, and the measurg, assume that
for somec > 0

(7.18) S B4 Zi— B Pdu<ck, VkeN,
mS 1€AN\Ak1

whereﬁl."" are fixed Borel versions. Them“ exists and coincides wit; for everyi € S. In

particular, u is Gibbsian.

Proof. —Let ux := 4, and fi := duy/dvy where as above; :=v,4,. By the same reasoning
as in the proof of Theorem 4.3, we obtain that exists and that/fx € H%1(1). Due to
the equalityZ; = g and the finite range assumption, we haﬁfé = Z; wheneveri € Ay_1.
Therefore, we obtain by (7.3):

v, fil?
Z [Vi fil dve
iEAk_lMAk fk
Vi Vi
719 =- 3 sz’ i frr1 s
S o S
I€ANA-1) Ay g

w2\ Vi fisal? i
<< Z / 72 de) ( Z / TﬂdeH) .

1€ AN Ak=1)1, ZEAk\Ak—lMAk+1

We observe that the first factor on the right in (7.19) is majorize¢/by. Indeed, by (7.2), (7.18)
and the equalityf;”‘ = Z; for everyi € Ax_1, we have

IV fil? f< M " v,-fk>
duy = EY Z; — B.*, d
sz Mk Z Ay ,31 fk "

M Ak 1€ AN\ Ak-1p;s

wvhaE .\
<k 5 duk | -
A/\, fk
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This implies|||V fil/fill L2, < v/ck. Let Ty be defined by (7.13) withy 1 in place ofis1.
Then we obtain by (7.19) and (7.6) that

k=1
> T <\ekTy.
j=1

This yields that7; = O for all k. Indeed, letg be the function on1, +o00) which equals
T; on [j,j+ 1). By the above inequality and the estiméfe < +/2ckT;, which follows

from the estimatd}, < |||ka+1|/fk+l||iz(uk+1) < c(k + 1) < 2ck, we obtain that the function

G(t)= fl’ g(s) ds satisfies the inequality/c1:G’(t) > G(t) for someci > c. It remains to note
that any positive solution of the inequaliG? (1) < c1tG’(r) explodes in finite time which leads
to a contradiction. Hence (7.19) impli&8./fix = 0 vc-a.e. for alli € A;_;. Since (4.5) holds
for H21(vy), this implies thatf; only depends O A\ Ag_1- Thereforq@l.‘“‘ = ﬁ;”‘ ur-a.e. for all

i € Ag—1. SinceZ; = B;* vi-a.e. for alli € Ai_1, it follows directly from Definition 6.1 thag;
existsang/' =Z. O

We observe that condition (7.18) is fulfilled if
(7.20) Zi) =2 (xa) + ZP ), i€ A,

where

sup |Zl.(2)(x)| <AKE, Wk =1,
€N\ Ag—1

for somec’ > 0. Indeed, in this case, we have

B Zi=Z0 +E) 2P =) 7 +E, 2P -, 2P, weae.
We observe that ifu satisfiesLu =0 and|Z;| € L?(uw) for i € S, then uy is absolutely
continuous with respect tg.

For example, (7.18) is fulfilled i < 2 and one has (7.20) with suiZ?| < co. Clearly, this
is the case ifn < 2 and theZ;’s are uniformly bounded. Thus, in the case of the two-dimensional
lattice, the above theorem gives broad sufficient conditions for the reversibility of every stationary
measure of the stochastic system associated with a Gibbs measure. A detailed discussion of such
applications and of the relation t@§,29 and [35] will be addressed in a forthcoming paper.
Certain a priori estimates which can be used for the verification of (7.18) are discussed in the
next section.

It should be also noted that the technical condition (4.5) is ensured by the existence of
continuous strictly positive densities of the measurgs which, in turn, follows, by 14,
Proposition 2.1B from the following condition: exfe;|Z;|) € L(v) for someg; > 0.

Finally, let us note that analogous results are valid for more general elliptic equations which
involve non-constant diffusion coefficieniswhich depend on; with j € A;.

8. Estimates of solutions in infinite dimensions

In this section, we establish some a priori estimates for arbitrary probability measures solving
the elliptic equations considered in the previous sections. In particular, we show the integrability
of ¥ with respect to every probability measure satisfying the corresponding elliptic equation
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and not only with respect to the above constructed solytigfthe interest in such estimates

is due to possible non-uniqueness of solutions in the class of all probability measures). The
basic idea behind such a priori estimates is simple and well known: given a positive namber
and a positive functiowr such thatL;® < ¢ — ¥ for a suitable function®, one obtains the
estimate/' ¥ du < ¢ provided thatL% « = 0. The subsequent results give a justification of this
formal procedure. In this section, we fix a collectiBr= (Z;);cs of Borel maps o/ such that
Zi(x) e Ty M.

LEMMA 8.1.— Letu € P(M¥) satisfy equationL? . = 0 with respect to some clags (cf.
Definition 4.1). Suppose thaV is a nonnegatives-a.e. finite Borel function ol/® such that
ViV, A;V exist for alli € § and such thatp o V € I for everyg € CgO(IRil). Let ® be a
nonnegative Borel function oiS that is u-integrable on the set§V < ¢}, c € [0, %) (e.g.,
let ® = x o V, wherey is a nonnegative locally bounded Borel function BR). Assume, in
addition, thatLzV < C — ® wu-a.e. in the following senséhere existu-measurable functions
A; such that the serie}_, _¢ A; converges inL1(w) onthe set§V < ¢}, ¢ € [0, 00), and one has

LiV<XA p-ae and Z/\,-(x) <C-0Ox) p-ae.

ieS
Then

(8.1) / Odu<C.
MS

Proof. —Certainly, (8.1) follows trivially by integrating the estimafe;V < C — ® and
making use of the equality LV du = 0. However, due to the above interpretation of both
relations, some justification is needed. By our hypothesis, we have (4.3)withp o V for
everyg € Cgo(Rl). Then the same is true for evegye C*°(RRY) such thaty = const outside
some interval, since — conste ch(Rl) and (4.3) is trivially true fory = const. Now let us fix
an even functiog € C*®°(RY) such thatr (1) =¢ if || <1,¢(t)=2ifr >3,0<¢'(r) <1, and
¢"(1) <0ift >0.Set;(r) = j¢(t/j) if t >0andg;(r) = ¢j(—r) if 1 < 0. Clearly, 0< {;(t) <1
and¢?(r) <0if r > 0. Inaddition,g;(r) =t if r € [0, j1andz;(r) =2if r > 2j. Hence, (4.3) is
satisf]ied fory =¢; o V. We observe that

Li(gjoV)=tjoV LV +¢/oVIViVIE< LoV LiV < (Lo V)i

By (4.3), the convergence of the ser@es(g} o V); in LY(w), and the hypothesi¥; s 4 <
C — ®, we arrive at the estimate

/}qow@du<C/§thu<C
MS MS

whence the desired estimate follows by Fatou’s lemma, since orgg fi&ts> 0 and limj. o0 ¢} o
V—->1u-ae O

Remark8.2. — Suppose that the functions in the above lemma can be written As=
u; — w;, whereu; andw; are nonnegative functions-integrable on the sefd/ < r}. Then the
convergence of the serigs; _¢ A; in L(1) on the set§V < r} is equivalent to the integrability

of the series) ;g u; on the set§V < r}. Indeed, let, be the function introduced in the proof
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of Lemma 8.1. Then, as we have seen,
Li(Gro V)< (g o V)i = (& o VIui — (¢ o Vw;.

Since the sum of the integrals bf (¢, o V) is zero, it follows that

Z/widu<2/(§r/oV)widu<2/(dov)uidu<z / u; dp < 0o,

iesvgr ieSMS ieSMS ZESV<3r

since 0< ¢/ <1,f oV =10on{V <r},and/ oV =0 outside{V < 3r} .

THEOREM 8.3. — Suppose that in the situation of Propositi&i2, 1 € P(M5S) satisfies
L% = 0 with respect to the clas& such thaty o V € K for everyp € Cgo(Rl), where
V=3 csq:Vi isfiniteu-a.e. Assume also that; < V;. Then

©.2) [ T aGidu<sYa

ieS jes
Moreover,
(8.3) /G,» di < % Vies.

Proof. —We may assume that; g; = 1. Let

Ai=c— (A +9)G; —I—Zai,jGj.
J

Clearly,L;V < giai and}_; giAi < c — 8. Itis readily seen that the serigs +¢i > _; ai ;G
converges inL1(u) on every setV, = {V < r}. Indeed, for every € M,, one hagG;(x)} e
1*(¢) due to the estimaté; < Vi, hence) ;(¢; 2" ai jGj(x)) <13 ;q,;Gj(x) < Ar. Estimate
(8.3) follows in the same manner as in the proof of Lemma 5.

In the Gibbsian case, a priori estimates follow trivially from the finite-dimensional case.

PROPOSITION 8.4. — Let u € P(MS) be such that the conditional probabilitigs( - |x;c)
on M! x {x;c}, x;c € M, have continuously differentiable densities— expV; (x;, x;¢) such
that the mappings — Z;(x) = V;V;(x;, x;c) are continuous on\/S. Let Al < 2 and
> jesaij < A forall i € S. Assume that, for eache S, there exist nonnegative functions

G; € C(M™) and nonnegative compact functiois C2(M") such that, for some, § > 0,
one has

AiVi (i) +(ViVi(xi), Zin)) < ¢ = 0+ 8)Gi(xi) + Y _ai jG j(x)).
Jj€eS

Suppose tha® =", _¢¢q;V; < oo p-a.e. and thaG; < V;. Then

/Gidu<

Moreover, the same is true ¥, = F; o o;, whereF; € C2[0, oo) is such thatim,_, o F; (r) = co
and(5.1)holds for allx = (x;);es With x; ¢ cut(o;), Vi € S.

, Vies.

Sl e
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Proof. —Let ¢; be the same as in the proof of Lemma 8.1. Lebe the projection ofs to
M. We know that, fon;-a.e.x;c, the regular conditional probabilify( - [x;c) on M? x {x;c},
xic € M, has the logarithmic gradient — Z;(x;, x;c), hence satisfies the elliptic equation
L¥u(- |xic) = 0 with respect taC5°(M"). Note that

Li(gjo®) =qitjo® LiVi+ (] o ®Vi Vi[> < il o@(c— (A +8)Gi +Zai,jGj).
jes
According to Proposition 3.2, we obtain

/(%’C{} 0@ —qi(A+8)Gigjo® +qitjo® Zai,jGj> p(dxilxic) = 0.

Mi jes

Integrating this inequality with respect tp and summing over € S, we arrive at the estimate

/(k+8)§}o@Zinidu<CZqi+/;}O¢Zf1iai,jdou
MS MS i,j

ieS ie§
<cY g+ / Mjo® Y qiGidu,
ieS mS ieS

since{G;(x;)} € I*(q) for pu-a.e.x by the estimates; < V; and the assumption that < oo
wu-a.e. Therefore,

b f g']’- 0¢ZCI1‘G1‘ du chqi.
MS

ieS ieS
Letting j — oo and noting thatj’. o® — 1lpu-a.e.and & gj’. < 2, we obtain the estimate

/Z%‘Gi du < gz‘ﬁ-

MS ieS ieS

Now the desired estimate follows in the same manner as in Lemmag.1.

Example8.5. — The assertion of Proposition 8.4 is validuifis as in the proposition with
Vi =G; =0, wherep > 2, and

-1 _ -1 -2 - —
ol (Viei, Zi) < pte—of T Aioi — (p— Dol T —p 0+ 8l +p 7Y aijof
jes

holds for allx = (x;);es € M3 with x; ¢ cut(o;), Vi € S. In particular, if A;0; < co(1+ Qfl)
outside cuto;) U {o,}, for somecp > 0 and alli € S, then it suffices to have the estimate

1 o~ _
o (Vioi, Zi) <T—ol +p 'Y aijof,
Jjes

wherec=c — 2cop — p(p — 1), %= P +8) + 2cop + p(p — D).
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